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Abstract—Massive Open Online Courses (MOOCs) have 

transformed digital learning, leading to vast amounts of learner-

generated content that reflect user experience and engagement. 

Accurately classifying sentiment from this content is essential for 

improving course quality, but remains challenging due to subtle 

linguistic variation and contextual ambiguity. This study proposes 

a sentiment analysis approach based on an enhanced Bidirectional 

Long Short-Term Memory (LSTM) model. The enhancements 

include the integration of data augmentation and regularization 

techniques to address overfitting and improve generalization. The 

model was trained and evaluated on a dataset of 29,604 learner 

discussion posts from Stanford University MOOCs. Experimental 

results show that the proposed model achieves an accuracy of 

88.54% in classifying sentiments into positive, negative, and 

neutral classes. These results suggest that the enhanced LSTM 

model offers a reliable solution for large-scale sentiment 

classification in online education, with potential applications in 

learner support, curriculum design, and personalized feedback. 
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I. INTRODUCTION 

Massive Open Online Courses (MOOCs) have 
revolutionized digital education by enabling global access to 
quality learning. With thousands of learners actively 
participating in MOOC platforms, understanding learner 
sentiment is essential to improving course quality, fostering 
engagement, and guiding instructional strategies. Sentiment 
analysis (SA), a subfield of natural language processing (NLP), 
has become a powerful tool to extract emotional insights from 
learners’ discussions and feedback. 

Numerous studies have applied sentiment analysis in 
educational settings using machine learning (ML) and deep 
learning (DL) models. Kastrati et al. [1] used a BiGRU model 
with Word2Vec embeddings to classify MOOC feedback, 
enhancing the overall sentiment classification pipeline. Zhang 
and Zhu [2] fine-tuned BERT on educational data to capture 
contextual sentiment, showing improved performance on short 
learner posts. Phan et al. [3] integrated an attention-based deep 
learning architecture for aspect-based sentiment extraction, 
aiding in pedagogical refinements. Ortigosa et al. [4] applied 
lexicon-based sentiment analysis to Facebook data for 
personalized e-learning, improving adaptive content delivery. 
Onan [5] demonstrated that CNN models with Word2Vec 
embeddings outperform traditional machine learning techniques 
in MOOC sentiment classification. Ramesh et al. [6] modeled 

emotional cues from MOOC discussions using LSTM with 
attention mechanisms to predict dropout risks, supporting early 
intervention strategies. Rani and Kumar [7] developed a 
sentiment-aware feedback system using rule-based NLP 
techniques to enhance teaching quality. Alatrash et al. [8] 
proposed a sentiment-driven recommender system for MOOCs 
that dynamically adjusts learning materials based on learners’ 
emotions. Zhang and Zhu [9] combined sentiment and content 
analysis using a hybrid deep learning approach to generate fine-
grained profiles of learners in LMOOC platforms. 

In addition to the works reviewed above, other efforts also 
demonstrate the need for more robust and domain-specific 
sentiment models. Chen et al. [10] introduced a semi-supervised 
learning model tailored to MOOC forums. Sailunaz and Alhajj 
[11] studied emotion-aware sentiment modeling using social 
media data. Kumar et al. [12] proposed a multi-task neural 
architecture combining sentiment and emotion classification. 
Zhang et al. [13] integrated attention mechanisms to enhance 
performance on short text sentiment tasks. Priyadharshini et al. 
[14] designed a CNN–BiLSTM model that showed strong 
results on diverse emotional datasets. 

While valuable, most prior studies do not incorporate 
advanced data enhancement techniques such as text 
augmentation or regularization. These methods can significantly 
reduce overfitting and compensate for limited annotated data 
both critical challenges in educational datasets. Additionally, 
many existing models rely on small or generic datasets, which 
lack the scale and linguistic diversity of MOOC forums. 

To overcome these limitations, we propose a novel scalable 
sentiment analysis framework leveraging Bidirectional Long 
Short-Term Memory (BiLSTM) networks, enriched with 
advanced data augmentation and regularization techniques. Our 
model is rigorously validated using a large-scale real-world 
dataset of over 29,000 learner discussion posts from Stanford 
University MOOCs, classifying sentiments into positive, 
negative, and neutral categories. 

The primary contributions of this study are: 

 Development of a BiLSTM-based sentiment analysis 
framework customized for large-scale MOOC 
discussions, enhanced with data augmentation and 
regularization. 

 Comprehensive benchmarking against established 
models to validate the framework’s effectiveness. 
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 Real-world application to a large educational dataset, 
confirming scalability and practical relevance. 

The remainder of this paper is structured as follows: 
Section II presents the theoretical basis, outlining key concepts 
in sentiment analysis and deep learning. Section III describes our 
methodology, detailing preprocessing, model design, and 
training procedures. Sections IV and V provides results and 
discusses their implications. Finally, Section VI concludes the 
paper and outlines future research directions. 

II. THEORETICAL BASIS 

Understanding sentiment in educational discussions is 
critical for evaluating learner satisfaction, identifying 
disengagement, and adapting course content. This section 
presents the theoretical background that underpins our work, 
including core distinctions between emotion and sentiment, 
followed by the rationale for using deep learning, particularly 
Bidirectional Long Short-Term Memory (BiLSTM) networks  
in processing MOOC discussions. 

A. Emotion and Sentiment 

Emotion is a complex human experience defined as a 
powerful feeling arising from circumstances, mood, or 
interpersonal connections [15], often manifesting as brief, 
intense reactions to specific events [16]. Theories of emotion are 
divided into neurological, physiological, and cognitive 
categories [17], including the Evolutionary Theory of Emotion 
[18], James-Lange theory [19], and Schachter-Singer Theory 
[20]. Emotions can be gauged through dimensional approaches, 
like Russell’s circumplex model [21], or categorical approaches, 
such as the six basic emotions [22]. In contrast, sentiment refers 
to the enduring positive or negative feelings shaping opinions 
[23], involving a mix of emotions, cognition, and behavior [24]. 
While emotion and sentiment are distinct, many sentiment 
analysis systems rely on emotion analysis [25] [26]. 

B. Deep Learning Models for Sentiment Analysis 

A Recurrent Neural Network (RNN) is a class of artificial 
neural networks specifically designed to process and analyze 
sequential data. It consists of repeating modules that allow 
information to persist across time steps. Long Short-Term 
Memory (LSTM), a specialized type of RNN, was introduced to 
address the instability issues encountered in traditional RNNs, 
particularly the vanishing gradient problem, which previously 
hindered their practical applicability. LSTM networks are 
capable of learning and exploiting long-term temporal 
dependencies in sequential data by leveraging internal memory 
cells. These cells enable the model to retain relevant past 
information and make predictions based on the contextual 
dependencies present in the input sequence. A defining feature 
of LSTM architecture, as opposed to other deep learning models 
such as Convolutional Neural Networks (CNNs), is the presence 
of three gating mechanisms: the input gate, forget gate, and 
output gate. These gates regulate the flow of information by 
selectively incorporating new input (input gate), discarding 
irrelevant information (forget gate), and transmitting pertinent 
data to subsequent time steps (output gate) [27]. A schematic 
representation of these recurrently connected cells is illustrated 
in Fig. 1. 

The input gate is denoted by i, the output gate by o, and the 
forget gate by f. The cell state is represented as C, the cell output 
as h, and the input at a given time step as x. As illustrated in 
Fig. 2, the structure of the LSTM cell enables it to regulate 
information flow using these components. The following 
equations formally define the operations performed within an 
LSTM cell during each time step: 

ft =  σ(Wf ⋅ [h{t−1};  xt] +  bf)                     (1) 

it =  σ(Wi ⋅ [h{t−1};  xt] + bi)                    (2) 

Ct̃ =  tanh(WC ⋅ [ h{t−1}; xt] + bC)                (3) 

Ct =  ft ⋅ C{t−1} +  it ⋅ Ct̃                        (4) 

ot =  σ( Wo ⋅ [ h{t−1};  xt] +  bo)                (5) 

ht =  ot ⋅ tanh ( Ct)                        (6) 

The matrices W represent the learnable weights associated 
with each gate, while C denotes the updated cell state. These 
states are propagated forward through the network, as illustrated 
in Fig. 2, and the weights are optimized using backpropagation 
through time. The forget gate plays a crucial role in mitigating 
overfitting by selectively discarding irrelevant information from 
previous time steps. This gated architecture and its mechanism 
for controlling information flow are instrumental in addressing 
the vanishing gradient problem inherent in traditional RNNs. As 
a result, LSTM networks are particularly effective for modeling 
complex, non-stationary sequences. 

 
Fig. 1. LSTM Layout with cell connections. 

 

Fig. 2. Architecture of a LSTM cell with various gates. 

The standard LSTM model was initially proposed by 
Hochreiter and Schmidhuber in 1997 [28], and the Bidirectional 
LSTM (BiLSTM) variant was later introduced by Graves et al. 
in 2005 [29]. Fig. 3 illustrates the general schematics of LSTM 
and BiLSTM networks. In an LSTM, each hidden cell receives 
input influenced by computations performed in cells from 
preceding time steps. This explicit management of sequential 
memory makes LSTM particularly suitable for modeling 
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sequential data. In contrast, the BiLSTM architecture features a 
bidirectional flow of information, employing two LSTM 
networks: one processing data in a forward direction, and the 
other in reverse, with outputs from both networks merging at the 
output layer. This bidirectional context has been shown to 
significantly improve accuracy in language modeling [30] [31], 
and related tasks. 

 
Fig. 3. LSTM (a) and BILSTM (b) Architecture. 

In our research, we chose the Bidirectional Long Short-Term 
Memory (BiLSTM) model due to its effectiveness in capturing 
contextual dependencies in both forward and backward 
directions an essential feature for understanding nuanced 
sentiment in learner-generated content. This makes it 
particularly suitable for processing the informal, sequential, and 
often ambiguous language found in MOOC forum posts. 
Furthermore, many existing models lack mechanisms for 
addressing challenges such as overfitting, class imbalance, and 
limited linguistic variability. Our enhanced BiLSTM framework 
integrates data augmentation and regularization techniques to 
overcome these limitations and improve generalization across 
diverse sentiment categories. 

III. METHOD 

This section presents the methodology adopted for sentiment 
analysis of learners' posts in the MOOC context. We begin by 
describing the dataset used in this study, followed by an 
exploratory analysis to uncover linguistic and sentiment 
patterns. Subsequently, we discuss the text representation 
process combining tokenization and pre-trained word 
embeddings. We then detail the design and training of the 
Bidirectional Long Short-Term Memory (BiLSTM) model. 
Finally, we describe the experimental setup, including training 
parameters and evaluation metrics. The proposed pipeline is 
illustrated in Fig. 4. 

A. Dataset 

In this study, we utilized the Stanford MOOC Posts dataset 
[32], which comprises 29,604 learner forum posts collected 
from Stanford University's OpenEdX platform between August 
2013 and September 2014. The dataset covers six different 
MOOCs across three academic domains: Education, Medicine, 
and Statistics. Each post was manually annotated by human 
coders across several dimensions, including confusion, urgency, 
opinion, question, answer, and sentiment. Table I summarizes 
the key metadata of the Stanford MOOC Posts dataset. 

The dataset exhibits challenges typical of real-world online 
text, including class imbalance among sentiment labels, 
informal expressions, typos, and the use of abbreviations. 
Recognizing these challenges is critical for effective 
preprocessing and model design. 

 
Fig. 4. Proposed methodology. 

TABLE I.  METADATA OF THE STANFORD MOOC POSTS DATASET 

Attribute Description 

Source Stanford University's OpenEdX platform 

Collection Period August 2013 – September 2014 

Number of Courses 6 

Number of Posts 29,604 

Language English 

Sentiment Labels 1 (Very Negative) to 7 (Very Positive) 

Data Fields 

Text, Sentiment, Confusion, Urgency, Course 

Type, Timestamp, Forum Post ID, Forum UID, 

Anonymized User Info 

Post Types Comment, Comment Thread 

Challenges 
Class imbalance, informal text, typos, 
abbreviations 

Regarding the sentiment dimension, each post was rated on 
a 7-point scale, where a score of 7 indicates a highly positive 
sentiment requiring no instructor intervention, and a score of 1 
signifies a highly negative sentiment necessitating immediate 
instructor attention. This fine-grained labeling provides a 
valuable resource for sentiment classification tasks. 

Table II presents examples of learner posts along with their 
corresponding sentiment scores. 

TABLE II.  DATASET 

Posts Score 

I am really glad that I entered this MOOC. A lot of interesting 

things are explained in an engaging manner! Loss of motor 

control in the cold, the after drop - fantastic! 

7 

Yes, the parent and teacher do have an important role as an 

encouraging mentor who continues to learn when to step in and 

when to step back. 

4 

TERRIBLE interface design! Just put an obvious 'next' button 

at the bottom of the main body area or clone the whole linear 

navigation from the top. 

1 
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The goal of this study was to assess whether a post was 
positive, negative, or neutral. We considered posts scoring 
above 4 to be positive, those scoring below 4 to be negative, and 
those scoring exactly 4 to be neutral. 

B. Exploratory Data Analysis 

To begin our analysis, we conducted an exploratory study of 
the dataset. As shown in Fig. 5, the sentiment scores are not 
evenly distributed across the posts, with a noticeable 
concentration around the score of 4. Posts labeled with a 
sentiment score of 4 often exhibit a mixture of positive and 
negative expressions, making them less straightforward for 
classification purposes. However, instead of excluding these 
instances, we retained all posts, including those with a score of 
4, to preserve the integrity and representativeness of the dataset. 

This decision ensures that our model is exposed to a more 
realistic distribution of sentiments encountered in real-world 
learner discussions. 

 

Fig. 5. Sentiment distribution. 

Following the initial exploration, we categorized the 
sentiment scores into three distinct classes to simplify the 
classification task. Posts with a sentiment score greater than 4 
were labeled as positive, those with a score less than 4 as 
negative, and posts with a score exactly equal to 4 as neutral. 
The final sentiment distribution after this categorization is 
illustrated in Fig. 6. 

 

Fig. 6. Final sentiment distribution. 

C. Data Preprocessing 

In this step, we prepared the textual data by applying a series 
of preprocessing operations to improve the quality and 
consistency of the corpus before feeding it into the model. 
Effective data cleansing is critical in text analysis, as it removes 
noise and ensures that the inputs are more comprehensible for 
subsequent natural language processing (NLP) tasks. The 
following preprocessing procedures were implemented: 

1) Data inspection: The data was inspected to identify any 

missing values or unhelpful data. Any null values and irrelevant 

columns were dropped. Since the "Post" column is our target 

data, we retained only the "Post" in the final DataFrame. 

2) Lowercasing: All text was converted to lowercase to 

maintain consistency and minimize variability due to case 

sensitivity, using the lower() function. 

3) Removal of URLs and mentions: Hyperlinks and user 

mentions, which do not contribute meaningful information to 

the sentiment classification task, were eliminated through 

regular expressions. 

4) Removal of punctuation and digits: Punctuation marks 

and numerical digits were removed using standard string 

processing techniques to focus solely on the textual content 

relevant for semantic analysis. 

5) Lemmatization: Lemmatization was applied to 

normalize words to their base or dictionary forms by utilizing 

vocabulary and morphological analysis. This step helps in 

reducing inflectional forms and improving the semantic 

understanding of the text. 

After completing the text cleaning procedures and encoding 
the sentiment labels, the dataset was prepared for further 
processing. Table III presents a sample of the cleaned text 
alongside the corresponding encoded sentiment labels. 

TABLE III.  SAMPLE OF CLEANED TEXT AND CORRESPONDING ENCODED 

SENTIMENT LABELS AFTER PREPROCESSING 

Index Cleaned Text 
Encoded 

Sentiment 

0 algebra math game saying create game incorpora... 1 

1 peer review module fully done anything wrong p... 1 

2 grow brain right middle front room statement f... 1 

3 math right wrong math become conceptual adapt ... 1 

4 district group group based struggling idea tim... 1 

... ... ... 

29599 dear option regular best josh 2 

29600 fabulous typo module slide title supposed viol... 2 

29601 thanks josh hint anon screen name. 2 

29602 whoa nut thanks value calculator 2 

29603 thanks 2 

The cleaned text will serve as input for the subsequent 
tokenization, encoding, and embedding processes, while the 
encoded sentiment labels will be used as target outputs during 
supervised model training. 
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D. Data Visualization 

Data visualizations are an essential aspect of exploring and 
understanding datasets. In this study, we employed visual 
techniques such as word clouds and word frequency analysis to 
gain insights into the sentiment distribution and the 
characteristics of learner posts. These visualizations help to 
identify underlying patterns and potential imbalances within the 
dataset, providing valuable context for the sentiment analysis 
task. The following sections will elaborate on the key 
visualizations utilized in this study and their role in uncovering 
meaningful trends within the data. 

1) Word cloud: The word cloud visualization highlights the 

most frequently occurring words within a dataset. Words that 

appear more often are displayed in larger fonts, while those 

used less frequently are shown in smaller fonts. Fig. 7 presents 

a word cloud that provides an overview of the emotional trends 

expressed in the posts, encompassing positive, negative, and 

neutral sentiment words in a single, comprehensive 

visualization. This allows for a clear understanding of the 

language patterns within the dataset. 

 
Fig. 7. Word cloud. 

2) Words frequency: Word frequency analysis provides 

essential insights into the language used within a text or corpus. 

This analysis allows for the identification of recurring terms 

and key phrases, revealing patterns and underlying themes 

within the dataset. Fig. 8, 9 and 10 illustrate the most frequently 

occurring words associated with each sentiment category. In 

positive sentiment posts, terms such as "great", "learning," and 

"thanks" are prominent, reflecting positive engagement and 

appreciation for the course. Conversely, negative sentiment 

posts highlight words like "problem", "teacher" and "grade", 

indicating issues or dissatisfaction encountered by stude,nts. 

Neutral sentiment posts feature terms like "question", "answer", 

and "data", commonly found in objective discussions about 

course content without significant emotional emphasis. 

E. Data Augmentaiton 

Text data augmentation is a technique in natural language 
processing (NLP) that expands the size and diversity of a text 
dataset by generating variations of existing data. By introducing 
these variations, models become more robust and generalizable, 
improving their performance on new, unseen data. Data 
augmentation helps reduce overfitting, ensuring that models can 
handle diverse and unpredictable inputs in real-world scenarios. 

 

Fig. 8. Top 10 most frequent positive words. 

 
Fig. 9. Top 10 most frequent negative words. 

 
Fig. 10. Top 10 most frequent neutral words. 

In this study, we applied the following data augmentation 
techniques: 

1) Synonym replacement: Words are replaced with their 

synonyms to introduce variation without altering the overall 

meaning. 

2) Random insertion: Random words are inserted into the 

text to diversify the vocabulary and sentence structure. 

3) Random swap: The positions of random words in the text 

are swapped to generate different syntactical structures. 

4) Random deletion: Random words are removed from the 

text to simulate missing information and prevent overfitting. 

5) Character-level augmentation: The text is modified at 

the character level, such as introducing typos, to simulate real-

world text input errors. 
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Each of these methods generates variations of the original 
text, thus increasing the diversity of the dataset and enhancing 
its representativeness. By applying these techniques, we aim to 
improve the model's ability to generalize and reduce overfitting. 

F. Text Representation 

In order to prepare the textual data for input into the BiLSTM 
model, it is necessary to transform raw text into a structured 
numerical format that preserves both semantic and contextual 
information. This transformation comprises three key steps: 
tokenization, encoding, and embedding. Tokenization 
decomposes the text into individual units (tokens) suitable for 
computational processing. Encoding subsequently maps these 
tokens into unique integer identifiers, forming standardized 
input sequences. Finally, embedding projects these encoded 
sequences into dense vector spaces that capture semantic 
relationships between words. The following sub-sections 
elaborate on each of these steps. 

1) Tokenization: Tokenization was performed using the 

Tokenizer class from the TensorFlow Keras library. The 

Tokenizer constructs a vocabulary from the text corpus and 

converts the textual data into sequences of integers suitable for 

input to the BiLSTM model. An instance of the Tokenizer was 

initialized to process the corpus, creating an empty dictionary 

to map each unique word to a distinct integer index. This 

mapping establishes the basis for subsequent encoding and 

embedding procedures. 

2) Encoding: After the text had been divided into tokens, 

each token was assigned a unique integer identifier based on a 

constructed vocabulary. This encoding process transformed the 

sequences of tokens into sequences of integers, enabling 

standardized numerical input for the BiLSTM model. 

Moreover, the target variable, representing the sentiment class 

(e.g., positive, neutral, negative), was also encoded numerically 

to facilitate the supervised learning process. By ensuring that 

both the input features and the output labels were numerically 

represented, the data became suitable for effective 

computational modeling and training. 

3) Word embedding: After encoding, the integer sequences 

were transformed into dense vector spaces through the use of 

pre-trained word embeddings. Word embeddings capture the 

semantic and syntactic properties of words, enabling the model 

to leverage semantic relationships for improved predictive 

performance. 

The embedding layer maps each token index to its 
corresponding vector representation, effectively addressing 
issues of data sparsity and reducing the number of trainable 
parameters, which in turn mitigates the risk of overfitting. In this 
work, pre-trained word vectors from GloVe (Global Vectors for 
Word Representation), an unsupervised learning algorithm 
introduced by Stanford researchers in 2014 [33], were utilized. 
These vectors were employed to initialize the embedding layer, 
with each word's embedding serving as the initial weight in the 
model. This initialization enables faster convergence and more 
effective learning during model training. 

G. Model Architecture 

The architecture of the proposed model was designed to 
effectively capture semantic and contextual features from 
learners' posts for sentiment classification. It is based on a 
Bidirectional Long Short-Term Memory (BiLSTM) deep neural 
network, augmented with several regularization techniques to 
enhance generalization performance. 

The model begins with an embedding layer, which converts 
input tokens into dense vectors of a fixed size. This layer was 
initialized with pre-trained GloVe vectors to embed semantic 
information into the input representations. To prevent 
overfitting at the embedding level, a SpatialDropout1D layer 
was applied, which randomly drops entire 1D feature maps to 
promote robust feature learning. 

Following the embedding and dropout operations, two 
stacked Bidirectional LSTM layers were employed. The first 
BiLSTM layer consists of 128 units, processes the input 
sequences in both forward and backward directions, and applies 
both dropout and recurrent dropout for regularization. Batch 
normalization was applied after this layer to stabilize and 
accelerate the training process. The second BiLSTM layer, 
consisting of 64 units, further refines the sequential features 
using a similar configuration of dropout, recurrent dropout, and 
batch normalization. 

After the stacked BiLSTM layers, the model includes a fully 
connected dense layer with 64 units and ReLU activation, 
introducing non-linearity to capture more complex patterns 
within the extracted features. A standard dropout layer was 
subsequently added to provide further regularization and reduce 
the risk of overfitting. 

Finally, the model concludes with a dense output layer 
utilizing a softmax activation function, producing probabilistic 
outputs across the sentiment classes. This enables the model to 
perform multi-class sentiment classification by assigning a 
probability score to each class. 

Overall, this architecture effectively balances the need to 
capture intricate sequential dependencies with robust 
regularization mechanisms, resulting in a model that generalizes 
well to unseen data. The overall architecture of the proposed 
model is illustrated in Fig. 11. 

H. Training Procedure 

The dataset was split into three parts: 60% for training, 10% 
for validation, and 30% for testing. The training data (60%) was 
used to build and train the model, while the validation data 
(10%) helped tune the model during training, and the testing data 
(30%) was reserved for final evaluation. Padding was applied to 
both the training and testing datasets to ensure uniform sequence 
lengths for efficient batch processing. The model was trained 
with a batch size of 64 for 50 epochs using the Adam optimizer 
with a learning rate of 0.001. Categorical crossentropy was used 
as the loss function for multi-class classification. 

Table IV summarizes the training hyperparameters and their 
justifications. 
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Fig. 11. Model architecture. 

TABLE IV.  TRAINING HYPERPARAMETERS AND THEIR JUSTIFICATIONS 

Parameter Details Justification 

Dataset Split 

60% Training, 

10% Validation, 

30% Testing 

Ensures fair model evaluation 
and prevents data leakage. 

Batch Size 64 
Balances computational 
efficiency and model stability. 

Epochs 50 
Allows sufficient training 
while preventing overfitting. 

Optimizer Adam 
Accelerates convergence and 
adapts learning rates. 

Loss Function 
Categorical 
Crossentropy 

Suitable for multi-class 
classification problems. 

Early Stopping 
Enabled (based on 
validation loss) 

Prevents overfitting by 
stopping training when 
performance plateaus 

IV. RESULTS 

In this section, we present the experimental results and a 
comparative analysis of the performance of our proposed 
enhanced Bi-LSTM model against several established baseline 
algorithms. The evaluation focuses on key metrics, including 
accuracy, precision, recall, and F1-score, to comprehensively 
assess the effectiveness and efficiency of the approach. In 
addition to presenting the numerical results, we provide detailed 
interpretations and discussions to highlight the significance of 
the findings, compare them with related works, and address the 
strengths and limitations of the model within the MOOC 
sentiment analysis context. 

A. Evaluation Metrics 

To comprehensively evaluate the performance of the 
proposed sentiment analysis model, several widely used 
classification metrics were employed, including accuracy, 
precision, recall, and F1-score. These metrics provide a robust 
understanding of the model’s effectiveness across different 
aspects of sentiment classification, beyond mere accuracy alone. 
Their definitions and corresponding formulas are as follows: 

 Accuracy:  measures the fraction of predictions where the 
model made a correct decision. It is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                     (7) 

 Precision: is the ratio of true positive results to all 
predicted positive results. It is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                          (8) 

 Recall: is the ratio of true positive results to all actual 
positive samples. It is computed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (9) 

 F1-score: represents the harmonic mean between 
precision and recall, providing a balanced evaluation 
metric. It is expressed as: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (10) 

Where TP denotes True Positives, TN denotes True 
Negatives, FP denotes False Positives, and FN denotes False 
Negatives. 

B. Results and Comparison with Baseline Models 

In this section, we present the experimental results of the 
proposed enhanced Bi-LSTM model on the Stanford MOOC 
Posts dataset and compare its performance against several 
baseline machine learning models, including Support Vector 
Machine (SVM), Decision Tree (DT), Random Forest (RF), 
Logistic Regression (LR), and Multilayer Perceptron (MLP). 

The evaluation was carried out using the previously 
described metrics: accuracy, precision, recall, and F1-score. 
Furthermore, the experiments were conducted under two 
conditions: without data augmentation and with data 
augmentation, to assess the impact of augmentation techniques 
on model performance. 

To ensure a comprehensive internal evaluation, we reported 
multiple evaluation metrics, including Accuracy, Precision, 
Recall, and F1-score. Considering the moderate class imbalance 
present in the Stanford MOOC Posts dataset, particularly the 
predominance of neutral sentiment posts the F1-score was 
particularly informative for assessing balanced classification 
performance beyond what Accuracy alone could capture. 

The detailed results for each model under both conditions are 
summarized in Table V. 

TABLE V.  EXPERIMENT RESULTS 

 
No Data augmentation Data augmentation 

Acc Prec Rec F1 Acc Prec Rec F1 

SVM 71.79 71.37 71.80 69.82 91.32 91.57 91.27 91.23 

DT 61.56 60.94 61.57 61.21 82.74 82.60 82.90 82.59 

RF 70.40 69.71 70.38 67.89 90.86 91.85 90.85 90.77 

LR 71.39 70.52 71.38 70.29 71.03 70.27 71.05 69.87 

MLP 67.59 66.81 67.50 67.04 89.77 89.81 89.79 89.70 

BI-LSTM 71.22 71.19 70.98 71.13 88.54 88.51 88.55 88.52 
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After observing the experimental results, it is evident that the 
Bi-LSTM model achieved strong performance across all 
evaluation metrics. Without data augmentation, the Bi-LSTM 
achieved an accuracy of 71.22% and an F1-score of 71.13%, 
outperforming baseline models such as SVM (69.82% F1-score) 
and RF (67.89% F1-score). After applying data augmentation 
techniques, the Bi-LSTM’s accuracy increased to 88.54%, with 
an F1-score of 88.52%. These results confirm the model’s 
effectiveness in both overall prediction correctness (Accuracy) 
and balanced classification performance (F1-score). 

Although the SVM model achieved the highest F1-score of 
91.23% after augmentation, the Bi-LSTM demonstrated 
consistent and competitive performance across all evaluation 
metrics. The slight and unexpected outperformance of SVM can 
be attributed to the structured nature of the dataset, where 
traditional machine learning models can sometimes perform 
better in recognizing more formal, less noisy textual patterns. 
Nevertheless, the Bi-LSTM model showed strong robustness 
and generalization capabilities, particularly when considering its 
potential scalability to larger and more diverse datasets with 
higher linguistic variability. 

The significant improvement observed after applying data 
augmentation techniques can be attributed to the increased 
diversity and richness of the training data. By generating 
synthetic examples through operations such as synonym 
replacement, random insertion, word swapping, and random 
deletion, the model was exposed to a wider variety of linguistic 
patterns and textual variations. This exposure helped the Bi-
LSTM model generalize better to unseen data, reduce 
overfitting, and become more robust in handling informal 
expressions, typos, and abbreviations commonly found in 

learner-generated posts. Consequently, the augmented dataset 
enabled the model to capture the underlying sentiment signals 
more effectively, leading to notable gains across all evaluation 

metrics. 

C. Comparison with Existing Studies 

After evaluating the performance of the proposed enhanced 
Bi-LSTM model internally, this section presents a comparative 
analysis against previously published sentiment analysis 
approaches that also used the Stanford MOOC Posts dataset. 
Accuracy is used as the primary evaluation metric to allow a 
consistent and meaningful comparison with results reported in 
existing studies. The comparative results are summarized in 
Table VI. 

After reviewing the comparative results presented in 
Table VI, it is evident that the proposed enhanced BiLSTM 
model achieves a highly competitive performance, attaining an 
accuracy of 88.54%. This surpasses the results of several 
existing approaches, including the HAN-based method by 
Chanaa and El Faddouli [34] (70.3%), the XLNet-CNN model 
by Farahmand et al. [35] (77%), and the LSTM-based 
framework by Munigadiapa and Adilakshmi [36] (87.64%). 
Although the SSDL approach proposed by Chen et al. [10] 
achieved a slightly higher accuracy of 89.73%, it relies on a 
semi-supervised learning strategy and the integration of multiple 
embeddings, increasing the model's complexity. In contrast, the 
proposed BiLSTM model demonstrates strong performance 
using a simpler architecture enhanced with GloVe embeddings 
and data augmentation techniques, making it a more practical 
and efficient solution for large-scale MOOC sentiment analysis 
tasks. 

TABLE VI.  COMPARATIVE RESULTS 

Study Techniques Applied Accuracy Comments 

A. Chanaa and N. El Faddouli [34] HAN 70.3% 
Utilizes a Hierarchical Attention Network (HAN) to surpass traditional 

text classification models. 

J. Chen, J. Feng, X. Sun, and Y. Liu [10] SSDL 89.73% 
Proposes a co-training semi-supervised deep learning framework 

(SSDL) that combines word embedding and character-based embedding 

to improve sentiment classification. 

Farahmand et al.[35] XLNet-CNN 77% 
Identifies and visualizes student sentiment in discussion forums to 
enhance self-awareness and engagement, with sentiments categorized as 

negative, neutral, or positive. 

Munigadiapa, P.,  Adilakshmi, T. [36] 
LSTM, GloVe 

embedding, Ax 
87.64% 

Proposes a sentiment analysis system using a new LSTM architecture 
and Ax hyperparameter tuning, designed for large-scale sequential 

sentiment analysis. 

Our Study 
BiLSTM,  

GloVe,embedding 
88,54% 

Proposes an enhanced BiLSTM model utilizing GloVe embeddings and 

data augmentation techniques to improve sentiment classification 
performance. 

 

V. DISCUSSION 

The experimental results demonstrate the effectiveness of 
the proposed enhanced Bi-LSTM model for sentiment analysis 
in the MOOC context. After applying data augmentation 
techniques, the Bi-LSTM model exhibited substantial 
improvements across all evaluation metrics, confirming the 
benefits of enriching the training data to better capture the 
linguistic variability present in learner-generated posts [37]. 

An interesting observation was the slight and unexpected 
outperformance of the SVM model in terms of F1-score after 
data augmentation. This deviation highlights that, in relatively 

structured and less noisy datasets, traditional machine learning 
models can sometimes capitalize on clear textual patterns more 
efficiently than deep neural networks [38], which typically 
require larger and more heterogeneous datasets to fully realize 
their advantages. Nevertheless, the Bi-LSTM model 
demonstrated strong generalization capabilities across all 
evaluation metrics, particularly in terms of its scalability to more 
complex and diverse data environments. 

When compared with existing studies on MOOC sentiment 
analysis that used the same Stanford MOOC Posts dataset, the 
proposed Bi-LSTM framework achieved competitive 
performance. Although some prior works reported slightly 
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higher accuracy scores, the present study emphasizes 
robustness, stability, and real-world applicability across diverse 
sentiment categories. The integration of data augmentation and 
regularization strategies proved essential in enhancing the 
model’s ability to generalize, aligning with broader trends 
observed in recent natural language processing research. Given 
these generalization capabilities, the framework may also be 
adaptable to other domains involving informal or user-generated 
content, such as product reviews, social media streams, 
customer sentiment analysis or hate speech detection [39], 
where similar linguistic variability and class imbalance are 
present. 

The proposed approach is characterized by several strengths, 
including the ability to handle class imbalance, improve 
performance on noisy text, and adapt to evolving online 
discourse. Nonetheless, certain opportunities remain for further 
extension. While the data augmentation techniques employed in 
this study, such as synonym replacement and random word 
swapping, proved highly effective, future work could investigate 
complementary strategies such as contextual augmentation 
using masked language models (e.g. BERT-based 
augmentation) or back-translation to further diversify the 
training set. Additionally, building upon the demonstrated 
effectiveness of the enhanced Bi-LSTM model, future research 
could explore the integration of transformer-based architectures 
such as BERT [40], RoBERTa [41], or ALBERT [42] to capture 
even deeper contextual relationships and subtle semantic 
nuances present in learner-generated posts, thereby expanding 
the model’s capabilities for more complex and dynamic 
educational environments. 

VI. CONCLUSION 

This study proposed an enhanced Bi-LSTM framework for 
sentiment analysis of learners’ posts within the MOOC context. 
By integrating carefully designed data preprocessing, data 
augmentation techniques, and regularization strategies, the 
model demonstrated robust performance across multiple 
evaluation metrics. Experimental results confirmed the 
effectiveness of the proposed approach, with notable 
improvements in both Accuracy and F1-score after applying 
data augmentation, highlighting the model’s ability to generalize 
across varied learner-generated content. 

A comparative analysis with traditional machine learning 
models, including SVM, Decision Tree, Random Forest, 
Logistic Regression, and MLP, showed that the enhanced Bi-
LSTM model achieved competitive results, particularly in 
balancing precision, recall, and F1-score. Although a slight and 
unexpected outperformance by SVM was observed under 
specific conditions, the Bi-LSTM model consistently 
demonstrated strong adaptability and scalability, positioning it 
as a promising solution for sentiment analysis tasks in large-
scale educational environments. 

The findings of this study contribute to advancing the field 
of educational sentiment analysis by providing a scalable and 
robust framework capable of addressing real-world challenges 
such as informal language, typographical errors, class 
imbalance, and varied textual structures. In particular, the 
integration of data augmentation introduced valuable linguistic 

variations, reduced overfitting, and contributed to enhancing the 
model’s ability to generalize across diverse linguistic patterns 
present in learner-generated content. These contributions 
support the development of more adaptive, sentiment-aware 
learning support systems, benefiting researchers and 
practitioners aiming to improve learner engagement and 
personalized feedback in online education. 

For future work, several promising directions are identified. 
Extending the framework to multilingual datasets would enable 
broader applicability across diverse learning environments and 
cultural contexts. Furthermore, incorporating more 
sophisticated augmentation strategies, such as syntax-aware or 
semantics-driven transformations, could further enrich the 
training data. Additionally, extending the proposed model to 
related NLP tasks, such as emotion detection or sarcasm 
analysis, could leverage its ability to capture nuanced contextual 
relationships, offering further valuable applications. The 
integration of the proposed framework into real-world 
educational support systems represents a valuable next step, 
enabling instructors to monitor learner sentiment in real time and 
tailor instructional strategies to enhance engagement. Finally, 
exploring transformer-based architectures, such as BERT or 
RoBERTa fine-tuned for educational sentiment analysis, also 
holds potential to enhance classification performance and 
advance sentiment analysis capabilities in online learning 
platforms. 
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