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Abstract—Classification of worm eggs is important for 

diagnosing worm diseases, but the manual process is time-

consuming. This study designs an image classification system 

using Convolutional Neural Network (CNN), transfer learning, 

and fine-tuning. The main goal of this study is to create a CNN 

model to sort parasitic worm eggs into groups. It does this by 

comparing three CNN architectures: EfficientNetB0, 

MobileNetV3, and ResNet50; it also creates classification 

technology for diagnosing worm infections. We applied transfer 

learning with pre-trained models and fine-tuned them for the 

IEEE parasitic egg dataset. The results reveal that EfficientNetB0 

is superior, with an accuracy of 95.36%, precision of 95.80%, 

recall of 95.38%, and F1-score of 95.48%. It performs better and 

more efficiently than the other two architectures. Applying 

transfer learning and fine-tuning improves model performance, 

with EfficientNetB0 consistently outperforming. Furthermore, 

visual similarities between classes in the dataset likely cause 

prediction errors. Therefore, this system can support the diagnosis 

of worm diseases with high efficiency and accuracy. 

Keywords—Classification; Convolutional Neural Network; 

EfficientNetB0; MobileNetV3; ResNet50 

I. INTRODUCTION 

Detection of intestinal parasitic infections remains a 
significant challenge, especially in developing countries with 
tropical climates such as Indonesia. Conventional diagnosis 
using a microscope relies heavily on the skills of the laboratory 
technician, making it prone to errors [1]. The morphological 
similarity of worm eggs and the presence of faeces in the sample 
typically cause such errors [2]. In addition, this examination 
process is rather time-consuming, with an expert technician 
requiring an average of 8 to 10 minutes to examine one sample 
[3]. Furthermore, limited diagnostic accuracy also affects the 
effectiveness of treatment. Therefore, researchers can 
significantly improve the effectiveness of traditional diagnostics 
by developing automated diagnostic systems. 

In recent years, digital image processing technology has 
been increasingly used in the medical world to increase the 
speed and accuracy of diagnosis. Advances in computer vision, 
particularly Convolutional Neural Networks (CNNs), have 
offered robust solutions for image classification. CNNs use 
artificial neural networks to process and analyze images, 
resulting in significant performance in digital image recognition 
[4] [5] [6]. One of the superiorities of CNNs is their ability to 

automatically learn relevant features from large amounts of data, 
thereby avoiding the need for manual extraction [7]. 

Researchers have developed various CNN architectures for 
image classification, such as AlexNet, EfficientNet, LeNet, 
MobileNet, and ResNet, each offering distinct advantages [8]. 
This study aims to evaluate three CNN architectures, i.e., 
EfficientNetB0, MobileNetV3, and ResNet50. These three 
architectures are trained on large datasets, can produce rich and 
generalizable feature representations, and allow faster 
convergence during fine-tuning [9]. 

To overcome dataset limitations and improve model 
performance, transfer learning and fine-tuning techniques 
become effective strategies. Transfer learning enables the use of 
pre-trained CNN models on large datasets for specific tasks with 
minimal fine-tuning, reduced training time, and efficient use of 
limited labelled data, thus being ideal for tasks with little data 
[10] [11] [12]. Additionally, pre-trained weights also improve 
model accuracy and performance [13]. Meanwhile, fine-tuning 
adapts models to recognize specific characteristics of new 
datasets, such as worm eggs in microscopic images, and improve 
detection accuracy and diagnostic capabilities [14] [15]. Fine-
tuning also helps achieve improved performance on limited data 
and accelerates training by leveraging knowledge from pre-
trained models [16] [17]. 

A prior study has reported that CNN-based image 
classification technology can reach high accuracy in identifying 
three different types of worm eggs, namely Schistosoma spp., 
Ascaris spp., and Trichuris spp., with accuracy rates of 95.31%, 
86.36%, and 80.00%, respectively, indicating the model’s 
ability to handle the complexity of egg morphology and 
variations in the dataset [18]. Another study found that CNN can 
detect protozoan cysts and worm eggs in human faeces with 
accuracy rates of 96.25% and 95.08%, respectively [19]. 

This study aims to develop a worm egg classification system 
based on image processing techniques using Convolutional 
Neural Networks (CNN), transfer learning, and fine-tuning. 
Specifically, it focuses on building CNN models to classify 
parasitic worm eggs from digital images, comparing the 
performance of three architectures—EfficientNetB0, 
MobileNetV3, and ResNet50—in identifying worm eggs, and 
enhancing this classification technology to support the diagnosis 
of human worm infections. Additionally, the study analyzes 
factors that influence the accuracy and efficiency of CNN-based 
classification systems. 
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This study also identifies key challenges in parasitic worm 
egg classification, including high visual similarity among 
certain egg types, noise and inconsistency in microscopic image 
quality, and limited dataset diversity, which may affect model 
generalization. Furthermore, the study explores future directions 
by evaluating the performance limitations of current 
architectures and proposing improvements through lightweight 
models or attention mechanisms suitable for edge deployment. 

II. RESEARCH METHOD 

This study employed the architectures of EfficientNetB0, 

MobileNetV3, and ResNet50. Fig. 1 shows the flowchart of 

worm egg classification using transfer learning on the CNN 

models. The research methods cover data collection, 

preprocessing, model development, transfer learning of the pre-

trained CNN models, fine-tuning, and performance evaluation. 

 
Fig. 1. Flowchart of the research procedure for worm egg classification using 

the CNN models. 

A. Data Collection 

We collected data to obtain the required image dataset and 
uploaded it to Google Drive. Data were collected systematically 
using class-based sampling techniques, and sorting images 
represented each species class. The data used were secondary 
data in the form of RGB (Red, Green, Blue) images, obtained 
from the IEEE Data Port website (https://ieee-dataport.org/) 
[20]. This dataset included eleven categories of worm eggs, i.e., 
Ascaris lumbricoides, Capillaria philippinensis, Enterobius 
vermicularis, Fasciolopsis buski, Hookworm, Hymenolepis 
nana, Hymenolepis diminuta, Opisthrochis viverrine, 
Paragonimus spp., Taenia spp., and Trichuris trichiura. The 
total dataset reached 11,000 images, with each class comprising 
1000 images. 

B. Data Preprocessing  

Before training, the data were prepared following 
preprocessing steps, which included resizing with padding, 
dataset splitting, data augmentation, and input standardization. 
Resizing with padding is useful for maintaining the image 
dimensions on each layer and preventing the loss of edge 
information in the image. First, the dataset was divided into three 
subsets: training, validation, and testing data [21]. Data 
augmentation was applied to the training and validation data, 
using techniques such as rotation, shifting, and zooming and 
resizing the images to 224 x 224 pixels [22]. These 
augmentation techniques were employed to increase the 
diversity of the dataset by generating new variations of the 

existing dataset and changing the position, scale, and orientation 
of objects [23]. After augmentation, the dataset was grouped into 
batches for training. 

C. CNN Models 

Convolutional Neural Network (CNN) was recognized as a 
popular deep learning model for image data analysis [24]. CNN 
comprised convolutional layers for extracting features from 
images, pooling layers for reducing matrix dimensions and 
accelerating computation, and fully connected layers for 
classification. Pooling layers, such as average and max pooling, 
were positioned after the convolutional layers to retain 
important information. In this study, three pre-trained CNN 
models—EfficientNetB0, MobileNetV3, and ResNet50—were 
utilized. These models had been pre-trained using ImageNet 
data [25] and were made available in the TensorFlow library 
[26]. 

EfficientNet was a series of CNN models designed to 
improve accuracy and efficiency using scaling settings. The 
superiority of EfficientNet was demonstrated by its ability to 
provide high accuracy while reducing parameters and FLOPS 
(Floating Point Operations Per Second). A combined scaling 
method was applied to three network dimensions: width 
(number of channels per layer), depth (number of CNN layers), 
and resolution (image size) [27]. The architecture of 
EfficientNet10 was presented in Fig. 2. 

 

Fig. 2. Architecture of EfficientNet10. 

MobileNet was an artificial neural network architecture that 
Google developed for image processing and object recognition 
on resource-constrained devices. MobileNetV3 was divided into 
two models: MobileNetV3-Large for high-resource 
environments and MobileNetV3-Small for low-resource 

https://ieee-dataport.org/
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environments [28]. This architecture was formed by combining 
depthwise separable convolutions from MobileNetV1, linear 
bottleneck, and inverted residuals from MobileNetV2, and 
lightweight attention modules based on squeeze and excitation 
from MnasNet to enhance accuracy. The architecture of 
MobileNetV3-Large was presented in Fig. 3. 

 
Fig. 3. Architecture of MobileNetV3-Large. 

Several versions of ResNet were developed, one of which 
was ResNet-50, which used 50 layers of a neural network. 
ResNet-50 introduced the concept of shortcut connections to 
address the vanishing gradient problem, which occurred when 
increasing the depth of the network. With shortcut connections, 
gradients could pass through deeper layers without being 
significantly reduced, improving performance and accuracy 
[29]. The architecture of ResNet-50 was presented in Fig. 4. 

 

Fig. 4. Architecture of ResNet50. 

D. Transfer Learning and Fine-Tuning 

Transfer learning was an approach in machine learning that 
used pre-trained models to solve new problems, either in the 
same or different domains. In transfer learning, a base model 
with general knowledge from large datasets, such as ImageNet, 
was used as a feature extractor to overcome data limitations and 
accelerate the convergence process during model training [30]. 
Furthermore, a classification head was added to the base model 
and trained using a smaller dataset to solve a specific task. Only 
the classification layer was trained to adapt to the task to be 
solved, as the base model layers were typically frozen since they 
already had a good representation of general features. 

After the initial stage, fine-tuning was performed to improve 
the performance of the pre-trained model on new tasks or 
datasets. In this stage, previously frozen layers in the base model 
were reactivated (unfrozen) to allow for adjustments during 
training. This method aimed to refine the feature representation 
generated by the base model to suit the new dataset's 
characteristics better. Fine-tuning was performed using a 
smaller learning rate to optimize model accuracy [31]. 

E. Evaluation Metrics 

The performance of a multiclass classification model was 
evaluated using various metrics, including accuracy, precision, 
recall, and F1-score [32]. These metrics were calculated based 
on information from the confusion matrix, which compared the 
model’s predicted results and the actual data. The formulas for 
accuracy, precision, recall, and F1-score were presented in Eqs. 
(1), (2), (3), and (4), respectively. Parameters used in this 
calculation were: TP (True Positive): correct prediction for the 
positive class; TN (True Negative): correct prediction for the 
negative class; FP (False Positive): wrong prediction for the 
positive class; and FN (False Negative): wrong prediction for 
the negative class. Evaluation using these metrics allowed for a 
comprehensive assessment of model performance in classifying 
multiclass data. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+FP+FN+TN


𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP


𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN


𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 (
precision.recall

precision+recall
)

III. RESULT AND DISCUSSION 

This study proposes a method for classifying worm egg 
images with a transfer learning approach using CNN models. 
The proposed method is developed using Python programming 
language and trained on Google Colab by utilizing GPU. 

A. Dataset 

The dataset used in this study covers eleven types of worm 
eggs, each consisting of 1000 images, making a total of 11,000 
images. This dataset varies in size, magnification level, lighting 
conditions, blur level, and background. Image samples from the 
worm egg dataset can be seen in Fig. 5. 
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Fig. 5. Image samples from the worm egg dataset. 

One of the main challenges identified in the dataset is the 
variation in image quality due to differences in lighting, 
magnification, background, and resolution. These 
inconsistencies can introduce bias and reduce the model's 
generalization ability. Additionally, certain species of parasitic 
eggs show high morphological similarity, which complicates 
classification. Misclassifications often occur due to subtle 
differences that are difficult to distinguish even by an expert. 

B. Preprocessing Result 

The preprocessing stage was carried out to ensure uniformity 
in the size of all images in the dataset by changing them to 
dimensions of 224x224x3 through resizing. However, this 
method has the potential to blur or even eliminate the image’s 
main object. A cropping technique, which involves cutting the 
part of the image that contains the main object to a certain size 
and saving the results in the desired dimensions, was used to 
overcome this problem. In addition, a color scheme conversion 
was performed using the cvtColor function to ensure that the 
image conforms to the RGB (Red, Green, Blue) format, which 
is compatible with the models used. This preprocessing stage 
utilized several Python modules, such as NumPy, glob, OpenCV 
(cv2), and Pickle. The final result of data preprocessing is shown 
in Fig. 6. 

 
Fig. 6. Results of data augmentation. 

C. Transfer Learning and Fine-Tuning Result 

The proposed method used pre-trained EfficientNetB0, 
MobileNetV3, and ResNet50 models from ImageNet, the base 
model used as a feature extraction layer. The training process 
was carried out in two stages: the transfer learning phase and the 
fine-tuning phase. In transfer learning, the models were trained 
for ten epochs by monitoring the best performance based on the 
lowest validation loss value. Only the classification layer was 
trained at this stage, while the other layers remained frozen. In 
the second phase, namely fine-tuning, the models were re-
trained for ten epochs by unfreezing the base model layers. This 
allows all layers, including the feature extraction layer, to be 
tuned with weight layers relevant to the worm egg dataset. The 

training process in this phase used a lower learning rate to ensure 
that parameter adjustments run stably. 

Based on the training and testing results, an analysis was 
carried out on the main performance metrics: training loss, 
validation loss, training accuracy, and validation accuracy. The 
comparison graph of these metrics was visualized using the 
matplotlib module. The loss graph shows a gradual decrease in 
value as the number of epochs increases, indicating an increase 
in the model’s ability to predict until convergence. The accuracy 
graph illustrates a similar trend, showing a steady rise 
throughout training, with the highest accuracy achieved when 
the models successfully identify patterns in the training data. 
Meanwhile, the validation loss and validation accuracy graphs 
were used to evaluate the generalization ability of the models to 
unused validation data during training. These graphs help 
identify potential problems, such as overfitting or underfitting, 
which can be observed if there is a significant difference 
between training and validation metrics. 

Training process graphs of EfficientNetB0, MobileNetV3, 
and ResNet50 models are shown in Figs. 7, 8, and 9, with panel 
(a) describing the transfer learning phase and panel (b) 
describing the fine-tuning phase. 

 

Fig. 7. Training graph of EfficientNetB0 model. 

 

Fig. 8. Training graph of MobileNetV3 model. 

 

Fig. 9. Training graph of ResNet50 model. 

Based on the graphs displayed, it can be concluded that the 
models developed in this study have good learning abilities. This 
can be seen from the consistent increase in accuracy values and 
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the steady decrease in loss values as the number of epochs rises. 
The difference between training loss/accuracy and validation 
loss/accuracy is relatively small, indicating that the models can 
adequately generalize unused data during training. Further 
analysis reveals that each model architecture produces varied 
accuracy and loss performance with the same training 
parameters, although the difference is only a few per cent. This 
reflects the influence of architectural characteristics in capturing 
data patterns in the classification task being performed. 

D. Model Evaluation 

Evaluations of the three models, namely EfficientNetB0, 
MobileNetV3, and ResNet50, were made based on the models 
trained after the transfer learning and fine-tuning phases using 
precision, recall, accuracy, and F1-score values (Table I). 

TABLE I.  COMPARISON OF PERFORMANCE EVALUATION 

Model Accuracy Precision Recall F1-score 

EfficientNetB0 95.36% 95.80% 95.38% 95.48% 

MobileNetV3 94.54% 94.85% 94.60% 94.65% 

ResNet50 94.09% 94.94% 94.10% 94.31% 

As seen in Table I, the EfficientNetB0 model shows the best 
performance on the validation dataset during the fine-tuning 
phase compared to other models, with an accuracy of 95.36%. 
Moreover, this model has better precision, recall, and F1-score 
than the other two, whose values reach 95.80%, 95.38%, and 
95.48%, respectively. These results show that EfficientNetB0 
can better recognize and classify both positive and negative 
classes accurately. 

The superiority of EfficientNetB0 evaluation metrics can be 
attributed to its efficient architecture design and powerful 
feature extraction capability through the MBConv (Mobile 
Inverted Residual Bottleneck Convolution) block. The MBConv 
structure enables the model to adaptively extract important 
features, improving classification accuracy on the parasitic 
worm egg dataset. A careful approach to scalability also 
contributes to model performance, allowing efficient 
computational and parameter optimization without sacrificing 
accuracy. 

Higher evaluation results on accuracy, precision, recall, and 
F1-score metrics indicate that EfficientNetB0 is a superior 
architecture for parasitic worm egg classification. This better 
performance proves that EfficientNetB0 addresses the 
classification challenges more effectively than ResNet50 and 
MobileNetV3Large on the same dataset. In addition to the 
training evaluation, the testing evaluation on parasitic worm egg 
image data that the models have never seen before detects two 
prediction errors. Due to limitations in the generalization 
capabilities of classification models, these errors are normal 
during testing. 

The application of EfficientNet-B0 in classifying parasitic 
worm eggs demonstrates significant potential in enhancing the 
accuracy, efficiency, and accessibility of parasite infection 
diagnostics. Butploy et al. [33] successfully identified three 
types of Ascaris lumbricoides eggs using the EfficientNet-B0 
deep learning architecture, achieving an accuracy of 93.33%. 

Furthermore, Mirzaei et al. [34] reported that EfficientNet-B0 
effectively extracts relevant features for helminth egg 
identification, reducing misclassification rates commonly 
observed in conventional microscopy-based methods. 

Aldahoul et al. [35] also found that combining EfficientNet 
with parasite detection techniques significantly improved the 
classification performance of microscopic images. Meanwhile, 
Kumar et al. [36] emphasized that integrating efficient models 
such as YOLOv5 can accelerate healthcare system responses to 
parasitic infections, highlighting the synergy between rapid 
detection and precise classification. 

Although further studies are needed to support 
implementation on edge devices, lightweight models like 
EfficientNet-B0 offer a promising solution for fast and accurate 
detection, particularly in resource-limited or remote areas. 

IV. CONCLUSION 

Based on the results of this study, the EfficientNetB0 
architecture shows the best performance with an accuracy of 
95.36%, precision of 95.80%, recall of 95.38%, and F1-score of 
95.48%, reflecting high ability in worm egg classification. This 
study also reveals that applying transfer learning and fine-tuning 
can significantly improve model performance, with variations in 
CNN architecture having different impacts on performance, 
where EfficientNetB0 consistently outperforms the other two 
architectures. The prediction errors are most likely caused by 
visual similarities between classes in the dataset, making it 
difficult for the models to identify the class correctly. For future 
work, we propose integrating attention mechanisms, deeper 
exploration of lightweight CNN models like EfficientNet-Lite, 
and validation of the classification system in real clinical 
environments using edge devices. 
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