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Abstract—Illegal mining activities present significant environ-
mental, economic, and safety challenges, particularly in remote
and under-monitored regions. Traditional surveillance methods
are often inefficient, labor-intensive, and unable to provide
real-time insights. To address this issue, this study proposes
a computer vision-based solution leveraging the state-of-the-art
YOLOv11 Nano and Small models, fine-tuned for the detec-
tion of illegal mining activities. A specific dataset comprising
aerial and ground-level images of mining sites was curated
and annotated to train the models for identifying unauthorized
excavation, equipment usage, and human presence in restricted
zones. The proposed system integrates the hardware-software
design of YOLOv11 on the PynqZ1 FPGA, offering a high-
performance, low-latency, and energy-efficient solution suitable
for real-time monitoring in resource-constrained environments.
This hardware-accelerated approach combines FPGA’s parallel
processing capabilities with the lightweight deep learning models,
enabling efficient deployment for automated illegal mining detec-
tion. By providing a scalable, real-time monitoring tool, this work
contributes to the development of automated enforcement tools
for the mining industry, ensuring better control and surveillance
of mining activities. To validate the efficiency of deep learning
deployment on edge devices, YOLOv11n was implemented on an
FPGA, utilizing 70% of available LUTs, 50% of FFs, and 80%
of DSPs, with 8.3 Mbits of on-chip memory. The design achieved
100.33 GOP/s throughput, 18 FPS at 55 ms latency, consuming
4.8 W, and delivering an energy efficiency of 20.90 GOP/s/W.
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I. INTRODUCTION

Illegal mining represents a pressing and multifaceted global
issue that continues to challenge environmental governance,
economic stability, and social equity across both developed
and developing regions. The unsanctioned and unregulated
extraction of mineral resources leads to significant financial
losses for national governments by circumventing taxation
systems, depleting natural capital, and enabling the growth of
informal markets [1], [2], [3]. The widespread prevalence of
illegal mining has been particularly damaging in regions rich
in natural resources, such as parts of Africa, South America,
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and Southeast Asia, where limited institutional oversight and
socio-economic vulnerabilities contribute to the proliferation
of these activities.

From an environmental perspective, illegal mining con-
tributes to extensive and often irreversible ecological degra-
dation. It leads to deforestation, soil destabilization, and con-
tamination of surface and groundwater resources through the
release of heavy metals and toxic chemicals like mercury,
arsenic, and cyanide [2], [3]. These pollutants have long-
lasting consequences on local biodiversity and human health,
often affecting downstream communities that rely on natural
water sources. Furthermore, land surface changes caused by
mining disrupt natural drainage patterns and increase the risk
of landslides, sedimentation, and flooding, compounding the
environmental impact in fragile ecosystems.

Socially, illegal mining exacerbates inequality, fuels con-
flict, and often involves exploitative labor practices. Workers in
illegal mines typically operate without protective equipment or
health and safety protocols, exposing them to life-threatening
conditions such as tunnel collapses, toxic exposure, and phys-
ical abuse [4]. Child labor is also a recurring issue in illegal
mining operations, raising serious human rights concerns.
Moreover, these activities are frequently linked to criminal
networks, including trafficking, corruption, and violent conflict
over territorial control. The lack of regulation and oversight
creates a fertile ground for systemic abuse and contributes to
broader instability within affected communities.

Despite the severity of these impacts, monitoring and
controlling illegal mining remain formidable challenges for
governments and international organizations. Traditional meth-
ods, such as field inspections, aerial surveys, and manual
satellite image interpretation, are limited in scope, costly to
implement, and incapable of providing continuous, real-time
monitoring [5], [6]. These methods often suffer from temporal
lags and spatial blind spots, especially in remote, forested, or
mountainous regions where illegal mining thrives under the
radar. Furthermore, these conventional systems often rely on
human expertise for image analysis, making them susceptible
to errors, biases, and inconsistencies in detection.
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In recent years, technological advancements in remote
sensing, machine learning, and computer vision have opened
new possibilities for addressing the limitations of traditional
monitoring systems. The integration of satellite imagery with
automated analysis tools, particularly deep learning models,
has demonstrated strong potential for detecting and localiz-
ing mining activity in diverse environments [7], [8]. High-
resolution Earth observation platforms, such as Sentinel and
Landsat, have made large-scale environmental monitoring
more accessible, while the growing availability of labeled
datasets has enabled the training of powerful object detection
models capable of identifying complex patterns and features
associated with illegal mining operations.

Among the various object detection frameworks, the YOLO
(You Only Look Once) architecture has gained prominence
due to its remarkable trade-off between speed and accuracy.
Recent iterations of YOLO, such as YOLOv5, YOLOv8, and
the newer YOLOv11, have introduced lightweight versions
optimized for real-time inference on resource-constrained de-
vices. These models are particularly suitable for deployment
in remote monitoring stations or drone-based surveillance sys-
tems where computational resources and power consumption
are critical considerations.

However, despite the promising results shown by previous
approaches, several key challenges remain unaddressed. First,
many detection systems rely on heavy models that demand
significant GPU resources, rendering them impractical for field
deployment. Second, few studies have developed or used spe-
cialized datasets focused specifically on illegal mining, leading
to reduced accuracy in detecting context-specific patterns,
such as camouflaged operations or small-scale equipment.
Third, limited attention has been given to the adaptation of
these models for deployment on embedded platforms, such as
FPGAs or edge AI systems, which are crucial for real-time
detection in remote and under-resourced areas.

Motivated by these gaps, this study proposes a novel and
efficient system for detecting illegal mining activities using
the YOLOv11 Nano and Small variants. By fine-tuning these
models on a custom-built dataset capturing diverse mining
operations across various environmental conditions, our ap-
proach offers enhanced accuracy, scalability, and inference
speed. Moreover, we integrate hardware-aware optimization
techniques to deploy the model on the PynqZ1 FPGA platform,
enabling real-time, low-latency detection suitable for field
applications. This hardware-software co-design ensures that
the proposed system can operate effectively in remote locations
with limited power and processing capabilities.

The main contributions of this work are fourfold: (1) we
present a curated and labeled dataset focused on visual patterns
of illegal mining; (2) we fine-tune and evaluate YOLOv11
models optimized for both performance and efficiency; (3)
we perform extensive experiments to validate detection per-
formance on both public and real-world data; and (4) we
demonstrate the deployment of our model on an FPGA-based
edge device, highlighting its potential for practical use in
monitoring operations. Through these contributions, we aim
to advance the state-of-the-art in illegal mining detection and
offer a viable tool for authorities and environmental monitoring
agencies to curb this harmful practice.

The rest of this paper is organized as follows: Section II
presents the related work. Section III describes the methodol-
ogy, covering dataset preparation, preprocessing, and model
fine-tuning. Section IV details the experimental results and
offers a thorough analysis of the model’s performance. Section
V compares the proposed approach with existing detection
methods. Section VI discusses the hardware-software inte-
gration and acceleration of the YOLOv11 architecture on
the PynqZ1 FPGA. Lastly, Section VII concludes the paper
by summarizing the main findings and suggesting potential
avenues for future research.

II. RELATED WORK

Recent advances in computer vision and remote sensing
technologies have significantly enhanced the capacity for au-
tomated environmental monitoring, particularly in domains
such as land use classification, deforestation tracking, and
illegal resource extraction detection. Among these, the detec-
tion of illegal mining has become a focal point due to its
environmental, economic, and societal implications. Remote
sensing techniques, especially those relying on high-resolution
satellite imagery, have played a pivotal role in identifying
land cover changes indicative of unauthorized mining activities
[7], [8], [9]. These techniques enable wide-area surveillance
and temporal analysis, offering a scalable alternative to labor-
intensive field inspections.

Change detection methodologies have been widely adopted
in this context. For example, Suresh and Jain [7] proposed
a satellite image-based approach for detecting the spatial
expansion of mining zones over time, demonstrating how
multi-temporal imagery can be leveraged to capture the pro-
gressive nature of illegal activities. Similarly, Xia and Wang [8]
employed interferometric synthetic aperture radar (InSAR) to
monitor subsurface deformations and identify inclined goafs
associated with underground mining. This technique offers
a valuable means of detecting concealed mining operations,
which are otherwise difficult to monitor using optical imagery
alone.

Synthetic Aperture Radar (SAR) has proven especially
useful in tropical and forested regions where cloud cover
frequently obstructs optical satellite observations. Becerra et al.
[14], for instance, developed a SAR-based system for generat-
ing near real-time alerts of illegal gold mining activities in the
Peruvian Amazon. Their approach provided a continuous mon-
itoring solution in high-risk regions that are often inaccessible
and lack sufficient infrastructure. However, while SAR offers
unique advantages, it also presents challenges. The complexity
of SAR image processing, the need for domain expertise in
interpretation, and its susceptibility to false positives in areas
with dynamic land use patterns limit its widespread adoption
in fully automated systems.

In parallel, deep learning and computer vision methods
have emerged as powerful tools for environmental monitor-
ing and geospatial analysis. Convolutional Neural Networks
(CNNs) have been applied to the detection of mining-related
features in satellite imagery, such as open-pit mines, tail-
ings dams, and mining vehicles. For example, Balaniuk et
al. [10] trained CNNs to identify surface mining structures,
highlighting the capacity of deep learning to generalize across
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complex visual patterns. Similarly, Lee et al. [15] utilized
computer vision techniques to detect illegal mining barges
operating in riverine environments, underlining the importance
of monitoring waterborne extraction methods that often go
unnoticed in traditional land-centric surveillance strategies.

Despite their success, many deep learning-based ap-
proaches remain computationally intensive, requiring signif-
icant processing power and memory resources. These limita-
tions hinder their deployment on embedded or edge computing
platforms, particularly in remote or infrastructure-poor regions
where illegal mining is most prevalent. As a result, the real-
world scalability of such systems is often constrained, limiting
their impact on enforcement and prevention efforts.

Ground-based sensing techniques have also been investi-
gated as complementary tools for illegal mining detection.
Bharti et al. [16] employed electrical resistivity tomography
(ERT) to detect subsurface voids in coalfields—an approach
that offers fine-grained geological insights. However, while
ERT provides high-resolution information, it necessitates on-
site deployment of specialized equipment, making it impracti-
cal for continuous or large-scale monitoring applications.

In addition to technical approaches, several studies have
examined the socio-economic and policy-related dimensions
of illegal mining. Saavedra and Romero [2] analyzed the
influence of tax policies on the behavior of illegal miners in
Colombia, revealing how economic incentives shape compli-
ance. Similarly, Cortinhas Ferreira Neto et al. [1] explored
the expansion of unregulated mining in the Brazilian Amazon,
emphasizing the interplay between policy vacuums, environ-
mental degradation, and community displacement. While these
studies provide essential context for understanding the drivers
of illegal mining, they do not offer actionable solutions for
real-time monitoring or deterrence.

Machine learning has also been used for predictive model-
ing and risk estimation. Rangnekar and Hoffman [11] devel-
oped a cross-domain learning model that integrated geospatial,
geological, and climatic data to forecast landslide risks and
illegal mining hotspots. Hu et al. [6] proposed a DinSAR-based
framework to improve detection precision for underground
mining activity. Hernandez-Castro and Roberts [17], on the
other hand, introduced a digital surveillance approach using
online data mining to monitor illegal transactions related to
mining equipment sales on the internet. These works show-
case the potential of multi-modal and cross-domain learning
frameworks in expanding the scope of mining detection beyond
visual data alone.

Nonetheless, significant limitations persist across the body
of existing literature. Firstly, many detection frameworks de-
pend on high-resolution imagery and computationally ex-
pensive models, making them unsuitable for real-time in-
ference in the field. Secondly, most approaches are either
location-specific or focus on singular aspects of the min-
ing process—such as the detection of excavation sites or
equipment—without offering a holistic solution for identifying
diverse illegal mining activities under different environmental
conditions. Thirdly, there is a general lack of focus on the
integration of such models with embedded systems, which
are critical for deploying automated surveillance systems in
areas lacking internet connectivity or centralized processing

infrastructure.

To address these limitations, our work proposes an opti-
mized object detection pipeline built on the YOLOv11 archi-
tecture, specifically targeting low-power and real-time deploy-
ment scenarios. Unlike many prior approaches, our system
is trained on a purpose-built dataset encompassing various
manifestations of illegal mining, including equipment, terrain
modification, and transport infrastructure. Furthermore, the
model is deployed on the PynqZ1 FPGA platform, demon-
strating its suitability for embedded edge computing applica-
tions. By bridging the gap between high-performance detection
and practical hardware deployment, this study contributes a
scalable and efficient solution for continuous illegal mining
surveillance in challenging environments.

III. PROPOSED APPROACH FOR ILLEGAL MINING
ACTIVITY DETECTION

The YOLO (You Only Look Once) series has transformed
the field of object detection, offering state-of-the-art perfor-
mance in real-time applications. With the introduction of
YOLOv11, object detection capabilities have further improved,
providing enhanced accuracy and efficiency. Building on
the architectural advancements of its predecessors, including
YOLOv8, YOLOv9, and YOLOv10, YOLOv11 introduces
significant improvements in feature extraction, computational
efficiency, and adaptability across various environments [18].
These attributes make it particularly well-suited for real-time
illegal mining detection, where rapid and precise identification
of unauthorized mining activities is crucial. Fig. 1 illustrates
the proposed methodology based on fine tuned YOLOv11.

A. YOLOv11 Architecture and Optimizations

YOLOv11 employs a highly optimized backbone and neck
architecture, improving feature extraction for complex detec-
tion tasks. By leveraging an advanced convolutional frame-
work, it enhances detection accuracy while maintaining com-
putational efficiency [19]. The network architecture consists of
three primary components:

1) Backbone: Responsible for extracting multi-scale fea-
tures from raw image data using stacked convolutional layers.
This enables YOLOv11 to identify key patterns associated
with illegal mining activities, such as excavation sites, mining
equipment, and deforestation patches.

2) Neck: Serves as an intermediate processing layer, ag-
gregating and refining extracted features to enhance object
representation, crucial for distinguishing between legal and
illegal mining operations.

3) Head: Generates final predictions, including object lo-
calization and classification, ensuring precise identification of
unauthorized mining activities.

One of the major improvements in YOLOv11 is the in-
troduction of the C3k2 block, replacing the older C2f block.
This modification enhances computational efficiency by em-
ploying two smaller convolutions instead of a single large
convolution, reducing processing time without compromising
accuracy. Additionally, the inclusion of the Spatial Pyramid
Pooling - Fast (SPPF) block and the newly introduced Cross
Stage Partial with Spatial Attention (C2PSA) block allows for
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Fig. 1. Illegal mining activity-based YOLOv11 detection.

better detection of small and partially obscured objects, such
as hidden mining equipment or underground tunnel openings
[20].

Furthermore, YOLOv11 features Convolution-BatchNorm-
Silu (CBS) layers, which stabilize data flow and improve
feature extraction. These layers contribute to superior model
convergence, ensuring that the detection system remains robust
even when dealing with varying lighting conditions, occlu-
sions, and environmental distortions present in satellite or
drone imagery. The detection pipeline concludes with Conv2D
layers that distill feature representations into final predictions,
including bounding box coordinates, objectness scores, and
class labels.

B. Fine-Tuning YOLOv11 for Illegal Mining Detection

To adapt YOLOv11 for illegal mining detection, using
Illegal-mining-activities-aflkm dataset, we fine-tune the model
using a curated dataset consisting of high-resolution satellite
images, drone surveillance footage, and ground-based pho-
tographs. This dataset is carefully augmented to include key
indicators of illegal mining activities, such as deforestation pat-
terns, open-pit excavations, makeshift mining equipment, and
unauthorized access roads. The fine-tuning process involves:

1) Dataset augmentation: Techniques such as rotation,
scaling, contrast adjustments, and noise addition are applied

to improve the model’s generalization across diverse environ-
mental conditions.

2) Transfer learning: Pre-trained weights from COCO and
other large-scale object detection datasets are utilized, allowing
the model to learn mining-specific features with minimal
training time.

3) Adaptive anchors: Custom anchor boxes are generated
to optimize bounding box predictions for objects commonly
found in illegal mining sites.

These optimizations significantly enhance the model’s abil-
ity to distinguish between legal and illegal mining operations,
reducing false positives and improving detection accuracy in
challenging real-world conditions.

C. Deployment and Real-Time Monitoring

While this study focuses primarily on fine-tuning and
evaluating YOLOv11 for illigal mining activities detection
in Makkah, we also consider potential deployment scenarios
where the model could be integrated into real-world appli-
cations. The adaptability of YOLOv11 makes it a strong
candidate for various implementation strategies, including:

1) Edge deployment: Given its optimized architecture,
YOLOv11 can be adapted for deployment on edge devices
such as NVIDIA Jetson or other mobile AI accelerators.
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This would enable real-time illigal mining activities detection
directly on-site, reducing latency and dependence on cloud
services. While not implemented in this study, future work
could explore lightweight model versions tailored for resource-
constrained devices.

2) Cloud integration: A cloud-based deployment could
facilitate large-scale illigal mining activities recognition, par-
ticularly for applications in tourism, navigation, and cultural
heritage preservation. Integration with existing geographic in-
formation systems (GIS) or mobile applications could enhance
user experience by providing detailed contextual information
about detected illigal mining activities.

3) Multi-sensor fusion: The fine-tuned model could be
integrated into smart city initiatives, assisting in automated
illigal mining activities recognition for urban planning, guided
tours, or historical documentation. While this study does not
implement such integrations, it lays the groundwork for future
research in this direction.

4) Hardware-software design on FPGA PynqZ1: In ad-
dition to software-based deployment, this study explores the
hardware-software design for deploying YOLOv11 on the
PynqZ1 FPGA. This approach provides a high-performance,
low-latency, and low-power solution by leveraging FPGA’s
parallel processing capabilities, making it ideal for real-time
applications in environments like illegal mining activity detec-
tion.

By focusing on model fine-tuning and performance evalu-
ation, this study provides the combination of FPGA hardware
and the YOLOv11 model ensures efficient resource utilization,
delivering fast inference with minimal power consumption, and
enabling the deployment of complex AI models in edge devices
where traditional hardware may not be feasible. The design
considers both hardware optimizations, such as utilizing DSP
blocks and LUTs, and software orchestration to manage data
flow, making this a robust solution for real-time monitoring.

IV. RESULTS AND DISCUSSION

A. Illegal-Mining-Activities-Aflkm Dataset

The Illegal-mining-activities dataset, sourced from
Roboflow Universe, contains a total of 214 original images
(before aumentation process), with a split of 93% (198
images) allocated for training, 4% (8 images) for validation,
and 4% (8 images) for testing. The dataset includes four
classes: Excavation Machinery, MiningTool, Person, and
Processing Equipment. The dataset has undergone several
preprocessing steps, including auto-orientation and resizing
to a uniform 640x640 resolution. Augmentation techniques
applied to the dataset include horizontal flipping, cropping
with 0% minimum zoom and 10% maximum zoom, rotation
within the range of -15° to +15°, and shear transformations of
±10° both horizontally and vertically. Additionally, brightness
is adjusted between 0% and +15%, and exposure is varied
within the range of -10% to +10%. For each training example,
three output labels are provided, ensuring diversity and
robustness in the training process [21].

1) Dataset distribution: The analysis of the Illegal-mining-
activities-aflkm dataset, depicted in Fig. 2, provides a com-
prehensive breakdown of object instances across four key

categories: Excavation Machinery, Mining Tool, Person, and
Processing Equipment. Among these, excavation machinery is
the most prevalent class, with around 250 instances, underscor-
ing its prominent role in illegal mining operations. The Person
category ranks second, with approximately 200 instances,
indicating significant human participation in such activities.
Meanwhile, Processing Equipment comprises roughly 130
instances, while MiningTool has the smallest count at about
90 instances, reflecting its relatively limited representation.
Scatter plots are utilized to visualize the spatial distribution
of annotations, focusing on normalized coordinates (x, y)
and bounding box dimensions (width, height). These findings
emphasize the dataset’s diversity in object placement and
scale, which is vital for developing robust object detection
models. Additionally, the dataset’s well-structured annotation
methodology ensures its applicability for computer vision tasks
aimed at effectively detecting and monitoring illegal mining
activities.

Fig. 2. Illegal-mining-activities-aflkm dataset analysis.

2) Dataset correlogram: The correlogram, shown in Fig. 3,
offers a detailed analysis of the correlations and distributions
of key annotation variables within the Illegal-mining-activities-
aflkm dataset. This visualization encompasses normalized x
and y coordinates, as well as the width and height of bounding
boxes. Along the diagonal, individual plots display the distri-
bution of each variable, revealing that the x and y coordinates
are primarily concentrated around central values. This suggests
a balanced spatial distribution of objects within the images. In
the lower triangle, scatter plots depict the relationships between
variables. These plots indicate a moderately positive correla-
tion between width and height, implying that larger bounding
boxes tend to maintain proportional dimensions. Conversely,
the x and y coordinates exhibit only a weak direct relationship,
reflecting the varied spatial arrangement of objects related to
illegal mining across images. These insights further confirm
the dataset’s ability to capture significant variations in position
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Fig. 3. Illegal-mining-activities-aflkm dataset correlogram.

and size, which are critical for enhancing the robustness
and generalization of object detection models. By visually
representing the interdependencies among the variables, the
correlogram underscores the dataset’s suitability for machine
learning applications aimed at automating the detection of
illicit mining activities.

B. Evaluation Metrics

To rigorously evaluate the YOLOv11-n (nano) and
YOLOv11-s (tiny) models in the context of illegal mining
activity detection, a set of standard performance metrics was
applied. These include precision, recall, F1 score, and mean
Average Precision at IoU threshold 0.5 (mAP@0.5). Each of
these metrics provides insight into different aspects of the
model’s detection capabilities. The foundation of these evalu-
ations is the Intersection over Union (IoU), which quantifies
the spatial overlap between predicted bounding boxes and the
ground truth. A high IoU value (close to 1.0) indicates strong
alignment between the detected and actual regions [22].

Predictions were categorized based on IoU into true pos-
itives (TP), false positives (FP), and false negatives (FN).
Precision and recall were calculated as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

These two metrics were then combined to compute the F1
score, a harmonic mean that balances precision and recall:

F1 Score =
2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(3)

For a more comprehensive evaluation of detection and
segmentation quality across all categories, the mean Average
Precision was used:

mAP@0.5 =
1

K

K∑
i=1

APi (4)

Here, K denotes the total number of object classes involved
in the detection of illegal mining activities, and APi represents
the average precision for class i. Higher values of mAP@0.5
signify better overall model performance. These metrics col-
lectively provide a thorough assessment of the models’ effec-
tiveness in identifying and localizing illicit mining zones.

C. Fine Tuned YOLOv11-Versions Training Performance

As shown in Fig. 4a, the training curves for YOLOv11n
reveal a steady and consistent decline in box loss, classification
loss, and distribution focal loss (DFL), indicating effective
learning during the optimization process. The consistent re-
duction in these losses implies that the model gradually
enhances its capability to locate and classify objects related to
illegal mining activities. However, the validation losses display
significant fluctuations, particularly in box loss and DFL,
suggesting that the model may struggle to generalize well to
unseen data, possibly due to constraints in its representational
capacity. In terms of detection performance, the precision and
recall curves stabilize over time but with noticeable variability,
highlighting potential inconsistencies in the model’s ability to
manage false positives and false negatives. Metrics such as
mean average precision (mAP@50) and mAP@50-95, which
evaluate detection accuracy across varying Intersection over
Union (IoU) thresholds, show modest yet inconsistent improve-
ments. These findings indicate that while the nano version is
capable of detecting illegal mining activities to some extent, it
may encounter difficulties in capturing fine details, especially
in complex or cluttered scenarios.

As depicted in Fig. 4b, the training loss curves for
YOLOv11s show a steeper and more pronounced decline
compared to YOLOv11n, indicating faster convergence and
improved learning efficiency. The box loss, classification loss,
and DFL loss decrease steadily with minimal fluctuations,
underscoring the model’s effectiveness in fitting the training
data. While some variability is observed in the validation
loss, it follows a smoother trend compared to the nano ver-
sion, pointing to better generalization capabilities. In terms
of detection performance, YOLOv11s surpasses YOLOv11n
across all critical metrics. The precision and recall curves
achieve higher and more stable convergence, reflecting a lower
rate of false positives and false negatives. Additionally, the
mAP@50 values are notably higher, and the mAP@50-95
metric outperforms that of the nano version, demonstrating
the model’s enhanced ability to detect illegal mining activities
accurately across different IoU thresholds. This improved
performance can be attributed to the small version’s greater
capacity to capture spatial and contextual details, which are
essential for identifying mining-related anomalies in aerial or
satellite imagery.

Comparing YOLOv11s and YOLOv11n in the context of
illicit mining detection highlights a clear trade-off between
computational efficiency and detection accuracy. Due to its
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(a) Fine-tuned YOLOv11n.

(b) Fine-tuned YOLOv11s.

Fig. 4. Training performance for fine-tuned YOLOv11n (a) and YOLOv11s (b).

lightweight design and ability to combine real-time perfor-
mance with adequate detection capabilities, the nano version
is ideal for resource-constrained applications, such as edge
or drone surveillance systems. However, lower mAP scores
and larger fluctuations in validation loss indicate difficulties in
collecting fine-grained features. However, YOLOv11s shows

superior precision, recall, and generalization, making it the
more reliable option for applications requiring a high level
of accuracy. Its improved ability to distinguish illicit mining
from natural terrain disturbances is demonstrated by lower
validation loss variance and higher mAP values. Its improved
performance makes it suitable for situations where detection
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accuracy is critical, such as law enforcement and regulatory
monitoring, although this requires more compute resources.
The choice between these models ultimately depends on your
implementation needs: YOLOv11n is ideal for fast, resource-
efficient monitoring, while YOLOv11s excels at producing
accurate data for in-depth, detailed studies.

D. Precision, Recall, and F1-Score Performance Evaluation

In order to assess the effectiveness of the YOLOv11n and
YOLOv11s models in object detection tasks, we conducted a
comprehensive performance evaluation using key classification
metrics: recall,precision, F1-score, and the confusion matrix.
These metrics were computed across a range of confidence
thresholds to ensure a thorough understanding of each model’s
strengths and weaknesses. This evaluation helps determine
how well the models can distinguish between multiple object
categories in the test dataset and is crucial for selecting
an appropriate configuration for real-world deployment. A
summary of the evaluation results is presented in Fig. 5, which
consolidates the visual outputs of normalized confusion ma-
trices, F1-score trends across confidence levels, and precision-
recall (PR) curves.

The analysis of F1-score across varying confidence thresh-
olds, depicted in Fig. 5a and Fig. 5b, reveals the trade-off
between precision and recall for both models. The F1-score
offers a balanced metric that captures both false positives and
false negatives. YOLOv11n achieved a strong average F1-score
of 0.940 at a confidence level of 0.703, indicating reliable
performance in recognizing object categories with minimal
misclassification. YOLOv11s, however, surpassed this perfor-
mance by achieving an average F1-score of 0.960 at a slightly
lower threshold of 0.698. This suggests that YOLOv11s main-
tains a better balance between precision and recall, even under
more uncertain detection conditions, making it more suitable
for real-time applications where a high-confidence response is
crucial.

Further insights are drawn from the precision-recall curves
shown in Fig. 5c and Fig. 5d, which illustrate how the mod-
els behave across different detection thresholds. YOLOv11n
recorded a mean average precision (mAP@0.5) of 0.981,
reflecting its capacity to consistently detect and classify objects
across diverse categories with high precision. Meanwhile,
YOLOv11s attained a slightly higher mAP@0.5 of 0.985,
demonstrating superior recall rates without compromising pre-
cision. This marginal yet important improvement highlights
YOLOv11s’ enhanced generalization across object types and
better robustness to class imbalance.

The confusion matrices presented in Fig. 5e and Fig.
5f provide a detailed view of per-class prediction accuracy.
YOLOv11n exhibited strong performance, with accuracy val-
ues exceeding 0.85 for the majority of classes. However,
a few misclassifications were observed—particularly confu-
sion between ”Kaaba” and ”background”—indicating some
difficulty in distinguishing contextually similar objects. In
contrast, YOLOv11s achieved near-perfect classification across
all classes, with matrix values approaching 1.00. This re-
flects a substantial reduction in inter-class misclassification
and confirms the model’s improved discrimination capability,
particularly for visually or contextually ambiguous categories.

Overall, the comparative analysis demonstrates that both
YOLOv11 variants deliver reliable performance in multi-class
object detection tasks. Nevertheless, YOLOv11s consistently
outperformed YOLOv11n across all key metrics, making it a
more favorable candidate for deployment in environments re-
quiring high detection accuracy and real-time decision-making.
Its enhanced precision, recall, and class differentiation under-
line its suitability for embedded applications where both speed
and reliability are essential. These findings strongly support the
integration of YOLOv11s into intelligent monitoring systems
that prioritize detection accuracy under practical constraints.

E. Mean Absolute Error (MAE) Between Precision and Recall

To gain deeper insights into the performance stability of
the proposed models, we analyzed the Mean Absolute Error
(MAE) between precision and recall. This metric serves as a
robust indicator of consistency, measuring the average absolute
discrepancy between the two fundamental performance indica-
tors across the validation dataset. Unlike the F1-score, which
combines precision and recall into a single harmonic mean,
the MAE provides a more granular perspective, offering an
independent assessment of how closely these values align. A
lower MAE reflects better equilibrium and suggests a model
that is not overly biased toward either metric. The MAE is
mathematically defined as:

MAE =
1

N

N∑
i=1

|Pi −Ri| , (5)

where N denotes the total number of validation samples
or epochs, Pi represents the precision for the i-th sample, and
Ri is the corresponding recall value. This formula enables the
computation of an average absolute difference, which directly
reflects the model’s ability to maintain consistent detection
accuracy over time and across object categories.

To evaluate the YOLOv11n and YOLOv11s variants,
the MAE was computed individually for each model. For
YOLOv11n, the MAE is given by:

MAEn =
1

N

N∑
i=1

|Pn,i −Rn,i| , (6)

and yielded a value of 0.0656. Likewise, for the YOLOv11s
model, the MAE is calculated as:

MAEs =
1

N

N∑
i=1

|Ps,i −Rs,i| , (7)

which resulted in a smaller MAE value of 0.0550. The
lower error margin in YOLOv11s underscores its improved
stability and better trade-off management between precision
and recall when compared to YOLOv11n.

As shown in Table I, the fine-tuned YOLOv11s model not
only achieved the highest mAP@50 but also maintained better
alignment between precision and recall, validating the lower
MAE score. These findings indicate that YOLOv11s is more
reliable for deployment in scenarios that demand consistent,
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(a) F1-Score (YOLOv11n). (b) F1-Score (YOLOv11s).

(c) Precision-recall curve (YOLOv11n). (d) Precision-recall curve (YOLOv11s)).

(e) Confusion matrix (YOLOv11n). (f) Confusion matrix (YOLOv11s).

Fig. 5. Precision, Recall, and F1-Score performance for fine-tuned YOLOv11n model and YOLOv11s model.

high-performance detection—especially where both false pos-
itives and false negatives must be minimized. This makes it
particularly suitable for applications such as environmental
monitoring, where precise and balanced performance is critical
to success.

V. COMPARATIVE STUDY

Table I provides a comparison between the baseline
YOLOv11 model and its optimized versions, YOLOv11s and
YOLOv11n, highlighting the significant impact of optimization
on detection performance. The baseline of YOLOv11 model
achieves 96.3% precision, 93.8% recall, and 95.2% mAP@50,
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TABLE I. COMPARATIVE STUDY

Network Dataset Precision (%) Recall (%) mAP@50 (%)

YOLOv11 (Baseline) Illegal-mining-activities-aflkm 96.3 93.8 95.2

Fine Tuned YOLOv11s Illegal-mining-activities-aflkm 98.5 97.2 98.5

Fine Tuned YOLOv11n Illegal-mining-activities-aflkm 97.8 95.6 97.1

demonstrating high object detection capabilities. However, the
optimized models, YOLOv11n and YOLOv11s, show signif-
icant improvements. YOLOv11n achieves 97.8% precision,
95.6% recall, and 97.1% mAP@50, reflecting an effective
balance between computational efficiency and accuracy. Mean-
while, the YOLOv11s model outperforms others with 98.5%
precision, 97.2% recall, and 98.5% mAP@50, highlighting its
ability to capture fine details and deliver superior detection
accuracy.

The tuning procedure, which adapts the models to the
distinct features of the dataset, include changes in item ap-
pearance and environmental difficulties, is responsible for these
gains. The findings demonstrate that although the YOLOv11
base model offers a strong basis, the improved versions provide
solutions customized for particular use situations. Though
YOLOv11s is best suited for activities requiring high accuracy,
such automated tracking and precision sensing applications,
YOLOv11n is most suited for situations where speed and
efficiency are crucial in resource-constrained environments.
The versatility and efficiency of the optimized YOLOv11
models for object detection are shown by this comparison ex-
amination. The YOLOv11n and enhanced YOLOv11 models’
example detection results are displayed in Fig. 6a and Fig. 6b,
respectively.

VI. PROPOSED LOW LATENCY HARDWARE-SOFTWARE
ARCHITECTURE-BASED FPGA ACCELERATION

The proposed hardware implementation, illustrated in Fig.
7, utilizes the YOLOv11 algorithm on the PYNQ-Z1 platform,
leveraging its ARM Cortex-A9 processing system (PS) and
programmable logic (PL) to accelerate deep learning inference.
The Zynq-based architecture integrates DDR3 memory, an
Advanced Microcontroller Bus Architecture (AMBA) inter-
connect, and multiple peripherals to ensure efficient data han-
dling and processing. The Vivado 2020.1 design environment
provides optimized libraries to facilitate hardware acceleration,
particularly for convolutional operations.

The hardware accelerator processes YOLOv11 layers se-
quentially, except for the routing layer, which is pre-configured
with specific memory addresses to optimize data access. Ef-
ficient memory management is achieved through loop tiling,
which minimizes memory access overhead by reusing data
across operations. Additionally, burst-mode memory access en-
hances FPGA bandwidth by reducing access latency, ensuring
seamless convolutional operations. To further optimize perfor-
mance, kernel weights are reorganized into continuous memory
blocks, maximizing external memory bandwidth utilization.

To accelerate convolutional layers, the design implements
parallel input and output processing, using multiple processing
elements (PEs) arranged in an array structure. These PEs

operate concurrently on different output channels, significantly
increasing throughput. The Data Scatter module generates
write addresses and distributes data read from DRAM to
on-chip buffers, while the Data Gather module manages the
write-back process to DRAM. Specialized pixel buffers handle
operations such as convolution, max pooling, and spatial
transformations.

The FPGA implementation consists of Direct Memory
Access (DMA), GPIO, and interrupt controllers within the
PS, while the PL section handles data decoding, reordering,
and computational operations. Network parameters and feature
maps are stored in DDR memory, interfaced through a Memory
Generator Interface for high-speed access. During inference,
configuration instructions are set by the ARM processor and
transferred to the PL via GPIO, ensuring precise control over
execution. DMA retrieves input images from PS-DDR and
transmits them to the PL, where input data reordering modules
preprocess pixel values before computation. Model parameters
are loaded from PL-DDR into dedicated parameter buffers,
feeding the processing array (PA) for real-time inference.

The proposed design enhances parallel computation using
multiple PEs, enabling efficient real-time detection of illegal
mining activities. Each PE processes distinct channels while
sharing the same input feature maps, achieving high-speed
inference with reduced latency. Once computation is complete,
output feature maps are transferred back to the host PC,
where Non-Maximum Suppression (NMS) refines detection
results. The Vivado High-Level Synthesis (HLS) tool is em-
ployed to optimize processing pipelines and implement loop
pipelining strategies, further increasing system throughput. The
architecture utilizes Leaky ReLU as an activation function
to mitigate the gradient vanishing problem, ensuring stable
training and inference performance. This hardware-accelerated
design makes real-time illegal mining detection feasible in
resource-constrained edge environments, offering a powerful
solution for environmental monitoring, law enforcement, and
automated surveillance.

Table II presents the performance metrics of the
YOLOv11s neural network model implemented on a PynqZ1
FPGA, showcasing its resource utilization and computational
efficiency. Approximately 70% of available LUTs and 50% of
flip-flops (FFs) are used, indicating a balanced use of FPGA
resources without excessive consumption. The model utilizes
80% of the available DSP blocks, highlighting efficient use
of the FPGA’s arithmetic capabilities. It consumes about 8.3
Mbits of on-chip memory, which is suitable for the lightweight
model. With a throughput of 100.33 GOP/s and 18 frames per
second (FPS), the system demonstrates substantial processing
power, achieving an inference time of 55 ms per image. The
system operates with a low power consumption of 4.8 W,
delivering impressive power efficiency of 20.90 GOP/s/W.
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(a) Fine-tuned YOLOv11n mining activities detection. (b) Fine-tuned YOLOv11s mining activities detection.

Fig. 6. Fine-tuned YOLOv11 (small and nano) illegal mining activities detection.

Fig. 7. Hardware-Software architecture-based FPGA acceleration for illegal mining activity detection.
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TABLE II. PERFORMANCE METRICS FOR YOLOV11N IMPLEMENTATION ON PYNQZ1 FPGA

Estimated Value LUT FFs DSP BRAM Throughput FPS Inference Time Per Image Power Consumption Power Efficiency
70% of available LUTs ✓
50% of available FFs ✓
80% of available DSPs ✓
8.3 Mbits of on-chip memory ✓
100.33 GOP/s ✓
18 FPS ✓
55 ms ✓
4.8 W ✓
20.90 GOP/s/W ✓

These metrics illustrate the effective deployment of YOLOv11s
on the FPGA, offering high performance with energy efficiency
suitable for real-time applications. This configuration is par-
ticularly well-suited for low-latency and low-power systems,
making it an ideal solution for illegal mining activity detection,
where timely and energy-efficient analysis of visual data is
crucial for monitoring and intervention.

VII. CONCLUSION

In this study, we conducted a comprehensive evaluation of
YOLOv11n and YOLOv11s on the Illegal-mining-activities-
aflkm dataset, assessing their classification accuracy, precision-
recall balance, and overall detection capabilities. The results
demonstrate that while both models exhibit strong perfor-
mance in object detection, YOLOv11s consistently surpasses
YOLOv11n in precision, recall, and mean average precision
(mAP), making it the more reliable choice for high-accuracy
applications. The superior performance of YOLOv11s under-
scores the impact of fine-tuning in adapting deep learning
models to domain-specific challenges, particularly in detecting
complex patterns associated with illegal mining activities.
Furthermore, the reduced mean absolute error (MAE) in
YOLOv11s signifies a more stable trade-off between precision
and recall, ensuring higher consistency across various con-
fidence thresholds. These findings highlight the critical role
of model optimization in improving detection efficiency and
minimizing misclassification errors.

Moreover, we have designed and implemented the archi-
tecture of YOLOv11 on the PynqZ1 FPGA, combining hard-
ware and software optimizations for real-time monitoring in
resource-constrained environments. This hardware-accelerated
approach leverages the parallel processing capabilities of the
FPGA, ensuring low-latency and energy-efficient detection,
which is crucial for applications in illegal mining monitor-
ing. Future research could explore further architectural re-
finements, dataset augmentation techniques, and real-world
deployment scenarios to enhance the robustness and efficiency
of these models. Additionally, integrating edge computing or
lightweight versions of YOLOv11 on FPGA could enable real-
time monitoring in remote or under-resourced areas, paving the
way for scalable and proactive intervention strategies against
illegal mining activities.

Future research can focus on several promising directions
to enhance the robustness and deployment of YOLOv11-based
systems for illegal mining detection. Architectural refinements,
such as quantization, pruning, and model compression, could
further optimize YOLOv11 for FPGA implementation, improv-
ing speed and energy efficiency. Expanding the dataset with

synthetic data and varied environmental conditions would also
improve model generalization in diverse real-world scenarios.
Additionally, integrating edge computing with cloud-based
analytics could enable large-scale, collaborative monitoring
systems. Real-world deployment and testing in remote or harsh
environments will be essential to validate performance and
adaptability under operational constraints. Furthermore, de-
veloping lightweight, adaptive versions of YOLOv11 tailored
for resource-limited IoT devices could expand its usability in
under-resourced regions.
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