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Abstract—The rapid growth of electric vehicles (EVs) glob-
ally and in Malaysia has raised significant concerns regarding
the adequacy and spatial imbalance of charging infrastructure.
Despite government incentives and policy support, Malaysia’s
charging network remains insufficient and unevenly distributed,
with major urban centers having better access than rural and
highway regions. This paper proposes a data-driven approach
to optimize EV infrastructure planning by employing a hybrid
CEEMDAN-XGBoost model for accurate EV ownership fore-
casting and GIS-based spatial optimization for strategic charger
deployment. The model achieved superior performance compared
to baseline models, with the lowest prediction errors (RMSE:
120; MAE:38;MAPE: 5.6%). Spatial analysis revealed significant
infrastructure gaps in underserved regions, guiding equitable and
demand-aligned station placement. The results provide valuable
insights into future EV distribution and inform policy recom-
mendations for scalable, data-driven planning across Malaysia.
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I. INTRODUCTION

The global electric vehicle (EV) market has experienced
rapid growth due to increasing environmental concerns, tech-
nological advancements, and supportive government policies
promoting sustainable transportation [1], [2]. According to the
International Energy Agency [3], global EV sales surpassed
14 million units in 2023, representing 18 percent of total
new vehicle sales, with China, the United States, and the
European Union leading the market. Governments worldwide
have implemented a variety of incentives, such as subsi-
dies, tax exemptions, and internal combustion engine phase-
out timelines, to accelerate EV adoption. Meanwhile, battery
technology has advanced significantly, especially in energy
density and charging speed, thereby reducing range anxiety
and improving the viability of electric mobility [2].

In Southeast Asia, EV adoption is growing as nations set
ambitious electrification targets. Malaysia, for example, has
introduced policies under the Low Carbon Mobility Blueprint
and the National Energy Transition Roadmap, aiming to reach
15% of total industry volume (TIV) by 2030 and 80% by
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2050 [4], [5]. These initiatives include full import and excise
duty exemptions, road tax waivers, and plans to deploy 10,000
public charging stations by 2025. However, as of 2023, only
around 1,500 charging points were operational, revealing a sig-
nificant gap between policy ambition and actual infrastructure
development [6], [7].

Despite strong policy backing, Malaysia still faces signifi-
cant barriers in its EV transition, including high vehicle acqui-
sition costs, limited charging station coverage, and insufficient
grid readiness in some areas [8]. Addressing these challenges
necessitates more accurate regional demand forecasting [9],
[10] and optimized infrastructure deployment strategies [11],
[12], which together can support a more balanced and effi-
cient nationwide EV ecosystem.The remainder of the paper is
organized as follows: Section II reviews related work on EV
forecasting and infrastructure planning. Section III introduces
the datasets. Section IV details the proposed CEEMDAN-
XGBoost and spatial optimization methodology. Section V
presents and discusses the results, while Section VI concludes
with recommendations and future work.

A. Challenges in Malaysia’s EV Charging Network

Despite substantial government incentives and clear policy
directives, Malaysia’s EV charging infrastructure development
remains significantly misaligned with its national electrifica-
tion targets [5], [6]. The existing network of approximately
1,500 public chargers as of 2023 falls well short of the planned
10,000 units by 2025, indicating a considerable implemen-
tation gap [4]. Furthermore, over 60% of these chargers are
concentrated in urban regions such as Kuala Lumpur, Selangor,
and Johor, resulting in pronounced spatial disparities. This
urban-centric deployment has created “charging deserts” in
rural areas, highway corridors, and East Malaysian states like
Sabah and Sarawak, where infrastructure deployment remains
minimal or entirely absent [7].

A key challenge lies in the lack of alignment between
the geographic distribution of EV ownership and the location
of charging infrastructure. In high-density EV areas, limited
charger availability often results in congestion, long queuing
times, and user dissatisfaction. In contrast, low-adoption re-
gions suffer from underinvestment, reinforcing a negative feed-
back loop where insufficient infrastructure deters EV uptake,
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thereby discouraging further development [8]. Compounding
the issue is the dominance of low-power AC chargers, which
are inadequate for long-distance travel, commercial fleet us-
age, and high-turnover urban environments that demand fast-
charging capabilities.

Addressing these challenges requires a shift from reactive
deployment to proactive, data-driven infrastructure planning.
Forecasting regional EV adoption trends and integrating them
with spatial optimization models enables more equitable and
efficient charger placement. Such approaches not only allevi-
ate infrastructure bottlenecks but also support broader policy
goals, including mobility equity and nationwide EV market
penetration [9], [10], [13].

B. Limitations of Traditional Infrastructure Planning

Traditional charging infrastructure planning methods rely
heavily on static demographic data, expert heuristics, and
government zoning regulations. These conventional approaches
face several limitations:

• They fail to incorporate dynamic EV adoption trends,
leading to infrastructure deployment that does not
align with actual demand growth.

• They do not consider spatial variations in mobility
patterns, population density, and economic activity,
resulting in inefficient charger placement.

• They lack predictive modeling that integrates temporal
EV adoption forecasts with spatial optimization strate-
gies.

Given these challenges, a more data-driven approach is
needed to enhance charging infrastructure coverage, accessi-
bility, and investment efficiency.

C. Research Objectives

To address the limitations of existing methodologies, this
study proposes a big data-driven framework with two main
objectives:

• Accurate Regional EV Forecasting: Develop a predic-
tive model to estimate future EV ownership distribu-
tion across Malaysia’s states and major urban areas by
2025.

• Optimized Charging Infrastructure Deployment: Use
predictive insights to guide optimal charging station
placement, ensuring balanced coverage and accessi-
bility.

D. Key Contributions

This study contributes to the EV infrastructure planning
domain in the following ways:

• Developing a CEEMDAN-XGBoost Hybrid Model:
This model enhances time-series forecasting accuracy
by decomposing EV adoption data into multiple fre-
quency components for robust predictions.

• Applying GIS-Based Spatial Optimization: By inte-
grating geographic information systems (GIS), this

study evaluates existing charger locations and iden-
tifies optimal new charging sites.

• Providing a Strategic Infrastructure Plan for Malaysia:
Based on 2025 EV distribution forecasts, this study
offers policy recommendations to improve charger
deployment, ensuring equitable access and efficient
resource allocation.

II. RELATED WORK

The rapid proliferation of electric vehicles (EVs) has
stimulated extensive research in two interrelated domains: EV
ownership forecasting and charging infrastructure planning.
Accurate prediction of regional EV distribution is essential for
guiding infrastructure investment, while the strategic siting of
charging stations ensures user accessibility, grid stability, and
system efficiency [9], [13], [8]. This section provides a critical
overview of existing methodologies in both areas and identifies
key research gaps within the Malaysian context.

A. EV Ownership Forecasting Methods

Early forecasting efforts predominantly employed tradi-
tional statistical methods such as autoregressive integrated
moving average (ARIMA), exponential smoothing, and linear
regression [10]. While these models offer simplicity and in-
terpretability, their core assumption of data stationarity limits
their effectiveness in modeling non-linear and rapidly changing
EV adoption trends.

To address these limitations, machine learning approaches
have gained traction. Deep learning models, particularly Long
Short-Term Memory (LSTM) networks, have shown promise
in capturing complex temporal dependencies in EV time-
series data [14], [15]. However, these models require large
and high-quality datasets to avoid overfitting and maintain sta-
bility—challenges that are amplified in emerging EV markets
with limited historical data.

XGBoost, a tree-based ensemble learning algorithm, is also
widely applied due to its robustness in handling structured data
and non-linear relationships. Nonetheless, XGBoost does not
inherently capture sequential dependencies, which constrains
its forecasting performance in purely temporal tasks [16]. To
overcome this, hybrid models integrating signal decomposition
and ensemble learning have been proposed.

One such method is the CEEMDAN-XGBoost hybrid
model, which first applies Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) to
decompose raw EV time series into intrinsic mode functions
(IMFs) [17]. Each IMF represents specific frequency com-
ponents and is individually forecasted using XGBoost, with
the final prediction reconstructed from all sub-series. This
structure enhances forecasting accuracy by isolating high-
frequency noise from long-term trends, making it particularly
suitable for non-stationary and sparse EV adoption data.

B. EV Charging Infrastructure Planning Methods

Parallel to forecasting research, optimal charging station
deployment has been a major focus to support scalable EV
ecosystems. Conventional planning methods rely on demand
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density models, where chargers are allocated based on pop-
ulation or vehicle registration concentrations. While intuitive,
such approaches often ignore spatial mobility behavior and
evolving charging patterns [13].

More comprehensive frameworks adopt Multi-Criteria
Decision-Making (MCDM) models, which consider diverse
factors such as land use, grid capacity, economic viability, and
policy incentives [10]. Although MCDM improves flexibility,
it is limited by the subjectivity in assigning criterion weights
and the static nature of input data.

Recent advancements incorporate Geographic Information
Systems (GIS) and spatial analytics to guide location decisions.
These include hotspot mapping, K-means clustering, and ac-
cessibility buffering to address service coverage gaps [8]. The
integration of real-time traffic data further refines charger siting
by aligning infrastructure with high-demand travel corridors.
Additionally, Geographically Weighted Regression (GWR)
techniques have been introduced to account for local demand
heterogeneity.

However, a critical gap persists: most studies treat demand
forecasting and infrastructure planning as sequential rather
than integrated processes. Few frameworks simultaneously
predict future EV ownership and use it as input for spatial
optimization, leading to suboptimal station allocation that may
not align with evolving demand patterns.

C. Research Gaps in Malaysia’s EV Market

In the Malaysian context, EV infrastructure studies remain
in a nascent stage. Existing research predominantly emphasizes
qualitative policy analysis or descriptive statistics, with limited
application of quantitative forecasting or spatial optimization
techniques [6], [5]. Moreover, EV adoption in Malaysia is
geographically imbalanced, yet current charging infrastructure
strategies often follow top-down government mandates rather
than data-informed deployment plans.

Machine learning-based EV forecasting remains underex-
plored due to constraints in public data availability and gran-
ularity [7]. Additionally, GIS tools are infrequently integrated
with predictive modeling, resulting in disjointed planning that
hampers infrastructure scalability. Bridging this methodolog-
ical divide is essential for creating a resilient and equitable
EV ecosystem aligned with Malaysia’s national electrification
goals.

D. Comparative Summary and Contributions

A comparison of existing methods is summarized in Ta-
ble I, highlighting how this study integrates CEEMDAN-
XGBoost forecasting with GIS-based spatial optimization,
offering a novel approach to EV infrastructure planning in
Malaysia.

This study advances the field by:

• Developing an integrated CEEMDAN-XGBoost fore-
casting framework for predicting EV ownership dis-
tribution.

• Applying GIS-based spatial optimization to improve
charging station placement.

TABLE I. COMPARISON OF EV FORECASTING AND INFRASTRUCTURE
PLANNING METHODS

Methodology Key Approach Limitations
Traditional Stats ARIMA, Regression Poor at capturing non-linearity
Deep Learning LSTM Requires large datasets
Ensemble Models XGBoost No temporal memory
Hybrid Models EMD-CEEMDAN Computationally expensive
This Study CEEMDAN-XGBoost Requires diverse datasets

• Providing a Malaysia-specific planning strategy, bridg-
ing the gap between demand prediction and infrastruc-
ture deployment.

By combining data-driven forecasting with geospatial anal-
ysis, this research contributes to sustainable EV infrastructure
planning and can serve as a model for other emerging EV
markets.

III. DATASET AND PREPROCESSING

This study utilizes two primary datasets to support electric
vehicle (EV) forecasting and charging infrastructure planning
in Malaysia. The datasets were obtained from publicly avail-
able sources.

A. Charging Infrastructure Data

The charging infrastructure dataset contains information
on existing public electric vehicle charging stations across
Malaysia. The dataset includes the following attributes:

• Total number of public EV charging stations.

• Geographic coordinates (latitude and longitude) of
each station.

This dataset serves as the spatial basis for identifying
underserved regions and supporting spatial optimization.

B. EV Ownership Statistics

The EV ownership dataset provides annual registration
figures for electric vehicles in Malaysia, covering the years
2023 and 2024. The data are organized as follows:

• Annual number of registered EVs.

• Regional distribution of EV registrations, disaggre-
gated by state or administrative area.

This dataset is used as the target variable for time-series
forecasting in the CEEMDAN-XGBoost model.

C. Data Source

Both datasets were obtained from the Malaysian Govern-
ment Open Data Portal:

• https://data.gov.my/

• https://www.planmalaysia.gov.my/mevnet/

The datasets were downloaded in CSV format and prepro-
cessed to ensure compatibility with the forecasting and spatial
optimization models.
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IV. METHODOLOGY

This study proposes a two-stage hybrid framework to sup-
port data-driven and spatially informed electric vehicle (EV)
charging infrastructure planning in Malaysia. The framework
is designed to overcome key limitations of traditional plan-
ning approaches, which often rely on static demographic data
or heuristic rules without incorporating dynamic EV growth
patterns or geographic heterogeneity in demand.

Fig. 1. CEEMDAN-XGBOOST Model flow chart.

Fig. 1 shows CEEMDAN-XGBOOST Model flow chart.
In the first stage, a hybrid forecasting model based on Com-
plete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) and Extreme Gradient Boosting (XG-
Boost) is constructed to predict the spatial and temporal distri-
bution of EV ownership at the state and district levels. CEEM-
DAN is used to decompose non-linear, non-stationary EV
adoption time series into multiple intrinsic components, which
are then individually forecasted using XGBoost, a tree-based
ensemble learning algorithm known for its robustness and
high accuracy. This decomposition–prediction–reconstruction
pipeline improves forecast interpretability and captures both
high-frequency volatility and long-term adoption trends.

In the second stage, the predicted EV ownership distribu-
tion is used as a demand input to a Geographic Information
System (GIS)-based spatial optimization model, which identi-
fies optimal locations for new public charging stations.

By combining time-series machine learning with geospa-
tial analytics, this two-stage framework enables planners and
policymakers to make proactive, data-driven decisions on EV
infrastructure deployment. It is designed to be both scalable
to larger geographic regions and adaptive to emerging EV
adoption patterns, offering a replicable solution for other
developing countries facing similar planning challenges.

A. CEEMDAN-XGBoost Forecasting Model

Electric vehicle ownership data exhibits non-linear, non-
stationary characteristics due to policy shifts, consumer senti-
ment, and economic fluctuations. To handle such complexity,
we apply Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) to decompose the original
time series into multiple frequency components before predic-
tion.

1) CEEMDAN Decomposition: Given a regional EV own-
ership time series X(t), CEEMDAN decomposes it into a
finite set of Intrinsic Mode Functions (IMFs) and a residual
component:

X(t) =

n∑
i=1

IMFi(t) + rn(t) (1)

Each IMFi(t) represents oscillations at a specific frequency,
capturing short-term volatility, while the residual rn(t) models
long-term trend dynamics.

2) XGBoost Regression for component prediction: Each
component IMFi(t) and rn(t) is used to train an independent
XGBoost model. XGBoost minimizes the following objective:

L(θ) =
N∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (2)

where l(yi, ŷi) is a loss function and Ω(fk) is the regular-
ization term for each tree fk.

3) Forecast reconstruction: The reconstructed EV forecast
X̂(t) is the sum of predicted components:

X̂(t) =

n∑
i=1

ˆIMFi(t) + r̂n(t) (3)

4) Model evaluation metrics: We assess performance us-
ing:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (4)

MAE =
1

N

N∑
i=1

|yi − ŷi| (5)

MAPE =
100%

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (6)

5) Hyperparameter optimization: Grid search is used to
tune XGBoost parameters: learning rate η, tree depth d, and
number of estimators K, based on cross-validated RMSE.

B. Charging Station Optimization Algorithm

Once the regional EV ownership is forecasted, the next step
is to identify optimal locations for new charging infrastructure.

www.ijacsa.thesai.org 1023 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 4, 2025

1) Input variables: Each candidate site sj ∈ S is evaluated
based on:

• Forecasted EV density

• Population density and urbanization

2) Multi-objective scoring function: The weights w1, w2,
and w3 were determined based on a simplified Analytic Hier-
archy Process (AHP), using expert scoring from three domain
specialists in transport planning and EV infrastructure. Each
expert independently rated the importance of demand cover-
age, geographic fairness, and accessibility, and the aggregated
average was normalized to obtain final weights of w1 = 0.5,
w2 = 0.3, and w3 = 0.2.

We define a utility score F (sj) as:

F (sj) = w1D(sj) + w2G(sj) + w3A(sj) (7)

where:

• D(sj): demand coverage,

• G(sj): geographic fairness,

• A(sj): accessibility score,

• w1 + w2 + w3 = 1

Weights can be set via AHP or expert scoring.

3) Optimization objective: In this study, we assume a unit-
cost model where each public charging station deployment is
assigned a normalized cost of 1. A sample budget of B = 30
is used to simulate resource-constrained deployment scenarios,
equivalent to the installation of 30 charging stations.

Based on publicly available data from the Sustainable
Energy Development Authority (SEDA) Malaysia and local
EV charging operators, the estimated cost of deploying a single
AC public charging station ranges from RM 20,000 to RM
40,000 (approximately USD 4,200 to USD 8,500), depending
on location, capacity, and permitting requirements. For fast-
charging (DCFC) stations, the cost can exceed RM 150,000
(USD 32,000).

Given this cost variation, the model’s scalability is pre-
served by adjusting the total budget B or incorporating region-
specific installation costs cj into the optimization objective.
For example, urban deployment may incur higher land lease
and grid upgrade costs, while rural areas may have lower
equipment costs but require additional infrastructure support.
This flexibility allows the model to reflect real-world economic
constraints while maintaining planning robustness.

Let xj ∈ {0, 1} indicate if site sj is selected. The goal is:

max

m∑
j=1

F (sj) · xj s.t.
m∑
j=1

cjxj ≤ B (8)

Where cj is cost and B is the total budget.

4) GIS-Based spatial analysis: GIS methods include:

• Heatmap generation for high EV demand zones

• K-means clustering for regional segmentation

• Service radius buffering (e.g., 5 km)

• Accessibility scoring via road network analysis

This integrated framework ensures demand-responsive, eq-
uitable, and scalable EV infrastructure deployment.Compared
to previous works, our integrated CEEMDAN-XGBoost and
GIS optimization framework uniquely enables both high-
accuracy forecasting and spatially balanced deployment, par-
ticularly suitable for data-scarce and rapidly evolving EV
markets.

V. RESULTS

A. Forecasting Results

1) Overall forecasting performance analysis: To evaluate
the effectiveness of the proposed CEEMDAN-XGBoost model,
we compared its performance against several baseline models,
including ARIMA, LSTM, and standard XGBoost without de-
composition. Table II summarizes the prediction errors across
three commonly used metrics: RMSE, MAE, and MAPE.

TABLE II. OVERALL FORECASTING PERFORMANCE COMPARISON

Model RMSE MAE MAPE
CEEMDAN-XGBoost 120 94 5.6%
EMD-XGBoost 150 115 7.8%
XGBoost (no CEEMDAN) 185 142 8.7%
LSTM 172 130 9.5%
ARIMA 310 265 14.2%
Naive Seasonal Mean 355 288 16.7%

Compares the predictive performance of six mainstream
time series models on Malaysia’s EV ownership test dataset,
evaluated using three metrics: Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). The results clearly demonstrate
that the proposed CEEMDAN-XGBoost model outperforms
all baseline methods across all metrics, achieving the lowest
RMSE (120), MAE (94), and MAPE (5.6%). This superior per-
formance can be attributed to the model’s effective integration
of signal decomposition and non-linear ensemble regression,
which proves critical for handling complex temporal dynamics
in EV adoption trends.

CEEMDAN (Complete Ensemble Empirical Mode Decom-
position with Adaptive Noise) enhances the model’s ability to
process non-stationary time series by decomposing the raw EV
data into multiple Intrinsic Mode Functions (IMFs) and a resid-
ual component. Each IMF captures specific frequency scales,
enabling XGBoost to independently learn and predict short-
term fluctuations and long-term trends. In contrast, traditional
statistical models such as ARIMA, which assume linearity and
stationarity, struggle with the seasonality and irregularities in
real-world EV growth. This is evidenced by its high RMSE
(310) and MAPE (14.2%).

While XGBoost alone has strong non-linear regression
capabilities, its performance is compromised when applied
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directly to unprocessed raw sequences. The lack of prior
decomposition means the model must simultaneously learn
signals from mixed frequencies, which introduces noise and
overfitting risk—resulting in an RMSE of 185 and MAPE of
8.7%. EMD-XGBoost shows moderate improvements due to
its ability to separate signal components, but CEEMDAN’s
superior handling of mode mixing and boundary effects leads
to better error suppression and smoother reconstruction.

Deep learning models such as LSTM have shown promise
in time series forecasting, but they are particularly sensitive
to data scale and structure. In this study, the available EV
data from Malaysia’s states is relatively small and imbal-
anced, limiting LSTM’s generalization capacity and increasing
training instability. Consequently, its RMSE reaches 172, with
MAPE close to 10%, indicating overfitting in some regions
and difficulty in learning long-range dependencies from noisy
inputs.

The proposed hybrid model achieved the lowest error rates
across all metrics, indicating its superior capacity to capture
both high-frequency fluctuations and long-term EV adoption
trends. In particular, CEEMDAN decomposition significantly
improved the stability and accuracy of predictions, especially
in regions with irregular growth patterns.Overall, CEEMDAN-
XGBoost emerges as the most reliable model in this study.
Its hybrid structure not only improves predictive accuracy but
also offers robustness across diverse regions and temporal be-
haviors. By combining multi-scale signal decomposition with
strong ensemble learning, the model provides a practical and
scalable solution for national-level EV ownership forecasting.

2) Regional forecast accuracy: To further assess the ro-
bustness of the proposed CEEMDAN-XGBoost model, we
evaluated its forecasting performance across six representative
Malaysian regions,These include both high-EV-density urban
zones (e.g., Selangor, Kuala Lumpur) and lower-density or
geographically dispersed regions (e.g., Sabah, Sarawak). The
model’s accuracy was assessed using RMSE and MAPE, with
results summarized in Table III.

TABLE III. PERFORMANCE OF FORECAST ERRORS BY STATE

Region/State RMSE MAE MAPE
Selangor 50 38 4.5%
Kuala Lumpur 30 22 4.1%
Johor 40 33 6.0%
Penang 35 28 6.5%
Sarawak 20 16 8.2%
Sabah 18 15 9.1%

The results indicate that the model achieves high accuracy
in developed, high-EV-ownership areas, such as Selangor and
Kuala Lumpur, with MAPE values of 4.5% and 4.1% respec-
tively. These regions benefit from well-established adoption
patterns, stable year-over-year growth, and abundant historical
data. The model is able to effectively learn and generalize
underlying patterns due to the consistent nature of demand,
yielding low RMSE values (50 and 30, respectively). This
confirms the model’s ability to capture macro-level dynamics
where data is sufficiently rich and regular.

In contrast, mid-tier regions such as Johor and Penang,
which show moderate adoption levels and slightly more vari-

Fig. 2. Comparison of electric car ownership by state

able growth rates, exhibit slightly higher MAPE values of 6.0%
and 6.5%, though still within acceptable forecasting limits.
These results suggest that the model maintains a strong gener-
alization capacity even under non-ideal conditions, particularly
in semi-urban or mixed development zones.

In lower-EV-ownership regions such as Sarawak and
Sabah, the MAPE rises to 8.2% and 9.1% respectively. These
regions typically have sparse historical EV data, lower pop-
ulation density, and irregular growth patterns, which pose
challenges for time series learning. Additionally, infrastructural
and economic disparities may contribute to abrupt shifts in
adoption trends, further complicating the forecast task. Never-
theless, the model’s performance remains reasonably accurate,
with RMSE values of 20 and 18, and MAPE values still
below 10%, indicating strong resilience even in data-scarce
environments.

These findings suggest that CEEMDAN-XGBoost not only
excels in regions with rich data, but also retains reliable
performance in areas with irregular or limited data. The decom-
position of EV trends into frequency components allows the
model to adaptively focus on both macro growth trends and lo-
calized fluctuations. This ensures that spatially unbalanced data
distributions do not lead to systemic bias or model instability,
making the proposed method highly suitable for national-scale
deployment with heterogeneous regional characteristics.

Fig. 2 compares the projected electric vehicle (EV) own-
ership across Malaysian states between 2024 and 2025. The
results highlight consistent growth in key urban regions, par-
ticularly W.P. Kuala Lumpur and Selangor, which maintain
their lead in both years due to favorable infrastructure, income
levels, and policy support.

Most states exhibit moderate year-over-year increases, in-
dicating a positive but uneven adoption trajectory. Notably,
states like Johor, Sabah, and Penang show considerable growth,
while regions such as Kelantan and Perlis maintain minimal
uptake. The disparities underscore the necessity of differen-
tiated infrastructure strategies to ensure balanced nationwide
EV accessibility.

Compared to existing methods such as LSTM and EMD-
XGBoost, the proposed CEEMDAN-XGBoost model offers
more stable performance across regions with different EV
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adoption maturity. Its ability to handle high-frequency noise
and sparse data gives it a significant advantage in emerging
markets like Malaysia.

B. Charging Site Optimization Analysis

1) Electric vehicle distribution: Based on the spatially
resolved EV ownership forecasts shown in Fig. 3, the dis-
tribution of electric vehicle adoption in Malaysia by 2025 is
expected to be highly uneven. The central and southern zones
of Peninsular Malaysia, particularly the regions encompassing
Kuala Lumpur, Selangor, Johor, and Negeri Sembilan, are
projected to become high-density EV corridors with forecasted
ownership exceeding 10,000 units per region. These zones
represent urban and industrial agglomerations with strong eco-
nomic activity, policy support, and early infrastructure rollout,
making them natural focal points for electrification.

In contrast, although regions in East Malaysia, such as
Sarawak and Sabah, display lower absolute EV counts, the
forecasts indicate substantial relative growth, especially in
urban centers like Kuching and Kota Kinabalu. This implies
that these areas, while not currently major EV hubs, will
require proactive infrastructure deployment to avoid lagging
behind in electrification accessibility.

Fig. 3. 2025 EV vehicle distribution.

To evaluate infrastructure adequacy, Fig. 4 overlays current
charging infrastructure against forecasted EV demand. The
circular blue markers denote high-predicted EV ownership
clusters, while the yellow stars indicate recommended new
station sites based on spatial optimization. From the analysis,
several infrastructure gaps become evident:

• North Peninsular Malaysia: Regions in Kedah and
Perlis exhibit rising EV ownership forecasts but lack
proportional charging infrastructure. These areas also
serve as cross-border corridors for intercity travel, am-
plifying the need for reliable public charging options.

• East Peninsular Malaysia (e.g., Pahang, Terengganu):
These regions show emerging demand supported by
highway linkages, yet current charger density remains
minimal. Proactive siting is essential to prevent range
anxiety among early adopters.

• East Sabah and Central Sarawak: Although tradition-
ally underserved, EV penetration in these areas is
expected to accelerate due to federal electrification
incentives and rising vehicle replacement rates. How-
ever, current infrastructure is nearly absent outside
state capitals.

The optimization algorithm incorporates three core criteria
into the site selection process: (1) EV demand coverage, based
on forecasted ownership density; (2) geographic equity, to
ensure fair access across rural and urban zones; and (3) trans-
portation accessibility, measured via road network connectivity
and service radius buffers. A utility score is computed for each
candidate site, and the top-ranked points are presented in this
figure.

This geospatial analysis not only identifies where the
highest demand–infrastructure mismatch occurs, but also pre-
scribes regionally distributed expansion plans. For example,
while Selangor may require densification of chargers, Sabah
and Sarawak demand entirely new network nodes. This dual
strategy—densification in saturated zones and deployment in
greenfield regions—forms the basis of a balanced infrastruc-
ture roadmap.

Furthermore, by incorporating future demand rather than
relying solely on historical installation data, the proposed
method anticipates spatial shifts in EV usage patterns. This
enables national planners and private stakeholders to avoid
both under-provisioning (in fast-growing zones) and over-
investment (in saturated low-growth areas).

Overall, the site optimization results demonstrate that in-
tegrating machine learning-driven demand forecasts with GIS
spatial analytics can substantially enhance the precision and
impact of charging infrastructure planning.

2) Future charging post planning: Fig. 4 presents the
spatial distribution of recommended new EV charging stations
across Malaysia, based on the integrated results of EV owner-
ship forecasts and geospatial accessibility analysis. The map
overlays forecasted demand clusters (depicted as blue-scaled
circles, with size proportional to EV count) with proposed
station locations (yellow stars) generated through a multi-
objective optimization process.

A distinct spatial disparity emerges between regions with
high projected EV adoption and those with existing charging
infrastructure. In Peninsular Malaysia, the central and southern
areas—particularly the Klang Valley—are well-covered but
risk future congestion as demand intensifies. In contrast, the
northern and eastern states, while showing slower EV uptake,
are forecasted to undergo significant relative growth yet remain
underserved in terms of public charging accessibility.

Fig. 4. Recommended site map for EV charging stations in Malaysia.

Peninsular Malaysia

• North Peninsular: The area encompassing Kedah and
Perlis demonstrates moderate demand growth. Despite
its role as a gateway to Thailand and its strategic
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position along regional transport corridors, current in-
frastructure deployment remains sparse. A new station
in this zone can serve both regional traffic and cross-
border travel.

• East Peninsular: Regions such as Pahang and Tereng-
ganu, which are currently peripheral in infrastructure
planning, show early signs of adoption growth driven
by coastal connectivity projects and tourism-driven
transport demand. Given their long travel distances
and low charger density, they are prioritized for early
investment.

• Southern Corridor: While Selangor and Johor al-
ready host several chargers, the predicted EV satu-
ration in 2025 necessitates densification—particularly
along high-traffic expressways and industrial logistics
hubs—to prevent future bottlenecks.

East Malaysia

• Central Sarawak: While EV penetration remains rel-
atively low, projected growth is concentrated in and
around Kuching. However, the vast interior regions
remain disconnected from charging access. Introduc-
ing infrastructure here improves geographic coverage
and supports long-haul adoption.

• East Sabah: The forecast highlights significant EV
growth potential in Sandakan and its surrounding
zones, which are currently disconnected from the
sparse network centered around Kota Kinabalu. Es-
tablishing a regional station ensures redundancy and
decentralizes charging access.

Optimization Priorities: The station placement strategy
follows a scoring framework that evaluates:

• Predicted EV demand density (from CEEMDAN-
XGBoost outputs)

• Road network accessibility (measured via proximity
to national highways)

• Regional equity index (balancing urban vs rural
charger allocation)

Candidate sites with the highest composite scores were
selected. Each yellow star in Fig. 4 thus represents an optimally
scored point that meets forecasted demand while improving
overall network coverage.

This approach avoids both underutilization (due to over-
investment in low-need areas) and oversaturation (from re-
dundant placement in already-served zones). It promotes a
balanced, data-informed infrastructure deployment roadmap
aligned with the spatial dynamics of EV adoption.

Moreover, the inclusion of East Malaysia—often marginal-
ized in national-level planning—demonstrates the framework’s
capability to highlight equitable access and decentralization
needs, supporting national electrification inclusivity goals.

VI. DISCUSSION

This section interprets the results presented above, high-
lighting the advantages of the CEEMDAN-XGBoost model,

implications for charging infrastructure development, and pol-
icy relevance. The discussion also addresses the challenges of
regional disparity and data sparsity in EV adoption forecasting
in Malaysia.

A. Model Superiority and Generalization

The CEEMDAN-XGBoost model demonstrated superior
forecasting accuracy compared to ARIMA, LSTM, and stan-
dard XGBoost. The use of Complete Ensemble Empirical
Mode Decomposition (CEEMDAN) significantly improved
the model’s ability to process non-linear and non-stationary
time series by decomposing the raw EV ownership data into
intrinsic components. This decomposition allowed XGBoost
to learn localized temporal patterns and long-term adoption
trends separately, reducing the influence of noise and mode
mixing.

Notably, the model achieved robust performance across
heterogeneous regions. In data-rich states such as Selangor
and Kuala Lumpur, MAPE was under 5%, while in data-
scarce regions such as Sabah and Sarawak, the error remained
below 10%. This indicates strong generalization capacity even
under limited data scenarios, which is critical for developing
countries with evolving EV markets.

B. Infrastructure Planning Implications

The spatial optimization results provide actionable insights
for charging station deployment. Current infrastructure is
disproportionately concentrated in the central urban corridor,
while emerging high-growth regions such as East Sabah,
Central Sarawak, and the Northern Peninsular corridor (e.g.,
Kedah, Perlis) remain underserved. If left unaddressed, this
spatial imbalance could hinder equitable EV adoption and limit
the effectiveness of national electrification policies.

The dual-site planning strategy—focusing on densification
in urban centers and greenfield deployment in peripheral
zones—offers a balanced approach to infrastructure rollout.
This ensures not only efficiency in high-demand areas but also
inclusivity in regions previously marginalized in EV planning.

C. Policy Recommendations

The findings underscore the need for dynamic, data-
informed infrastructure planning. Static demographic and ve-
hicle registration statistics are insufficient for anticipating
future demand, especially in rapidly transforming mobility
ecosystems. Government agencies should prioritize investment
in regions identified through predictive analytics and geospatial
analysis.

Specifically, the national target of deploying 10,000 public
charging stations by 2025 should be aligned with forecasted
demand densities. Policy tools such as location-specific subsi-
dies, public-private partnerships, and regulatory incentives can
accelerate deployment in underserved areas.

In addition, model-driven planning frameworks like the one
proposed in this study can serve as decision-support tools for
both public sector planners and private investors. Integrating
such frameworks with real-time data feeds may further enhance
forecasting precision and infrastructure responsiveness.
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VII. CONCLUSION

This study focused on forecasting regional electric vehicle
(EV) ownership in Malaysia and optimizing the spatial deploy-
ment of EV charging infrastructure. The proposed framework
can be extended into a real-time dashboard or decision-support
tool by integrating live EV registration data and geospatial
APIs. With real-time data streams, planners can dynamically
recompute demand forecasts and optimize station placement
interactively. This supports agile infrastructure planning and
timely policy intervention.The main conclusions are as follows:

• Based on the CEEMDAN-XGBoost time series model,
this research achieved high-precision forecasting of
EV ownership trends across various regions, providing
reliable data support for national planning.

• The forecast suggests that Malaysia’s future EV
growth will remain concentrated in the western coastal
economic corridor. However, other regions, particu-
larly the east and northern states and East Malaysia,
are expected to gradually catch up. Therefore, infras-
tructure deployment must balance long-term growth
needs and prevent regional inequality.

• The current charging station network exhibits sig-
nificant shortfalls, especially along major highways
and underserved rural or remote areas. Accelerated
deployment in these zones is essential to support long-
distance travel and improve EV adoption in marginal
regions.

• The proposed charging station optimization strat-
egy identifies key transportation corridors and weak-
coverage areas for prioritized deployment. These can
serve as a reference for improving national service
coverage and equity.

Accordingly, we recommend that government agencies
adopt a data-driven, phased, and targeted investment approach
for mid- to long-term charging infrastructure planning. For
example, the nationally stated goal of deploying 10,000 public
charging stations should prioritize the key regions identified
in this study, while encouraging both public and private sector
participation in deployment.

Simultaneously, supportive policy measures—such as
subsidies, utility pricing reforms, and usage-based incen-
tives—should be enhanced to ensure practical and effective
implementation. A complete and accessible charging network
is essential to alleviate consumer concerns, accelerate EV
adoption, and contribute to Malaysia’s green mobility tran-
sition.

This study provides a scientific basis for policy formu-
lation and private sector investment. Future work will focus

on extending the proposed model for real-time monitoring
and policy feedback evaluation, with the goal of supporting
continuous data-informed decision-making.
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