
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

1 | P a g e

www.ijacsa.thesai.org

Enhancing Federated Learning Security with a

Defense Framework Against Adversarial Attacks in

Privacy-Sensitive Healthcare Applications

Frederick Ayensu, Claude Turner, Isaac Osunmakinde

Department of Computer Science, Norfolk State University, Virginia, USA

Abstract—Federated learning (FL) is a cutting-edge method of

collaborative machine learning that lets organizations or

companies train models without exchanging personal information.

Adversarial attacks such as data poisoning, model poisoning,

backdoor attacks, and man-in-the-middle attacks could

compromise its accuracy and reliability. Ensuring resistance

against such risks is crucial as FL gets headway in fields like

healthcare, where disease prediction and data privacy are

essential. Federated systems lack strong defenses, even though

centralized machine learning security has been extensively

researched. To secure clients and servers, this research creates a

framework for identifying and thwarting adversarial attacks in

FL. Using PyTorch, the study evaluates the framework’s

effectiveness. The baseline FL system achieved an average

accuracy of 90.07%, with precision, recall, and F1-scores around

0.9007 to 0.9008, and AUC values of 0.95 to 0.96 under benign

conditions. With AUC values of 0.93 to 0.94, the defense-enhanced

FL system showed remarkable resilience and maintained

dependable classification (precision, recall, F1-scores ~0.8590–

0.8598), despite a 4.1% accuracy decline to 85.97% owing to

security overhead. With an 84.33% attack detection rate, 99.32%

precision, 96.62% accuracy and a low false positive rate of 0.15%,

the defense architecture performed exceptionally well in

adversarial attacks. Trade-offs were identified via latency

analysis: the defense-enhanced system stabilized at 54 to 56

seconds, while the baseline system averaged 13-second rounds.

With practical implications for safe, robust machine learning

partnerships, these findings demonstrate a balance between

accuracy, efficiency and security, establishing the defense-

enhanced FL system as a reliable option for privacy-sensitive

healthcare applications.

Keywords—Federated learning; machine learning; privacy;

adversarial attacks; defense framework; global model; healthcare;

disease prediction

I. INTRODUCTION

Federated Learning (FL) is a collaborative machine learning
technique that allows decentralized training while maintaining
data security [1, 2]. FL is vulnerable to adversarial attacks that
can compromise the integrity of the model, its performance, and
the extraction of sensitive information [3]. Defense frameworks,
equipped with robust aggregation methods, anomaly detection,
and privacy-preserving mechanisms, fortify FL systems against
these attacks [4]. By integrating these frameworks,
comprehensive solutions can effectively address a wide range of
threats simultaneously [5, 6]. Despite efforts, dynamic

environments and evolving attacks make it difficult to develop
a secure FL system.

A critical challenge in federated learning (FL) is achieving a
balance between security, privacy, and model performance,
particularly in privacy-sensitive healthcare, where data
protection is paramount [7, 8]. Adversarial attacks, such as
model poisoning, data tampering, backdoor attacks, and man-in-
the-middle attacks, can compromise model integrity and
performance, yet existing FL systems often lack robust defenses
to counter these threats while maintaining scalability and quality
[9, 10]. The scarcity of empirical research on secure FL in
healthcare further complicates its adoption, as evolving cyber
threats demand adaptable, scalable solutions for real-world
deployment.

The primary objective of this research is to develop and
evaluate a defense framework that ensures the reliability and
safety of FL systems, particularly in the medical field. The
research explores various strategies to safeguard FL systems
from malicious attacks while preserving scalability, model
performance, and data privacy. By achieving this, the
framework aims to enhance confidence in FL technologies and
foster their wider adoption in privacy-sensitive domains,
particularly in healthcare applications such as disease
prediction.

The objectives include designing and implementing a
defense mechanism against adversarial attacks in FL,
implementing privacy-preserving mechanisms that balance
security, privacy and model performance, assessing the
framework’s ability to detect and mitigate attacks while
maintaining model accuracy in healthcare scenarios and
analyzing scalability and efficiency as FL networks expand. The
research questions are: How can we effectively detect and
mitigate adversarial attacks in FL without negatively affecting
data privacy or model utility? To what extent can the proposed
framework detect and protect against adversarial attacks while
maintaining model performance and scalability in real-world
healthcare environments?

This study suggests a defense-enhanced FL architecture that
protects data privacy and model performance from adversarial
attacks to meet the urgent demand for secure FL systems in the
healthcare industry. Our strategy incorporates sophisticated
security features such as adversarial training, differential privacy
and Byzantine-robust aggregation which have been verified
using a six-phase technique on the Mayo Clinic PBC dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

2 | P a g e

www.ijacsa.thesai.org

The framework's robust attack detection (84.33% detection rate)
and capacity to retain an accuracy of 85.97% under assault
settings are demonstrated by experimental findings thus
providing a workable solution for privacy-sensitive healthcare
applications such as disease prediction. This research improves
its dependability for practical implementation by filling a
significant gap in secure FL.

The remainder of this study is organized as follows: Section
II presents related work, while Section III outlines the proposed
methodology. Section IV details the experimental setup, and
Section V shares the results and discusses their implications.
Finally, Section VI concludes with remarks and suggests future
directions for research.

II. RELATED WORK

Edge computing and FL are complementary technologies
that aim to address distributed data processing and machine
learning challenges. FL addresses privacy and regulatory
concerns by enabling model training on dispersed datasets while
allowing multiple parties to collaborate on model training while
keeping their data localized. Participating devices receive a
global model from a central server, which initializes and
distributes it. Edge devices train the model using their local data
and only communicate model updates to the server [11]. Edge
computing, a distributed computing paradigm, moves data
storage and processing closer to the data sources [12]. It
improves real-time processing, saves bandwidth, and reduces
latency. Since the network edge generates substantial volumes
of data, edge computing is crucial to FL. Benefits include
enhanced data security and privacy, optimized bandwidth,
reduced latency, increased reliability in intermittent
connectivity, and support for real-time applications and
decision-making [13]. FL and edge computing support data
privacy by storing sensitive data locally. Edge computing
minimizes data transfer, thereby reducing communication
overhead, while FL simply requires model updates [14]. Rapid
scenario adaptation is made possible by edge devices, which do
local training and inference [15]. Architectures like Wu et al.'s
[16, 17] hierarchical edge-based FL eliminate communication
bottlenecks and improve scalability. Peer-to-peer FL eliminates
the central server, while hybrid edge-cloud FL combines cloud
and edge computing resources.

Threats originate from clients, communication and servers in
FL. Clients face various attacks, including data poisoning,
model poisoning, backdoor attacks, Byzantine attacks, Sybil
attacks, free-riding, and inference attacks. Vulnerabilities in
communication often arise from man-in-the-middle attacks and
eavesdropping, which compromise data integrity and
confidentiality. The central server faces risks from malicious
behaviors, non-robust aggregation methods, and inference
attacks [18]. Model poisoning attacks involve malicious
participants injecting updates to manipulate the global model.
Bhagoji et al. [19] demonstrated that an adversary controlling a
single agent can achieve targeted misclassification. These
attacks are stealthy and bypass simple anomaly detection. Data
poisoning exploits the fact that FL aggregators are unaware of
how updates are generated. Demartis [20] showed that even a
small number of malicious participants can harm the joint
model. Backdoor attacks involve malicious clients embedding

hidden patterns in their updates, causing the model to misbehave
on specific inputs. Unlike data poisoning, backdoor attacks
maintain high accuracy on normal data but only activate under
specific conditions. This type of attack exploits FL’s
decentralized nature. The decentralized architecture of FL
makes it challenging to detect malicious updates [18]. The
central server has limited visibility into the data of clients and
training processes [21]. Edge-based FL introduces security
concerns, as edge servers protect edge traffic but can be
compromised, potentially impacting connected clients or
manipulating aggregated updates. Privacy concerns extend
beyond the protection of raw data. Inference attacks, which
utilize membership, attribute, and feature inference, can retrieve
the original data from model changes [14, 22]. Byzantine-
resilient aggregation, differential privacy, secure aggregation
protocols and anomaly detection are some of the protection
measures that researchers suggest.

FL employs various defense mechanisms to safeguard
against security and privacy anomalies at the client, server, and
communication levels. At the client level, techniques such as
differential privacy and anomaly detection filter malicious
updates before aggregation. On the server side, robust
aggregation methods like Krum and multi-Krum mitigate the
impact of poisoned data and prevent non-robust aggregation
issues. In the event of malicious client behavior, Byzantine fault
tolerance ensures model integrity. Secure channels protect
against eavesdropping and man-in-the-middle attacks, while
encryption and moving target defenses enhance data
transmission security. Robust aggregation identifies and filters
harmful client updates. According to Bhagoji et al. [19],
Byzantine-resilient aggregation techniques safeguard against
model poisoning attacks but may be vulnerable to highly skilled
targeted attacks. These aggregation algorithms statistically
analyze client updates to identify outliers or unusual patterns of
activity. Differential privacy is a privacy-preserving technique
that adds controlled noise to gradients or model updates to
maintain individual privacy. Shaheen et al. [11] proposed a
client-level differential privacy approach for FL that offers
robust privacy assurances without compromising model utility.
Edge-specific security solutions address challenges in edge
computing environments. Bao et al. [14] proposed a hierarchical
edge-based FL architecture with intermediate aggregation
layers, reducing communication bottlenecks and enhancing
scalability while improving security.

Technologies like FL and Edge Computing are
revolutionizing the healthcare industry by addressing challenges
related to data security, privacy, and collaborative research. FL
utilizes diverse datasets to enhance performance by enabling
multiple institutions to train machine learning models without
sharing raw patient data. A systematic study conducted by Teo
et al. [8] identified 612 articles exploring the application of FL
in healthcare, with internal medicine and radiology emerging as
the most prevalent specialties. Neural networks and medical
imaging are two prevalent models and data types that FL can
effectively handle. Notably, only 5.2% of the examined research
demonstrated real-life applications, suggesting early clinical use
despite the growing interest in this field [8]. FL provides privacy
by localizing data, but additional privacy enhancement methods
are being developed, such as differential privacy, homomorphic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

3 | P a g e

www.ijacsa.thesai.org

encryption, and secure multi-party computation to protect
against potential privacy breaches during model updates [23].
Kyung Hee University used FL to create a clinical decision
support system based on deep learning, thus facilitating
extensive data mining and helping medical personnel make
precise diagnoses and treatment choices [23]. Drug discovery
has also made use of FL; ten pharmaceutical companies and
academic universities collaborated to build a big industry-scale
FL model for drug discovery without disclosing private data.
The combination of Edge Computing with FL improves
healthcare AI systems by processing data locally on edge
devices, hence lowering latency and decreasing data
transmission. For effective privacy-preserving medical research
and patient care, FL and edge computing are essential [24].
Differential privacy methods can be successfully applied to
clinical and epidemiological research, reproducing diverse
health studies in a federated setting while maintaining data
privacy.

In the healthcare industry, FL and edge computing improve
privacy, minimize latency and boost productivity. Nonetheless,
managing communication overhead and computational
resources are significant obstacles. Complex machine learning
models and substantial processing power are needed for
healthcare applications, but edge devices may not be able to
meet these demands [8, 25]. Model compression and selective
parameter updates are two optimization strategies that save
computational load without sacrificing accuracy [8]. Frequent
model updates result in communication overhead that raises
latency and network traffic [9]. Particularly in large-scale
healthcare systems with several devices and institutions
hierarchical FL methods with intermediate aggregation nodes
improve scalability and lower costs [23]. The performance of FL
systems is challenged by data heterogeneity across healthcare
devices and institutions. Model bias and decreased
generalization result from differences in data distribution,
format and quality [10]. Adaptive FL algorithms improve
performance in healthcare applications such as medical image
analysis and disease prediction by handling non-IID data and
adjusting model updates according to local variables [8]. When
FL and edge computing integrate with the existing healthcare
infrastructure scalability problems arise. Outdated hardware and
software may not be compatible with modern FL frameworks
[9]. By adjusting to different healthcare scenarios and gradually
adding edge computing capabilities, modular FL designs enable
institutions to adopt FL and edge computing technologies at
their own pace [23]. Security and privacy constraints
significantly impact FL systems' performance and scalability.
Although FL offers data privacy by default, extra precautions
are needed to guard against attacks and breaches [10, 25].
Stronger privacy assurances are offered by privacy-enhancing
strategies like secure multi-party computation and differential
privacy, but these come with extra communication and
computational costs that must be weighed against performance
demands.

A. Research Limitations and Identified Gaps

While prior research has advanced the security and
application of federated learning (FL), several limitations
persist, underscoring gaps that this study addresses. Table I

summarizes key limitations in existing work and how our
proposed defense-enhanced FL framework overcomes them.

TABLE I. LIMITATIONS OF EXISTING RESEARCH AND GAPS

Existing

Research
Methodology

Limitations and Research

Gaps

Research

paper [19]

Analyzes model

poisoning through

adversarial lens,
focusing on single-

agent attacks

Limited to single-agent model

poisoning; lacks defenses for

multi-agent attacks or diverse
attack types like data poisoning

and backdoors

Research
paper [8]

Systematic review of

FL applications in
healthcare, analyzing

612 studies

Only 5.2% of FL healthcare

studies demonstrate practical
applications, indicating a gap in

real-world implementation.

Research
paper [32]

Employs Byzantine-

robust aggregation for

federated learning

Byzantine-robust aggregation
alone is insufficient to counter

data poisoning or backdoor

attacks, limiting comprehensive
security.

Research

paper [36]

Investigates data

poisoning in sequential
and parallel FL settings

Narrow focus on sequential and

parallel FL poisoning,

overlooking other attack types
like model poisoning and

backdoors

III. METHODOLOGY

To achieve the first research objective, the proposed
methodology employs adversarial attacks to analyze their
impact on FL models for disease prediction. The framework will
incorporate cutting-edge techniques such as homomorphic
encryption, differential privacy, and adversarial training. The
performance of the framework will be evaluated based on its
ability to detect and thwart attacks while maintaining high model
accuracy and data privacy. The FL environment will be
established, and the outcomes of various defensive strategies
will be compared to determine the most effective approach. Fig.
1 outlines the research framework.

Fig. 1. Flowchart of research.

The study develops and validates a secure FL defensive
framework for healthcare using a six-phase methodology. To
identify critical vulnerabilities in the current defenses against
risks such as model poisoning and data poisoning, the initial
steps involve analyzing adversarial attack patterns and FL
frameworks. This process guides the development of a two-
tiered defense architecture that integrates server-side security
features with client-side safeguards. To evaluate the
effectiveness of detection, the system undergoes stress testing
using attack scenarios on healthcare datasets. Following attacks,
the system iteratively refines security, accuracy, and privacy.
The final evaluation is assessed using metrics like attack
detection rate, false positive rate, and accuracy. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

4 | P a g e

www.ijacsa.thesai.org

framework’s practical applicability through encrypted
communication is demonstrated through validation in a multi-
institutional disease prediction scenario utilizing Kaggle data.
Scalability among 2 to 20 healthcare nodes is ensured by
ongoing performance monitoring thus maintaining the utility of
the model.

A. Dataset Description and Preparation

The Mayo Clinic's 1974 to 1984 study on liver primary
biliary cirrhosis (PBC) provided the dataset for this
investigation. It was acquired from the UCI Machine Learning
Repository and Kaggle [26]. The subject of this dataset is
cirrhosis, a severe liver disease brought on by long-term damage
caused by hepatitis or sustained alcohol use. The dataset
includes attributes such as number of days between registration
and the earlier of death, transplantation, or study analysis time,
status, drug, age, sex, ascites, hepatomegaly, spiders, edema,
bilirubin, cholesterol, albumin, copper, alkaline phosphatase
levels, serum glutamic oxaloacetic transaminase levels,
triglycerides, platelets, prothrombin and stage. The dataset
comprises 25000 records and 19 features and is relevant for
analyzing patient survival and disease progression patterns,
making it suitable for machine learning models aimed at
cirrhosis stage prediction.

There are several crucial elements in the dataset preparation
process for FL. Categorical variables are one-hot encoded to
ensure model compatibility, and missing values are eliminated
to maintain data consistency. StandardScaler from scikit-learn is
employed to standardize continuous variables, thereby
enhancing model convergence. To adhere to PyTorch’s
CrossEntropyLoss specifications, the target variable “Stage”
undergoes label encoding. Subsequently, the dataset is divided
into 90% training and 10% testing sets. The training data is
subsequently distributed among twenty clients for the FL setup.
These procedures are carried out by the preprocessing function
which guarantees that the dataset is clear and appropriate for
machine learning model training in this configuration. The
distribution of stage classes in the liver cirrhosis dataset reveals
a nearly equal split across stages 1, 2, and 3. Stage 2 has the
highest count (8441), followed closely by Stage 3 (8294) and
Stage 1 (8265).

B. Core Algorithms

The core algorithms that form the basis of our FL system,
both in its baseline configuration and with enhanced defense
mechanisms are listed below.

1) Baseline FL algorithm: In FL, private data is utilized for

on-device local training for each client, such as hospitals. For

this multi-class problem of disease stage prediction, clients

train using PyTorch's AdamW optimizer and

CrossEntropyLoss, executing thirty epochs with a batch size of

sixty-four to balance efficiency and learning. To safeguard

privacy, model weights are independently created and

transmitted to a central server for aggregation. The aggregation

process on the server employs weighted averaging, as

illustrated in Eq. (1), based on the size of the dataset, where

clients with more data have greater influence.

wt+1= ∑
nk

n
wk

t+1K
k=1 (1)

where, wt+1 is the global model’s weight vector after
aggregation, K is the number of clients, nk is the number of
samples for client k, n is the total number of samples across all

clients, and wk
t+1 represents the local model weight vector from

client k [27].

Uniform model architecture is assumed with zero padding
for discrepancies. The global model is evaluated on a 10% test
set using accuracy, precision, recall, and F1-score, which are
averaged across classes, i.e., Stages 1, 2, 3. Early stopping halts
training if test accuracy improvement drops below ∆_min =
0.001 over five rounds for efficiency and to prevent overfitting.

2) Defense-Enhanced FL algorithm: Clients perform local

training utilizing differential privacy and adversarial training to

protect against data leaks and adversarial assaults once the

central server initializes and distributes a global model to

clients. The global model is updated and checked for any

attacks or performance degradation after model updates are

safely aggregated using Byzantine-robust techniques to reduce

malicious contributions. After that, a centralized test set is used

to evaluate the updated model, and early stopping conditions

are analyzed to decide whether to continue. To balance

efficiency, security and model accuracy throughout the FL

lifecycle, this cycle—local training, secure aggregation,

verification, evaluation and stopping checks—repeats

iteratively until convergence or a predetermined maximum

number of rounds is reached. Algorithm 1 shows FL with early

stopping.

Algorithm 1 FL with early stopping

1: INITIALIZE global model, defender, best_accuracy,

rounds_without_improvement.

2: for each round (1 to max rounds):

3: reset client models and client data sizes.

4: for each client:

5: validate client data

6: train local model with differential privacy and adversarial

robustness.

7: validate local model

8: encrypt and append valid models to client models.

9: if defense enabled:

10: aggregate models using defender.secure_aggregate.

11: skip round if global model fails verification.

12: evaluate global model

13: update best_accuracy if improvement > min_delta; else,

increment rounds_without_improvement.

14: stop if rounds_without_improvement >= patience.

15: return final global model

3) Secure aggregation: Secure aggregation integrates

model updates from multiple clients while protecting individual

privacy. The process involves several steps: the server decrypts

encrypted model updates using an EncryptionSetup for secure

decryption; it then aggregates the updates using trimmed mean

aggregation, mitigating malicious updates or outliers; and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

5 | P a g e

www.ijacsa.thesai.org

preserves the original model parameter shapes for compatibility

with the global model architecture; finally, momentum

stabilization smooths updates, enhancing convergence (see

Algorithm 2).

Algorithm 2 Secure aggregation

1: FUNCTION secure_aggregate(global_model, client_models,

client_data_sizes):

2: initialize shapes registry if not already set

3: Decrypt client models

4: for each key in global model parameters:

5: stack all client updates for this key

6: sort updates

7: compute trimmed mean by discarding extreme values

8: update global model parameter with trimmed mean

9: if best global model exists:

10: apply momentum stabilization

11: load updated parameters into global model

12: return updated global model

4) Defense mechanisms: Different algorithms make

machine learning systems more secure and resilient, especially

in FL settings. While adversarial training strengthens model

resilience by using adversarial cases during training differential

privacy adds noise to model updates to protect individual

privacy. Data validation identifies possible poisoning threats by

evaluating data quality through tests for NaN values, outliers and

label distribution, while Byzantine-robust aggregation uses

trimmed mean aggregation to combat fraudulent updates from

compromised clients. Model validation evaluates locally trained

models against accuracy, loss, and consistency metrics to

identify poisoning, whereas dynamic thresholding filters out

suspicious updates using an adaptive interquartile range (IQR)

approach. Model verification rollback monitor performance and

restore it to a previous state if degradation is found, ensuring

global model integrity. When combined, these techniques tackle

the issues of integrity, resilience and privacy in distributed

learning systems.

Differential Privacy protects individual privacy by adding
controlled noise to model updates, as shown in the pseudo-code,
where gradients are clipped to a specified norm (clip_norm) and
Gaussian noise is added based on a noise_scale parameter. This
ensures that the output from the model does not expose unique
individual contributions by limiting the influence of any one
data point (see Algorithm 3).

Algorithm 3 Differential Privacy

1: FUNCTION add_differential_privacy(model, clip_norm,

noise_scale):

2: total_norm = clip_gradients(model, clip_norm)

3: for param in model.parameters():

4: if param.grad is not null:

5: noise = generate_gaussian_noise(param.grad.shape,

scale=noise_scale)

6: param.grad.add_(noise)

7: return total_norm

By creating adversarial instances using the Fast Gradient
Sign Method (FGSM), as shown in the pseudo-code, where
inputs are disrupted by an epsilon-scaled gradient sign to
maximize loss, Adversarial Training improves the robustness of
the model. The model is then trained using these instances to
increase its resistance to malicious disturbances (see Algorithm
4).

Algorithm 4 Adversarial Privacy

1: FUNCTION generate_adversarial_examples(model, loss_fn, x, y,
epsilon):

2: x_adv = x.clone().detach().requires_grad_(True)

3: outputs = model(x_adv)

4: loss = loss_fn(outputs, y)

5: gradients = compute_gradients(loss, x_adv)

6: x_adv = x_adv + epsilon * sign(gradients)

7: x_adv = clip(x_adv, 0, 1)

8: return x_adv.detach()

C. Initial FL System

The experimental architecture depicted in Fig. 2 comprises
three crucial components: a central server responsible for
initiating and updating the global model using the Federated
Averaging (FedAvg) algorithm, clients representing healthcare
institutions that train local models on their datasets and
subsequently transmit updates to the server, and secure
communication channels that facilitate the transmission of
model updates between the server and clients.

Fig. 2. Initial FL system setup.

The setup is an FL environment using a healthcare dataset.
It consists of a central server and multiple clients, each with a
local dataset. The central server manages the global model. It
distributes an initial model to all clients, initiates local training,
and collects model updates, i.e., weight and bias updates from
clients. The server aggregates these updates to create an
improved global model, redistributes it to clients and iteratively
improves the model until the accuracy stops significantly
improving when steady state is reached. This process is
visualized with color-coded lines: orange for initial global
model distribution, blue for local model updates and red for the
aggregated global model distribution.

The neural network global model in Fig. 3 was designed for
multi-class disease stage classification. It comprises an input
layer that receives preprocessed feature vectors, followed by
three fully connected hidden layers. Each hidden layer has 256,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

6 | P a g e

www.ijacsa.thesai.org

128, and 64 neurons, respectively. These layers employ ReLU
activation and dropout (rate 0.1) to enhance learning and
mitigate overfitting. The output layer consists of three neurons
and employs softmax activation to generate class probabilities.
The model is appropriate for FL across a variety of
computational resources since it makes use of
CrossEntropyLoss, regularized by weight decay and optimized
with AdamW.

Fig. 3. Neural network architecture for Cirrhosis stage prediction.

The decentralized organization depicted in Fig. 4 is modeled
by the FL training procedure. Each client employs PyTorch’s
AdamW optimizer and CrossEntropyLoss to train a local model
on its dataset for thirty epochs, with a batch size of sixty-four.
After training, clients transmit their model weights to the central
server, which employs the weighted averaging technique Eq. (1)
to aggregate them. The accuracy, precision, recall, and F1-score
of the global model are evaluated using macro-averages across
disease stages (1, 2, 3). To optimize efficiency and prevent
overfitting, an early stopping mechanism terminates training if
the test accuracy does not substantially increase (∆_min=0.001)
over five rounds.

Fig. 4. FL System workflow.

D. Defense-Enhanced FL System

The Defense-Enhanced FL framework protects against
adversarial threats while ensuring data privacy and maintaining
the utility of the model (see Fig. 5).

Fig. 5. FL System defense framework.

Server-side defenses employ anomaly detection, robust
aggregation, and global model verification to safeguard against
adversarial threats. In contrast, client-side defenses utilize
differential privacy, adversarial training, and local validation to
guarantee secure contributions to the global model.

1) Anomaly detection. The server utilizes robust z-score

calculation and dynamic thresholding techniques to identify

and eliminate outliers. Robust z-score is achieved using Eq. (2)

and dynamic thresholding with Eq. (3).

zi=
|xi –x̃|

MAD + ϵ
 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

7 | P a g e

www.ijacsa.thesai.org

where, xi represents the parameter values, x̃ is the median,
MAD is the median absolute deviation, and ϵ is a small constant
to prevent division by zero [29].

Upper Bound= Q
3
+ Sensitivity × IQR (3)

Here, Q
3
 is the third quartile and Sensitivity controls the

threshold's strictness [30].

2) Byzantine-robust aggregation. Trimmed Mean

Aggregation removes extreme values from client updates

before averaging to minimize the impact of outliers, as

illustrated in Eq. (4). Momentum Stabilization merges the

current global model with historical models to enhance

robustness, as per Eq. (5).

θglobal=
1

|S|
∑ θiiϵS (4)

where, θglobal is the gobal model, θi is a client model and S

represents the set of trimmed client updates after removing a
percentage of extreme values based on the trim ratio [31].

θstabilized=(1– α)∙θcurrent+α∙θhistorical (5)

Here, α controls the influence of past models on the current
update [32].

3) Global model verification. The server continuously

validates the global model’s quality using validation datasets.

If the accuracy drops significantly, a rollback mechanism

automatically restores the previously validated model state.

4) Differential privacy. This ensures that individual data

points are not inferred from model updates by adding noise to

gradients during local training. This is accomplished through

gradient clipping using Eq. (6) and noise addition using Eq. (7),

which strikes a balance between privacy and model accuracy.

g'=
g

max(1,
||g||

2
C

)

 (6)

where, g is the gradient vector and C is the clipping norm.

g''=g'+N(0, σ2) (7)

Here, N is a Gaussian distribution, σ controls the noise scale,
balancing privacy and model accuracy.

5) Adversarial training. This approach exposes the model

to adversarial examples during local training, enhancing its

resilience to evasion attacks without compromising

performance on clean data, as demonstrated in Eq. (8).

xadv=x + ∈ ∙sign(∇xL(f(x;θ),y)) (8)

where, xadv is the adversarial example, x is the original input,
y is the label, f(x;θ) is the model prediction, L is the loss
function and ∈ controls perturbation magnitude.

6) Client data validation. Clients validate local datasets for

anomalies and poisoning attempts before training. This ensures

that the local models are not corrupted. Outlier detection and

label distribution checks are performed to achieve this [Eq. (9)].

Q1– k ∙ IQR < x < Q3 + k ∙ IQR (9)

where, Q1 and Q3 are the first and third quartiles,
respectively, IQR = Q3-Q1 and k for strict filtering.

7) Local model verification. Clients validate trained models

using validation data to ensure minimum accuracy, consistency,

and robustness against adversarial inputs as seen in Eq. (10).

Cadv=
∑ (ŷi==ŷadv,i)

N
i=1

N
 (10)

where, Cadv is adversarial accuracy, N is the total samples,

ŷ
i
 is the predicted label for the original input and ŷ

adv,i
 is the

predicted label for adversarial input.

8) Communication encryption and secure aggregation.

Additive noise encryption is employed to establish secure

communication between clients and the server. Encrypted

updates are aggregated from multiple clients without revealing

individual contributions. This ensures that even if an adversary

gains access to updates on the server side, they cannot

reconstruct individual updates due to the added noise.

E. Attack Setup

Data poisoning attacks corrupt training data to manipulate a
model’s behavior, posing a unique threat in federated learning
(FL) due to malicious clients lacking direct access to the central
model. In this framework, a function employs a label flipping
technique. This technique involves changing a predetermined
percentage of labels (determined by the poison ratio parameter)
to false values using a simple increment with modulo operation
and a random selection procedure. The altered dataset is then
returned with an “is_malicious” flag to mimic detection
mechanisms, while the randomization aids in avoiding
detection. These attacks have serious repercussions, as they can
lower model accuracy, produce inaccurate data associations, and
even open backdoors for certain misclassifications.

Model poisoning attacks target the integrity of FL by altering
model updates from malicious clients, directly affecting the
aggregation process. The framework’s implementation involves
adding random noise to model parameters, controlled by the
attack_strength parameter, which adjusts the perturbation’s
intensity. This ensures that the poisoned model remains
structurally compatible with the system. Similar to data
poisoning, model poisoning attacks include an “is_malicious”
flag for detection. These attacks can severely impair the global
model’s performance, introduce hard-to-detect backdoors or
biases, and potentially cause targeted misclassifications, making
them formidable challenges in FL environments.

Backdoor attacks aim to embed hidden triggers in the global
model, causing misclassifications only when specific patterns
are present while preserving accuracy on normal data. To mimic
this behavior, the framework reassigns a target label to a subset
of training data that has a trigger pattern added to it, as specified
by the backdoor_ratio parameter. The function returns the
modified dataset with an “is_malicious” flag, ensuring that the
subtle yet reliable trigger remains concealed. These attacks pose
a significant risk because they can activate under specific
conditions undetected, leading to persistent vulnerabilities that
are challenging to identify or eliminate, even with additional
training.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

8 | P a g e

www.ijacsa.thesai.org

Man-in-the-middle (MITM) attacks threaten FL by
intercepting and modifying communications between clients
and the server, which is set up in the framework to test system
resilience. In addition to handling both encrypted and
unencrypted arguments while maintaining system compatibility,
the attack function incorporates an “is_malicious” flag and
modifies model updates by introducing noise scaled by
attack_strength. MITM attacks highlight the importance of
robust security measures in FL systems, as they can gradually
degrade the global model, compromise process integrity, and
potentially enable model poisoning or backdoor insertion
through persistent update manipulation.

F. Evaluation Metrics

1) FL model performance metrics. The performance of the

FL system is evaluated using the following four key metrics:

a) Accuracy: The overall correctness of the model's

predictions, which is calculated as the ratio of correctly

classified instances to the total number of instances [28] [see

Eq. (11)]:

Accuracy=
TP + TN

TP + TN + FP + FN
 (11)

where, TP stands for True Positives, TN for True Negatives,
FP for False Positives and FN for False Negatives.

b) Precision: This evaluates the proportion of correctly

predicted positive cases out of all predicted positive cases. It is

particularly useful in scenarios, where false positives are costly,

[see Eq. (12)]:

Precision=
TP

TP + FP
 (12)

High precision indicates that the model makes fewer false
positive errors [28], which is critical in healthcare applications,
such as disease prediction.

c) Recall (Sensitivity): Recall measures how many actual

positive cases were correctly identified by the model. High

recall ensures that most actual positive cases are detected [28],

which is crucial for minimizing missed diagnoses in healthcare

[see Eq. (13)].

Recall=
TP

TP + FN
 (13)

d) F1-Score: This is the harmonic mean of precision and

recall, providing a single metric that balances both [see Eq.

(14)].

F1-Score= 2 ×
Precision × 𝑅𝑒𝑐𝑎𝑙𝑙

Precision + Recall
 (14)

2) Defense framework performance metrics. Key

performance metrics of the defense framework across security,

latency and scalability are tracked by the performance

monitoring system as follows:

a) Attack Detection Rate (True Positive Rate): Measures

the proportion of actual attacks correctly identified by the

system out of all attacks [Eq. (15)].

Attack Detection Rate=
TP

TP + FN
 (15)

b) False Positive Rate (FPR): Evaluates the proportion

of benign updates incorrectly flagged as attacks [Eq. (16)].

FPR=
FP

FP + TN
 (16)

c) Precision: Assesses the accuracy of attack detection

by calculating the proportion of flagged updates that are truly

malicious.

d) Latency metrics: Aggregation latency refers to the

time the server takes to combine client updates into a global

model, while validation latency measures the duration needed

to validate this global model against a reference dataset after

aggregation. These processes together contribute to the average

round time which encompasses the total time required for one

complete cycle of communication, training, aggregation and

validation [Eq. (17)].

Average Metric =
∑ Latencyi

N
i=1

N
 (17)

where, N is the number of rounds completed. By monitoring
these latencies, the system measures the computational overhead
that defense mechanisms introduce.

IV. EXPERIMENTAL SETUP

A MacBook M3 system with an 8-core Apple M3 CPU,
16GB of unified RAM, a 1TB SSD and macOS Sequoia (version
15.1) forms part of the hardware setup. This configuration
offered sufficient processing capacity for running adversarial
attack setups, FL scenarios, and training medium-sized machine
learning models. PyTorch computations were optimized by the
M3 chip's sophisticated architecture, especially for gradient
updates and encryption jobs, thereby guaranteeing effective
performance throughout the tests.

The software environment was built around Python 3.12.4 as
the primary programming language supported by a suite of
development tools and libraries tailored for machine learning.
iTerm2 oversaw the execution of FL code, while Jupyter
Notebook enabled interactive prototyping and visualization, and
Visual Studio Code functioned as the primary IDE,
supplemented by extensions such as Python and Jupyter.
Important libraries included NumPy and Pandas for data
manipulation, scikit-learn for preprocessing and evaluation,
matplotlib and seaborn for visualizing performance metrics and
data trends and PyTorch for building and training neural
networks with GPU acceleration via Metal Performance
Shaders. The FL system and its defense mechanisms may be
implemented, trained and evaluated thanks to this all-inclusive
environment. GitHub and Git were utilized for collaboration and
version control.

V. RESULTS AND DISCUSSION

A. Feature Correlations

The heatmap shows moderate relationships between
biomarkers, suggesting interdependent physiological processes
that federated ML can leverage.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

9 | P a g e

www.ijacsa.thesai.org

Fig. 6. Correlation matrix of features.

1) Baseline FL system model performance. Under benign

conditions, the results reveal consistent performance over three

test runs (Fig. 8). Precision, recall and F1-score average

between 0.9007 and 0.9008, whereas the overall accuracy

average is 90.07% (Table II). Plotting the federation rounds

against accuracy shows a consistent upward trend, settling close

to 90% for every run. While Stage 2 performs marginally worse

(89.27%), Stage 3 attains the best accuracy (91.66%) and recall

(0.9166). With AUC values ranging from 0.95 to 0.96, the ROC

curve (Fig. 9) verifies strong bias for every class. High diagonal

values indicate strong true positive rates, although overall

classification is accurate, with the confusion matrix

highlighting misclassifications between adjacent stages (Fig.

7).

TABLE II. BASELINE FL CLASSIFICATION METRICS

Metric Test run 1 Test run 2 Test run 3 Average

Accuracy 89.20% 90.60% 90.40% 90.07%

Precision 0.8920 0.9061 0.9044 0.9008

Recall 0.8920 0.9060 0.9040 0.9007

F1-Score 0.8920 0.9060 0.9041 0.9007

Fig. 7. Baseline FL model confusion matrix.

Fig. 8. Baseline FL model accuracy trend per test run.

2) Defense-enhanced FL system model performance. The

defense-enhanced FL system demonstrated consistent

performance for three test cycles, averaging 85.97% accuracy

(Table III). The per-class measures (Fig. 11) showcased strong

performance, with Stage 3 achieving the highest average

accuracy of 87.97%. The ROC curves (Fig. 12) further

demonstrated the system’s classification ability, with AUC

values of 0.93 for Classes 0 and 1 and 0.94 for Class 2. The

confusion matrix (Fig. 10) indicated a balanced prediction with

minimal misclassifications. After forty rounds, the accuracy

trends exhibited a consistent improvement, stabilizing over

85%, indicating the system’s convergence and dependability.

3) Defense framework performance. During adversarial

setups, the defense framework demonstrated exceptional threat

recognition capabilities. Over three test runs, it achieved a

noteworthy precision of 99.32%, an accuracy of 96.62%, a low

false positive rate of 0.15%, and an impressive average attack

detection rate of 84.33% (as depicted in Table IV). Test Run 2’s

confusion matrix showcased excellent classification, with

minimal instances of false positives and negatives (illustrated

in Fig. 13). Moreover, the ROC curve, with an AUC of 0.96,

effectively demonstrated strong discrimination (Fig. 14).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

10 | P a g e

www.ijacsa.thesai.org

Fig. 9. Baseline FL model ROC curve.

TABLE III. DEFENSE-ENHANCED FL CLASSIFICATION METRICS

Metric Test run 1 Test run 2 Test run 3 Average

Accuracy 86.88% 85.72% 85.32% 85.97%

Precision 0.8688 0.8548 0.8533 0.8590

Recall 0.8689 0.8572 0.8533 0.8598

F1-Score 0.8687 0.8572 0.8532 0.8597

Fig. 10. Defense-enhanced FL model confusion matrix.

Fig. 11. Defense-enhanced FL model accuracy per test run.

Fig. 12. Defense-enhanced FL model ROC curve.

TABLE IV. DEFENSE FRAMEWORK PERFORMANCE

Metric Test run 1 Test run 2 Test run 3 Average

Attack

Detection Rate
85.99% 84.26% 82.74% 84.33%

False Positive

Rate
0.10% 0.00% 0.36% 0.15%

Precision 99.55% 100% 98.42% 99.32%

Accuracy 97.10% 96.72% 96.03% 96.62%

Fig. 13. Defense framework confusion matrix.

Fig. 14. Defense framework ROC curve.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

11 | P a g e

www.ijacsa.thesai.org

4) Latency and scalability metrics. While Average Round

Time stays constant at about 13 seconds with the baseline FL

system (Fig. 15), Aggregation and Validation Latencies reduce

marginally throughout the experiments. Average Round Time

stays constant at 12 to 13 seconds, Validation Latency varies

slightly but stays within a small range, and Aggregation

Latency steadily rises as the number of customers rises from 2

to 20 (Fig. 16).

Aggregation Latency (~13.5–13.9 seconds), Validation
Latency (~0.0009 seconds) and Average Round Time (~54–56
seconds) all exhibit consistency with the defense-enhanced FL
model (Fig. 17). While Validation Latency constantly declines,
Aggregation Latency rises with more clients, reaching a peak of
23.49 seconds for 14 clients before stabilizing. The average
round time fluctuates, reaching a peak of 91.41 seconds for
fourteen clients and then leveling off around 54 to 55 seconds
for more clients (Fig. 18).

Fig. 15. Baseline FL system average aggregation, validation latency and round

time for three test runs.

5) Comparative analysis. Performance, resilience against

hostile attacks and effectiveness in healthcare applications are

the main points of comparison between the initial FL system

and the defense-enhanced FL system in this section. The

defense-enhanced system's accuracy decreased to 85.97%

(scores 0.8590–0.8598), a 4.1% decrease due to defense-related

overhead, but it maintained reliable classification. The original

FL system achieved an average accuracy of 90.07% with

precision, recall and F1-scores around 0.9007–0.9008 on

average. The defense-enhanced system showed remarkable

resilience, improving security that is essential for healthcare

settings, while the original system, which lacked defenses, is

thought to be susceptible to hostile threats. Due to the additional

computing load, efficiency favored the original system with

round times of thirteen seconds as opposed to the defense-

enhanced system's 54 to 56 seconds. The analysis identifies a

trade-off: the defense-enhanced system forgoes some utility in

favor of strong security, making it more appropriate for

privacy-sensitive, real-world healthcare scenarios, whereas the

original system excels in accuracy and speed under benign

settings (see Table V).

Fig. 16. Baseline FL system latency trends per increase in clients count.

Fig. 17. Defense enhanced FL system average aggregation, validation latency

and round time for three test runs.

Fig. 18. Defense-enhanced FL system latency trends per increase in clients

count.

TABLE V. COMPARATIVE ANALYSIS WITH EXISTING FL APPROACHES

Comparison

Criteria

Original FL

System

(Baseline)

Defense-

Enhanced FL

System

(Proposed

Approach)

Existing

Research on

Secure FL

Accuracy (%) 90.07%

85.97% (↓ 4.1%

due to defense
overhead)

Varies (84–

89%) [33] [34]

Precision / Recall

/ F1-score

0.9007 –

0.9008
0.8590 – 0.8598

Varies (0.80 –

0.85) [33] [35]

Resilience to

Model Poisoning

Highly

vulnerable

Strong
protection

(Byzantine-

robust

Limited

defenses (Most

use secure
aggregation

only) [32] [42]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

12 | P a g e

www.ijacsa.thesai.org

aggregation,

etc.)

Resilience to

Data Poisoning
No protection

Mitigated via
anomaly

detection

Partially

addressed in

some works
[36] [37]

Resilience to

Backdoor

Attacks

Susceptible

Significantly

reduced via
secure model

updates

Few studies

implement full
protection [36]

[37]

Computational

Efficiency

(Training Round

Time)

13 seconds

54–56 seconds
(300%↑ due to

security

overhead)

Varies (~200%

-~400%,
depending on

security

measures used)
[38] [39]

Scalability

High (Fast

processing,

limited
security

constraints)

Moderate

(Additional

security steps
slow down

processing)

Varies (Most

methods
struggle with

large-scale

deployment)

[33] [40]

Suitability for

Healthcare

Applications

Vulnerable to
attacks,

making it

risky for
sensitive data

Highly secure,

ensuring

compliance with
privacy laws

(HIPAA,

GDPR)

Most methods

focus on
general FL, not

healthcare-

specific
defenses [2]

[41]

Trade-offs

High

accuracy &

speed but
weak security

Lower accuracy
& speed but

strong security

Varies (Many

focus on either
security or

performance,

not both) [42]

The performance of the proposed defense-enhanced FL
framework, achieving an average accuracy of 85.97% on the
Mayo Clinic PBC dataset, reflects its suitability for structured
healthcare data with moderate feature correlations, as evidenced
by the heatmap in Fig. 6. This dataset’s balanced class
distribution (Stage 1: 8265, Stage 2: 8441, Stage 3: 8294) and
interdependent physiological features enable the framework to
effectively leverage local training and aggregation. Variations in
performance across different datasets, as seen in existing
research (e.g., 84–89% accuracy in [33], [34]), likely stem from
differences in data characteristics, such as class imbalance, noise
levels, or feature correlations. The proposed algorithms excel
with structured medical data exhibiting moderate to strong
feature relationships, where the model can generalize across
clients. However, on datasets with extreme imbalances or weak
correlations—common in unstructured or heterogeneous
healthcare data—performance may decline unless supplemented
with preprocessing or adaptive techniques. This suggests that the
framework’s optimal application lies in well-structured,
privacy-sensitive healthcare scenarios, with potential
adaptations needed for noisier or less correlated data types.

VI. CONCLUSION AND FUTURE WORK

This research successfully developed and validated a
defense-enhanced federated learning (FL) framework tailored
for privacy-sensitive healthcare applications, achieving its goal
of enhancing security while maintaining model utility. By
integrating differential privacy, adversarial training, and
Byzantine-robust aggregation, the framework demonstrated
robust protection against adversarial attacks, including data

poisoning, model poisoning, and backdoors, with an attack
detection rate of 84.33% and precision of 99.32%. Applied to
the Mayo Clinic PBC dataset in a multi-institutional disease
prediction scenario, it maintained an accuracy of 85.97%,
despite a 4.1% drop due to security overhead, ensuring reliable
classification (precision, recall, F1-scores ~0.8590–0.8598).
The framework’s latency stabilized at 54 to 56 seconds per
round, reflecting a trade-off for enhanced security, making it a
practical solution for healthcare settings compliant with privacy
regulations like HIPAA and GDPR. These achievements
establish a secure, scalable FL system that fosters trust in
collaborative machine learning for sensitive domains. Future
work will focus on reducing latency through hierarchical
aggregation or gradient compression, validating the framework
across diverse healthcare datasets like MIMIC-IV for broader
applicability, and deploying it in real-world healthcare facilities
to confirm its practical utility.

ACKNOWLEDGMENT

The authors gratefully acknowledge Norfolk State
University, USA, for making the resources available. This
material is based upon work supported by the National Science
Foundation under Grant No. 2221099 and the U.S. Department
of Energy's Office of Science (SC) under Award Number DE-
SC0025722.

REFERENCES

[1] K. Zhang et al., “FLIP: A provable defense framework for backdoor
mitigation in federated learning.” 2023. [Online]. Available:
https://arxiv.org/abs/2210.12873.

[2] Y. Li, Z. Guo, N. Yang, H. Chen, D. Yuan, and W. Ding, “Threats and
defenses in federated learning life cycle: a comprehensive survey and
challenges.” 2024. [Online]. Available: https://arxiv.org/abs/2407.06754.

[3] P. Liu, X. Xu, and W. Wang, “Threats, attacks and defenses to federated
learning: issues, taxonomy and perspectives,” Cybersecurity, vol. 5, no.
1, p. 4, 2022.

[4] S. Lu, R. Li, W. Liu, and X. Chen, “Defense against backdoor attack in
federated learning,” Computers & Security, vol. 121, p. 102819, 2022,
doi: https://doi.org/10.1016/j.cose.2022.102819.

[5] W. Wan, J. Lu, S. Hu, L. Y. Zhang and X. Pei, "Shielding federated
learning: a new attack approach and its defense," 2021 IEEE Wireless
Communications and Networking Conference (WCNC), Nanjing, China,
2021, pp. 1-7, doi: 10.1109/WCNC49053.2021.9417334.

[6] A. Shabbir, H. U. Manzoor, K. Arshad, K. Assaleh, Z. Halim, and A.
Zoha, “Sustainable and lightweight defense framework for resource
constraint federated learning assisted smart grids against adversarial
attacks,” Authorea Preprints, 2024, unpublished.

[7] X. Zhang, Y. Kang, K. Chen, L. Fan, and Q. Yang, “Trading off privacy,
utility, and efficiency in federated learning,” ACM Transactions on
Intelligent Systems and Technology, vol. 14, no. 6, pp. 1–32, 2023.

[8] Z. L. Teo et al., “Federated machine learning in healthcare: a systematic
review on clinical applications and technical architecture,” Cell Reports
Medicine, p. 101419, Feb. 2024, doi:
https://doi.org/10.1016/j.xcrm.2024.101419.

[9] F. Zhang et al., “Recent methodological advances in federated learning
for healthcare,” Patterns, vol. 5, no. 6, 2024.

[10] M. S. Ali et al., “Federated learning in healthcare: model misconducts,
security, challenges, applications, and future research directions–a
systematic review,” arXiv preprint arXiv:2405.13832, 2024.

[11] M. Shaheen, M. S. Farooq, and T. Umer, “AI-empowered mobile edge
computing: inducing balanced federated learning strategy over edge for
balanced data and optimized computation cost,” Journal of Cloud
Computing, vol. 13, no. 1, p. 52, 2024.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

13 | P a g e

www.ijacsa.thesai.org

[12] H. G. Abreha, M. Hayajneh, and M. A. Serhani, “Federated learning in
edge computing: a systematic survey,” Sensors, vol. 22, no. 2, p. 450,
2022.

[13] Y. Qi, Y. Feng, X. Wang, H. Li, and J. Tian, “Leveraging federated
learning and edge computing for recommendation systems within cloud
computing networks.” 2024. [Online]. Available:
https://arxiv.org/abs/2403.03165.

[14] G. Bao and P. Guo, “Federated learning in cloud-edge collaborative
architecture: key technologies, applications and challenges,” Journal of
Cloud Computing, vol. 11, no. 1, p. 94, 2022.

[15] X. Liu, X. Dong, N. Jia, and W. Zhao, “Federated learning-oriented edge
computing framework for the IIoT” Sensors, vol. 24, no. 13, p. 4182,
2024.

[16] J. Wu, F. Dong, H. Leung, Z. Zhu, J. Zhou, and S. Drew, “Topology-
aware federated learning in edge computing: a comprehensive survey”
ACM Computing Surveys, vol. 56, no. 10, pp. 1–41, 2024.

[17] A. Brecko, E. Kajati, J. Koziorek, and I. Zolotova, “Federated learning for
edge computing: a survey” Applied Sciences, vol. 12, no. 18, p. 9124,
2022.

[18] C. Zhang, S. Yang, L. Mao, and H. Ning, “Anomaly detection and defense
techniques in federated learning: a comprehensive review,” Artificial
Intelligence Review, vol. 57, no. 6, pp. 1–34, 2024.

[19] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in International
conference on machine learning, 2019, pp. 634–643.

[20] M. Demartis, “Adversarial attacks in federated learning,” Dissertation,
2022, unpublished.

[21] J. Zhang et al., “Delving into the adversarial robustness of federated
learning,” in Proceedings of the AAAI conference on artificial
intelligence, 2023, vol. 37, no. 9, pp. 11245–11253.

[22] K. N. Kumar, C. K. Mohan, and L. R. Cenkeramaddi, “The impact of
adversarial attacks on federated learning: a survey,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

[23] X. Gu, F. Sabrina, Z. Fan, and S. Sohail, “A review of privacy
enhancement methods for federated learning in healthcare systems,”
International Journal of Environmental Research and Public Health, vol.
20, no. 15, p. 6539, 2023.

[24] C. S. Kruse, R. Goswamy, Y. J. Raval, and S. Marawi, “Challenges and
opportunities of big data in health care: a systematic review,” JMIR
medical informatics, vol. 4, no. 4, p. e5359, 2016.

[25] W. Oh and G. N. Nadkarni, “Federated learning in health care using
structured medical data,” Advances in kidney disease and health, vol. 30,
no. 1, pp. 4–16, 2023.

[26] Aadarsh velu, “Liver cirrhosis stage classification � ,” Kaggle.com, 2023.
https://www.kaggle.com/datasets/aadarshvelu/liver-cirrhosis-stage-
classification/data.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist. (AISTATS), 2017, pp.
1273–1282.

[28] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information processing &
management, vol. 45, no. 4, pp. 427–437, 2009.

[29] Y. Kim, H. Chen, and F. Koushanfar, “Backdoor defense in federated
learning using differential testing and outlier detection,” arXiv preprint
arXiv:2202.11196, 2022.

[30] Ch. S. K. Dash, A. K. Behera, S. Dehuri, and A. Ghosh, “An outliers
detection and elimination framework in classification task of data
mining,” Decision Analytics Journal, vol. 6, p. 100164, 2023, doi:
https://doi.org/10.1016/j.dajour.2023.100164.

[31] T. Wang, Z. Zheng, and F. Lin, “Federated learning framework based on
trimmed mean aggregation rules,” Expert Systems with Applications, vol.
270, p. 126354, 2025, doi: https://doi.org/10.1016/j.eswa.2024.126354.

[32] K. Pillutla, S. M. Kakade and Z. Harchaoui, "Robust aggregation for
federated learning," in IEEE Transactions on Signal Processing, vol. 70,
pp. 1142-1154, 2022, doi: 10.1109/TSP.2022.3153135.

[33] K. Wei et al., “Federated learning with differential privacy: algorithms
and performance analysis,” IEEE transactions on information forensics
and security, vol. 15, pp. 3454–3469, 2020.

[34] D. Stripelis et al., “A federated learning architecture for secure and private
neuroimaging analysis,” Patterns, vol. 5, no. 8, 2024.

[35] N. N. Albogami, “Intelligent deep federated learning model for enhancing
security in internet of things enabled edge computing environment,”
Scientific Reports, vol. 15, no. 1, p. 4041, 2025.

[36] F. Nuding and R. Mayer, “Data Poisoning in Sequential and Parallel
Federated Learning,” in Proceedings of the 2022 ACM on International
Workshop on Security and Privacy Analytics, 2022, pp. 24–34. doi:
10.1145/3510548.3519372.

[37] Y. Wan, Y. Qu, W. Ni, Y. Xiang, L. Gao, and E. Hossain, “Data and
model poisoning backdoor attacks on wireless federated learning, and the
defense mechanisms: a comprehensive survey,” IEEE Communications
Surveys & Tutorials, vol. 26, no. 3, pp. 1861–1897, 2024.

[38] K. Peng, X. Shen, L. Gao, B. Wang, and Y. Lu, “Communication-efficient
and privacy-preserving verifiable aggregation for federated learning,”
Entropy, vol. 25, no. 8, p. 1125, 2023.

[39] K. Daly, H. Eichner, P. Kairouz, H. B. McMahan, D. Ramage, and Z. Xu,
“Federated learning in practice: reflections and projections,” in 2024
IEEE 6th International Conference on Trust, Privacy and Security in
Intelligent Systems, and Applications (TPS-ISA), 2024, pp. 148–156.

[40] Z. Guan, Y. Zhao, Z. Wan, and J. Han, “OPSA: Efficient and verifiable
one-pass secure aggregation with TEE for federated learning,”
Cryptology ePrint Archive, 2024.

[41] U. Zafar, A. Teixeira, and S. Toor, “Robust federated learning against
poisoning attacks: a gan-based defense framework,” arXiv preprint
arXiv:2503.20884, 2025.

[42] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: a client-level perspective,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 5, pp. 1281–1292, May 2019.

https://www.kaggle.com/datasets/aadarshvelu/liver-cirrhosis-stage-classification/data
https://www.kaggle.com/datasets/aadarshvelu/liver-cirrhosis-stage-classification/data

