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Abstract—Federated learning (FL) is a cutting-edge method of 

collaborative machine learning that lets organizations or 

companies train models without exchanging personal information. 

Adversarial attacks such as data poisoning, model poisoning, 

backdoor attacks, and man-in-the-middle attacks could 

compromise its accuracy and reliability. Ensuring resistance 

against such risks is crucial as FL gets headway in fields like 

healthcare, where disease prediction and data privacy are 

essential. Federated systems lack strong defenses, even though 

centralized machine learning security has been extensively 

researched. To secure clients and servers, this research creates a 

framework for identifying and thwarting adversarial attacks in 

FL. Using PyTorch, the study evaluates the framework’s 

effectiveness. The baseline FL system achieved an average 

accuracy of 90.07%, with precision, recall, and F1-scores around 

0.9007 to 0.9008, and AUC values of 0.95 to 0.96 under benign 

conditions. With AUC values of 0.93 to 0.94, the defense-enhanced 

FL system showed remarkable resilience and maintained 

dependable classification (precision, recall, F1-scores ~0.8590–

0.8598), despite a 4.1% accuracy decline to 85.97% owing to 

security overhead. With an 84.33% attack detection rate, 99.32% 

precision, 96.62% accuracy and a low false positive rate of 0.15%, 

the defense architecture performed exceptionally well in 

adversarial attacks. Trade-offs were identified via latency 

analysis: the defense-enhanced system stabilized at 54 to 56 

seconds, while the baseline system averaged 13-second rounds. 

With practical implications for safe, robust machine learning 

partnerships, these findings demonstrate a balance between 

accuracy, efficiency and security, establishing the defense-

enhanced FL system as a reliable option for privacy-sensitive 

healthcare applications. 
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I. INTRODUCTION 

Federated Learning (FL) is a collaborative machine learning 
technique that allows decentralized training while maintaining 
data security [1, 2]. FL is vulnerable to adversarial attacks that 
can compromise the integrity of the model, its performance, and 
the extraction of sensitive information [3]. Defense frameworks, 
equipped with robust aggregation methods, anomaly detection, 
and privacy-preserving mechanisms, fortify FL systems against 
these attacks [4]. By integrating these frameworks, 
comprehensive solutions can effectively address a wide range of 
threats simultaneously [5, 6]. Despite efforts, dynamic 

environments and evolving attacks make it difficult to develop 
a secure FL system. 

A critical challenge in federated learning (FL) is achieving a 
balance between security, privacy, and model performance, 
particularly in privacy-sensitive healthcare, where data 
protection is paramount [7, 8]. Adversarial attacks, such as 
model poisoning, data tampering, backdoor attacks, and man-in-
the-middle attacks, can compromise model integrity and 
performance, yet existing FL systems often lack robust defenses 
to counter these threats while maintaining scalability and quality 
[9, 10]. The scarcity of empirical research on secure FL in 
healthcare further complicates its adoption, as evolving cyber 
threats demand adaptable, scalable solutions for real-world 
deployment. 

The primary objective of this research is to develop and 
evaluate a defense framework that ensures the reliability and 
safety of FL systems, particularly in the medical field. The 
research explores various strategies to safeguard FL systems 
from malicious attacks while preserving scalability, model 
performance, and data privacy. By achieving this, the 
framework aims to enhance confidence in FL technologies and 
foster their wider adoption in privacy-sensitive domains, 
particularly in healthcare applications such as disease 
prediction. 

The objectives include designing and implementing a 
defense mechanism against adversarial attacks in FL, 
implementing privacy-preserving mechanisms that balance 
security, privacy and model performance, assessing the 
framework’s ability to detect and mitigate attacks while 
maintaining model accuracy in healthcare scenarios and 
analyzing scalability and efficiency as FL networks expand. The 
research questions are: How can we effectively detect and 
mitigate adversarial attacks in FL without negatively affecting 
data privacy or model utility? To what extent can the proposed 
framework detect and protect against adversarial attacks while 
maintaining model performance and scalability in real-world 
healthcare environments? 

This study suggests a defense-enhanced FL architecture that 
protects data privacy and model performance from adversarial 
attacks to meet the urgent demand for secure FL systems in the 
healthcare industry.  Our strategy incorporates sophisticated 
security features such as adversarial training, differential privacy 
and Byzantine-robust aggregation which have been verified 
using a six-phase technique on the Mayo Clinic PBC dataset.  
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The framework's robust attack detection (84.33% detection rate) 
and capacity to retain an accuracy of 85.97% under assault 
settings are demonstrated by experimental findings thus 
providing a workable solution for privacy-sensitive healthcare 
applications such as disease prediction.  This research improves 
its dependability for practical implementation by filling a 
significant gap in secure FL. 

The remainder of this study is organized as follows: Section 
II presents related work, while Section III outlines the proposed 
methodology. Section IV details the experimental setup, and 
Section V shares the results and discusses their implications. 
Finally, Section VI concludes with remarks and suggests future 
directions for research. 

II. RELATED WORK 

Edge computing and FL are complementary technologies 
that aim to address distributed data processing and machine 
learning challenges. FL addresses privacy and regulatory 
concerns by enabling model training on dispersed datasets while 
allowing multiple parties to collaborate on model training while 
keeping their data localized. Participating devices receive a 
global model from a central server, which initializes and 
distributes it. Edge devices train the model using their local data 
and only communicate model updates to the server [11]. Edge 
computing, a distributed computing paradigm, moves data 
storage and processing closer to the data sources [12]. It 
improves real-time processing, saves bandwidth, and reduces 
latency. Since the network edge generates substantial volumes 
of data, edge computing is crucial to FL. Benefits include 
enhanced data security and privacy, optimized bandwidth, 
reduced latency, increased reliability in intermittent 
connectivity, and support for real-time applications and 
decision-making [13]. FL and edge computing support data 
privacy by storing sensitive data locally. Edge computing 
minimizes data transfer, thereby reducing communication 
overhead, while FL simply requires model updates [14]. Rapid 
scenario adaptation is made possible by edge devices, which do 
local training and inference [15]. Architectures like Wu et al.'s 
[16, 17] hierarchical edge-based FL eliminate communication 
bottlenecks and improve scalability. Peer-to-peer FL eliminates 
the central server, while hybrid edge-cloud FL combines cloud 
and edge computing resources. 

Threats originate from clients, communication and servers in 
FL. Clients face various attacks, including data poisoning, 
model poisoning, backdoor attacks, Byzantine attacks, Sybil 
attacks, free-riding, and inference attacks. Vulnerabilities in 
communication often arise from man-in-the-middle attacks and 
eavesdropping, which compromise data integrity and 
confidentiality. The central server faces risks from malicious 
behaviors, non-robust aggregation methods, and inference 
attacks [18]. Model poisoning attacks involve malicious 
participants injecting updates to manipulate the global model. 
Bhagoji et al. [19] demonstrated that an adversary controlling a 
single agent can achieve targeted misclassification. These 
attacks are stealthy and bypass simple anomaly detection. Data 
poisoning exploits the fact that FL aggregators are unaware of 
how updates are generated. Demartis [20] showed that even a 
small number of malicious participants can harm the joint 
model. Backdoor attacks involve malicious clients embedding 

hidden patterns in their updates, causing the model to misbehave 
on specific inputs. Unlike data poisoning, backdoor attacks 
maintain high accuracy on normal data but only activate under 
specific conditions. This type of attack exploits FL’s 
decentralized nature. The decentralized architecture of FL 
makes it challenging to detect malicious updates [18]. The 
central server has limited visibility into the data of clients and 
training processes [21]. Edge-based FL introduces security 
concerns, as edge servers protect edge traffic but can be 
compromised, potentially impacting connected clients or 
manipulating aggregated updates. Privacy concerns extend 
beyond the protection of raw data. Inference attacks, which 
utilize membership, attribute, and feature inference, can retrieve 
the original data from model changes [14, 22]. Byzantine-
resilient aggregation, differential privacy, secure aggregation 
protocols and anomaly detection are some of the protection 
measures that researchers suggest. 

FL employs various defense mechanisms to safeguard 
against security and privacy anomalies at the client, server, and 
communication levels. At the client level, techniques such as 
differential privacy and anomaly detection filter malicious 
updates before aggregation. On the server side, robust 
aggregation methods like Krum and multi-Krum mitigate the 
impact of poisoned data and prevent non-robust aggregation 
issues. In the event of malicious client behavior, Byzantine fault 
tolerance ensures model integrity. Secure channels protect 
against eavesdropping and man-in-the-middle attacks, while 
encryption and moving target defenses enhance data 
transmission security. Robust aggregation identifies and filters 
harmful client updates. According to Bhagoji et al. [19], 
Byzantine-resilient aggregation techniques safeguard against 
model poisoning attacks but may be vulnerable to highly skilled 
targeted attacks. These aggregation algorithms statistically 
analyze client updates to identify outliers or unusual patterns of 
activity. Differential privacy is a privacy-preserving technique 
that adds controlled noise to gradients or model updates to 
maintain individual privacy. Shaheen et al. [11] proposed a 
client-level differential privacy approach for FL that offers 
robust privacy assurances without compromising model utility. 
Edge-specific security solutions address challenges in edge 
computing environments. Bao et al. [14] proposed a hierarchical 
edge-based FL architecture with intermediate aggregation 
layers, reducing communication bottlenecks and enhancing 
scalability while improving security. 

Technologies like FL and Edge Computing are 
revolutionizing the healthcare industry by addressing challenges 
related to data security, privacy, and collaborative research. FL 
utilizes diverse datasets to enhance performance by enabling 
multiple institutions to train machine learning models without 
sharing raw patient data. A systematic study conducted by Teo 
et al. [8] identified 612 articles exploring the application of FL 
in healthcare, with internal medicine and radiology emerging as 
the most prevalent specialties. Neural networks and medical 
imaging are two prevalent models and data types that FL can 
effectively handle. Notably, only 5.2% of the examined research 
demonstrated real-life applications, suggesting early clinical use 
despite the growing interest in this field [8]. FL provides privacy 
by localizing data, but additional privacy enhancement methods 
are being developed, such as differential privacy, homomorphic 
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encryption, and secure multi-party computation to protect 
against potential privacy breaches during model updates [23]. 
Kyung Hee University used FL to create a clinical decision 
support system based on deep learning, thus facilitating 
extensive data mining and helping medical personnel make 
precise diagnoses and treatment choices [23]. Drug discovery 
has also made use of FL; ten pharmaceutical companies and 
academic universities collaborated to build a big industry-scale 
FL model for drug discovery without disclosing private data. 
The combination of Edge Computing with FL improves 
healthcare AI systems by processing data locally on edge 
devices, hence lowering latency and decreasing data 
transmission. For effective privacy-preserving medical research 
and patient care, FL and edge computing are essential [24]. 
Differential privacy methods can be successfully applied to 
clinical and epidemiological research, reproducing diverse 
health studies in a federated setting while maintaining data 
privacy. 

In the healthcare industry, FL and edge computing improve 
privacy, minimize latency and boost productivity. Nonetheless, 
managing communication overhead and computational 
resources are significant obstacles. Complex machine learning 
models and substantial processing power are needed for 
healthcare applications, but edge devices may not be able to 
meet these demands [8, 25]. Model compression and selective 
parameter updates are two optimization strategies that save 
computational load without sacrificing accuracy [8]. Frequent 
model updates result in communication overhead that raises 
latency and network traffic [9]. Particularly in large-scale 
healthcare systems with several devices and institutions 
hierarchical FL methods with intermediate aggregation nodes 
improve scalability and lower costs [23]. The performance of FL 
systems is challenged by data heterogeneity across healthcare 
devices and institutions. Model bias and decreased 
generalization result from differences in data distribution, 
format and quality [10]. Adaptive FL algorithms improve 
performance in healthcare applications such as medical image 
analysis and disease prediction by handling non-IID data and 
adjusting model updates according to local variables [8]. When 
FL and edge computing integrate with the existing healthcare 
infrastructure scalability problems arise. Outdated hardware and 
software may not be compatible with modern FL frameworks 
[9]. By adjusting to different healthcare scenarios and gradually 
adding edge computing capabilities, modular FL designs enable 
institutions to adopt FL and edge computing technologies at 
their own pace [23]. Security and privacy constraints 
significantly impact FL systems' performance and scalability. 
Although FL offers data privacy by default, extra precautions 
are needed to guard against attacks and breaches [10, 25]. 
Stronger privacy assurances are offered by privacy-enhancing 
strategies like secure multi-party computation and differential 
privacy, but these come with extra communication and 
computational costs that must be weighed against performance 
demands. 

A. Research Limitations and Identified Gaps 

While prior research has advanced the security and 
application of federated learning (FL), several limitations 
persist, underscoring gaps that this study addresses. Table I 

summarizes key limitations in existing work and how our 
proposed defense-enhanced FL framework overcomes them. 

TABLE I.  LIMITATIONS OF EXISTING RESEARCH AND GAPS 

Existing 

Research 
Methodology 

Limitations and Research 

Gaps 

Research 

paper [19] 

Analyzes model 

poisoning through 

adversarial lens, 
focusing on single-

agent attacks 

Limited to single-agent model 

poisoning; lacks defenses for 

multi-agent attacks or diverse 
attack types like data poisoning 

and backdoors 

Research 
paper [8] 

Systematic review of 

FL applications in 
healthcare, analyzing 

612 studies 

Only 5.2% of FL healthcare 

studies demonstrate practical 
applications, indicating a gap in 

real-world implementation. 

Research 
paper [32] 

Employs Byzantine-

robust aggregation for 

federated learning 

Byzantine-robust aggregation 
alone is insufficient to counter 

data poisoning or backdoor 

attacks, limiting comprehensive 
security. 

Research 

paper [36] 

Investigates data 

poisoning in sequential 
and parallel FL settings 

Narrow focus on sequential and 

parallel FL poisoning, 

overlooking other attack types 
like model poisoning and 

backdoors 

III. METHODOLOGY 

To achieve the first research objective, the proposed 
methodology employs adversarial attacks to analyze their 
impact on FL models for disease prediction. The framework will 
incorporate cutting-edge techniques such as homomorphic 
encryption, differential privacy, and adversarial training. The 
performance of the framework will be evaluated based on its 
ability to detect and thwart attacks while maintaining high model 
accuracy and data privacy. The FL environment will be 
established, and the outcomes of various defensive strategies 
will be compared to determine the most effective approach. Fig. 
1 outlines the research framework. 

 
Fig. 1. Flowchart of research. 

The study develops and validates a secure FL defensive 
framework for healthcare using a six-phase methodology. To 
identify critical vulnerabilities in the current defenses against 
risks such as model poisoning and data poisoning, the initial 
steps involve analyzing adversarial attack patterns and FL 
frameworks. This process guides the development of a two-
tiered defense architecture that integrates server-side security 
features with client-side safeguards. To evaluate the 
effectiveness of detection, the system undergoes stress testing 
using attack scenarios on healthcare datasets. Following attacks, 
the system iteratively refines security, accuracy, and privacy. 
The final evaluation is assessed using metrics like attack 
detection rate, false positive rate, and accuracy. The 
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framework’s practical applicability through encrypted 
communication is demonstrated through validation in a multi-
institutional disease prediction scenario utilizing Kaggle data. 
Scalability among 2 to 20 healthcare nodes is ensured by 
ongoing performance monitoring thus maintaining the utility of 
the model. 

A. Dataset Description and Preparation 

The Mayo Clinic's 1974 to 1984 study on liver primary 
biliary cirrhosis (PBC) provided the dataset for this 
investigation. It was acquired from the UCI Machine Learning 
Repository and Kaggle [26]. The subject of this dataset is 
cirrhosis, a severe liver disease brought on by long-term damage 
caused by hepatitis or sustained alcohol use. The dataset 
includes attributes such as number of days between registration 
and the earlier of death, transplantation, or study analysis time, 
status, drug, age, sex, ascites, hepatomegaly, spiders, edema, 
bilirubin, cholesterol, albumin, copper, alkaline phosphatase 
levels, serum glutamic oxaloacetic transaminase levels, 
triglycerides, platelets, prothrombin and stage. The dataset 
comprises 25000 records and 19 features and is relevant for 
analyzing patient survival and disease progression patterns, 
making it suitable for machine learning models aimed at 
cirrhosis stage prediction. 

There are several crucial elements in the dataset preparation 
process for FL. Categorical variables are one-hot encoded to 
ensure model compatibility, and missing values are eliminated 
to maintain data consistency. StandardScaler from scikit-learn is 
employed to standardize continuous variables, thereby 
enhancing model convergence. To adhere to PyTorch’s 
CrossEntropyLoss specifications, the target variable “Stage” 
undergoes label encoding. Subsequently, the dataset is divided 
into 90% training and 10% testing sets. The training data is 
subsequently distributed among twenty clients for the FL setup. 
These procedures are carried out by the preprocessing function 
which guarantees that the dataset is clear and appropriate for 
machine learning model training in this configuration. The 
distribution of stage classes in the liver cirrhosis dataset reveals 
a nearly equal split across stages 1, 2, and 3. Stage 2 has the 
highest count (8441), followed closely by Stage 3 (8294) and 
Stage 1 (8265). 

B. Core Algorithms 

The core algorithms that form the basis of our FL system, 
both in its baseline configuration and with enhanced defense 
mechanisms are listed below. 

1) Baseline FL algorithm: In FL, private data is utilized for 

on-device local training for each client, such as hospitals. For 

this multi-class problem of disease stage prediction, clients 

train using PyTorch's AdamW optimizer and 

CrossEntropyLoss, executing thirty epochs with a batch size of 

sixty-four to balance efficiency and learning. To safeguard 

privacy, model weights are independently created and 

transmitted to a central server for aggregation. The aggregation 

process on the server employs weighted averaging, as 

illustrated in Eq. (1), based on the size of the dataset, where 

clients with more data have greater influence.  

wt+1= ∑
nk

n
wk

t+1K
k=1                           (1) 

where, wt+1 is the global model’s weight vector after 
aggregation, K  is the number of clients, nk  is the number of 
samples for client k, n is the total number of samples across all 

clients, and wk
t+1 represents the local model weight vector from 

client k [27]. 

Uniform model architecture is assumed with zero padding 
for discrepancies. The global model is evaluated on a 10% test 
set using accuracy, precision, recall, and F1-score, which are 
averaged across classes, i.e., Stages 1, 2, 3. Early stopping halts 
training if test accuracy improvement drops below ∆_min = 
0.001 over five rounds for efficiency and to prevent overfitting. 

2) Defense-Enhanced FL algorithm: Clients perform local 

training utilizing differential privacy and adversarial training to 

protect against data leaks and adversarial assaults once the 

central server initializes and distributes a global model to 

clients. The global model is updated and checked for any 

attacks or performance degradation after model updates are 

safely aggregated using Byzantine-robust techniques to reduce 

malicious contributions. After that, a centralized test set is used 

to evaluate the updated model, and early stopping conditions 

are analyzed to decide whether to continue. To balance 

efficiency, security and model accuracy throughout the FL 

lifecycle, this cycle—local training, secure aggregation, 

verification, evaluation and stopping checks—repeats 

iteratively until convergence or a predetermined maximum 

number of rounds is reached. Algorithm 1 shows FL with early 

stopping. 

Algorithm 1 FL with early stopping 

1: INITIALIZE global model, defender, best_accuracy, 

rounds_without_improvement. 

2: for each round (1 to max rounds): 

3:     reset client models and client data sizes. 

4:     for each client: 

5:        validate client data 

6:        train local model with differential privacy and adversarial 

robustness. 

7:        validate local model 

8:        encrypt and append valid models to client models. 

9:        if defense enabled: 

10:          aggregate models using defender.secure_aggregate. 

11:      skip round if global model fails verification. 

12: evaluate global model 

13:    update best_accuracy if improvement > min_delta; else, 

increment rounds_without_improvement. 

14:    stop if rounds_without_improvement >= patience. 

15: return final global model 

3) Secure aggregation: Secure aggregation integrates 

model updates from multiple clients while protecting individual 

privacy. The process involves several steps: the server decrypts 

encrypted model updates using an EncryptionSetup for secure 

decryption; it then aggregates the updates using trimmed mean 

aggregation, mitigating malicious updates or outliers; and 
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preserves the original model parameter shapes for compatibility 

with the global model architecture; finally, momentum 

stabilization smooths updates, enhancing convergence (see 

Algorithm 2).  

Algorithm 2 Secure aggregation 

1: FUNCTION secure_aggregate(global_model, client_models, 

client_data_sizes): 

2:     initialize shapes registry if not already set  

3:     Decrypt client models 

4:     for each key in global model parameters: 

5:        stack all client updates for this key 

6:        sort updates 

7:        compute trimmed mean by discarding extreme values 

8:        update global model parameter with trimmed mean 

9:     if best global model exists: 

10:          apply momentum stabilization 

11:   load updated parameters into global model 

12:   return updated global model 

4) Defense mechanisms: Different algorithms make 

machine learning systems more secure and resilient, especially 

in FL settings. While adversarial training strengthens model 

resilience by using adversarial cases during training differential 

privacy adds noise to model updates to protect individual 

privacy. Data validation identifies possible poisoning threats by 

evaluating data quality through tests for NaN values, outliers and 

label distribution, while Byzantine-robust aggregation uses 

trimmed mean aggregation to combat fraudulent updates from 

compromised clients.  Model validation evaluates locally trained 

models against accuracy, loss, and consistency metrics to 

identify poisoning, whereas dynamic thresholding filters out 

suspicious updates using an adaptive interquartile range (IQR) 

approach. Model verification rollback monitor performance and 

restore it to a previous state if degradation is found, ensuring 

global model integrity. When combined, these techniques tackle 

the issues of integrity, resilience and privacy in distributed 

learning systems. 

Differential Privacy protects individual privacy by adding 
controlled noise to model updates, as shown in the pseudo-code, 
where gradients are clipped to a specified norm (clip_norm) and 
Gaussian noise is added based on a noise_scale parameter. This 
ensures that the output from the model does not expose unique 
individual contributions by limiting the influence of any one 
data point (see Algorithm 3). 

Algorithm 3 Differential Privacy 

1: FUNCTION add_differential_privacy(model, clip_norm, 

noise_scale): 

2:     total_norm = clip_gradients(model, clip_norm) 

3:     for param in model.parameters(): 

4:         if param.grad is not null: 

5:             noise = generate_gaussian_noise(param.grad.shape, 

scale=noise_scale) 

6:        param.grad.add_(noise) 

7:     return total_norm 

By creating adversarial instances using the Fast Gradient 
Sign Method (FGSM), as shown in the pseudo-code, where 
inputs are disrupted by an epsilon-scaled gradient sign to 
maximize loss, Adversarial Training improves the robustness of 
the model. The model is then trained using these instances to 
increase its resistance to malicious disturbances (see Algorithm 
4). 

Algorithm 4 Adversarial Privacy 

1: FUNCTION generate_adversarial_examples(model, loss_fn, x, y, 
epsilon): 

2:     x_adv = x.clone().detach().requires_grad_(True) 

3:     outputs = model(x_adv) 

4:     loss = loss_fn(outputs, y) 

5:     gradients = compute_gradients(loss, x_adv) 

6:     x_adv = x_adv + epsilon * sign(gradients) 

7:     x_adv = clip(x_adv, 0, 1) 

8:     return x_adv.detach() 

C. Initial FL System 

The experimental architecture depicted in Fig. 2 comprises 
three crucial components: a central server responsible for 
initiating and updating the global model using the Federated 
Averaging (FedAvg) algorithm, clients representing healthcare 
institutions that train local models on their datasets and 
subsequently transmit updates to the server, and secure 
communication channels that facilitate the transmission of 
model updates between the server and clients. 

 
Fig. 2. Initial FL system setup. 

The setup is an FL environment using a healthcare dataset. 
It consists of a central server and multiple clients, each with a 
local dataset. The central server manages the global model. It 
distributes an initial model to all clients, initiates local training, 
and collects model updates, i.e., weight and bias updates from 
clients. The server aggregates these updates to create an 
improved global model, redistributes it to clients and iteratively 
improves the model until the accuracy stops significantly 
improving when steady state is reached. This process is 
visualized with color-coded lines: orange for initial global 
model distribution, blue for local model updates and red for the 
aggregated global model distribution. 

The neural network global model in Fig. 3 was designed for 
multi-class disease stage classification. It comprises an input 
layer that receives preprocessed feature vectors, followed by 
three fully connected hidden layers. Each hidden layer has 256, 
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128, and 64 neurons, respectively. These layers employ ReLU 
activation and dropout (rate 0.1) to enhance learning and 
mitigate overfitting. The output layer consists of three neurons 
and employs softmax activation to generate class probabilities. 
The model is appropriate for FL across a variety of 
computational resources since it makes use of 
CrossEntropyLoss, regularized by weight decay and optimized 
with AdamW. 

 
Fig. 3. Neural network architecture for Cirrhosis stage prediction. 

The decentralized organization depicted in Fig. 4 is modeled 
by the FL training procedure. Each client employs PyTorch’s 
AdamW optimizer and CrossEntropyLoss to train a local model 
on its dataset for thirty epochs, with a batch size of sixty-four. 
After training, clients transmit their model weights to the central 
server, which employs the weighted averaging technique Eq. (1) 
to aggregate them. The accuracy, precision, recall, and F1-score 
of the global model are evaluated using macro-averages across 
disease stages (1, 2, 3). To optimize efficiency and prevent 
overfitting, an early stopping mechanism terminates training if 
the test accuracy does not substantially increase (∆_min=0.001) 
over five rounds. 

 
Fig. 4. FL System workflow. 

D. Defense-Enhanced FL System 

The Defense-Enhanced FL framework protects against 
adversarial threats while ensuring data privacy and maintaining 
the utility of the model (see Fig. 5). 

 
Fig. 5. FL System defense framework. 

Server-side defenses employ anomaly detection, robust 
aggregation, and global model verification to safeguard against 
adversarial threats. In contrast, client-side defenses utilize 
differential privacy, adversarial training, and local validation to 
guarantee secure contributions to the global model. 

1) Anomaly detection. The server utilizes robust z-score 

calculation and dynamic thresholding techniques to identify 

and eliminate outliers. Robust z-score is achieved using Eq. (2) 

and dynamic thresholding with Eq. (3). 

zi=
|xi –x̃|

MAD + ϵ
                                        (2) 
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where, xi represents the parameter values, x̃ is the median, 
MAD is the median absolute deviation, and ϵ is a small constant 
to prevent division by zero [29]. 

Upper Bound= Q
3
+ Sensitivity × IQR                (3) 

Here, Q
3
 is the third quartile and Sensitivity controls the 

threshold's strictness [30]. 

2) Byzantine-robust aggregation. Trimmed Mean 

Aggregation removes extreme values from client updates 

before averaging to minimize the impact of outliers, as 

illustrated in Eq. (4). Momentum Stabilization merges the 

current global model with historical models to enhance 

robustness, as per Eq. (5). 

θglobal= 
1

|S|
∑ θiiϵS                                 (4) 

where, θglobal is the gobal model, θi is a client model and S 

represents the set of trimmed client updates after removing a 
percentage of extreme values based on the trim ratio [31]. 

θstabilized=(1– α)∙θcurrent+α∙θhistorical                (5) 

Here, α controls the influence of past models on the current 
update [32]. 

3) Global model verification. The server continuously 

validates the global model’s quality using validation datasets. 

If the accuracy drops significantly, a rollback mechanism 

automatically restores the previously validated model state. 

4) Differential privacy. This ensures that individual data 

points are not inferred from model updates by adding noise to 

gradients during local training. This is accomplished through 

gradient clipping using Eq. (6) and noise addition using Eq. (7), 

which strikes a balance between privacy and model accuracy. 

g'=
g

max(1, 
||g||

2
C

)

                                     (6) 

where, g is the gradient vector and C is the clipping norm. 

g''=g'+N(0, σ2)                                  (7) 

Here, N is a Gaussian distribution, σ controls the noise scale, 
balancing privacy and model accuracy. 

5) Adversarial training. This approach exposes the model 

to adversarial examples during local training, enhancing its 

resilience to evasion attacks without compromising 

performance on clean data, as demonstrated in Eq. (8). 

xadv=x + ∈ ∙sign(∇xL(f(x;θ),y))                      (8) 

where, xadv is the adversarial example, x is the original input, 
y is the label, f(x;θ)  is the model prediction, L is the loss 
function and ∈ controls perturbation magnitude. 

6) Client data validation. Clients validate local datasets for 

anomalies and poisoning attempts before training. This ensures 

that the local models are not corrupted. Outlier detection and 

label distribution checks are performed to achieve this [Eq. (9)]. 

Q1– k ∙ IQR < x < Q3 + k ∙ IQR                      (9) 

where, Q1 and Q3 are the first and third quartiles, 
respectively, IQR = Q3-Q1 and k for strict filtering. 

7) Local model verification. Clients validate trained models 

using validation data to ensure minimum accuracy, consistency, 

and robustness against adversarial inputs as seen in Eq. (10). 

Cadv=
∑ (ŷi==ŷadv,i)

N
i=1

N
                              (10) 

where, Cadv is adversarial accuracy, N is the total samples, 

ŷ
i
 is the predicted label for the original input and  ŷ

adv,i
 is the 

predicted label for adversarial input. 

8) Communication encryption and secure aggregation. 

Additive noise encryption is employed to establish secure 

communication between clients and the server. Encrypted 

updates are aggregated from multiple clients without revealing 

individual contributions. This ensures that even if an adversary 

gains access to updates on the server side, they cannot 

reconstruct individual updates due to the added noise. 

E. Attack Setup 

Data poisoning attacks corrupt training data to manipulate a 
model’s behavior, posing a unique threat in federated learning 
(FL) due to malicious clients lacking direct access to the central 
model. In this framework, a function employs a label flipping 
technique. This technique involves changing a predetermined 
percentage of labels (determined by the poison ratio parameter) 
to false values using a simple increment with modulo operation 
and a random selection procedure. The altered dataset is then 
returned with an “is_malicious” flag to mimic detection 
mechanisms, while the randomization aids in avoiding 
detection. These attacks have serious repercussions, as they can 
lower model accuracy, produce inaccurate data associations, and 
even open backdoors for certain misclassifications. 

Model poisoning attacks target the integrity of FL by altering 
model updates from malicious clients, directly affecting the 
aggregation process. The framework’s implementation involves 
adding random noise to model parameters, controlled by the 
attack_strength parameter, which adjusts the perturbation’s 
intensity. This ensures that the poisoned model remains 
structurally compatible with the system. Similar to data 
poisoning, model poisoning attacks include an “is_malicious” 
flag for detection. These attacks can severely impair the global 
model’s performance, introduce hard-to-detect backdoors or 
biases, and potentially cause targeted misclassifications, making 
them formidable challenges in FL environments. 

Backdoor attacks aim to embed hidden triggers in the global 
model, causing misclassifications only when specific patterns 
are present while preserving accuracy on normal data. To mimic 
this behavior, the framework reassigns a target label to a subset 
of training data that has a trigger pattern added to it, as specified 
by the backdoor_ratio parameter. The function returns the 
modified dataset with an “is_malicious” flag, ensuring that the 
subtle yet reliable trigger remains concealed. These attacks pose 
a significant risk because they can activate under specific 
conditions undetected, leading to persistent vulnerabilities that 
are challenging to identify or eliminate, even with additional 
training. 
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Man-in-the-middle (MITM) attacks threaten FL by 
intercepting and modifying communications between clients 
and the server, which is set up in the framework to test system 
resilience. In addition to handling both encrypted and 
unencrypted arguments while maintaining system compatibility, 
the attack function incorporates an “is_malicious” flag and 
modifies model updates by introducing noise scaled by 
attack_strength. MITM attacks highlight the importance of 
robust security measures in FL systems, as they can gradually 
degrade the global model, compromise process integrity, and 
potentially enable model poisoning or backdoor insertion 
through persistent update manipulation. 

F. Evaluation Metrics 

1) FL model performance metrics. The performance of the 

FL system is evaluated using the following four key metrics: 

a) Accuracy: The overall correctness of the model's 

predictions, which is calculated as the ratio of correctly 

classified instances to the total number of instances [28] [see 

Eq. (11)]: 

Accuracy= 
TP + TN

TP + TN + FP + FN
                         (11) 

where, TP stands for True Positives, TN for True Negatives, 
FP for False Positives and FN for False Negatives. 

b) Precision: This evaluates the proportion of correctly 

predicted positive cases out of all predicted positive cases. It is 

particularly useful in scenarios, where false positives are costly, 

[see Eq. (12)]: 

Precision= 
TP

TP + FP
                            (12) 

High precision indicates that the model makes fewer false 
positive errors [28], which is critical in healthcare applications, 
such as disease prediction. 

c) Recall (Sensitivity): Recall measures how many actual 

positive cases were correctly identified by the model. High 

recall ensures that most actual positive cases are detected [28], 

which is crucial for minimizing missed diagnoses in healthcare 

[see Eq. (13)]. 

Recall= 
TP

TP + FN
                           (13) 

d) F1-Score: This is the harmonic mean of precision and 

recall, providing a single metric that balances both [see Eq. 

(14)]. 

F1-Score= 2 ×
Precision × 𝑅𝑒𝑐𝑎𝑙𝑙

Precision + Recall
                 (14) 

2) Defense framework performance metrics. Key 

performance metrics of the defense framework across security, 

latency and scalability are tracked by the performance 

monitoring system as follows: 

a) Attack Detection Rate (True Positive Rate): Measures 

the proportion of actual attacks correctly identified by the 

system out of all attacks [ Eq. (15)]. 

Attack Detection Rate= 
TP

TP + FN
                (15) 

b) False Positive Rate (FPR): Evaluates the proportion 

of benign updates incorrectly flagged as attacks [Eq. (16)]. 

FPR= 
FP

FP + TN
                            (16) 

c) Precision: Assesses the accuracy of attack detection 

by calculating the proportion of flagged updates that are truly 

malicious. 

d) Latency metrics: Aggregation latency refers to the 

time the server takes to combine client updates into a global 

model, while validation latency measures the duration needed 

to validate this global model against a reference dataset after 

aggregation. These processes together contribute to the average 

round time which encompasses the total time required for one 

complete cycle of communication, training, aggregation and 

validation [ Eq. (17)]. 

Average Metric =  
∑ Latencyi

N
i=1

N
                  (17) 

where, N is the number of rounds completed. By monitoring 
these latencies, the system measures the computational overhead 
that defense mechanisms introduce. 

IV. EXPERIMENTAL SETUP 

A MacBook M3 system with an 8-core Apple M3 CPU, 
16GB of unified RAM, a 1TB SSD and macOS Sequoia (version 
15.1) forms part of the hardware setup. This configuration 
offered sufficient processing capacity for running adversarial 
attack setups, FL scenarios, and training medium-sized machine 
learning models. PyTorch computations were optimized by the 
M3 chip's sophisticated architecture, especially for gradient 
updates and encryption jobs, thereby guaranteeing effective 
performance throughout the tests. 

The software environment was built around Python 3.12.4 as 
the primary programming language supported by a suite of 
development tools and libraries tailored for machine learning. 
iTerm2 oversaw the execution of FL code, while Jupyter 
Notebook enabled interactive prototyping and visualization, and 
Visual Studio Code functioned as the primary IDE, 
supplemented by extensions such as Python and Jupyter. 
Important libraries included NumPy and Pandas for data 
manipulation, scikit-learn for preprocessing and evaluation, 
matplotlib and seaborn for visualizing performance metrics and 
data trends and PyTorch for building and training neural 
networks with GPU acceleration via Metal Performance 
Shaders. The FL system and its defense mechanisms may be 
implemented, trained and evaluated thanks to this all-inclusive 
environment. GitHub and Git were utilized for collaboration and 
version control. 

V. RESULTS AND DISCUSSION 

A. Feature Correlations 

The heatmap shows moderate relationships between 
biomarkers, suggesting interdependent physiological processes 
that federated ML can leverage. 
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Fig. 6. Correlation matrix of features. 

1) Baseline FL system model performance. Under benign 

conditions, the results reveal consistent performance over three 

test runs (Fig. 8). Precision, recall and F1-score average 

between 0.9007 and 0.9008, whereas the overall accuracy 

average is 90.07% (Table II). Plotting the federation rounds 

against accuracy shows a consistent upward trend, settling close 

to 90% for every run. While Stage 2 performs marginally worse 

(89.27%), Stage 3 attains the best accuracy (91.66%) and recall 

(0.9166). With AUC values ranging from 0.95 to 0.96, the ROC 

curve (Fig. 9) verifies strong bias for every class. High diagonal 

values indicate strong true positive rates, although overall 

classification is accurate, with the confusion matrix 

highlighting misclassifications between adjacent stages (Fig. 

7). 

TABLE II.  BASELINE FL CLASSIFICATION METRICS 

Metric Test run 1 Test run 2 Test run 3 Average 

Accuracy 89.20% 90.60% 90.40% 90.07% 

Precision 0.8920 0.9061 0.9044 0.9008 

Recall 0.8920 0.9060 0.9040 0.9007 

F1-Score 0.8920 0.9060 0.9041 0.9007 

 

Fig. 7. Baseline FL model confusion matrix. 

 

Fig. 8. Baseline FL model accuracy trend per test run. 

2) Defense-enhanced FL system model performance. The 

defense-enhanced FL system demonstrated consistent 

performance for three test cycles, averaging 85.97% accuracy 

(Table III). The per-class measures (Fig. 11) showcased strong 

performance, with Stage 3 achieving the highest average 

accuracy of 87.97%. The ROC curves (Fig. 12) further 

demonstrated the system’s classification ability, with AUC 

values of 0.93 for Classes 0 and 1 and 0.94 for Class 2. The 

confusion matrix (Fig. 10) indicated a balanced prediction with 

minimal misclassifications. After forty rounds, the accuracy 

trends exhibited a consistent improvement, stabilizing over 

85%, indicating the system’s convergence and dependability. 

3) Defense framework performance. During adversarial 

setups, the defense framework demonstrated exceptional threat 

recognition capabilities. Over three test runs, it achieved a 

noteworthy precision of 99.32%, an accuracy of 96.62%, a low 

false positive rate of 0.15%, and an impressive average attack 

detection rate of 84.33% (as depicted in Table IV). Test Run 2’s 

confusion matrix showcased excellent classification, with 

minimal instances of false positives and negatives (illustrated 

in Fig. 13). Moreover, the ROC curve, with an AUC of 0.96, 

effectively demonstrated strong discrimination (Fig. 14). 
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Fig. 9. Baseline FL model ROC curve. 

TABLE III.  DEFENSE-ENHANCED FL CLASSIFICATION METRICS 

Metric Test run 1 Test run 2 Test run 3 Average 

Accuracy 86.88% 85.72% 85.32% 85.97% 

Precision 0.8688 0.8548 0.8533 0.8590 

Recall 0.8689 0.8572 0.8533 0.8598 

F1-Score 0.8687 0.8572 0.8532 0.8597 

 
Fig. 10. Defense-enhanced FL model confusion matrix. 

 

Fig. 11. Defense-enhanced FL model accuracy per test run. 

 

Fig. 12. Defense-enhanced FL model ROC curve. 

TABLE IV.  DEFENSE FRAMEWORK PERFORMANCE 

Metric Test run 1 Test run 2 Test run 3 Average 

Attack 

Detection Rate 
85.99% 84.26% 82.74% 84.33% 

False Positive 

Rate 
0.10% 0.00% 0.36% 0.15% 

Precision 99.55% 100% 98.42% 99.32% 

Accuracy 97.10% 96.72% 96.03% 96.62% 

 
Fig. 13. Defense framework confusion matrix. 

 

Fig. 14. Defense framework ROC curve. 
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4) Latency and scalability metrics. While Average Round 

Time stays constant at about 13 seconds with the baseline FL 

system (Fig. 15), Aggregation and Validation Latencies reduce 

marginally throughout the experiments. Average Round Time 

stays constant at 12 to 13 seconds, Validation Latency varies 

slightly but stays within a small range, and Aggregation 

Latency steadily rises as the number of customers rises from 2 

to 20 (Fig. 16). 

Aggregation Latency (~13.5–13.9 seconds), Validation 
Latency (~0.0009 seconds) and Average Round Time (~54–56 
seconds) all exhibit consistency with the defense-enhanced FL 
model (Fig. 17). While Validation Latency constantly declines, 
Aggregation Latency rises with more clients, reaching a peak of 
23.49 seconds for 14 clients before stabilizing. The average 
round time fluctuates, reaching a peak of 91.41 seconds for 
fourteen clients and then leveling off around 54 to 55 seconds 
for more clients (Fig. 18). 

 
Fig. 15. Baseline FL system average aggregation, validation latency and round 

time for three test runs. 

5) Comparative analysis. Performance, resilience against 

hostile attacks and effectiveness in healthcare applications are 

the main points of comparison between the initial FL system 

and the defense-enhanced FL system in this section. The 

defense-enhanced system's accuracy decreased to 85.97% 

(scores 0.8590–0.8598), a 4.1% decrease due to defense-related 

overhead, but it maintained reliable classification. The original 

FL system achieved an average accuracy of 90.07% with 

precision, recall and F1-scores around 0.9007–0.9008 on 

average. The defense-enhanced system showed remarkable 

resilience, improving security that is essential for healthcare 

settings, while the original system, which lacked defenses, is 

thought to be susceptible to hostile threats. Due to the additional 

computing load, efficiency favored the original system with 

round times of thirteen seconds as opposed to the defense-

enhanced system's 54 to 56 seconds. The analysis identifies a 

trade-off: the defense-enhanced system forgoes some utility in 

favor of strong security, making it more appropriate for 

privacy-sensitive, real-world healthcare scenarios, whereas the 

original system excels in accuracy and speed under benign 

settings (see Table V). 

 
Fig. 16. Baseline FL system latency trends per increase in clients count. 

 
Fig. 17. Defense enhanced FL system average aggregation, validation latency 

and round time for three test runs. 

 
Fig. 18. Defense-enhanced FL system latency trends per increase in clients 

count. 

TABLE V.  COMPARATIVE ANALYSIS WITH EXISTING FL APPROACHES 

Comparison 

Criteria 

Original FL 

System 

(Baseline) 

Defense-

Enhanced FL 

System 

(Proposed 

Approach) 

Existing 

Research on 

Secure FL 

Accuracy (%) 90.07% 

85.97% (↓ 4.1% 

due to defense 
overhead) 

Varies (84–

89%) [33] [34] 

Precision / Recall 

/ F1-score 

0.9007 – 

0.9008 
0.8590 – 0.8598 

Varies (0.80 – 

0.85) [33] [35] 

Resilience to 

Model Poisoning 

Highly 

vulnerable 

Strong 
protection 

(Byzantine-

robust 

Limited 

defenses (Most 

use secure 
aggregation 

only) [32] [42] 
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aggregation, 

etc.) 

Resilience to 

Data Poisoning 
No protection 

Mitigated via 
anomaly 

detection 

Partially 

addressed in 

some works  
[36] [37] 

Resilience to 

Backdoor 

Attacks 

Susceptible 

Significantly 

reduced via 
secure model 

updates 

Few studies 

implement full 
protection [36] 

[37] 

Computational 

Efficiency 

(Training Round 

Time) 

13 seconds 

54–56 seconds 
(300%↑ due to 

security 

overhead) 

Varies (~200% 

-~400%, 
depending on 

security 

measures used) 
[38] [39] 

Scalability 

High (Fast 

processing, 

limited 
security 

constraints) 

Moderate 

(Additional 

security steps 
slow down 

processing) 

Varies (Most 

methods 
struggle with 

large-scale 

deployment) 

[33] [40] 

Suitability for 

Healthcare 

Applications 

Vulnerable to 
attacks, 

making it 

risky for 
sensitive data 

Highly secure, 

ensuring 

compliance with 
privacy laws 

(HIPAA, 

GDPR) 

Most methods 

focus on 
general FL, not 

healthcare-

specific 
defenses [2] 

[41] 

Trade-offs 

High 

accuracy & 

speed but 
weak security 

Lower accuracy 
& speed but 

strong security 

Varies (Many 

focus on either 
security or 

performance, 

not both) [42] 

The performance of the proposed defense-enhanced FL 
framework, achieving an average accuracy of 85.97% on the 
Mayo Clinic PBC dataset, reflects its suitability for structured 
healthcare data with moderate feature correlations, as evidenced 
by the heatmap in Fig. 6. This dataset’s balanced class 
distribution (Stage 1: 8265, Stage 2: 8441, Stage 3: 8294) and 
interdependent physiological features enable the framework to 
effectively leverage local training and aggregation. Variations in 
performance across different datasets, as seen in existing 
research (e.g., 84–89% accuracy in [33], [34]), likely stem from 
differences in data characteristics, such as class imbalance, noise 
levels, or feature correlations. The proposed algorithms excel 
with structured medical data exhibiting moderate to strong 
feature relationships, where the model can generalize across 
clients. However, on datasets with extreme imbalances or weak 
correlations—common in unstructured or heterogeneous 
healthcare data—performance may decline unless supplemented 
with preprocessing or adaptive techniques. This suggests that the 
framework’s optimal application lies in well-structured, 
privacy-sensitive healthcare scenarios, with potential 
adaptations needed for noisier or less correlated data types. 

VI. CONCLUSION AND FUTURE WORK 

This research successfully developed and validated a 
defense-enhanced federated learning (FL) framework tailored 
for privacy-sensitive healthcare applications, achieving its goal 
of enhancing security while maintaining model utility. By 
integrating differential privacy, adversarial training, and 
Byzantine-robust aggregation, the framework demonstrated 
robust protection against adversarial attacks, including data 

poisoning, model poisoning, and backdoors, with an attack 
detection rate of 84.33% and precision of 99.32%. Applied to 
the Mayo Clinic PBC dataset in a multi-institutional disease 
prediction scenario, it maintained an accuracy of 85.97%, 
despite a 4.1% drop due to security overhead, ensuring reliable 
classification (precision, recall, F1-scores ~0.8590–0.8598). 
The framework’s latency stabilized at 54 to 56 seconds per 
round, reflecting a trade-off for enhanced security, making it a 
practical solution for healthcare settings compliant with privacy 
regulations like HIPAA and GDPR. These achievements 
establish a secure, scalable FL system that fosters trust in 
collaborative machine learning for sensitive domains. Future 
work will focus on reducing latency through hierarchical 
aggregation or gradient compression, validating the framework 
across diverse healthcare datasets like MIMIC-IV for broader 
applicability, and deploying it in real-world healthcare facilities 
to confirm its practical utility. 
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