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Abstract—Automated detection of intestinal parasites in 

medical imaging enhances diagnostic efficiency and reduces 

human error. This study evaluates object detection techniques 

using Faster R-CNN with different backbone architectures such 

as ResNet, RetinaNet, ResNext and YOLOv8 series for detecting 

Ascaris lumbricoides and Trichuris trichiura in microscopic 

images. A dataset of 2000 images was split into training (1500), 

validation (300), and testing (200). Results show Faster R-CNN 

with RetinaNet achieves the highest Average Precision (AP) across 

varying Intersection over Union (IoU) thresholds, making it 

robust in feature extraction. However, YOLOv8 excels in real-

time detection, with YOLOv8n (nano) providing the best trade-off 

between accuracy and computational efficiency. Bayesian 

Optimization further improves YOLOv8n, achieving an AP of 

99.6% and an Average Recall (AR) of 99.7%, surpassing two-stage 

architectures. This study highlights the potential of deep learning 

for automated parasite detection, reducing reliance on manual 

microscopy. Future research should explore transformer-based 

models, self-supervised learning, and mobile deployment for real-

world clinical applications. 
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I. INTRODUCTION 

Intestinal parasitic infections significantly impact global 
public health, particularly in low-resource and developing 
regions [1]. Among the most prevalent species are Ascaris 
lumbricoides and Trichuris trichiura, which together infect 
hundreds of millions of individuals worldwide and contribute to 
malnutrition, cognitive impairments, and socioeconomic 
challenges [2], [3]. Accurate and timely diagnosis of these 
infections is essential for effective treatment, surveillance, and 
public health intervention strategies. Traditional diagnosis via 
manual microscopic examination, although widely used, is 
fraught with limitations such as labor intensiveness, inter-
observer variability, and significant dependency on expert 
knowledge [4], [5]. These constraints often lead to delayed 
diagnoses or misclassification, undermining effective disease 
control. As such, there is a pressing need for automated, robust, 
and scalable diagnostic tools that can reliably identify parasite 
eggs across varying image conditions. 

Recent advancements in machine learning (ML) and deep 
learning (DL) have demonstrated promising capabilities in 
automating visual diagnostic tasks. However, ML techniques 

frequently rely on handcrafted features and struggle with image 
variability and segmentation challenges. Meanwhile, DL 
approaches such as CNNs and U-Nets offer improved 
performance through hierarchical feature extraction, demanding 
substantial computational resources and large annotated 
datasets. These resources are often unavailable in the very 
settings most affected by parasitic diseases [6]. 

A. Research Problem and Objectives 

The central research problem is the lack of real-time, high-
accuracy parasite detection tools suitable for resource-
constrained clinical settings. Existing models either compromise 
on computational efficiency or fall short on precision in complex 
image environments [7]. This study aims to overcome this 
limitation by identifying and optimizing an object detection 
architecture that provides a reliable trade-off between accuracy 
and processing speed. 

This research addresses these challenges by proposing a 
novel, optimized diagnostic solution based on the YOLOv8n 
model, which is a part of a single-stage object detection 
framework known for real-time efficiency and accuracy. The 
core innovation lies in using Bayesian Optimization to fine-tune 
YOLOv8n’s hyperparameters, enabling the model to deliver 
state-of-the-art accuracy (AP of 99.6%) and recall (AR of 
99.7%) with minimal computational overhead. 

The study begins with a literature review covering traditional 
ML and recent DL techniques in parasite detection, highlighting 
their respective strengths and shortcomings. The methodology 
section details the dataset, model architecture, and evaluation 
metrics used in the study. Results are presented comparing 
various model performances, with a particular focus on the 
improved YOLOv8n model. Finally, the discussion emphasizes 
the practical implications of the findings and proposes directions 
for future research, including the integration of transformer 
models and mobile deployment 

B. Significance and Contributions 

This work makes significant contributions to the field of 
biomedical imaging and parasitology by: 

 Systematically comparing both two-stage (Faster R- NN) 
and single-stage (YOLOv8 series) object detection 
models across standard benchmarks. 

 Demonstrating the superior performance of YOLOv8n 
for real-time detection in low-resource settings. 
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 Introducing a Bayesian Optimization framework that 
enhances the model’s performance through intelligent 
hyperparameter tuning. 

 Presenting a detection pipeline that can feasibly be 
deployed in clinical workflows, thereby reducing 
diagnostic delays and improving healthcare outcomes. 

The findings contribute to advancing automated parasite 
detection, paving the way for real-time, scalable, and resource-
efficient diagnostic solutions in medical and environmental 
applications. 

II. LITERATURE REVIEW 

A. Machine Learning 

Machine learning techniques have been instrumental in 
solving some of the challenges in detecting and classifying 
intestinal parasites. These include Support Vector Machines, 
BoVW, and Laplacian SVM, among others, which have 
achieved success in automating parasite classification, 
enhancing energy efficiency, and solving the out-of-distribution 
problem in parasite-egg detection [8], [9], [10], [11]. The 
combination of BoVW with SVM achieved considerable 
accuracy on classification for various reptilian parasites from 
stool images, whereas SoftMax thresholds are used for feature 
selection to deal effectively with out-of-distribution (OO-Do 
detection). 

Most of the ML methods inherently suffer from issues of 
limited labelled data, manually crafted feature extraction, and 
dealing with high-dimensional image data despite their 
successful performance; hence, there is an ever-rising need to 
develop an automatic feature-learning technique and handle 
variability in image quality. 

Besides, many of these ML models suffer in general from 
the problem of segmentation, which makes them easily lose their 
performance on new unseen datasets, and was presented in [9] 
by Ren et al. The work has thus recently shifted more toward 
deep learning methods because they have been seen to have the 
capabilities for high-level feature learning; in addition, deeper 
learning will be able to capture and model more complex image 
information data, hence overcoming so much weaknesses 
related to more conventional ML techniques. 

B. Deep Learning 

Deep learning emerged as a revolutionary methodology to 
solve complex problems in the detection, classification, and 
segmentation of parasites. Models with CNNs, YOLO 
architectures, and transfer learning strategies have delivered 
exceptional performance in application scenarios that demand 
high accuracy and automated feature extraction. For instance, 
YOLOv5, CNN, have achieved considerable success in the 
detection of protozoan cysts and helminth eggs and malaria 
parasites with accuracies mostly greater than 95% in [12], [13]. 
Besides, deep learning models like U-Net have achieved 
detection accuracies as high as 99.8% in detecting human 
intestinal parasites [14]. 

However, this is not to say that there are no limitations in 
deep learning. In particular, these include dependencies on large 
and diverse datasets, high computational costs, and sensitivity to 

variations in image quality. Suwannaphong et al., in [15], for 
instance, recorded a drop in performance upon using low-
resolution images from USB microscopes. In addition, some 
approaches cannot classify morphologically similar types of 
parasites easily [16]. Some challenges identified include: 
integrating clinical real-world data sets, improving model 
architectural robustness, and employing hybrid models to 
leverage strengths from the different machine learning and deep 
learning models. 

In this work, efforts are made in optimisation of models for 
resource-constrained settings to enhance generalisability to 
unseen data. Transfer learning is a method in which pre-trained 
models are used, especially with small-sized datasets, in order to 
perform better. For parasite detection, this technique has often 
been used due to its limited and low-quality dataset [17]. 
Therefore, transfer learning leverage knowledge from larger and 
higher quality datasets to enhance feature selection with much 
better accuracy. Several works, such as [18] and [15], have 
shown success in using transfer learning methods to improve the 
accuracy of parasite detection models. 

C. Hybrid and Ensemble Learning 

Some intractable problems in parasite detection are being 
tried to be overcome by the hybrid and ensemble learning 
methods combining the powers of ML and DL. Among these 
techniques, some methods like VGG16 along with SVM and 
some ensemble approaches, such as ResNet50 with 
DenseNet201, have outperformed all previous works related to 
intestinal and blood parasite classification. For example, 
Bhuiyan and Islam in [19], reported 97.92% accuracy using a 
hybrid model for detecting protozoa and helminth eggs. 
Ensembles of CNNs and traditional ML classifiers have also 
performed well in addressing variability in feature extraction 
and boosting the accuracy over multi-class tasks in works such 
as [20] and [21]. 

Although ensemble methods tend to give higher accuracy, 
there is usually an added problem of computational complexity 
and high training times, a process that was noted by Butploy et 
al. in [22]. Therefore, hybrid models are computationally 
expensive and in some cases constitute a major source of 
concern, especially within resource-poor clinical areas. 

These challenges further raise the need for refined research 
on ensemble methods to reduce computational demands and 
involve sophisticated optimization techniques, such as quantum 
learning or lightweight models. This analysis underlines the 
movement from traditional ML techniques to advanced DL and 
hybrid methods. This reflects the unruffled effort that has gone 
into overcoming the challenges of parasite detection to improve 
upon the accuracy, efficiency, and scalability of the approach. 

III. METHODOLOGY 

The methodology outlines the systematic approach 
undertaken to evaluate the performance of state-of-the-art object 
detection models in detecting intestinal parasites. This section 
describes the dataset, the preprocessing steps employed, the 
models used, and the evaluation metrics applied. The goal is to 
assess and compare the effectiveness of the models in 
classifying and detecting two classes of parasites, Ascaris 
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lumbricoides and Trichuris trichiura, using robust and 
reproducible experimental protocols. 

A. Dataset Description 

A dataset of 2000 microscopic images was used, comprising 
two classes of intestinal parasites: Ascaris lumbricoides and 
Trichuris trichiura. The dataset was divided into; 1500 images 
as training set, 300 images as validation set and 200 images as 
testing set. Each image was pre-processed to ensure uniform 
dimensions and enhanced contrast for optimal model input. 

B. Models Evaluated 

This research attempts to optimize the best-performing 
models among the established baseline models. Object detection 
for parasite identification, specifically Ascaris lumbricoides and 
Trichuris trichiura, requires a balance between detection 
accuracy and inference speed. Object detection architectures fall 
into two categories: two-stage and single-stage models. Two-
stage architectures, such as Faster R-CNN (FRCNN), excel in 
precision but often suffer from higher computational costs. 
Conversely, single-stage architectures, such as the YOLOv8 
series, prioritize real-time detection with competitive accuracy. 
Ensemble learning leverages multiple models trained on the 
same dataset, combining their predictions to enhance precision 
and reduce variability. The individual models trained include: 

1) Two-Stage architectures: Faster R-CNN (FRCNN) is a 

well-established two-stage detection framework that provides 

high detection accuracy by first generating region proposals and 

then refining predictions. To enhance performance, several 

backbone architectures and frameworks have been integrated 

with FRCNN: 

a) Faster RCNN with ResNet Backbone: Utilizes ResNet 

for feature extraction, known for its accuracy and efficiency in 

hierarchical feature learning. Both ResNet_50_FPN and 

ResNet_101_FPN were used in the experiment. 

b) Faster RCNN with RetinaNet Backbone: Incorporates 

RetinaNet’s focal loss function to address class imbalance, 

ensuring precise detection of small and irregularly shaped 

objects. 

c) FRCNN with ResNeXt backbone: ResNeXt’s grouped 

convolution structure was used to improve feature 

representation and classification. 

These configurations provide robust detection performance 
but may introduce computational overhead, limiting real-time 
applications in field environments. 

2) Single-Stage architecture: The YOLOv8 series offers a 

single-stage alternative with five model sizes: YOLOv8n 

(nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l 

(large)  and YOLOv8x (extra-large), balancing accuracy and 

efficiency. Single-stage models eliminate the region proposal 

step, allowing for faster inference while maintaining high 

detection precision. In this study, YOLOv8n performed better 

than other variants with the parasite datasets used for this study. 

The optimal trade-off between speed and accuracy, made it 

even more suitable for real-time parasite detection with limited 

hardware resources. YOLOv8n’s advantages include: 

 Efficient feature extraction using CSPDarkNet 
backbone. 

 Improved object localization through anchor-free 
detection. 

 Optimized performance on edge devices for real-world 
applications. 

The different architectures are summarized in Fig. 1. 

 

Fig. 1. The different Object detection models utilized in intestinal parasite 

detection and classification tasks. 

3) Selection of YOLOv8n for optimal performance: A 

comprehensive evaluation was conducted by training both two-

stage and single-stage object detection architectures on the 

same dataset to identify the most effective model for parasite 

detection. The two-stage Faster R-CNN (FRCNN) framework 

was tested with multiple backbone architectures, including 

ResNet_50, ResNet_101, RetinaNet and ResNeXt, each 

offering high detection accuracy but at the cost of increased 

computational complexity. 

In contrast, the single-stage YOLOv8 series, comprising five 
model sizes (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 
YOLOv8x), provided a real-time alternative with improved 
inference speed and detection precision. Among these, 
YOLOv8n (nano) was selected as the best-performing model, 
offering an optimal balance between accuracy and efficiency, 
making it particularly well-suited for real-time parasite detection 
in resource-constrained environments. The results of the 
experiments are presented in the ‘Results and Discussion’ 
section of this study. 
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4) The structure of the proposed optimized YOLOV8n: 

YOLOv8 represents a significant advancement in real-time 

object detection, introducing a refined architectural design that 

enhances accuracy, efficiency, and adaptability over its 

predecessors. At its core (Backbone), YOLOv8 adopts a 

CSPDarkNet-inspired backbone, incorporating an advanced 

Spatial Pyramid Pooling (SPP) module and CSPLayer blocks, 

which improve gradient flow and reduce computational 

redundancy, thereby enhancing feature extraction. The core 

operation involves splitting feature maps and performing 

transformation separately before merging, as formulated in 

Eq. (1): 

X′ = 𝐹(𝑋1, 𝜃) ⊕ 𝑋2    (1) 

where, 

 X′  is the input feature map, and 𝑋1, 𝑋2  are the split 
feature maps, 

 F (. , 𝜃 ) represents the transformation function (e.g, 
convolution, activation and normalization). 

 ⊕ denotes concatenation. 

In addition, Spatial Pyramid Pooling (SPP) enhances 
receptive field aggregation by applying multi-scale max pooling 
as shown in Eq. (2): 

𝑆𝑃𝑃 (𝑋) =
𝑁
⊕

𝑖 = 1

max
𝑟𝑖

 (𝑋)    (2) 

where,  

 N represent the number of pooling scales, 

 ri denotes the pooling kernel size at scale i 

 maxri (.) applies max pooling over a region of size ri 

These components collectively improve feature 
representation by capturing both fine and coarse-grained spatial 
structures. 

At its neck, the model optimized Path Aggregation Network 
(PAN) to facilitate multi-scale feature fusion, ensuring the 
effective integration of fine-grained and high-level semantic 
information critical for detecting intricate structures such as 
parasites. Feature fusion in PAN is mathematically expressed in 
Eq. (3): 

𝐹𝑜𝑢𝑡 = 𝑊1 ∗  𝑈(𝐹𝑖𝑛) + 𝑊2 ∗  𝐷(𝐹𝑖𝑛)  (3) 

where, 

 Fin is the input feature map, 

 U(𝑈(𝐹𝑖𝑛) 𝑎𝑛𝑑 𝐷(𝐹𝑖𝑛) represent up sampling and down 
sampling functions, respectively, 

 W1, W2are learnable weight parameters 

 * denotes convolution 

This hierarchical fusion ensures better retention of spatial 
and contextual information across different scales. 

A key departure from previous YOLO variants is the 
introduction of an adaptive decoupled head, which 
independently processes classification and regression tasks, 
improving both localization accuracy and confidence 
calibration. The classification confidence score and bounding 
box regression are modelled as shown in Eq. (4) and Eq. (5) 
respectively: 

 Classification confidence: The probability of object 
presence in an anchor-free paradigm is computed using 
a sigmoid activation in Eq. (4): 

𝑃(𝑐|𝑋) =
1

1+ 𝑒−𝑧     (4) 

where, z is the output of the classification branch before 
activation. 

 Bounding box regression: The predicted bounding box 
coordinates (x, y, w, h) are obtained using Eq. (5): 

𝑥̂ = 𝑥𝑎 + 𝑆𝑥𝜎(𝑥)    (5) 

𝑦̂ = 𝑦𝑎 + 𝑆𝑦𝜎(𝑦) 

𝑤̂ = 𝑤𝑎𝑒𝑆𝑤𝜔 

ℎ̂ = ℎ𝑎𝑒𝑆ℎℎ 

where, 

 (𝑥𝑎, 𝑦𝑎 , 𝑤𝑎 , ℎ𝑎) are the anchor box parameters 

 𝜎(. )  Is the sigmoid function ensuring localization 
stability. 

 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑤 , 𝑠ℎ are scaling factors learned during training 

The decoupling of classification and regression enables 
YOLOv8 to achieve higher precision and faster convergence 
compared to prior versions. Furthermore, YOLOv8 transitions 
to an anchor-free detection paradigm, eliminating the reliance 
on predefined anchor boxes that characterized earlier versions 
[23], [24]. This innovation streamlines the detection process, 
improves generalization, and reduces computational 
complexity, making it highly effective for parasite detection 
where object variability is high. The model further enhances 
performance through an advanced post-processing pipeline, 
incorporating adaptive non-maximum suppression (NMS) to 
minimize false positives while maintaining high recall rates. 

Additionally, improved loss functions such as IoU Loss and 
Distribution Focal Loss (DFL) enable superior bounding box 
regression and confidence estimation. These advancements 
collectively yield a highly efficient model with reduced 
inference latency, making YOLOv8 particularly well-suited for 
real-time and resource-constrained applications in medical and 
biological imaging. By integrating these state-of-the-art 
improvements, YOLOv8 establishes itself as a robust 
framework for precision-driven detection tasks, offering 
superior speed and accuracy while preserving computational 
efficiency, making it an optimal choice for high-impact 
applications such as automated parasite detection [25]. 

To conclude this section, it is obvious to note that the 
mathematical formalization of YOLOv8's architectural 
components underscores its computational efficiency, multi-
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scale feature aggregation, and enhanced detection accuracy. The 
CSPDarkNet backbone facilitates efficient feature extraction, 
the PAN neck strengthens multi-scale feature fusion, and the 
decoupled detection head optimizes classification and 
localization, collectively ensuring state-of-the-art performance 
in real-time object detection, including applications such as 
parasite detection in biomedical imaging. 

5) Hyperparameter tuning using Bayesian Optimization: 

Bayesian Optimization (BO) has emerged as a superior 

hyperparameter tuning strategy for deep learning models, 

particularly in optimizing YOLOv8n for parasite detection, 

where achieving high precision with minimal computational 

overhead is critical. Unlike conventional grid search [26], 

which exhaustively evaluates all possible hyperparameter 

combinations, or random search [27], which blindly samples 

the search space, Bayesian Optimization constructs a 

probabilistic model of the objective function using Gaussian 

Processes (GPs) or Tree-structured Parzen Estimators (TPE). 

By iteratively refining this surrogate model and leveraging an 

acquisition function, such as Expected Improvement (EI), 

Upper Confidence Bound (UCB), or Probability of 

Improvement (PI)—Bayesian Optimization dynamically 

selects the most promising hyperparameter configurations, 

balancing exploration and exploitation [28]. 

This adaptive learning process significantly reduces the 
number of training iterations required to reach an optimal 
solution while ensuring improved detection performance. 

Additionally, Bayesian Optimization mitigates the inefficiencies 
of traditional methods by intelligently guiding the search space, 
preventing the combinatorial explosion characteristic of grid 
search and outperforming the stochastic nature of random 
search. This results in enhanced sample efficiency, faster 
convergence, and improved generalization capabilities of 
YOLOv8n in parasite detection tasks. By integrating Bayesian 
Optimization into the hyperparameter tuning process, the model 
achieves superior object detection accuracy with reduced 
computational costs, making it an ideal choice for real-time and 
resource-constrained applications in biomedical imaging and 
parasitology. 

Hyperparameter optimization is a critical factor in enhancing 
the performance of deep learning models for parasite detection, 
particularly when leveraging Bayesian Optimization to refine 
the YOLOv8n architecture. By defining a well-structured search 
space, Bayesian Optimization efficiently navigates the trade-
offs between convergence speed, generalization, and 
computational efficiency. Fig. 2 outlines the Bayesian-
Optimized algorithm with YOLOv8n. 

The initial learning rate (lr0), constrained within the range of 
1e-4 to 1e-2 and sampled using a log-uniform prior, governs the 
magnitude of weight updates, ensuring a balance between rapid 
convergence and model stability. Momentum, ranging from 0.1 
to 1.0, modulates the persistence of past gradients in stochastic 
gradient descent (SGD), mitigating oscillations and improving 
convergence stability, particularly in complex parasite detection 
tasks with highly variable morphological structures. 

 

Fig. 2. Performance trends of Average Precision  and Recall  across varying IoU thresholds, highlighting the consistency and accuracy of detection models in 
intestinal parasite classification tasks. 
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The Weight decay (weight_decay), bounded between 0.0 
and 0.0005, functions as an L2 regularization term, constraining 
excessive parameter growth to prevent overfitting and enhance 
model generalization on unseen parasitic instances. The batch 
size (batch), selected within the range of 4 to 32, directly impacts 
gradient estimation, where smaller batches offer improved 
generalization at the cost of higher variance, while larger batches 
provide smoother updates but demand greater computational 
resources. 

Additionally, the number of training epochs (epochs), 
varying from 10 to 1000, determines the duration of model 
training, requiring careful optimization to balance learning 
progression with computational efficiency, thereby avoiding 
underfitting or excessive overfitting. By leveraging Bayesian  

Optimization to systematically explore these 
hyperparameters, YOLOv8n achieves superior detection 
accuracy while minimizing computational overhead, ensuring 
robust performance in real-time parasite detection applications. 

This intelligent search process dynamically adapts 
hyperparameter selection based on model performance metrics 
such as mean Average Precision (mAP) and Intersection over 
Union (IoU), ultimately facilitating a highly efficient and precise 
detection framework tailored for biomedical imaging and 
parasitology research. Table I summarizes the hyperparameter 
ranges. 

The proposed architecture for the Bayesian-Optimized 
YOLOv8n model is summarized in Table II and the proposed 
algorithm is presented in Fig. 3. 

TABLE I.  RANGES FOR HYPERPARAMETER TUNING 

Hyperparameter Abbreviation Range 

Learning rate lr0 (1e-4, 1e-2) 

Momentum Momentum (0.1, 1.0) 

Weight decay weight_decay (0.0, 0.0005) 

Batch size batch (4, 32) 

Number of epochs epochs (10, 1000) 

TABLE II.  THE PROPOSED ARCHITECTURE OF THE PROPOSED OPTIMIZED YOLOV8N 

Layer Output Shape Filter Size Number of Filters Stride Padding Activation 

0 -1 [3, 16, 3, 2] 16 2 1 ReLU 

1 -1 [16, 32, 3, 2] 32 2 1 ReLU 

2 -1 [32, 32, 1, True] 64 2 1 ReLU 

4 -1 [64, 64, 2, True] 64 2 0 ReLU 

5 -1 [64, 128, 3, 2] 128 2 1 ReLU 

6 -1 [128, 128, 2, True] 128 2 0 ReLU 

7 -1 [128, 256, 3, 2] 256 2 1 ReLU 

8 -1 [256, 256, 1, True] 256 1 0 ReLU 

9 -1 [256, 256, 5] 256 1 2 ReLU 

10 -1 [None, 2, 'nearest'] - - - - 

11 [-1, 6] [1] - - - - 

12 -1 [384, 128, 1] 128 1 0 ReLU 

13 -1 [None, 2, 'nearest'] - - - - 

14 [-1, 4] [1] - - - - 

15 -1 [192, 64, 1] 64 1 0 ReLU 

16 -1 [64,64,3,2] 64 2 1 ReLU 

17 [-1,12] [1] - - - - 

18 -1 [192,128,1] 128 1 0 ReLU 

19 -1 [128,128,3,2] 128 2 1 ReLU 

20 [-1,9] [1] - - - - 

21 -1 [384,256,1] 256 1 0 ReLU 

22 [15,18,21] [2, [64,128,256]] - - - - 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

937 | P a g e  

www.ijacsa.thesai.org 

 

Algorithm: Bayesian Optimization for YOLOv8 Hyperparameter Tuning 

 Input: Pre-trained YOLOv8 model MMM, Training dataset Dtrain, validation dataset Dval, Hyperparameter search space 

H={lr0,μ,wd,B,E}, Number of optimization iterations Ncalls, Random seed s for reproducibility 

 Output: Optimal hyperparameter set H∗={lr0∗,μ∗,wd∗,B∗,E} maximizing validation mean Average Precision (mAP@0.5). 

 Initialize Parameters:  

1  Set Dtrain, Dval, Dtest, Presults 

2  Set experiment name Nexp 

3  Load pre-trained YOLOv8 model MMM 

 Define Hyperparameter Search Space 

4  Define the search space Ɦ as follows: 

5       lr0 ~ LogUniform (10-4, 10-2) 

6       Μ ~ Uniform (0.1, 1.0) 

7       Wd ~ Uniform (0.0, 0.0005) 

8       B € {4,8,16,32} 

9       E € {10, 20,…, 1000} 

 Define Objective Function 

10  Given hyperparameter set Ɦi, extract batch size B and number of epochs E. 

11  Train the YOLO model M using: 

12       Dataset: Dtrain,and Hyperparameter Ɦi 

13  Perform model validation on Dval 

14       Compute mAP0.5 (Mean Average Precision at IOU threshold 0.5) 

15  Return – mAP0.5 as the objective function value to minimize 

  Perform Bayesian Optimization 

16  Initialize Gaussian Process Optimization (GPO) with prior search space Ɦ 

17  Set number of function (e.g, Expected improvement or upper confidence  bound) 

18  For i = 1 to Ncalls 

19   Sample a new hyperparameter set Ɦi  from the search space 

20   Evaluate the objective function using Steps 11-16. 

21   Update the Gaussian Process model with new results 

22  end 

23  Store the best hyperparameter set Ɦ*   

 Output Best Hyperparameters 

24  Extract optimal values Ɦ*={lr0*,μ*,wd*,B*,E*} 

25  Print the best hyperparameter values found 

26   Initial Learning Rate lr0* 

27   Momentum μ* 

28   Weight Decay wd* 

29   Batch Size B* 

30   Number of Epochs E* 

Fig. 3. The Proposed algorithm for the Bayesian-Optimized YOLOv8n model. 

C. Evaluation Metrics 

The models were evaluated using the following metrics: 

Average Precision (AP) at varying IoU thresholds 
(0.50:0.95). Measures the area under the precision-recall curve, 
indicating the model's accuracy in detecting objects at varying 
IoU thresholds as depicted in Eq. (6). 

mAP =
1

𝑛
∑ 𝐴𝑃𝑖

𝑛
𝑖=1   (6) 

where, AP is Average precision for class i and 

n is the number of IoU thresholds evaluated (e.g., IoU = 0.5, 
0.55, ..., 0.95 in 0.05 increments). 

Average Recall (AR) across IoU thresholds. Represents the 
average recall across all IoU thresholds, reflecting the model's 
ability to detect true positive objects consistently as presented in 
Eq. (7). 

mAR =
1

𝑛
∑ 𝐴𝑅𝑘

𝑛
𝑘=1    (7) 

where, Rk is the recall at the k-th IoU threshold and n is the 
number of IoU thresholds considered. 
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IV. RESULTS AND DISCUSSION 

This section provides a comprehensive analysis of the 
performance of different object detection architectures 
evaluated in this study. The assessment focuses on key 
performance metrics, including Average Precision (AP) and 
Average Recall (AR) at different Intersection over Union (IoU) 
thresholds. By comparing the effectiveness of various detection 
architectures, this section highlights their respective strengths 
and limitations in detecting Ascaris lumbricoides and Trichuris 
trichiura, ultimately informing the selection of robust and 
scalable diagnostic models. 

A. Performance of Faster R-CNN with ResNet Backbone 

The Faster R-CNN with ResNet-50 and Feature Pyramid 
Network (FPN) demonstrated competitive performance, 
achieving an AP of 85.8% at IoU 0.50:0.95, with a significant 
increase to 99.6% at IoU 0.50. The model maintained a 
relatively high AR of 99.6%, indicating strong recall capabilities 
in detecting true positive instances. However, a noticeable 
limitation was observed at stricter IoU thresholds, where 
precision declined, suggesting potential difficulties in accurately 
localizing objects at higher overlap requirements. This 
behaviour aligns with previous findings [29], where ResNet-
based architectures prioritize robust feature extraction but may 
struggle in fine-grained localization due to their fixed receptive 
fields. 

The ResNet-101 FPN variant exhibited slightly lower 
precision compared to ResNet-50, with an AP of 85.5% at IoU 
0.50:0.95. Although it maintained a stable AR of 88.9%, it did 
not provide significant improvements over its shallower 
counterpart. The marginal performance difference suggests that 
deeper feature hierarchies introduced by ResNet-101 did not 
contribute meaningfully to detection accuracy, likely due to 
diminishing returns in feature extraction depth. 

B. Performance Faster R-CNN with ResNeXt Backbone 

The ResNeXt-50 backbone offered a moderate improvement 
over ResNet-based architectures, achieving AP 87.4% at IoU 
0.50:0.95, with slightly lower AP values than RetinaNet but 
outperforming ResNet-50 and ResNet-101. The model 
maintained an AR of 99.1%, indicating that it effectively 
captures diverse object instances, leading to a high detection 
recall. The grouped convolutions in ResNeXt likely contributed 
to enhanced feature aggregation and spatial sensitivity, allowing 
the model to detect a broader range of object scales with better 
contextual understanding. While ResNeXt's performance 
suggests an improvement in multi-scale feature representation, 
the relatively small AP gain over ResNet-50 indicates that for 
this specific detection task, its additional computational 
complexity does not necessarily translate into a proportionate 
improvement in detection accuracy. 

C. Influence of RetinaNet as a Backbone for  Faster R-CNN 

The integration of RetinaNet as a backbone for Faster 
R- CNN led to substantial improvements in detection 
performance, achieving an AP of 91.1% at IoU 0.50:0.95 and 
reaching 99.9% AP at both IoU 0.50 and 0.75. The model 
consistently maintained a high AR of 93.8%, demonstrating 
exceptional reliability in detecting positive instances across 
varying IoU thresholds. The superior performance can be 

attributed to RetinaNet's balanced handling of foreground and 
background samples, as its Focal Loss formulation effectively 
mitigates the imbalance between easily detected and hard-to-
detect instances. 

The marked increase in AP and AR values indicates that 
incorporating RetinaNet as a feature extractor enhances feature 
refinement and region proposal quality, leading to higher 
detection confidence and better localization accuracy. This 
underscores RetinaNet's superior feature representation 
capabilities, particularly in challenging detection tasks involving 
subtle object variations or occlusions. 

D. Comparative Analysis (Two-stage Architecture) 

A comparative overview of the evaluated Faster R-CNN 
models is provided in Table III, summarizing their AP and AR 
scores at varying IoU thresholds: 

TABLE III.  AVERAGE PRECISION (AP) OVER DIFFERENT THRESHOLD 

Baseline FRCNN at different Threshold (IoU) 

Models AP AR 
AP 

@ 50 

AP 

@ 50 -95 

F-RCNN + 

ResNet_50_FPN 
0.858 0.996 0.996 0.858 

F-RCNN + 

ResNet_101_FPN 
0.855 0.889 0.889 0.855 

F-RCNN + ResNeXt-50 0.874 0.991 0.991 0.874 

F-RCNN + RetinaNet 0.911 0.938 0.999 0.911 

From the results, Faster R-CNN with RetinaNet emerges as 
the most effective architecture, offering the highest AP (91.1%) 
and AR (93.8%) across varying IoU thresholds. This suggests 
that RetinaNet’s enhanced feature refinement and balanced 
detection capability make it well-suited for the accurate 
identification of Ascaris lumbricoides and Trichuris trichiura. 

In contrast, ResNet-50 and ResNet-101 demonstrated 
similar performance, with ResNeXt offering a slight 
improvement over ResNet-based variants but falling short of 
RetinaNet’s superior AP and AR scores. While ResNeXt 
enhances feature learning through grouped convolutions, its 
computational trade-offs may not justify its minor accuracy 
gains. 

E. Performance of Single-Stage YOLOv8 Architectures 

In contrast to the two-stage Faster R-CNN models, single-
stage architectures such as YOLOv8 offer a streamlined 
detection pipeline, eliminating the region proposal step and 
directly predicting object locations and classifications in a single 
forward pass. This approach is particularly advantageous for 
real-time applications where inference speed is critical, such as 
in automated parasitic detection in medical diagnostics. 

The performance of YOLOv8 models was assessed across 
five different variants, ranging from the smallest YOLOv8n 
(nano) to the largest YOLOv8x (extra-large), with results 
presented in Table IV. Among the YOLOv8 variants, YOLOv8n 
(nano) achieved the highest overall precision, with an AP@50-
95 of 93.8%, marginally surpassing YOLOv8x (extra-large) and 
YOLOv8m (medium), which also scored 93.8%. The YOLOv8l 
(large) and YOLOv8s (small) models exhibited slightly lower 
mAP@50-95 (93.6%), indicating that model scaling has 
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minimal impact on detection accuracy at standard IoU 
thresholds. Notably, YOLOv8n (nano) achieved the highest 
recall (mAR = 99.5%), outperforming its larger counterparts. 
This suggests that even with a reduced parameter count, 
YOLOv8n maintains strong object detection capabilities, 
making it an efficient choice for resource-constrained 
environments. Table IV summarized the results. 

TABLE IV.  ACCURACY-PERFORMANCE TRADE-OFFS ACROSS YOLOV8 

VARIANTS 

Baseline YOLOv8 at different Threshold (IoU) 

Models AP AR AP @50 mAP @ 50 - 95 

YOLOv8x 0.964 0.990 0.993 0.949 

YOLOv8l 0.976 0.982 0.993 0.936 

YOLOv8m 0.993 0.986 0.995 0.938 

YOLOv8s 0.982 0.990 0.991 0.936 

YOLOv8n 0.994 0.995 0.994 0.938 

Despite being the most computationally intensive model, 
YOLOv8x did not yield a significant accuracy advantage, 
achieving a mAP@50-95 of 94.9%, only slightly higher than its 
smaller counterparts. In contrast, YOLOv8n (nano) emerged as 
a highly competitive alternative, offering comparable accuracy 
while delivering superior inference efficiency. This makes 
YOLOv8n particularly well-suited for embedded medical 
imaging systems and real-time diagnostic applications, where 
computational efficiency is paramount. 

F. Performance Analysis of Optimized YOLOv8n Model 

To further enhance the detection accuracy and efficiency of 
YOLOv8n, Bayesian Optimization was employed to determine 
the optimal hyperparameter configuration. This optimization 
approach efficiently explores the hyperparameter space, 
balancing the trade-offs between accuracy and computational 
cost. The key hyperparameters tuned and their respective search 
ranges are presented in Table II. 

The optimized YOLOv8n model achieved an AP of 0.996 
and an AR of 0.997, demonstrating near-perfect object detection 
capability. The exceptionally high recall (0.997) ensures that 
nearly all instances of Ascaris lumbricoides and Trichuris 
trichiura are accurately identified, significantly reducing false 
negatives and enhancing detection reliability. Compared to the 
baseline YOLOv8n (AP@50-95 = 0.938), the optimized model 
achieved an improved AP@50-95 of 0.947, reflecting greater 
accuracy across varying IoU thresholds. Additionally, AP@50 
remained consistently high at 0.995, confirming that the model 
maintains robust detection performance even under more lenient 
overlap conditions. 

The Bayesian-Optimized training configuration enhanced 
accuracy without imposing significant computational overhead, 
making it an ideal choice for real-time diagnostic applications. 
The fine-tuned learning rate, momentum, and weight decay 
likely contributed to improved convergence and reduced 
overfitting, ensuring greater generalizability across diverse 
detection scenarios. Fig. 4 depicts the training and validation 
metrics of the optimized model. 

 

Fig. 4. Training and Validation metrics for optimized YOLOv8n model. 

The qualitative detection results in Fig. 5 showcase the 
model's ability to accurately localize and classify parasite eggs 
in microscopy images, with predicted bounding boxes and 
confidence scores reflecting high detection reliability. The 
Precision-Recall Curve in Fig. 6 further validates the model's 
robustness, achieving a mean average precision (mAP@0.5) of 
0.995 for both Ascaris lumbricoides and Trichuris trichiura, 

highlighting its near-perfect classification capability. The F1-
Confidence Curve in Fig. 7, demonstrates the model's optimal 
F1 score of 1.00 at a confidence threshold of 0.740, indicating a 
well-calibrated balance between precision and recall. These 
findings underscore the model's efficacy in automated parasite 
detection, with significant potential for deployment in 
diagnostic and epidemiological applications. 
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Fig. 5. Detection results of parasite eggs using optimized YOLOv8n: predicted bounding boxes with confidence scores. 

 

Fig. 6. Precision-Recall Curve for parasite detection: achieving 0.995 mAP@0.5 for all classes. 

 

Fig. 7. F1-Confidence Curve for parasite detection: Optimal F1 score of 1.00 at 0.740 confidence threshold. 
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The optimized YOLOv8n achieved exceptional precision 
and recall, with results summarized in Table V. 

TABLE V.  AVERAGE PRECISION (AP) OVER DIFFERENT THRESHOLD 

Baselines with Optimized YOLOv8n at different Threshold (IoU) 

Models AP AR 
AP 

@50 

AP 

@ 50 - 95 

F-RCNN + 
RetinaNet 

0.911 0.999 0.999 0.911 

Baseline 

YOLOv8n 
0.994 0.995 0.994 0.938 

Optimized 

YOLOv8n 
0.996 0.997 0.995 0.947 

The Bayesian-Optimized YOLOv8n demonstrates superior 
accuracy and efficiency, making it a powerful and practical 
model for real-time medical diagnostics. Compared to FRCNN 
with RetinaNet backbone and YOLO counterpart, including the 
larger YOLOv8 models, it delivers state-of-the-art precision 
(AP = 0.996) and recall (AR = 0.997) while maintaining its 
lightweight structure. This highlights the critical role of 
hyperparameter tuning in enhancing deep learning models for 
high-stakes applications such as parasitic infection detection. 
The following graph in Fig. 8 visualizes the trends of mean 
average precision for the different higher-performing models. 

 

Fig. 8. Performance comparison of detection models (Faster R-CNN with 

RetinaNet, YOLOv8n and Optimized YOLOv8n) highlighting differences in 

average precision for intestinal parasite detection. 

V. CONCLUSION 

This study underscores the significant potential of advanced 
object detection models in automating intestinal parasite 
detection. The evaluation of various detection models highlights 
the optimized YOLOv8n as the best-performing model, 
achieving the highest AP (0.996), AR (0.997), and AP@50-95 
(0.947). Compared to the baseline YOLOv8n, the optimized 
version demonstrates superior precision and recall, ensuring 
more accurate and reliable detection across varying IoU 
thresholds. Furthermore, it outperforms the Faster R-CNN with 
RetinaNet, which, despite maintaining high recall (0.999), lags 
in overall precision (AP@50-95 = 0.911). 

The Bayesian-Optimized YOLOv8n strikes an optimal 
balance between detection accuracy and computational 
efficiency, making it the ideal choice for real-time, high-
precision medical diagnostics. Its lightweight architecture, 
coupled with enhanced performance, positions it as the most 

viable model for scalable and resource-efficient deployment in 
automated parasitic detection systems. 

Future research can explore transformer-based 
enhancements like Swin Transformer to improve feature 
representation and localization. Self-supervised learning and 
domain adaptation could further refine performance in real-
world clinical settings. Additionally, optimizing the model for 
edge AI and mobile deployment will enhance scalability for 
global healthcare applications. 
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