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Abstract—Image segmentation is an important aspect of
image processing and analysis. Medical imaging segmentation is
critical for providing noninvasive information about human body
structure that helps physicians analyze body anatomies efficiently.
Until recently, various medical imaging segmentation approaches
have been presented; however, these approaches are deficient in
segmenting abdominal organs due to the significant similarity in
their intensity levels. The purpose of this research is to propose
a method to facilitate the segmentation of abdominal organs
and improve the performance of the segmentation. The core
functionality of this research is based on the extraction of rib bone
from muscle tissues prior to the application of segmentation. This
way, efficient segmentation of abdominal organs can be achieved
by isolating the rib bone from the muscle tissues located between
the rib bone. The proposed rib bone extraction mechanism is
applied to four slices of the MICCAI2007 liver data set to isolate
muscle tissues from liver tissues that have significant intensity
similarity to liver tissues. The results indicate that the proposed
extraction of rib bone efficiently isolated muscle tissues from
linked liver tissues and improved the segmentation performance.

Keywords—Active contour; computed tomography; segmenta-
tion; medical diagnostics; medical imaging segmentation

I. INTRODUCTION

Image segmentation aims to partition an image into re-
gions called segments used for further image analysis to
achieve improved image compression efficiency and visualiza-
tion effects [1], [2]. Image segmentation plays a vital role in
medical imaging analysis for example providing noninvasive
information about human body structure [3]. This information
can support radiologists in visualizing and examining the
anatomy of the body structure [4], tracking the progress of
diseases [5], [6], [7], simulating biological processes [8],
and evaluating the need for surgeries in radiotherapy [9],
[10]. Threshold-based, region-growth-based, clustering-based,
deformation-model based, machine learning (ML)-based, and
active contour-based are different segmentation approaches
that have been frequently employed in medical imaging anal-
ysis [11]. Medical imaging segmentation is important, yet it is
a challenging task.

Most of the time, it requires manual delineation of organs
by highly skilled personnel. Segmenting CT images is particu-
larly complex compared to other medical imaging modalities.
In such images, selecting each pixel of each slice manually
could take hours or even days [12], [13]. Segmenting CT
images of abdominal organs is more challenging because of

their overlapping boundaries with the other organs (such as
abdominal structure tissues and muscle tissues placed between
rib bone). Most of the abdominal organs have similar intensity
levels, which greatly affects the segmentation results of the
methods based on intensity similarity [14]. Hence, methods
based on gradient or intensity analysis are not feasible to
segment images of abdominal organs [15]. Because of such
limitations, most available segmentation methods, including
active contour methods, fail to segment the abdominal tissues
adjacent to the muscle tissues between rib bone [16], [17], [18].
Specific to the active contour segmentation methods, some
existing approaches [19], [20], [21] adapted rib distance in
the active contour level set formulation. This process slows
the active contour segmentation since the contour curve takes
longer to reach structural boundaries due to extra computations
in the level set function.

Keeping in view the limitations of the existing studies, the
following are the research questions that may be addressed
during this research:

• How existing segmentation methods based on the
intensity of the organs can segment the abdominal
organs having similar intensity?

• How the efficiency of the existing segmentation
method based on the intensity of the organs can be
increased?

Extracting rib bone structures prior to applying the active
contour method may facilitate the removal of intervening
muscle tissues, thereby improving segmentation efficiency. The
primary purpose of this research is to propose a method to
facilitate the segmentation of abdominal organs with consider-
able similarity in intensity by performing rib bone extraction
prior to active contour segmentation methods. The following
are the objectives of the research:

• To improve the segmentation accuracy of the abdomi-
nal organs affected by the large similarity in intensity
between abdominal structure tissues and muscle tis-
sues located in between rib bone.

• To reduce the computation time while segmenting
abdominal organs via active contour segmentation
methods in the CT dataset. As a result, this leads to
speeding up the processing time.

Based on the listed objectives, following are the contribu-
tions of the research:
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• A rib bone extraction mechanism is proposed to effi-
ciently segment the CT images of abdominal organs
of similar intensity.

• The proposed rib bone extraction isolates the rib bone
from the muscle tissues located in between the rib
bone.

• The proposed rib bone extraction is specifically de-
signed to be used prior to the application of “active
contour” segmentation methods and has tested accord-
ingly; however, it may be used prior to the application
of any segmentation method.

• The proposed rib bone extraction has been applied
to four MICCAI2007 Liver dataset [22], [23] slices
to efficiently isolate liver tissues from muscle tissues
with similar intensities.

• The proposed rib bone extraction simplifies the CT
images and addresses the similarity of their intensity
issue; hence, leads to a time and computationally
efficient segmentation.

• The proposed approach is simple and easy to use,
as well as applied prior to the application of the
segmentation method(s). To the best of our knowledge,
such an approach has never been proposed earlier,
hence making it our novel contribution.

Based on the above listed research contributions, the fol-
lowing may be the advantages of the present study:

• The findings of the research will help clinicians ef-
ficiently segment, analyze, and visualize abdominal
anatomies, as well as plan radiation therapy and
surgery.

• The study’s research findings will be used to assist
software designers in constructing medical tools.

• The approach proposed in this study will help in
teaching and research at medical schools.

• The methodologies and results proposed in this study
will be useful in medical schools, teaching, and re-
search.

The remainder of the paper is organized as follows: Section
“Literature Review” explores and discusses reviewed literature
in the area of medical imaging segmentation. Section “Material
and Method” discusses the detailed methodology of the pro-
posed method of extracting muscle tissues using the proposed
rib bone extraction method before executing the active contour
segmentation. “Results and Discussion” section discusses the
results of the proposed method. Finally, “Conclusion and
Future Direction” section presents the conclusion of the paper
to highlight the contributions and findings along with possible
future directions. A preprint of this manuscript has previously
been published [24].

II. RELATED WORK

Medical imaging segmentation has been a research focus
from last few decades. During this time, a number of image
segmentation techniques have been put forth to segment med-
ical imaging for a range of applications, including the early

diagnosis of disease, resource optimization, and maximizing
efficiency of the existing systems etc. Image segmentation
techniques include but not limited to; thresholding based [25],
[26], [27], region growing based [28], [29], graph cut based
[30], [31], shape model based [32], [33], edge detection based
[34], [35], [36], clustering based [37], [38], [39], and more
advanced ML [40], [41], [42], [43], and active contour-based
methods [44], [45], [46]. In addition to significant contributions
to image segmentation, particularly medical imaging segmen-
tation, each proposed approach pose some limitations and chal-
lenges. For example, thresholding and region growing based
methods are bound to use only image intensity or texture for
the image segmentation [47], therefore, are failed to segment
the organs with similar intensities. Graph-cut based methods
are also limited in segmenting organs with overlapping tissues
of similar intensities [31]. Shape based methods are heavily
dependent on the training shapes, therefore, become time
consuming processes for the images with large shape variations
[48]. Recently, ML algorithms (specifically, Deep Learning
(DL) algorithms), have emerged as efficient approaches for
segmenting medical images [49], [50]. However, DL tech-
niques frequently lack in understanding data and heavily rely
on training data that has been manually labeled by medical
professionals [48]. Furthermore, because of information loss in
the consecutive down-sampling layers, some DL architectures,
such as Convolutions Neural Network (CNN), perform poorly
in comprehending precise object boundaries [51]. Also, in
CNN architectures, 2D convolutions cannot completely utilize
the spatial information along the third dimension [52], and
3D convolutions have a large memory consumption [53]. DL-
based multi-organ segmentation techniques have also shown
significant potential in medical imaging segmentation [54], and
it has significantly improved the performance of the U-NET
segmentation [55], however it is still challenging to obtain
accurate and robust segmentation for the areas with ambiguous
boundaries (such as abdominal organs) [56].

Supervised Machine Learning models such as Support
Vector Machines (SVM) and Neural Networks (NN) have also
shown reasonable performance in segmenting medical images,
however, these methods are based on handcrafted and manually
extracted features from the data, and for this heavily depend
on the skills and experience of the researchers. Requirements
of domain knowledge, extraction of features from data, and
manual features engineering is basic hurdle to easily employ
such algorithms [57], [49]. Active contour methods on the
other hand have shown better performance to segment the
complex gray-scale and variety of topological structures of
medical images [58]. Because of their ability to provide closed
and smooth contours of the target objects, these methods are
one of the widely used segmentation methods today [59]. Many
recent studies have reported to use active contour methods for
different applications related to medical imaging segmentation
[60], [61], [62], [63]. Although, active contour segmentation
is one of the most attractive segmentations, however, in some
cases it performs undesirably. For example, it performs poorly
in segmenting complex natural images (without proper prepro-
cessing) [64]. Furthermore, because of the susceptibility for
intensity heterogeneity and boundary ambiguity of the input
images, these methods fail to segment the abdominal tissues,
especially tissues, which are adjacent to the muscle tissues
between rib bone [65].
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To address such limitation of the active contour methods,
as a solution, combination of different strategies along with
traditional active contour methods have been introduced by
the researchers. For example, level set approach has been intro-
duced with active contour to formulate it as energy minimiza-
tion problem and then solving it with different strategies like
gradient descent or partial differential equations [66]. Different
DL architectures like CNN have also been combined with
active contour to make it a more efficient hybrid segmentation
methods [67]. Some of the studies have also introduced the
combination of DL, level set, and active contours methods [68].
Such hybrid methodologies yielded good results but suffer
with the time consumption issues because of the complexity of
the training process. In short, introducing different strategies
with traditional active contour methods, one way increases
their segmentation capabilities, but on the other hand make
them time consuming procedures. Furthermore, even with the
latest proposed strategies, still the most existing active contour
segmentation methods lack in segmenting the overlapping
organs / region boundaries of the organs [69], [70], [71]. This
study proposes that rib bone extraction be performed prior to
active contour segmentation (refer to “Methodology” section
for more information on the proposed method). The proposed
approach is an effort to improve the accuracy of the active
contour method(s) in particular and the other segmentation
methods in general to segment abdominal organs (especially
abdominal structure tissues and muscle tissues placed between
rib bone) that have comparable intensity levels. Being not the
actual part of the active contour, the proposed approach reduces
the computation time of the active contour while segmenting
abdominal organs. As a result, this leads to speeding up the
processing time. Results show that with the help of the pro-
posed approach, the active contour better segments abdominal
organs (refer to Fig. 2) and achieves desirable performance
in segmenting the organs of the similar intensity (refer to
Section “Results and Discussion” for more details on the
results achieved). The next section provides the comprehensive
detail of the proposed rib bone extraction mechanisms along
with the detail of the datasets used, experimentation performed,
and the results obtained.

III. MATERIAL AND METHOD

A. Proposed Approach

This study proposes that rib bone extraction be performed
prior to active contour segmentation. This approach can be
used to improve the accuracy of the active contour segmen-
tation in particular and the other segmentation approaches in
general in segmenting abdominal organs that have comparable
intensity levels (i.e., abdominal structure tissues and muscle
tissues placed between rib bone).

B. Methodology

Fig. 1 presents the overall flow diagram of the proposed
rib bone extraction approach. According to Fig. 1, the pro-
posed strategy of rib bone extraction is achieved through the
following steps:

1) Typical slice of a CT image selection.
2) Performing thresholding on the selected typical slice

to find rib bone in it.

Fig. 1. Proposed rib bones extraction approach.

3) Performing morphological post processing on the
thresholded typical slice to eliminate the effects of
thresholding on it.

4) Finding the centroids of each rib bone of the typical
slice and saving them as cooperative knowledge for
the other slices of the data.

5) Selecting the next slice (target slice) and finding the
centroids of its rib bone using the centroid informa-
tion of the typical slice.

6) Fitting the centroids of typical and target slices into
convex hull function (to overcome the problem of the
missing centroids).
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7) Applying the spline curve method to connect the
centroids and estimating the bone’s boundary by a
line.

8) Applying dilation morphological operation to thicken
the estimated lined boundary.

9) Applying steps 5 to 8 above to every next slice by
considering it a target slice until the slices of the
whole data are finished.

An explanation of each of the above steps is provided in
detail in the experimentation subsection.

C. Performance Evaluation

1) Evaluation based on Confusion Matrix: Performances
of the proposed system has been measured in terms of accu-
racy, precision, sensitivity, and specificity provided using the
confusion matrix. Table I presents the confusion matrix used
to compute the performance measures. The outcomes of this
confusion matrix are defined as:

True Positive (TP): The number of slices where muscles
areas are removed as muscles areas.

False Positive (FP): The number of slices in which non-
muscles areas are removed as muscles areas.

True Negative (TN): The number of slices where non-
muscles areas are not removed as muscles areas.

False Negative (FN): The number of slices where muscles
areas are not removed as muscles areas.

TABLE I. CONFUSION MATRIX FOR MUSCLE AREA CLASSIFICATION

Yes No
MUSCLES AREA TP FN
NON-MUSCLES AREA FP TN

The confusion matrix presented in Table I and four standard
metrics for quantities evaluations are computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

2) Evaluation based on 2D segmentation: In order to
evaluate the proposed method, the method outputs need to
be measured, analyzed and compared with manual segmen-
tation. Therefore, the metrics must be carefully determined to
accurately reflect the method performance in 2D segmentation
performance. Dice coefficient (mean Index similarity) used
to measure the accuracy of segmentation result for proposed
method. The segmentation result of proposed method is termed
AS and the gold standard is termed GT. The Dice coefficient
DC (Dice, 1945) is one of the numbers of measures of the
extent of spatial overlap between two segmented images. It
is commonly used in reporting performance of segmentation

and its values range between 0 if there is no overlap between
the segmented region and the gold standard, and 1 for perfect
agreement between the segmented region and the gold standard
obtained using Eq. (5).

DC =
2 |AS ∩GT |
|AS|+ |GT |

(5)

D. Experimentation

1) Dataset description: The proposed method was evalu-
ated using four contrast-enhanced CT datasets from the Liver
Segmentation Grand Challenge database. These datasets have a
pixel resolution ranging from 0.55 mm to 0.8 mm, with inter-
slice distances between 1 mm and 3 mm. Each axial slice
consists of 512 x 512 pixels. The datasets, provided in Digital
Imaging and Communications in Medicine (DICOM) format,
have gray levels ranging from -1024 to +3071, corresponding
to Hounsfield units (HU), the datasets accessed in 2024.
The datasets used in this study—Liver1, Liver3, Liver4, and
Liver6—contain 183, 79, 212, and 111 slices, respectively.
However, the range of liver organ slice in each dataset shown
in Table II.

TABLE II. ABDOMINAL ORGANS DATASETS

Abdominal
Dataset Name

Dataset Source Number of Slices Range of Abdomi-
nal Organs Slices

Liver1 MICCAI2007 183 62–163
Liver3 MICCAI2007 79 14–70
Liver4 MICCAI2007 212 57–196
Liver6 MICCAI2007 111 20–92

2) Software detail: Image segmentation and statistical cal-
culations are implemented in Matlab. The program is tested
on a computer with Intel(R) Core(TM) i5-7200U CPU @
2.50GHz 2.71 GHz, 4GB RAM, and Windows 10 Pro.

3) Rib bone extraction process: This section provides the
detail of the proposed rib bone extraction approach along with
the brief explanation of each step provided in the “proposed
approach” subsection, and also shown the Fig. 1.

Fig. 2(a) illustrates the results of active contour segmen-
tation before rib bone and muscle extraction, and Fig. 2(b)
shows the result of active contour segmentation after rib bone
and muscle extraction. It is clear from Fig. 2(a) and 2(b)
that when rib bone extraction is performed prior to active
contour segmentation, active contour segments the organs of
similar intensity, i.e., abdominal organs, comparatively better
than when rib bone extraction is not performed. This approach
is the main idea our research.

It is well-known among radiology experts that some ab-
dominal structures, especially the liver, are surrounded by
rib bone. Therefore, their effective segmentation is difficult
without rib bone extraction from their surroundings. Since the
rib bone has the highest intensity in a CT dataset, simple
binary thresholding may be applied to find the rib bone in
it. In binary thresholding, images are converted from gray-
scale or color images to binary images. Based on radiologists’
knowledge, it is noted that there are some slices that don’t
have rib bone in all directions of the human body in the
abdominal area, which leads to missing some of the muscle
tissues. The proposed method thus finds the rib bone in a
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(a) Before bone extraction. (b) After bone extraction.

Fig. 2. Active contour segmentation before and after rib bone and muscle
extraction from the abdominal organs of similar intensity.

typical slice chosen randomly from upper abdominal slices in
the CT dataset, which have rib bone in all directions, as shown
in Fig. 3, and applies binary thresholding on the chosen slice.
Fig. 4(a) shows a typical slice in the upper abdominal region
(upper view) and the result of thresholding in a typical slice
shown in Fig. 4(b).

Fig. 3. A Typical slice chosen from the upper abdominal CT slices that have
rib bones in all directions.

(a) Upper view of a typical slice in the
upper abdominal region that has rib bones

in all directions.

(b) Upper view of the rib bone extraction
after thresholding applied

Fig. 4. Typical slice.

It is evident from Fig 4(b) that, as a result of thresholding,
the achieved rib bone is not well filled. Hence, a filling mor-
phological operation is applied to fill the bone. The centroids

of each rib are then computed. The centroids of ribs of the
typical slice are saved temporarily to be used as a cooperative
knowledge in the rib bone extraction for other remaining slices
in the dataset. The rib bone extraction process is then applied
to all slices in the abdominal dataset slice by slice with the
following steps: To simplify the explanation, we refer to the
slice under the rib bone extraction process as a target slice.
Thresholding and filling morphological operations are applied
to the target slice. The centroids of each rib bone in the target
slice are obtained through region properties. Then the centroids
of the typical slice and target slice are fitted into the convex
hull function [72].

This function is used to find the appropriate arrangement
in a clockwise cycle for these bones’ centroids and take just
the outer centroids. In some cases, some abdominal structures
appear in white intensity, as shown in Fig. 5(a), which can
affect the result of extracting ribs and muscles. However, the
convex hull process overcomes those obstacles. In addition, the
convex hull process also overcomes the problem of missing
centroids in some directions by taking the centroids from a
typical slice in the same directions. Fig. 5(a) shows an example
of a target slice that does not have rib bones in all directions,
and its thresholding result is shown in Fig. 5(b).

(a) Ribs in target slice. (b) Thresholding result.

Fig. 5. Target slice and its resultant slice after the application of thresholding.

The convex hull process is followed by the spline curve
method to connect the centroids and estimate the bone’s
boundary. The connected points are then used to form a mask
that isolates muscle tissues. Fig. 6 shows the line connecting
the rib bones. The line connecting between the rib bones is then
thickened by a dilation morphological operation (as shown in
Fig. 7). The formed mask is applied to remove muscles located
between rib bones.

This operation aims to remove the rib bones and muscles,
which solve the problem of intensity similarity with abdominal
structure tissues. Fig. 8 shows removing ribs and muscles.
Choosing an appropriate thickening for connecting line is
an essential factor that affects the accuracy of segmentation
results. We choose an appropriate thickening value through
experiments. Fig. 9 shows the effect of line mask thickening
size; if the mask line thickened uses a bigger value, the mask
will isolate some of the abdominal structure tissues, as shown
in Fig. 9(b). If the mask line thickened to an appropriate size,
the mask will isolate rib bones and muscles tissue only, as
shown in Fig. 9(a).
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Fig. 6. Line connected between ribs.

Fig. 7. Line thickening by the application of dilation morphological
operation.

Fig. 8. Removal of rib bones from muscles.

(a) Appropriate thickening. (b) Big thickening.

Fig. 9. Effects of line thickening on rib bone and muscles separation.

Rib bones extraction is applied to four MICCAI2007 Liver
datasets [22], [23] (liver1, liver3, liver4, and liver6) slices to
isolate muscle tissues that have significant intensity similarity
with liver tissues. Fig. 10 shows rib bone extraction for some
slices in these datasets [i.e. Fig. 10(a) (slice 151 Liver1), Fig.
10(b) (slice 61 Liver3), Fig. 10(c) (slice 158 Liver4), and Fig.
10(d) (slice 64 Liver6)]. Rib bones extraction is not performed
on the Liver5 dataset due to the clear distinction in intensity
between the liver tissue and muscles tissue.

(a) Slice 151 Liver1 (b) Slice 61 Liver3

(c) Slice 158 Liver4 (d) Slice 64 Liver6

Fig. 10. Rib bones extraction applied to four MICCAI2007 Liver datasets
i.e. liver1, liver3, liver4, and liver6.

IV. RESULTS AND DISCUSSION

A. Results Based on Confusion Matrix

Table III shows the evaluations quantities for each Liver
data set and the weighted average performance where the
weights correspond to the number of slices in each dataset.
Results presented in Table III indicates that the proposed
approach has efficiently extracted the rib bones from the slices
of the Liver dataset.

TABLE III. QUANTITATIVE EVALUATIONS FOR RIB BONE EXTRACTION

Dataset Slices Number Accuracy Precision Sensitivity Specificity
liver1 102 0.83 0.80 0.96 0.78
liver3 57 0.86 0.82 0.93 0.79
liver4 140 0.92 0.88 0.96 0.87
liver6 73 0.84 0.92 0.75 0.93
Average - 0.87 0.86 0.91 0.84

Fig. 11 [Fig. 11(a) (original slice), and Fig. 11(b) (muscles
isolating)] shows an example of a true positive (TP) case where
the muscle tissue between rib bones is isolated completely.
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(a) Original slice (b) Muscles isolating

Fig. 11. A true positive case where the muscle tissue between rib bones is
isolated completely from muscles.

Fig. 12 [Fig. 12(a) (original slice), and Fig. 12(b) (pieces
removed)] shows an example of a false positive (FP) case
where some parts of liver tissues (non-muscle tissues) are
removed as a muscle area. From rib bone extraction results, it
can be noted that the efficiency of this method is acceptable.

(a) Original slice (b) Pieces removed

Fig. 12. A false positive case where some parts of liver tissues are removed
as muscle.

B. Results Based on Dice Coefficient

Table IV shows the mean Dice coefficient values in all
datasets, all slices for each liver organ. Fig. 13 (a)–(d) show
the results of the Dice coefficient for the liver regions in the
four MICCAI2007 liver datasets (Liver1, Liver3, Liver4 and
Liver6).

TABLE IV. QUANTITATIVE MEASURES FOR FOUR LIVER ORGAN
DATASETS

Dataset Number of Segmented Liver Slices Mean Dice Coefficient
Liver1 102 0.88
Liver3 57 0.90
Liver4 140 0.92
Liver6 73 0.90
Average – 0.90

The quantitative measures presented in Fig. 13 and Table
IV, shows a positive correlation and high similarity between
the proposed method and the experts’ manual segmentation,
reflected by the mean of Dice coefficient for all four liver
organs (0.90).

(a) Liver1 (b) Liver3

(c) Liver4 (d) Liver6

Fig. 13. Dice coefficient for four liver organs: Proposed method versus
manual segmentation.

Finally, the results achieved in this study are compared with
the state of-the-art active contour-based segmentation methods
in the literature i.e. [71], [73]. As Compared to [71], [73]
our proposed model achieved promising results in terms of
precision, recall, and f-measures scores.

V. CONCLUSION AND FUTURE DIRECTIONS

In this research, a rib bone extraction mechanism is pro-
posed to be used prior to segmentation methods such as active
contour to segment abdominal organs of similar intensity. Sim-
ilar intensity of abdominal organs, such as abdominal structure
tissues and muscle tissues located in between rib bone, greatly
affects the performance of the segmentation methods, and
most available segmentation approaches based on intensity
of the organs, fail to efficiently segment these organs. The
proposed rib bone extraction is used to isolate muscle tissues
that have similar intensity with abdominal structure tissues;
hence, it makes the segmentation process computationally
efficient and simpler to use. The rib bone extraction mechanism
isolates muscle tissues with a large degree of similarity in
their intensity with the abdominal structure. Consequently, this
prevents the active contour curve from leaking into muscle
tissues during the segmentation process. The proposed rib bone
extraction is applied on four MICCAI2007 Liver data set [22],
[23] slices to isolate muscle tissues from liver tissues that have
significant similarity in intensity with liver tissues. Results
indicate that the proposed rib bone extraction approach has
efficiently isolated muscle tissues from the linked liver tissues.

The proposed rib bone extraction is specifically designed
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to be used prior to the application of “active contour” seg-
mentation methods and has been tested accordingly; however,
it may be used prior to the application of any segmentation
method.

In future, this method will be tested with the other state-
of-the-art segmentation approaches to check its suitability with
these methods and to better validate our hypothesis.

DATA AVAILABILITY

MICCAI2007 data were used to support this study and are
available at https://www.semanticscholar.org/paper/Semi-
automatic-Segmentation-of-the-Liver-and-its-
onDawantLi/bacf1b9ffec68f01d93d6389faea03432060e07d.
These prior studies (and datasets) are cited at relevant places
within the text as reference [22], [23].
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