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Abstract—Wireless sensor networks (WSNs) are a modern 

technology that has revolutionized many industries thanks to their 

ability to collect and analyze information from surrounding 

environments and improve the performance of complex systems 

through the cooperation of a group of independent sensors to 

achieve common goals. Sensor clustering and agreement have 

wide applications in daily life, ranging from environmental 

monitoring and industrial control to healthcare and smart cities. 

However, the WSN system faces many challenges, one of the most 

prominent is achieving agreement between different sensors on a 

common state. This challenge is essential to enable successful 

cooperation between sensors in complex systems. Many previous 

research and models have been developed to address the problem 

of sensor agreement, such as the Neighbor-Influenced Timestep 

Consensus Model (NITCM), which was presented as a framework 

to achieve agreement effectively. In this paper, we propose a new 

technique to improve this model by using fractional force in the 

updating process. This leads to developing the Neighbor-

Influenced Fractional Timestep Consensus Model (NIFTCM). 

This technique achieves faster convergence between sensors, 

which leads to improved efficiency in reaching agreement over 

previous techniques. This development aims to enhance the speed 

and stability of consensus processes in wireless sensor networks 

and make them more suitable for time-sensitive applications. 

Keywords—Fractional power; consensus; WSNs; NIAM; 

NIFFAM 

I. INTRODUCTION 

Wireless sensor networks (WSNs) are a modern technology 
that has greatly influenced many industrial and technological 
fields. These networks consist of small sensors that 
communicate via wireless communications to collect data from 
the surrounding environment, analyze it, and transmit it to a 
central processing center or to other relevant devices. Wireless 
sensor networks are a powerful tool in improving the efficiency 
of operations and providing smart solutions, and they have been 
employed in many applications such as healthcare, smart 
agriculture, environmental monitoring, smart cities, and security 
systems [1]. This technology allows communities to improve 
resource management and enhance the overall quality of life. 

Wireless sensor networks have revolutionized various 
industries thanks to the ability to monitor and collect data 
continuously and present it in real time. By applying this 
technology, it has become possible to improve the efficiency of 
operational processes, reduce costs, and increase the reliability 

of systems, making wireless sensor networks a key focus for the 
development of future technologies [2]. 

Multi-agent systems are advanced models that rely on 
independent agents working simultaneously to achieve common 
goals. Agents can represent independent devices or intelligent 
programs like sensors, and they work collaboratively to solve 
complex problems [3]. Multi-agent systems have been used in 
applications such as robot coordination, e-commerce, and 
network management, including wireless sensor networks. In 
this context, MAS is an effective tool for managing and 
organizing work between different sensors in a single network, 
which improves the overall efficiency of the network [4]. 
Despite the significant advantages of wireless sensor networks, 
they face several critical challenges, the most prominent of 
which is the problem of consensus between different sensors to 
achieve collective agreement on the collected data or actions 
taken. Consensus between sensors is vital to ensure the accuracy 
and reliability of data; hence, the importance of achieving a 
common agreement between all agents in the system [5]. Other 
challenges include reducing energy consumption, improving 
data security, and increasing fault tolerance. 

The consensus problem in multi-agent systems is defined as 
the ability to achieve common agreement among a group of 
independent agents on a particular state or value, through their 
repeated interactions with each other [6]. In wireless sensor 
networks, the consensus problem is fundamental, as it 
contributes to improving the efficiency of the network and 
ensuring that all sensors reach uniform results regarding the 
collected data. Challenges facing consensus in these networks 
include communication delays, unstable wireless links, and the 
negative impact of environmental noise [7]. 

Several consensus models have been suggested in past 
works, and the human-friendly Neighbor-Influenced Timestep 
Consensus Model (NITCM) is one of them. However, due to its 
simplicity, NITCM takes comparatively longer to resolve in 
complex environments. Alternatively, nonlinear models have 
shown quicker and more straightforward convergence than 
linear models; however, they are not as widely used in wireless 
sensor networks. 

In this paper, we propose a new model called the Neighbor-
Influenced Fractional Timestep Consensus Model (NIFTCM). 
This model is based on and builds on the well-known linear 
Neighbor-Influenced Timestep Consensus Model (NITCM) [8]. 
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NIFTCM accomplishes this by adding a fractional power 
method to the update steps, thus changing the original linear 
system into a nonlinear system. NIFTCM aims to quicken the 
convergence process and improve the efficiency of reaching 
consensus while maintaining the system's simplicity. 

Due to its nonlinear nature, the model is likely to provide 
higher efficiency and a quicker rate of convergence than regular 
linear models, mainly in dynamic WSNs. We will review 
academic works to show the quality of our suggested strategy, 
reveal any current open issues, and verify its relevance. 

We then explain how NIFTCM is obtained using fractional 
powers, carry out comparison tests, and report the differences in 
their performance. We will explore how the NIFTCM model 
helps achieve greater agreement speed and less overhead, 
therefore making the model a better option for timely WSN uses. 

The organization of the paper goes as explained below. 

 Section II discusses existing research on the topic and 
points out weaknesses in existing approaches. 

 Section III outlines the methodology and shows where 
the fractional power has been put into the model. 

 Section IV presents the results of tests and compares 
NIFTCM to NITCM. 

 Section V covers the findings and suggests possible 
future work. 

II. RELATED WORK 

Wireless sensor networks (WSNs) and Internet of Things 
(IoT) systems have witnessed rapid developments in the last 
decade, making them a mainstay for modern applications 
including agriculture, health, industry, and military fields. Many 
researchers have addressed the challenges associated with these 
technologies and sought to provide innovative solutions to 
improve their performance and efficiency. Gulati et al. [9] 
pointed out the problem of energy consumption in wireless 
networks where small nodes that rely on batteries suffer from 
short lifespan, and presented energy-efficient data collection 
techniques to improve the network lifetime. However, their 
techniques faced challenges in dynamic environments. 

In a different context, Al-Hamami and Nasser Al-Din [10]  
focused on the use of wireless networks to manage irrigation 
systems, which contributed to improving water use efficiency 
and reducing the global water crisis, despite challenges related 
to costs and infrastructure. Other research has focused on 
improving the compatibility speed in wireless networks, such as 
the study by Jiang and Li [11] who presented asymmetric mixing 
matrices to accelerate compatibility and reduce computational 
complexity using spectrum standards. 

On the other hand, Wang et al. [12] proposed the MECTS 
algorithm to improve the convergence speed in industrial 
networks while reducing the communication overhead by 
22.7%. In the same context, Yu [13] addressed the improvement 
of distributed consensus protocols using the Reliability Gain 
metric to analyze the relationship between reliability and 
latency, while presenting an adaptive protocol that ensures 
continuous decision-making even in the event of failure. 

Research has also focused on improving the efficiency of 
wireless networks. Patel and Parveen [14] presented the CSCS 
framework to enhance security and efficiency in wireless 
networks, while Chen et al. [15] developed the HSL strategy to 
improve information aggregation and speed up the consensus 
process. In industrial applications, Xu et al. [16] studied 
distributed consensus protocols such as Raft to improve the 
reliability of autonomous systems. Also, Ishii et al. [17] 
reviewed the security algorithms of cyber systems against data 
injection attacks and denial of service attacks. 

In the field of hybrid protocols, Pranathi et al. [18] proposed 
a routing protocol that combines energy efficiency and network 
resilience against node failure, while Li et al. [19] focused on the 
DIFIR algorithm that enhances target tracking accuracy in MAS. 
On the other hand, Mahato et al. [20] presented an algorithm to 
improve task allocation in unstable network environments using 
synchronous transfer protocols. 

In terms of time synchronization, Fan et al. [21] developed 
the NTSP protocol to reduce the impact of asynchronous nodes 
and speed up synchronization by three times compared to 
traditional protocols. In a different context, Feng et al. [22] 
discussed improving autonomous driving using a distributed 
consensus framework in V2V networks, with protocols designed 
to meet the requirements of complex maneuvers. 

Liao et al. [23] presented an algorithm to improve energy 
efficiency using network utility maximization technique, while 
Jin and Sun [24] presented a DOP algorithm to improve the 
stability and accuracy of estimations in sensor networks. In the 
field of distributed state estimation, Zhang et al. [25] introduced 
RCIF and DRCIF algorithms that improved the stability of 
networks and the estimation accuracy, while Chen et al. [26] 
focused on developing a new estimator for distributed state 
estimation in energy harvesting capable networks, providing 
innovative solutions to energy-related challenges. 

Other research has addressed the consensus challenges in 
UAV networks. Cheng et al. [27] developed the UCP protocol 
to improve consensus in dynamic and complex UAV 
environments. Prabhu et al. [28] focused on secure routing 
mechanisms in sensor networks to improve security against 
attacks. 

In advanced consensus applications, Guyeux et al. [29] 
discussed improving the consensus process using parallel atomic 
transactions to speed up consensus time and reduce 
communication and energy costs. 

Security solutions have multiplied in wireless networks, as 
Chen et al. [30] focused on implementing federated learning in 
distributed networks through the DACFL framework, which 
increased the consistency and accuracy of models by up to 50% 
compared to traditional methods. Fan and Kim [31] designed the 
VTSP protocol to improve time synchronization in wireless 
networks, which reduced the convergence time by three times 
compared to traditional protocols. 

In terms of MAS, Amirkhani and Parshvi [32] presented a 
comprehensive review of consensus algorithms and their 
applications in collective control and configuration formation. 
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In terms of improving energy consumption, Lu et al. [33] 
proposed a method to optimize topology and reduce data 
redundancy using an iterative algorithm to determine common 
parameters. While Benkhadra et al. [34] focused on the use of 
Blockchain technology to improve the security of wireless 
networks in the healthcare sector, which led to enhanced data 
protection and security assurance. 

Abdulghafor et al. [35]-[49] presented novel nonlinear 
models such as SSQO and MDSQO, which have proven 
effective in accelerating consensus and improving efficiency. In 
additionally, Abdulghafor and Shahidi et al. [50]-[55] addressed 
the dynamics of random quadratic motors, providing deep 
insights into compatibility optimization using Lyapunov 
theorems, and demonstrated that these models effectively solve 
compatibility problems in wireless networks. 

Over the past few years, researchers have developed some 
advanced consensus methods to make WSNs work more 
efficiently in 2025. They have also looked into distributed 
consensus in WSNs to make the data more accurate and reliable 
in different situations. Kenyeres et al. [56] studied seven fusion 

algorithms based on gossip to mitigate Gaussian‐ noise-

induced errors in measured values. The results clearly stated that 
Push-Sum is preferred for densely connected nets while 
Geographic Gossip improves results in more dispersed 
networks, making both methods result in at least 24 dB less 
MSE. Yuan and Ishii [57] applied the MSR method to multi-hop 
networks and found that including more relay stations can 
ensure resilience to adversaries. By using a state-dependent 
approach, Zhao et al. [58] designed a high-gain protocol that 
guarantees that multi-agent systems move towards consensus 
even when the communication graph is dynamic. Xu et al. [59] 
gave a clear explanation of how wireless consensus works, 
looking at both standard fault-tolerant and Byzantine-tolerant 
protocols, and also talked about how blockchain tech can be 
used with wireless networks to help build trust between devices. 
Giridi et al. [60] explained how WSNs with blockchain can 
weed out unreliable information and help with optimal routing. 
All these innovations point to how gossip, multi-hop systems, 
state-based protocols, good spectrum use, and blockchain trust 
help achieve reliable and fast consensus in wireless networks 
without many resources. 

Most suggested methods for getting agreement in wireless 
sensor networks are classic and fail to perform well in complex 
or challenging environments. Although nonlinear models 
perform better in some situations, they are not used as 
commonly or appropriately tailored to the special features of 
WSNs. The linear NITCM model is simple but takes a long time 
to adjust. It is unsuitable for applications that require constant 
adaptation due to topology or environmental changes. By 
comparison, fractional power models offer a different path since 
their nonlinear behavior allows them to escape these limitations. 
We added fractional power to the model to help convergence 
and maintain adequate stability in a way that does not increase 
computational difficulty. Also, there is not enough research on 
using methods such as fractional power, which might improve 
the speed and efficiency with which nodes come to a consensus. 

So, it is necessary to develop a model that addresses these 
weaknesses using linear models’ simplicity and retaining 
nonlinear methods’ increased performance. To achieve this, the 
authors suggest using their model NIFTCM, with fractional 
power techniques, which enables faster consensus and is still 
helpful in wireless sensor networks. 

These studies demonstrate that the continuous development 
of wireless network technologies provides practical solutions to 
compatibility, energy, and security challenges, enhancing their 
adaptability to more demanding future applications. 

III. RESEARCH METHODOLOGY 

Wireless sensor networks (WSNs) and Internet of Things 
(IoT) systems have rapidly developed in the last decade, making 
them a mainstay for modern applications, including agriculture, 
health, industry, and military. Many researchers have addressed 
the challenges associated with these technologies and sought to 
provide innovative solutions to improve their performance and 
efficiency. Gulati et al. [9] pointed out the problem of energy 
consumption in wireless networks where small nodes that rely 
on batteries suffer from short lifespans and presented energy-
efficient data collection techniques to improve the network 
lifetime. However, their techniques faced challenges in dynamic 
environments. 

In a different context, Al-Hamami and Nasser Al-Din [10]  
focused on using wireless networks to manage irrigation 
systems, which contributed to improving water use efficiency 
and reducing the global water crisis, despite challenges related 
to costs and infrastructure. Other research has focused on 
enhancing the compatibility speed in wireless networks, such as 
the study by Jiang and Li [11] presented asymmetric mixing 
matrices to accelerate compatibility and reduce computational 
complexity using spectrum standards. 

The research methodology in this paper is to develop the 
traditional consensus equation system into an improved system 
using fractional power 1/𝑛 , with the mechanism of this 
development being systematically defined as follows: 

1) Understanding classical model of NITCM 

 The classic equations represent a simple mathematical 
system that uses time steps 𝑑𝑡  to calculate the future 
values of each element 𝑃𝑖  based on the effects of 
neighbours. 

 The weight used to update the values is determined based 
on parameters such as (1 − 𝑑𝑡) and 𝑑𝑡, which allows the 
combined effect of neighboring elements to be 
calculated. 

The basic formula for equations in NITCM is: 

𝑃1
𝑖+1 = (1 − 𝑑𝑡)𝑃1

𝑖 + 𝑑𝑡𝑃2
𝑖  

𝑃2
𝑖+1 = (1 − 1.5 ∗ 𝑑𝑡)𝑃2

𝑖 + 1.5 ∗ 𝑑𝑡𝑃3
𝑖                 (1) 

𝑃3
𝑖+1 = (1 − 2 ∗ 𝑑𝑡)𝑃3

𝑖 + 2 ∗ 𝑑𝑡𝑃1
𝑖 

 These equations aim to achieve consistency between 
values through the influence of neighbours, where the 
update rate is controlled by 𝑑𝑡. 
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2) Identifying limitations and challenges 

 Limited speed of convergence: The model relies on small 
time steps 𝑑𝑡 , which results in slow convergence in 
complex systems. 

 Linear response: The linear model makes dealing with 
nonlinear or variable environments difficult. 

 Reliance on absolute values: This may have a limited 
impact on improving efficiency in complex scenarios 
such as wireless sensor networks. 

3) Fractional power technique proposal of NIFTCM 

 The traditional equations are modified to include the 
fractional power 1/𝑛, where this technique is applied to 
the weighted values after updating at each time step. 

 This modification allows dynamic control of the 
convergence speed and accuracy of the results by 
changing the value of 𝑛, where 𝑛 = 2, 𝑛 = 3, …, n, and 
so on. 

 Improved equations of NIFTCM: 

𝑃1
𝑖+1 = ((1 − 𝑑𝑡)𝑃1

𝑖 + 𝑑𝑡𝑃2
𝑖)

1
𝑛

 

𝑃2
𝑖+1 = ((1 − 1.5 ∗ 𝑑𝑡)𝑃2

𝑖 + 1.5 ∗ 𝑑𝑡𝑃3
𝑖)

1

𝑛
            (2) 

𝑃3
𝑖+1 = ((1 − 2 ∗ 𝑑𝑡)𝑃3

𝑖 + 2 ∗ 𝑑𝑡𝑃1
𝑖)

1
𝑛

 

4) Comparison between the classical model of NITCM and 

improved model of NIFTCM 

A comprehensive comparison is made between the two 
models in terms of: 

 Consensus speed: the extent to which each model can 
achieve consensus in a given number of iterations. 

 Flexibility: the model's ability to adapt to nonlinear 
environments. 

 Efficiency: reducing resource consumption such as 
energy and computing time. 

5) Practical application 

The two models are applied to scenarios in wireless sensor 
networks (WSNs) to determine: 

 The efficiency of the improved model in improving 
energy consumption. 

 Consensus speed compared to the simple model. 

This research represents a significant development of the 
simple model using the fractional power technique 1/𝑛, where 
performance is greatly improved by adding the nonlinear 
response. This development can lead to faster and more efficient 
consensus, making it suitable for applications in complex 
environments such as wireless sensor networks. 

B. Flowchart of the Research 

Following the diagram seen in Section I, here is how the 
research methodology and model development process are 
described: 

 
Diagram 1. Research flowchart. 

It describes the research problem as the slow way traditional 
agreement methods, such as NITCM, function in wireless sensor 
networks (WSNs). The literature review reviews existing 
methods and tools, pointing out their weaknesses and 
shortcomings. Trying to improve on it, a new version called the 
Neighbor-Influenced Fractional Timestep Consensus Model 
(NIFTCM) is introduced. It combines a fractional power into the 
standard update formulas, which turns it into a nonlinear system 
that performs better. The second step is to make and test the 
proposed algorithm, then run experiments in simulation to 
observe the differences between old and new methods when 
supplied with different fractional power ratings. Plots are used 
to compare the results and show that the NIFTCM model 
strongly speeds up the rate of reaching consensus. Ultimately, 
the team summarizes the work and discusses how best to move 
forward, such as using it in practice or further experiments. 

IV. RESULTS 

A. Experimental settings 

 Initial values: 

𝑃1 = 1, 𝑃2 = 2, 𝑃3 = 3 

 𝑑𝑡 =  0.01  

 tolerance= 1 × 10−5 

B. Examples 

1) Original Model (NITCM): 

a) Iteration 1: 

 Initial Values: 

𝑃1 = 1, 𝑃2 = 2, 𝑃3 = 3 

 Update 𝑃1 using the equation (1): 
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𝑃1
1+𝑖 = (1 − 𝑑𝑡) ∗ 𝑃1

𝑖 + 𝑑𝑡 ∗ 𝑃2
𝑖  

Substitution: 

𝑃1
1 = (1 − 0.01) ∗ 1 + 0.01 ∗ 2 

      = 0.99 + 0.02 = 1.01 

 Update 𝑃2: 

𝑃2
1+𝑖 = (1 − 1.5 ∗ 𝑑𝑡) ∗ 𝑃2

𝑖 + 1.5 ∗ 𝑑𝑡 ∗ 𝑃3
𝑖  

Substitution: 

𝑃2
1 = (1 − 0.015) ∗ 2 + 0.015 ∗ 3 

      = 1.985 + 0.045 = 2.03 

 Update 𝑃3: 

𝑃3
1+𝑖 = (1 − 2 ∗ 𝑑𝑡) ∗ 𝑃3

𝑖 + 2 ∗ 𝑑𝑡 ∗ 𝑃1
𝑖  

Substitution: 

𝑃3
1 = (1 − 0.02) ∗ 3 + 0.02 ∗ 1 

      = 2.94 + 0.02 = 2.96 

b) Final result: 

 The process is repeated until the differences between 

the values are less than tolerance. 

 Eventually, the values reach: 

𝑃1 = 𝑃2 = 𝑃3 = 1.76 

 Number of iterations ~500. 

2) Develop Model with fractional power (
𝟏

𝟐
) (NIFTCM): 

a) Iteration 1: 

 Initial Values: 

𝑃1 = 1, 𝑃2 = 2, 𝑃3 = 3 

 Update 𝑃1 using the equation (2): 

𝑃1
1+𝑖 = ((1 − 𝑑𝑡) ∗ 𝑃1

𝑖 + 𝑑𝑡 ∗ 𝑃2
𝑖)

1
2
 

Substitution: 

𝑃1
1 = ((1 − 0.01) ∗ 1 + 0.01 ∗ 2)

1
2 

𝑃1
1 = (0.99 ∗ 1 + 0.01 ∗ 2)1/2 = (0.99 + 0.02)

1
2 

𝑃1
1  = √1.01  =  1.004987 

 Update 𝑃2: 

𝑃2
1+𝑖 = ((1 − 1.5 ∗ 𝑑𝑡) ∗ 𝑃2

𝑖 + 1.5 ∗ 𝑑𝑡 ∗ 𝑃3
𝑖)

1
2
 

Substitution: 

𝑃2
1 = ((1 − 1.5 ∗ 0.01) ∗ 2 + 1.5 ∗ 0.01 ∗ 3)

1
2 

𝑃2
1 = (0.985 ∗ 2 + 0.015 ∗ 3)1/2 = (1.97 + 0.045)

1
2 

𝑃2
1 = √2.015 = 1.418332 

 Update 𝑃3: 

𝑃3
1+𝑖 = ((1 − 2 ∗ 𝑑𝑡) ∗ 𝑃3

𝑖 + 2 ∗ 𝑑𝑡 ∗ 𝑃1
𝑖)

1
2
 

Substitution: 

𝑃3
1 = ((1 − 2 ∗ 0.01) ∗ 3 + 2 ∗ 0.01 ∗ 1)

1
2 

𝑃3
1 = (0.98 ∗ 3 + 0.02 ∗ 1)1/2 = (2.94 + 0.02)

1
2 

𝑃3
1 = √2.96 = 1.720465 

b) Iteration 2: 

 Update 𝑷𝟏: 

𝑃1
2 = ((1 − 0.01) ∗ 1.004987 + 0.01 ∗ 1.418332)

1
2 

𝑃1
2 = (0.99 ∗ 1.004987 + 0.01 ∗ 1.418332)1/2

= (0.994937 + 0.014183)
1
2 

𝑃1
2 = √1.00912 = 1.004548 

 Update 𝑷𝟐: 

𝑃2
2 = ((1 − 1.5 ∗ 0.01) ∗ 1.418332 + 1.5 ∗ 0.01

∗ 1.720465)
1
2 

𝑃2
2 = (0.985 ∗ 1.418332 + 0.015 ∗ 1.720465)

1
2

= (1.396067 + 0.025807)
1
2 

𝑃2
2 = √1.421874 = 1.192712 

 Update 𝑷𝟑: 

𝑃3
2 = ((1 − 2 ⋅ 0.01) ⋅ 1.720465 + 2 ⋅ 0.01 ⋅ 1.004987)

1
2 

𝑃3
2 = (0.98 ∗ 1.720465 + 0.02 ∗ 1.004987)

1
2

= (1.686056 + 0.0201)
1
2 

𝑃3
2 = √1.706156 = 1.306157 

c) Final result: 

 The model reaches consensus in only ~16 iterations. 

 Final values: 

𝑃1 = 𝑃2 = 𝑃3 = 1 

3) Explanation of the graphs 

a) For 3 WSNs: 

i) Fig. 1 (NITCM vs NIFPCM at 𝑛 = 2): 

 Left part (NITCM): 

o Shows the convergence of the three values 

(𝑃1, 𝑃2, 𝑃3)  towards the mean (1.76)  over 500 

iterations. 
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o The curves represent the gradual change of each 

value until consensus is achieved. 

 Right part (NIFPCM at 𝑛 = 2): 

o Shows that the values reach consensus quickly 

(~16 iterations). 

o Fractional power makes updates faster compared 

to the simple model. 

 

Fig. 1. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

2
 for 

3 WSNs. 

ii) Fig. 2 (𝑛 = 10): 

 Left part: Similar to the simple model (NITCM) in 

Fig. 1. 

 Right part: Shows faster convergence (~4 iterations 

only). 

 

Fig. 2. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

10
 

for 3 WSNs. 

iii) Fig. 3 (𝑛 = 100): 

 Left part: Similar to the simple model (NITCM) in 

Fig. 1. 

 Right: Shows the effect of large 𝑛 , where 

convergence becomes faster (~2 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠). 

 

Fig. 3. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

100
 

for 3 WSNs. 

iv) Fig. 4 (𝑛 = 1000): 

 Left part: Similar to the simple model (NITCM) in 

Fig.1. 

 Right: Almost instantaneous convergence, showing 

that large 𝑛  makes the model very close to linear 

(only one iteration). 

 

Fig. 4. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

1000
 

for 3 WSNs. 

b) For 5 WSNs: 

i) Fig. 5: NITCM and NIFTCM for 5 WSNs at 𝑛 = 2 

NITCM: The first figure on the left shows how five sensors 
interact using the linear model (NITCM). As can be seen, the 
initial values 𝑃1 = 1, 𝑃2 = 2, 𝑃3 = 3, 𝑃4 = 4, 𝑃5 = 5  gradually 
converge towards an average value of around 3 . The 
convergence process takes around 1400  iterations to reach 
consensus, indicating a relatively slow convergence speed. 

NIFTCM (𝑛 = 2): The second figure on the right shows the 
results of the improved model (NIFTCM) with a fractional 

power of 
1

2
. The convergence speed is significantly higher, with 

the values reaching consensus to 1 in only around 17 iterations. 
This indicates that the fractional force contributes to the 
acceleration of the convergence process effectively. 

 

Fig. 5. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

2
 for 

5 WSNs. 

ii) Fig. 6: NITCM and NIFTCM for 5 WSNs at 𝑛 =
10 

NITCM: The linear model continues with almost the same 
performance as before, reaching consensus after about 1400 
iterations. 

NIFTCM (𝑛 = 10) : The second figure shows a greater 

improvement in convergence speed. When applying a fractional 

power of 
1

10
, the values reach consensus in only about 6 

iterations, reflecting the high efficiency of the improved model 

at this value. 
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Fig. 6. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

10
 

for 5 WSNs. 

iii) Fig. 7: NITCM and NIFTCM for 5 WSNs at 𝑛 =
100 

NITCM: It is no different from the linear model in the 
previous figures, reaching consensus after the same number of 
iterations. 

NIFPCM (n=100): The graph shows significantly faster 
convergence, with the values reaching consensus to 1 after only 
3 iterations. The higher the value of n, the faster the improved 
model can converge. 

 

Fig. 7. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

100
 

for 5 WSNs. 

iv) Fig. 8: NITCM and NIFTCM for 5 WSNs at 

n=1000 

NITCM: continues to perform the same without any 
noticeable change. 

NIFPCM (n=1000): With such a large value of 𝑛, it appears 
that the values reach consensus in less than 2  iterations, 
reflecting the very high efficiency of the model as 𝑛 increases. 

 

Fig. 8. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

1000
 

for 5 WSNs. 

c) For 10 WSNs: 

i) Fig. 9: Comparison of NITCM and NIFPCM at 

𝑛 = 2 for 10 WSNs 

Left figure (NITCM): The figure shows the evolution of the 
state of each of the ten sensors over time (iterations). The states 
start with different values (1, 2, 3, ..., 10). It is clear that the 
traditional model (NITCM) needs a very large number of 
iterations to reach the consensus state (more than 5000 
iterations). The oscillations between the states are evident at the 
beginning, which shows that the system needs more time to 
achieve stable values. 

Right figure (NIFTCM, 𝑛 = 2): Shows the effect of adding 

the fractional power (
1

2
) on the improved model (NIFTCM). 

The iterations required to reach the consensus state are 
significantly reduced (only about 15 iterations). The figure 
enhances the efficiency of the improved model as the states 
show a rapid and steady decline towards the mean value. 

 

Fig. 9. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

2
 for 

10 WSNs. 

ii) Fig. 10: Comparison of NITCM and NIFTCM at 

𝑛 = 10 for 10 WSNs 

Left figure (NITCM): The figure shows that the ten sensors 
still show similar behavior as in the first figure with large 
oscillations and a huge number of iterations required to achieve 
consensus. The initial values react slowly to reach the final 
consensus. 

Right figure (NIFTCM, 𝑛 = 10): With the application of 

fractional power (
1

10
), a very large decrease in the number of 

iterations required to achieve consensus is seen (only about 6 
iterations). The lines show a smooth and regular convergence, 
reflecting the significant improvement in the speed of reaching 
consensus. 

 

Fig. 10. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

10
 

for 10 WSNs. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

189 | P a g e  

www.ijacsa.thesai.org 

iii) Fig. 11: Comparison of NITCM and NIFTCM at 

𝑛 = 100 for 10 WSNs 

Left figure (NITCM): The pattern is similar to the previous 
two figures. The time required to achieve consensus is still very 
long due to the linear nature of the traditional model. 

Right figure (NIFPCM, 𝑛 = 100): The figure shows that the 
number of iterations required to achieve consensus has become 
much smaller (only about 3 iterations). The lines indicate a fast 
and direct convergence towards the mean value without any 
significant oscillations. 

 

Fig. 11. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

100
 

for 10 WSNs. 

iv) Fig. 12: Comparison of NITCM and NIFTCM at 

𝑛 = 1000 for 10 WSNs 

Left figure (NITCM): Same observations as before with 
continued slow oscillations and a very large number of iterations 
required to reach consensus. 

Right figure (NIFTCM, 𝑛 = 1000 ): The improvement 
becomes more pronounced. Only less than two iterations are 
required to achieve consensus across all sensors. The figure 
reflects the maximum efficiency of the improved model using 
large fractional power, where the mean value is reached in 
record time. 

 

Fig. 12. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

1000
 

for 10 WSNs. 

d) For 100 WSNs: 

i) Fig. 13: Comparison of NITCM and NIFPCM at 

𝑛 = 2 for 100 WSNs 

Left figure (NITCM): The traditional NITCM model is very 
slow in reaching consensus values between 100 nodes. The large 
fluctuations in node values are clearly visible with the number 
of iterations exceeding hundreds of thousands before reaching 
consensus. 

Right figure (NIFTCM): The improved NIFTCM model 

with fractional power 𝑛 =
1

2
 shows very fast convergence, 

where consensus is achieved after only about 17 iterations. This 

result shows a significant improvement in efficiency compared 

to NITCM. 

 

Fig. 13. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

2
 for 

100 WSNs. 

ii) Fig. 14: Comparison of NITCM and NIFPCM at 

𝑛 = 10 for 100 WSNs. 

Left plot (NITCM): High oscillations remain evident with 
the traditional NITCM model, taking over half a million 
iterations to reach convergence. 

Right plot (NIFTCM): At the fractional power 𝑛 =
1

10
, the 

improved model achieves convergence much faster, with only 6 

iterations needed to reach stability. 

 

Fig. 14. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

10
 

for 100 WSNs. 

iii) Fig. 15: Comparison of NITCM and NIFPCM at 

𝑛 = 100 for 100 WSNs. 

Left plot (NITCM): The same slow pattern continues in the 
traditional model, with a failure to improve the time to 
convergence. 

Right plot (NIFTCM): As the fractional power increases to 

𝑛 =
1

100
, convergence becomes faster, with only 3 iterations 

needed to achieve convergence between nodes. 

 

Fig. 15. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

100
 

for 100 WSNs. 
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iv) Fig. 16: Comparison of NITCM and NIFPCM at 

𝑛 = 1000 for 1000 WSNs. 

Left plot (NITCM): Large oscillations and pronounced 
slowdown persist, demonstrating the limitations of the 
conventional model's efficiency. 

Right plot (NIFPCM): Using the fractional power 𝑛 =
1

1000
, 

convergence becomes almost instantaneous, with agreement 

achieved after less than 2 iterations. 

 

Fig. 16. Comparison of the consensus NITCM vs NIFTCM with fraction 
1

1000
 

for 100 WSNs. 

The results confirm that the improved NIFTCM model using 
fractional power shows a clear superiority in convergence speed 
compared to the traditional NITCM model. When using small 
values of fractional power 𝑛 , consensus is achieved faster, 
reducing the number of iterations needed to reach the steady 
state. The graphs highlight the importance of the improved 
NIFTCM model in achieving higher efficiency and faster 
convergence speed, making it ideal for practical applications 
that require high accuracy and response speed. The improved 
model shows its efficiency especially in WSNs, where complex 
environments require innovative and fast solutions. 

V. CONCLUSION 

The study clearly shows that the improved model (NIFTCM) 
based on fractional power offers significant improvements 
compared to the traditional model (NITCM) in achieving 
consensus speed in wireless sensor networks. The results 
extracted from the graphs show that using fractional power 
contributes to reducing the number of iterations required to 
reach consensus, which reflects the high efficiency of the 

improved model. The higher the value of fractional power 
1

𝑛
, the 

faster the convergence between nodes increases, while reducing 
the computational effort required, which makes the improved 
model ideal for practical applications that require fast responses 
and high accuracy, especially in time-sensitive systems. The 
developed model (NIFTCM) emerges as an ideal tool for 
improving the performance of wireless sensor networks, which 
opens up broad horizons for its application in our daily lives. 
Potential applications of the model include improving 
environmental monitoring systems such as tracking climate 
change and monitoring forests, in addition to healthcare 
applications that rely on accurate and fast-responding sensors to 
monitor patients' health. It can also be applied in smart cities to 
improve the efficiency of resource management, such as 
electricity and water, and in intelligent transportation systems to 
coordinate the movement of self-driving vehicles, in addition to 
its role in enhancing the performance of industrial systems based 

on artificial intelligence and the Internet of Things. This 
development makes the NIFPCM model an ideal solution to the 
challenges associated with complex and changing systems. It 
enhances their efficiency and suitability for applications that 
require high speed and accuracy in various vital fields. 

While the simulation study showed favorable performances 
for NIFPCM, we believe testing the model in practical 
conditions is valuable. The model will be tested in practical 
settings such as monitoring the environment or controlling 
industrial machines to test its ability to work under delays, 
dropped packets, and various hardware limitations. Real-world 
tests are needed to ensure the model can handle changing 
situations. 

Future work will cover creating mixes of existing 
algorithms, adding more optimization tricks to run better, and 
studying the links between shape changes and the time taken for 
convergence or accuracy. 
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