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Abstract—Breast cancer continues to pose a major health 

challenge for women worldwide, highlighting the critical role of 

accurate and early detection methods in improving patient 

outcomes. Ultrasound imaging, a commonly used and non-

invasive method, is especially useful for identifying tissue 

irregularities in younger women or individuals with dense breast 

tissue. However, accurate interpretation of ultrasound images is 

challenging due to variability in human analysis and limitations 

in existing deep learning models, which often struggle with small, 

imbalanced datasets and lack generalizability compared to 

models trained on natural images. To tackle these challenges, we 

introduce a dual deep learning framework that combines image 

classification and tumor segmentation using breast ultrasound 

images. The classification component evaluates four models 

(Custom CNN, VGG16, InceptionV3, and MobileNet) while the 

segmentation module employs a MobileNet-optimized U-Net 

architecture for precise boundary localization. We validate our 

approach using the publicly available BUSI dataset, achieving a 

98% classification accuracy with MobileNet and a Dice 

coefficient of 0.8959 for segmentation, indicating high model 

reliability and spatial agreement. Our method demonstrates a 

robust, efficient solution to automate breast cancer detection and 

localization, with potential to support radiologists in early and 

accurate diagnosis. 
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I. INTRODUCTION 

Breast cancer stands as the most prevalent cancer and the 
leading contributor to cancer-related mortality among women 
around the world, posing a major threat to their health and 
quality of life [1]. Early detection of the disease is key to 
improving the effectiveness of treatment, reducing mortality 
rates, and enhancing the quality of life of patients [2]. Though 
traditional diagnostic techniques such as mammography and 
MRI are valuable, they also have their own drawbacks like the 
risk of false positives, invasive biopsy, and patient discomfort 
during the procedure. It is under these circumstances that 
ultrasound imaging has arrived as a helpful, non-surgical 
alternative, particularly for women younger than 40 years and 
women with dense breasts, since it has the ability to distinguish 
between fluid-filled cysts and solid tumors [3]. 

Recent advancements in artificial intelligence (AI) and 
deep learning have commenced the transformation of medical 
image analysis, providing novel solutions to surpass the 
constraints of human interpretation. Particularly in automated 
image identification applications, deep learning (DL) 

techniques, particularly convolutional neural networks (CNNs), 
have shown impressive results. These techniques can learn 
complex feature representations directly from imaging data, 
enabling high accuracy in detecting and classifying 
abnormalities in medical images. For breast cancer imaging, 
researchers have developed AI systems that approach expert 
radiologist-level performance in identifying malignancies on 
both mammograms and ultrasound scans. Compared to 
traditional computer-aided diagnosis using hand-crafted 
features, CNN-based approaches automatically extract optimal 
features and have proven more robust across varying image 
qualities. By leveraging large datasets and powerful GPUs, 
deep learning models can be trained to recognize subtle 
patterns indicative of cancer that might elude the human eye 
[4]. This has facilitated the development of automated 
diagnostic algorithms for breast ultrasound, aimed at 
improving accuracy, consistency, and efficiency in radiological 
practice. Furthermore, modern DL techniques like transfer 
learning (pretraining on massive general-image datasets and 
fine-tuning on medical images) help mitigate data scarcity 
issues, and ensemble models combine multiple network 
predictions to boost performance. Segmentation networks have 
also advanced, enabling precise localization of tumors within 
images. These developments collectively enhance the 
capabilities of breast imaging diagnostics beyond what 
conventional methods can achieve. 

Despite the promise of deep learning in medical imaging, 
significant challenges remain. One major hurdle is the limited 
size of many curated medical image datasets. Acquiring and 
labeling medical images is time-consuming, costly, and often 
constrained by privacy concerns. In breast ultrasound imaging, 
publicly available datasets have only hundreds of images, far 
smaller than the thousands or millions of images often used to 
train robust CNNs in general computer vision. Training deep 
networks on such small datasets risks overfitting, where the 
model learns spurious details specific to the training set rather 
than general patterns of disease. This may cause a poor 
performance on new patients or images from different 
hospitals. Additionally, medical images can vary widely in 
quality and characteristics: ultrasound scans, for example, 
differ based on the machine manufacturer, technician 
technique, and patient body habitus. A model that performs 
well on one clinic’s ultrasound data might not generalize to 
another’s if these differences are not accounted for. This 
domain shift and limited diversity in training data make 
generalization a core challenge. Traditional transfer learning 
from natural image datasets only partially addresses this, since 
features learned from photographs may not capture the nuances 
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of ultrasound textures or artifacts. Researchers have begun 
exploring strategies like multi-stage transfer learning – first 
pretraining on a similar medical imaging task before fine-
tuning on the target task – and data augmentation techniques to 
expand dataset variability. Ensuring that deep learning models 
are robust, generalizable, and not overly sensitive to training 
data peculiarities is an active area of research [5]. 

Our research provides important contributions by 
presenting a deep learning-enabled advanced system that is 
most applicable to the precise segmentation and classification 
of breast ultrasound images. With the help of extensive 
preprocessing, better augmentation strategies, hyperparameter 
tuning, and more recent model architectures, such as custom 
CNNs and U-Net segmentation models, our solution aims to 
enhance diagnostic accuracy, reduce false positive and 
negative rates, and assist radiologists in making correct and 
timely decisions. Furthermore, the paper offers a comparative 
study of different deep learning techniques and determines the 
optimal approaches to create an efficient, generalized, and 
powerful diagnostic tool, thereby helping to fight one of the 
world's largest killers of women. 

The following sections are outlined as follows: Section II 
reviews related work on deep learning techniques for 
ultrasound image classification and segmentation. Section III 
outlines the proposed method using CNN and U-Net models. 
Section IV presents the results, evaluating model performance 
and discusses the results obtained. Section V concludes with 
key takeaways and future work suggestions. 

II. RELATED WORK 

In this section, the literature on the application of DL 
methods in breast cancer identification using ultrasound 
images is reviewed. Transfer learning, ensemble methods, and 
segmentation models are just a few of the techniques that have 
been adopted to increase classification and segmentation 
accuracy. While progress has been made, issues regarding 
dataset limitations and model generalization still need to be 
addressed, demonstrating an area that requires continued 
exploration. 

Hijab et al. developed a deep learning method to classify 
ultrasound images of malignant breast tumours using transfer 
learning [6]. They adopted a strategy that encompassed training 
a deep CNN on a dataset of 1,000 ultrasound images (500 
benign and 500 malignant cases). They investigated three 
models: a baseline CNN model trained from scratch, VGG16-
based transfer learning model, and a fine-tuned VGG16 model. 
As indicated by the results presented, the fine-tuned model 
achieved the best performance (0.97), followed by the transfer 
learning model achieving a performance of 0.94 and, finally, a 
performance value of 0.82 in the baseline model. It 
demonstrated the effectiveness of fine-tuning pre-trained 
models on medical imaging datasets to improve classification 
accuracy and overcome issues associated with limited training 
data and overfitting. 

Ayana et al. proposed a multistage transfer learning 
(MSTL) method for classifying breast cancer in ultrasound 
images, leveraging both natural and medical image datasets 
[7]. It follows the steps using an ImageNet pre-trained model, 

then transfer-learn on the cancer cell microscopic images, and 
then transfer-learn on ultrasound images to classify them as 
“malignant” or “benign”. The method attained a test accuracy 
of 99% on the “Mendeley” dataset and 98.7% on the “MT-
Small-Dataset”, representing a significant improvement in 
classification accuracy. In contrast, the study showed that 
integration of cancer cell line images as an intermediary step 
in MSTL was superior to CTL approaches, suggesting that 
transfer learning based on better deep learning is indeed 
possible for early breast cancer diagnosis. 

Islam et al. introduced an Ensemble Deep CNN (EDCNN) 
model for detecting and classifying breast cancer using 
ultrasound images [8]. This model combined features from 
both MobileNet and Xception architectures, resulting in 
significant performance gains over various transfer learning 
models and the Vision Transformer. Moreover, authors utilized 
U-Net for image segmentation that provided accurate 
identification and extraction of tumor areas along with Grad-
CAM to enhance the transparency of model's decision-
making. The EDCNN model outperformed other popular 
models in the dataset by achieving 87.82% and 85.69% 
accuracy in the two datasets respectively. This study was 
proved to be a potential tool for clinical applications, since the 
advanced deep learning techniques coupled with image 
segmentation will make it possible for higher diagnostic 
accuracy and could aid in early detection of breast cancer. 

Kim et al. introduced a weakly-supervised deep learning 
algorithm for diagnosing breast cancer using ultrasound 
images, with the goal of reducing the effort and potential bias 
associated with manual region-of-interest (ROI) annotation [9]. 
The model was trained on a dataset of 1,000 unannotated 
ultrasound images, evenly split between benign and malignant 
cases, and was evaluated on both internal and external datasets. 
The results demonstrated that the diagnostic performance of 
the weakly-supervised model was on par with fully-supervised 
approaches, achieving area under the curve (AUC) values 
between 0.86 and 0.96. 

Uysal and Köse carried out research geared to enhance 
breast cancer detection through ultrasound images and deep 
learning-based classification models [10]. Using a dataset of 
780 ultrasound images that was divided into training and 
validation sets, they employed three models: VGG16, 
ResNet50, and ResNeXt50. The dataset consisted of benign, 
malignant and normal classes. The images were preprocessed 
and augmented with center crop, normalization, and random 
data augmentation. ResNeXt50 has the highest obtained 
accuracy of 85.83% among cases tested. This study also 
reflected the power of artificial intelligence, especially deep 
learning in automating the diagnostic process in medicine, 
overcoming the subjectivity that is a hallmark of the human 
decision-making process and accelerating the time it takes to 
analyze and diagnose a sample. 

Wei et al. introduced a multi-feature fusion multi-task 
network that tackles classification and segmentation 
simultaneously on breast ultrasound images [11]. Their 
framework, enhanced with attention modules to better exploit 
shared features, was tested on the BUSI dataset and a large 
ultrasound video dataset. It achieved around 95% accuracy on 
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BUSI and significantly improved segmentation quality, and 
about 87% accuracy on a more challenging external ultrasound 
video set (MIBUS). This demonstrates that carefully designing 
multi-task architectures can yield high performance on both 
tasks, addressing the limitations of models that excel only in 
either classification or localization. 

Aumente-Maestro et al. similarly developed an end-to-end 
multi-task CNN for concurrent tumor segmentation and 
classification [12]. A key contribution of their work was an in-
depth curation of the BUSI dataset – removing duplicated or 
inconsistent images – to create a cleaner training set of 450 
ultrasound images spanning benign, malignant, and normal 
classes. Using this refined dataset, their joint model yielded 
approximately 15% higher Dice and accuracy than training 
separate models, ultimately reaching about 79–80% 
classification accuracy and markedly improved mask quality 
(Dice ≈0.75). These results underscore the benefit of multi-task 
learning, as the shared representations improved both the 
identification of tumor presence and the delineation of tumor 
boundaries. 

Madhu et al. took a two-step approach by first segmenting 
and then classifying tumors [13]. They presented UCapsNet, 
which combines an enhanced U-Net for tumor segmentation 
with a Capsule Network for classifying the segmented tumor 

region. Evaluated on the BUSI dataset, this method achieved 
near-perfect results – after segmenting the lesion, the capsule-
based classifier attained 99.22% accuracy in distinguishing 
malignant from benign tumors (with 99.52% sensitivity). The 
extremely high performance suggests that precise segmentation 
coupled with an advanced classifier that preserves spatial 
feature hierarchies can dramatically improve diagnostic 
accuracy, albeit on a relatively small dataset. 

Shilaskar et al. focused on a straightforward but effective 
pipeline using separate models for each task [14]. They 
employed VGG-16 for classifying ultrasound images and U-
Net for segmenting tumors within those images. Using the 
standard BUSI dataset of 780 images (with ground-truth 
masks), their system reached 90% classification accuracy and 
about 98% segmentation accuracy in detecting tumor regions. 
This dual-model approach illustrates a practical way to 
integrate classification and segmentation: the CNN provides a 
probability of malignancy while the U-Net yields the tumor 
contour, together providing a more comprehensive output to 
assist radiologists. 

Table I summarizes and compares the related works 
mentioned previously, showing the models they used, the 
dataset, and their accuracies. 

TABLE I.  COMPARISON OF RELATED WORK 

Authors Title Year Model Dataset Accuracy 

Hijab et al [6] 
“Breast Cancer Classification in 
Ultrasound Images using Transfer 

Learning” 

2019 
CNN 
Pre-trained VGG16 

Fine-tuned VGG16 

1300 ultrasound images, 

augmented to 21,600. 
CNN: 79% 

Ayana et al [7] 

“A Novel Multistage Transfer Learning for 

Ultrasound Breast Cancer Image 
Classification” 

2022 

MSTL: EfficientNetB2, 

InceptionV3, and 
ResNet50. 

Cancer cell (20,400), 

Mendeley (200), MT-Small 
(400). 

Mendeley: 99% 

MT-Small: 98.7%. 

Islam et al. [8] 

“Enhancing breast cancer segmentation and 
classification: An Ensemble Deep 

Convolutional Neural Network and U-net 

approach on ultrasound images” 

2024 EDCNN 

Dataset 1 (BUSI): 780 

ultrasound images (normal, 
benign, malignant) 

Dataset 2 (UDAIT): 163 

ultrasound images (110 
benign, 53 malignant) 

Dataset 1: 87.82% 

Dataset 2: 85.69% 

Kim et al [9] 
“Weakly‑supervised deep learning for 
ultrasound diagnosis of breast cancer” 

2021 

VGG16, 

ResNet34 

GoogLeNet. 

1400 ultrasound images from 
971 patients. 

Not specified 

Uysal and Köse 

[10] 

“Classification of Breast Cancer 
Ultrasound Images with Deep Learning-

Based Models” 

2022 
ResNet50 
ResNeXt50 

VGG16 

780 ultrasound images 

(benign, malignant, normal) 

from 600 patients (Kaggle, 
400×400 px). 

ResNet50: 85.4% 
ResNeXt50: 85.83% 

VGG16: 81.11% 

Wei et al. [11] 
“A Novel Deep Learning Model for Breast 
Tumor Ultrasound Image Classification 

with Lesion Region Perception” 

2024 
MFFMT (ResNet18 & 
ResNet50 backbones; 

multi-task) 

BUSI: 780 images (benign, 

malignant, normal); MIBUS: 

25,272 frames from 188 
videos (benign vs malignant) 

BUSI: ~95%; 

MIBUS: ~87% 

Aumente-

Maestro et al. 
[12] 

“A multi-task framework for breast cancer 

segmentation and classification in 
ultrasound imaging” 

2025 
Multi-task CNN (UNet++ 

or nnU-Net backbone) 

BUSI: 780 images (3 classes), 

curated to 450 images 
(duplicate removed) 

≈80% 

Madhu et al. 
[13] 

“UCapsNet: A Two-Stage DL Model 

Using U-Net and Capsule Network for 
Breast Cancer Segmentation and 

Classification in US Imaging” 

2024 
UCapsNet (U-Net + 
Capsule Network) 

BUSI: 780 ultrasound images 
(with tumor masks) 

99.22% 

Shilaskar et al. 

[14] 

“Classification and Segmentation of Breast 

Tumor Ultrasound Images using VGG-16 
and U-Net” 

2025 
VGG16 + U-Net (dual-

model pipeline) 

BUSI: 780 images (normal, 

benign, malignant) 
90% 

 

Deep-learning studies on breast-ultrasound still tend to 
excel at one task while overlooking others. Hijab et al. fine-
tuned VGG16 on 1,300 images and reported 97 % 
classification accuracy, but the model provided no lesion 

outlines, limiting clinical usefulness [6]. Ayana et al. pushed 
transfer learning further with a multistage strategy: after a 
second pre-training step on cancer-cell microscopy, their 
ResNet50 reached 99 % accuracy on the Mendeley set and 98.7 
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% on MT-Small again for classification alone [7]. More 
recently, Islam et al. combined MobileNet and Xception 
(EDCNN) yet achieved only ≈88 % accuracy on BUSI and ≈86 
% on UDAIT, while Uysal & Köse’s experiments with 
VGG16/ResNet derivatives topped out at ≈86 % [8] [10]. 
Segmentation has been even less explored: most papers either 
omit quantitative mask metrics or rely on separate U-Net 
pipelines. An exception is Kim et al., who introduced weakly-
supervised CNNs that dispense with ROI annotation; their 
networks attained AUC 0.92–0.96 internally and 0.86–0.90 
externally, and localized virtually all malignant masses, but 
still treated classification and localization as loosely coupled 
outputs [9]. 

More recent approaches have begun integrating both tasks. 
Wei et al. proposed a multi-feature fusion multi-task (MFFMT) 
network that achieved ≈95% accuracy on the BUSI dataset and 
boosted segmentation Dice scores significantly compared to 
single-task models [11]. Aumente-Maestro et al. developed a 
curated BUSI subset and used a multi-task CNN to jointly 
segment and classify, improving performance on both fronts 
and achieving ≈80% classification accuracy with Dice ≈0.75 
[12]. Madhu et al. introduced a two-stage UCapsNet model, 
segmenting with U-Net and classifying with a Capsule 
Network, resulting in a remarkably high 99.22% classification 
accuracy [13]. Finally, Shilaskar et al. adopted a dual-model 
pipeline with VGG16 for classification and U-Net for 
segmentation, attaining 90% and 98% accuracy respectively, 
showing that even a modular approach can provide 
comprehensive outputs [14]. 

Building on these insights, our paper will integrate both 
diagnosis and delineation in a single lightweight pipeline. A 
MobileNet-based classifier will share features with a 
streamlined U-Net decoder, allowing real-time prediction of 
class probabilities and pixel-accurate tumor contours. By 
favouring depth-wise separable convolutions over heavyweight 
backbones, the system will run on mid-tier GPUs or edge 
devices, overcoming the deployment barriers faced by VGG16- 
or ResNet101-centric solutions. In addition, we will validate on 
the public BUSI set and follow Kim et al.’s lead in limiting 
manual annotations, thereby ensuring transparency, 
reproducibility, and less curation overhead. 

Through this integrated, resource-efficient design we aim to 
supply radiologists with both a diagnostic label and a precise 
lesion contour in real time, thereby bridging the gap between 
algorithmic performance reported in prior studies and the 
practical demands of everyday clinical workflows. 

III. METHODOLOGY 

Our proposed approach implements a two-part deep 
learning system for breast ultrasound analysis: one part focuses 
on image classification, and the other on tumor segmentation. 
Fig. 1 presents an overview of the system architecture. In the 
classification module, we employ a CNN-based model to 
identify each ultrasound image as malignant tumor, benign 
tumor, or normal tissue. Rather than relying on a single 
network, we perform a comparative evaluation of several 
convolutional neural network architectures to determine the 
most effective model for this task. In particular, we explore 
transfer learning with established models (VGG16, MobileNet, 

and InceptionV3) as well as a custom CNN trained from 
scratch. By using transfer learning, the models benefit from 
feature representations learned on large-scale image datasets, 
which is advantageous given the limited size of medical image 
data. The classification network takes a preprocessed 
ultrasound image as input and outputs class probabilities for 
the three categories, ultimately assigning the image to the class 
with highest probability via a Softmax layer. 

In parallel, the segmentation module is designed to 
delineate the breast tumor within the ultrasound image. For this 
purpose, we adopt a U-Net–based architecture owing to its 
proven effectiveness in biomedical image segmentation. To 
tailor U-Net for our needs, we integrate a MobileNet encoder 
as the contracting path of the U-Net. This MobileNet-
optimized U-Net uses the efficient MobileNet convolutional 
blocks to extract high-level features while downsampling the 
image, and then a symmetrical expanding path (decoder) to 
produce a binary mask highlighting the tumor region. Skip 
connections between the encoder and decoder ensure that fine-
grained spatial details are preserved in the final segmentation 
output. The result is a pixel-wise segmentation map where each 
pixel is classified as either tumor or background tissue. By 
training this model on ultrasound images with corresponding 
tumor masks, it learns to accurately localize lesions. 

Overall, the methodology can be summarized as a dual 
pipeline: the input ultrasound image passes through the 
classification CNN to yield a diagnosis (normal/ 
benign/malignant) and simultaneously through the U-Net 
segmentation network to yield a highlighted tumor region (if a 
tumor is present). These outputs can be combined to provide a 
radiologist with both a diagnostic prediction and a visual 
overlay of the tumor contours on the ultrasound image. We 
implemented the framework using the BUSI dataset for both 
training and evaluation. Extensive preprocessing (e.g., 
normalization, data augmentation) was applied to improve 
model generalizability. Hyperparameters for each model were 
tuned empirically to optimize performance. In the following, 
we detail key components of our methodology, including the 
convolutional building blocks and specific network 
architectures used for classification (MobileNet, VGG16) and 
segmentation (U-Net). 

 
Fig. 1. The proposed structure of the system consists of two parts: 

classification and segmentation. 
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A. Classification Models 

The classification models are used to classify ultrasound 
breast images into three categories: “malignant tumor”, 
“benign tumor”, and “normal breast”. Four different models 
were used to perform the classification process, and therefore 
conducted a comprehensive study to determine the best and 
most appropriate classification model. The four models are 
Custom CNN, VGG16, InceptionV3, and MobileNet. Fig. 2 
represents the classification approach used in the research. The 
approach is the same for all four classifiers, only the model 
differs. This approach begins by reading the data, processing it, 
training the selected model, and finally evaluating the model. 

 
Fig. 2. Our Classification approach. 

1) Custom CNN: Every convolutional neural network 

architecture comprises several key layers that hierarchically 

process input data. convolutional and pooling layers, the 

network incorporates: 

a) Convolution layer: The convolutional layer (CL) is 

used to extract local features from the input images using a set 

of Trainable filters. Each convolution filter has a small spatial 

extent, like a 3*3 filter, and a depth equal to the number of 

input channels. As the filter slides across the input’s width and 

height, it computes dot products between the filter weights and 

the underlying image patch, producing a feature map that 

highlights the locations of specific features within the input. 

The quantity of filters in a CL defines the total number of 

output feature maps (channels) generated by that layer. 

Enhancing the filter count can improve the model's ability to 

capture intricate features, though it also escalates 

computational demands, necessitating a balanced approach 

based on the task requirements. 

b) Pooling layer: Pooling layers (down-sampling 

layers) are positioned within CLs to gradually decrease the 

spatial dimensions of feature maps, maintaining the most 

essential information. Each pooling operation considers a 

localized area (e.g., 2×2 window) of the input feature map and 

computes a single summary statistic for that region. These 

regions typically do not overlap, so pooling effectively 

partitions the feature map into disjoint segments. Typical 

pooling functions include average pooling that determines the 

region's mean value, and max pooling that selects the peak 

value inside a region. In the custom CNN model developed for 

this paper, max pooling is employed. Max pooling selects the 

highest activation in each region as the representative output, 

thereby capturing the most salient features and reducing data 

size for subsequent layers. 

c) Fully Connected (Dense) layers: These layers act as 

the classifier component, transforming extracted features into 

class predictions. Each neuron connects to all activations from 

the previous layer, enabling high-level feature integration. 

d) Activation functions: Non-linear transformations are 

critical for learning complex patterns. We employ: 

 ReLU (Rectified Linear Unit): Applied after each 
convolutional and dense layer (except output), defined 
as 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥).  This activation provides 
computational efficiency while alleviating vanishing 
gradients. 

 SoftMax: The final layer utilizes SoftMax activation 
produce normalized class probabilities for our three 
tumor categories (normal, benign, malignant). 

Softmax(𝑥) =
𝑒𝑥𝑖

∑𝑗=1
𝐾  𝑒

𝑥𝑗
          (1) 

Our custom CNN architecture employs three convolutional 
blocks (32-64-128 filters) with max pooling for hierarchical 
feature extraction from ultrasound images. The network 
transitions to dense layers 512→256 units with dropout 
regularization before final SoftMax classification. 

2) MobileNet architecture: MobileNet is a compact CNN 

architecture optimized for efficient performance on devices 

with constrained computational power [15]. The hallmark of 

MobileNet is its use of depthwise separable convolutions as 

the primary building block. A depthwise separable 

convolution is a factorized form of the standard convolution 

that drastically reduces the number of parameters and 

multiplications required. It breaks the convolution into two 

stages: first, a depthwise convolution where a single filter is 

applied independently to each input channel (slice) of the 

feature map, and second, a pointwise convolution (1×1 

convolution) that combines the outputs of the depthwise step 

across channels. In a traditional convolution layer, if we have 

N input channels and M output channels with a k×k filter, we 

would use k×k×N×M parameters. In contrast, a depthwise 

separable convolution uses only k×k×N parameters for the 

depthwise stage plus 1×1×N×M for the pointwise stage, 

leading to a significant reduction in total computations. In 

fact, this factorization can reduce the computational cost by 

about 8 to 9 times compared to a standard convolution of 

equivalent dimensions, while preserving a large portion of the 

representational power. This efficiency makes MobileNet 

particularly attractive for tasks like ours, where we aim to 

deploy complex models without incurring prohibitive 

computation. 
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Despite its light weight, MobileNet maintains strong 
performance through its clever design. The architecture 
consists of a sequence of layers that intermix depthwise 
separable convolution blocks with additional operations such 
as batch normalization and non-linear activations. In 
MobileNet’s original formulation (often referred to as 
MobileNet V1), the network begins with a single ordinary 
convolution layer, and thereafter every convolution is 
depthwise separable. Each such block typically includes: a 
depthwise convolution (per-channel spatial filtering), a Batch 
Normalization layer (to stabilize learning by normalizing 
activations), a nonlinear activation (ReLU), then a 1×1 
pointwise convolution to integrate features, followed again by 
BatchNorm and ReLU. By repeating these blocks with varying 
numbers of filters, MobileNet builds up a deep network. An 
occasional stride-2 convolution is used in some blocks to 
perform downsampling (instead of using separate pooling 
layers), reducing feature map size while increasing depth. 
Overall, the baseline MobileNet architecture comprises 28 
layers when counting depthwise and pointwise convolutions 
separately. After the convolutional feature extraction layers, 
MobileNet includes an average pooling layer that aggregates 
the spatial information (producing a 1×1 representation per 
channel), followed by a final fully connected (dense) layer or a 
1×1 convolution that produces the class scores, and a closing 
Softmax activation to output class probabilities. In our 
implementation for breast image classification, we initialize 
MobileNet with weights pre-trained on ImageNet (to leverage 
learned general features) and then fine-tune it on the ultrasound 
dataset. MobileNet’s efficiency does not come at the cost of 
accuracy in our experiments – in fact, its performance was 
superior to the heavier models for this task (as discussed later). 
The combination of computational thrift and discriminative 
power makes MobileNet well-suited as the core of the 
classification module in our dual framework. 

3) Visual Geometry Group 16 (VGG16): VGG16 is a deep 

CNN architecture that is widely recognized for its simple and 

uniform design, which has made it a common benchmark in 

image classification research [16]. The name "VGG16" refers 

to the model developed by the “Visual Geometry Group” 

(VGG) at Oxford, with 16 layers of weights (13 convolutional 

layers and 3 fully-connected layers). VGG16 was originally 

introduced for the “ImageNet Large Scale Visual Recognition 

Challenge” and demonstrated that a deep network with small 

filters could achieve excellent accuracy. Although it is a 

relatively large model in terms of parameters, its 

straightforward architecture provides a useful comparison for 

more modern networks. The input to VGG16 is typically a 

fixed-size image of 224 × 224 pixels (with 3 color channels), 

so we resize our grayscale ultrasound images accordingly by 

duplicating the single channel or adapting the first layer to 

single-channel input. The core of VGG16 is organized into 

five convolutional blocks. Each block consists of multiple 

convolutional layers using very small 3 × 3 kernels (with 

stride 1 and same-padding so that spatial dimensions are 

preserved) followed by a 2×2 max pooling layer that halves 

the spatial resolution. For example, the first block might have 

two conv layers of 64 filters each, then a max pool; the next 

block conv layers of 128 filters, then pool; and so on, typically 

doubling the number of filters after each pooling. This design 

means that as we go deeper, feature maps become smaller in 

spatial size but richer in depth (channels), enabling the 

network to learn hierarchical features at multiple scales. Using 

3×3 filters throughout (instead of larger kernels) was a key 

design choice: stacking two 3×3 conv layers has an effective 

receptive field of 5×5 but with fewer parameters and more 

non-linearities than a single 5× 5 layer, which improves 

learning. The repeated pattern of conv → conv → pool in 

VGG16 yields a very uniform architecture that is easier to 

implement and tune. 

After the final convolutional block, VGG16 transitions to 
the classification head of the network. The feature maps output 
by the conv stack are flattened into a single vector (or 
alternatively, global average pooling could be used, but in the 
standard VGG16 they do a flatten). This is followed by three 
fully-connected layers. The first two dense layers in VGG16 
each have 4096 neurons, which are quite large and contribute 
significantly to the parameter count of the model. These act as 
high-level feature combiners, where the network can learn 
complex non-linear combinations of the convolutional features. 
After these two layers, a smaller fully-connected layer 
produces the final outputs. In the original ImageNet model, this 
third dense layer has 1000 units (one for each class in 
ImageNet), but in our case we adjust it to have 3 output units 
corresponding to the classes (normal, benign, malignant). Each 
fully-connected layer is followed by a ReLU activation 
function, and the first two have dropout regularization in the 
original architecture to prevent overfitting. The network 
concludes with a Softmax layer (built into the last dense layer 
in many implementations) that outputs class probabilities 
summing to 1. Throughout the network – from convolutional 
layers to the dense layers – ReLU activations are used, 
introducing the non-linear capabilities needed for the network 
to learn complicated patterns. In our use of VGG16 via transfer 
learning, we leverage the pre-trained convolutional layers as a 
fixed feature extractor or fine-tune them on the ultrasound 
dataset (experimenting with both strategies). The appeal of 
VGG16 in our study is its proven performance and simplicity: 
it often serves as a baseline model, and by comparing it to 
newer architectures like MobileNet, we can quantify the 
improvements gained by modern designs. While VGG16 is 
computationally heavier, it provides a useful reference for how 
a conventional deep CNN performs on breast ultrasound 
classification. The insights from VGG16’s performance also 
guided some of our model tuning, such as the importance of 
data augmentation to combat overfitting given the model’s 
large capacity. 

4) InceptionV3: InceptionV3 is a CNN architecture 

designed for high computational efficiency and performance, 

addressing some limitations of simply making networks 

deeper [17]. While very deep networks (such as early VGG-

style models) achieved impressive results, they often incurred 

extremely high computational costs and were prone to 

overfitting, especially when training data was limited. 

InceptionV3 builds upon the Inception series of architectures 
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by using clever factorization of convolutional kernels and 

other techniques to reduce computation while maintaining 

representational strength. For example, a large convolution 

(e.g., 5×5) may be factorized into two smaller convolutions 

(e.g., two 3×3 convolutions or a 1×N followed by N×1 

convolution), which lowers computational load. Additionally, 

InceptionV3 incorporates aggressive regularization methods 

(such as label smoothing and dropout) to combat overfitting. 

The design of InceptionV3 is guided by four key principles 
that balance network depth and width for optimal efficiency: 

 Avoiding representational bottlenecks: The architecture 
is structured to prevent early layers from severely 
restricting the information flow (e.g., by not making 
any layer too narrow in terms of feature maps). 

 Processing at higher dimensions when feasible: 
InceptionV3 maintains relatively high-dimensional 
feature representations internally, as higher dimensional 
spaces can make it easier for the network to disentangle 
complex information (provided the computation is 
manageable). 

 Using low-dimensional embeddings for spatial 
aggregation: The network employs 1×1 convolutions 
(bottleneck layers) to reduce dimensionality before 
expensive operations. These low-dimensional 
embeddings allow for combining spatial information 
(e.g., in pooling or in larger convolutions) without 
significant loss of representational capacity. 

 Balancing width and depth: Instead of only increasing 
the depth (number of layers), InceptionV3 also 
increases the width (number of parallel paths or filters) 
of the network in a judicious way. Expanding the 
network in both directions (width and depth) 
simultaneously yields better performance for a given 
computational budget than merely going deeper. 

By adhering to these principles, InceptionV3 achieves 
strong performance on image recognition tasks with a more 
efficient use of parameters and computations compared to 
earlier very-deep models. 

B. Segmentation 

Image segmentation involves dividing a digital image into 
several segments or regions, each representing a meaningful 
component of the scene. The primary aim is to simplify or 
transform the image representation to make it more useful for 
analysis, which is crucial for locating objects and boundaries 
(e.g., tumors in medical images). Over the years, a variety of 
segmentation algorithms have been developed in computer 
vision, ranging from early classical methods to more advanced 
techniques. Early approaches include thresholding (separating 
regions based on intensity thresholds), region growing 
(iteratively merging pixels or regions that satisfy homogeneity 
criteria), K-means clustering (grouping pixels into K clusters 
based on feature similarity), and watershed algorithms (treating 
the image as a topographic surface and finding catchment 
basins) [18] [19] [20]. More advanced traditional techniques 
involve active contours (snakes), graph cuts, and sparsity-based 

methods, each bringing improvements in capturing object 
shapes or incorporating prior knowledge into the segmentation 
process [19] [21]. 

In our segmentation module, we utilize a U-Net to learn the 
mapping from ultrasound images to binary masks of tumor vs. 
background [22]. Given the limited number of training images, 
U-Net’s efficiency and reliance on augmented data are well-
suited to our problem. We enhanced the basic U-Net by using a 
pretrained MobileNet encoder (as mentioned in the 
methodology overview) to initialize the contracting path with 
robust feature extractors. The decoder was kept relatively 
standard, with up-convolution layers and concatenation of 
encoder features via skip connections. We trained the network 
using a combination of binary cross-entropy and Dice loss (a 
common practice to handle class imbalance in segmentation 
and directly optimize for overlap with ground truth). The 
output of the segmentation network is a probability map which 
we threshold to obtain the final binary mask of the tumor 
region. By leveraging U-Net, our system achieves accurate 
delineation of breast tumors, effectively separating them from 
healthy tissue in the ultrasound images. This segmentation is 
valuable on its own – for example, to estimate tumor size or 
visualize shape – and it also complements the classification 
result. The combination of a class prediction with a segmented 
tumor outline can give radiologists greater confidence in the 
AI’s output, as it provides both an answer and an explanation 
(highlighting where the model sees a tumor). U-Net’s proven 
capability to yield high accuracy on limited data is a major 
reason it excels in our application, helping to overcome the 
dataset size challenge and producing reliable segmentations 
that generalize well to new ultrasound scans [23][24]. 

1) UNet Components: 

a) Encoder: The encoder uses a pre-trained MobileNet 

backbone to extract hierarchical features from the input image. 

Instead of traditional pooling layers, it relies on strided 

convolutions to progressively reduce spatial dimensions while 

increasing feature depth. The five encoder layers (conv1_relu, 

conv_pw_3_relu, conv_pw_5_relu, conv_pw_11_relu, 

conv_pw_13_relu) downscale the image from 256×256 to 

8×8, capturing high-level semantic information at different 

scales. 

b) Decoder: The decoder is not fully symmetric to the 

encoder but follows a U-Net structure. It uses transposed 

convolutions (Conv2DTranspose) to upsample feature maps, 

doubling their resolution at each step. Instead of simple skip 

connections, the decoder concatenates upsampled features 

with resized encoder outputs (via 1×1 convolutions for 

channel alignment). This helps recover spatial details while 

maintaining learned features. 

c) Skip connections: At each decoder stage, feature 

maps from the corresponding encoder layer are resized and 

concatenated with the upsampled decoder features. These 

connections bridge the semantic gap between high-resolution 

encoder features (e.g., conv1_relu at 128×128) and low-

resolution decoder features, improving localization accuracy. 

d) Final layer: The decoder’s last step upsamples to the 

original input size (256×256) and applies a 1×1 convolution 
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with sigmoid activation to produce a binary segmentation 

mask. Unlike traditional U-Net, our model uses 32 filters in 

the final upsampling before reducing to a single-channel 

output, balancing detail preservation and computational 

efficiency. Fig. 3 represents the proposed UNet Model. 

 

Fig. 3. Our Proposed UNet model. 

C. Evaluation Metrics 

1) Classification metrics: To evaluate classification 

performance, we use four standard metrics (precision, recall, 

F1-score, and accuracy) each with its formal definition. In (2), 

(3), and (5), TP is the true positive, FP is the false positive, 

TN is the true negative, and FN is the false negative. 

a) Precision: Precision evaluates how accurate the 

positive predictions are. 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

A higher precision indicates that the model has a low false-
positive rate, i.e., when it predicts a lesion is malignant 
(positive), it is often correct. 

b) Recall: Recall, also known as sensitivity, assesses a 

model’s ability to correctly identify all actual positive cases.  

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (3) 

A higher recall means the model misses few positive 
instances (low false-negative rate), correctly detecting most 
tumors that are present. 

c) F1-score: The F1-score—computed as the harmonic 

mean of precision and recall—provides one balanced measure 

of how accurately a model predicts the positive class. A high 

F1-score signals that the model achieves strong precision and 

recall simultaneously, meaning it identifies positives well 

while keeping both types of errors low. It is calculated using 

the formula: 

𝐹1 −  score = 2 ×
 precision × recall 

 precision + recall 
                 (4) 

d) Accuracy: Accuracy represents the overall 

correctness of the model and is defined as the proportion of all 

predictions that are correct. Formally: 

   Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (5) 

This metric gives the fraction of images (of any class) that 
are classified correctly. While accuracy is useful, it can be 
misleading in imbalanced datasets, which is why the above 
precision, recall, and F1 metrics are also reported for a more 
complete evaluation. 

2) Segmentation metric 

a) Dice coefficient: Evaluates pixel-wise agreement 

between predicted and ground truth masks: 

𝐷𝑖𝑐𝑒 =  2 ∗
[𝑋∩𝑌]

[𝑋]+[𝑌]
                (6) 

Where X is the predicted mask and Y is the ground truth. 
Values range from 0 (no overlap) to 1 (perfect match). 

IV. RESULTS 

This part will introduce and evaluate the effectiveness of 
the deep learning framework that we proposed for 
classification and for segmentation of the ultrasound images of 
breast. The experimental setup evaluates four different 
classification models—Custom CNN, VGG16, MobileNet, and 
InceptionV3-and one U-Net-based segmentation model. 
Performance will be assessed by the multi-evaluation metrics 
mentioned previously. 

A. Dataset 

We conducted our experiments using the “Dataset of Breast 
Ultrasound Images” (BUSI), which is the first breast-
ultrasound collection released for open use [25]. The BUSI 
dataset contains a total of 780 ultrasound images collected 
from 600 female patients, with ages ranging from 25 to 75 
years. Each image is a grayscale breast ultrasound scan (with 
an average resolution of roughly 500×500 pixels) that has been 
labeled by expert radiologists into one of three categories: 

 Normal: healthy breast tissue with no evident tumors 
(typically the scans of volunteers or the contralateral 
healthy breast). 

 Benign: presence of a non-cancerous tumor or lesion 
(e.g. fibroadenomas or cysts). 
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 Malignant: presence of a cancerous tumor. 

Ultrasound imaging is commonly employed for early 
detection of breast cancer, especially in younger women and 
individuals with dense breast tissue, as it can distiguish 
between solid tumors and fluid-filled cysts. The BUSI dataset 
provides a diverse set of examples for these classes, supporting 
both the training and evaluation of classification and 
segmentation models in this study. Fig 4 shows a few 
representative ultrasound images from the dataset as examples 
of each class. 

The class distribution in the BUSI dataset is somewhat 
imbalanced, reflecting real-world prevalence in a clinical 
setting. Out of the 780 images, 133 are normal, 437 are benign, 
and 210 are malignant. Thus, benign cases form the largest 
group, which is expected since many screened abnormalities 
turn out to be benign, while malignant cases are fewer. This 
imbalance was taken into account during model training and 
evaluation by using appropriate metrics (like macro-averaged 
F1-score) and techniques (like class-balanced batch sampling 
and data augmentation) to ensure the models perform well 
across all categories. The class distribution of the dataset by 
category (Benign, Malignant, and Normal) is shown in Fig. 5. 

     
Fig. 4. Random samples from dataset. 

 
Fig. 5. Class distribution of dataset. 

B. Dataset Preprocessing 

1) Data normalization: Before feeding the images into the 

neural network models, we applied data normalization to 

standardize the input scale. Normalization is the process of 

rescaling numeric data from different ranges into a common 

scale, typically between 0 and 1 (or sometimes -1 and 1). This 

step is important because features (in this case, pixel intensity 

values) can have vastly different scales, and if left 

unnormalized, those with larger magnitudes could unduly 

influence the model’s learning process.  This ensures that all 

attributes share a consistent scale. For the normalization 

process, we apply the equation below, which will generate a 

new range from 0 to 1. 

𝑁𝑒𝑤 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 =  
𝑂𝑙𝑑 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒

255
                 (7) 

2) Data augmentation: To further improve the model’s 

generalizability and address the limited size of the dataset, we 

employed data augmentation techniques during training [26]. 

Data augmentation artificially expands the training set by 

creating modified versions of the original images, thereby 

providing the model with a more varied set of examples to 

learn from. In our case, each original ultrasound image was 

subjected to random transformations to generate new, 

plausible images. These transformations included small 

rotations (up to a few degrees), shifts in the horizontal or 

vertical direction (translating the image by a fraction of its 

width or height), slight shearing, adjustments to brightness 

(making the image lighter or darker), zooming in/out, and 

horizontal flipping. By applying these perturbations, the 

model is exposed to different scenarios of how a tumor might 

appear in an ultrasound, which reduces the chance of 

overfitting to the original training images. 

The augmented dataset is both larger and more diverse, 
which leads to more robust learning. Models trained with 
augmentation tend to perform better on unseen data because 
they have learned to handle variations in image orientation, 
position, scale, illumination, and other conditions. In summary, 
data augmentation improves the generalization of the deep 
learning models, ultimately enhancing their accuracy and 
reliability when deployed on new ultrasound scans. The data 
augmentation parameters are summarized in Table II. 
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TABLE II.  DATA AUGMENTATION PARAMETERS 

Parameter Value / Range Description 

Rotation Range 5° 
Maximum rotation angle in 

degrees 

Width Shift Range 0.1 (10% of width) Horizontal translation range 

Height Shift Range 0.1 (10% of height) Vertical translation range 

Shear Range 0.05 Shear intensity (radians) 

Brightness Range (1, 1.4) 
Multiplier range for brightness 
adjustment 

Zoom Range 0.05 (5%) Range for random zooming 

Horizontal Flip True 
Random horizontal flipping 

enabled 

Fill Mode 'nearest' 
Strategy for filling in newly 
created pixels 

Fig. 6 shows the distribution of the dataset after applying 
dataset augmentation. 

 

Fig. 6. Class Distribution of training and validation. 

C. Classification Results 

To identify and categorize breast lesions as benign, 
malignant, or normal, four classification models were trained 
using identical preprocessing steps and hyperparameters (50 
epochs, batch size of 4, Adam optimizer, and categorical 
crossentropy loss). Transfer learning was applied to VGG16, 
InceptionV3, and MobileNet with imagenet weights, while the 
custom CNN was trained from scratch. The results of the 
classification task are summarized in Table III. 

TABLE III.  CLASSIFICATION PERFORMANCE METRICS 

Model Accuracy 
Precision 

(Macro Avg) 

Recall 

(Macro Avg) 

F1-score 

(Macro 

Avg) 

MobileNet 0.98 0.98 0.99 0.98 

InceptionV3 0.95 0.93 0.95 0.94 

VGG16 0.90 0.94 0.86 0.89 

Custom CNN 0.54 0.45 0.37 0.34 

MobileNet outperformed all other models, achieving the 
highest accuracy (98%) along with nearly perfect recall and 
F1-score across all classes. InceptionV3 followed closely with 

a 95% accuracy and strong balance between precision and 
recall. VGG16 showed decent results, particularly for benign 
and normal classes, but struggled with malignant classification 
recall. The custom CNN model, trained from scratch, 
significantly underperformed with an overall accuracy of 54%, 
highlighting the advantage of using pre-trained models and 
transfer learning in medical imaging contexts. The 
classification metrics results are summarized in Fig. 7. 

 
Fig. 7. Summary of classification metrics of four models. 

Table IV represents the confusion matrices of the top 
models (MobileNet and InceptionV3). 

TABLE IV.  TOP MODELS CONFUSION MATRICES  

MobileNet Pred: Benign Pred: Malignant Pred: Normal 

Actual: Benign 84 3 0 

Actual: Malignant 0 42 0 

Actual: Normal 0 0 26 

InceptionV3 Pred: Benign Pred: Malignant Pred: Normal 

Actual: Benign 85 0 2 

Actual: Malignant 0 37 5 

Actual: Normal 0 0 26 

These matrices further emphasize the superiority of 
MobileNet and InceptionV3 in consistently identifying 
malignant and benign cases. 

D. Segmentation Results 

The segmentation module, based on a MobileNet-enhanced 
U-Net architecture, was evaluated over 50 epochs using a batch 
size of 8. The loss function combined binary cross-entropy and 
Dice loss (bce_dice_loss), with the Adam optimizer applied 
throughout. The segmentation performance is presented in 
Table V. 
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TABLE V.  SEGMENTATION PERFORMANCE 

Metric Value 

Accuracy 0.9648 

Dice Coef. 0.8959 

Loss 0.6987 

The model reached a Dice score of 0.8959, reflecting strong 
alignment between the generated segmentation masks and the 
reference annotations. An overall accuracy of 96.48% further 
emphasizes the model's precision in identifying tumor 
boundaries. This impressive segmentation capability enhances 
the reliability of the high classification metrics, demonstrating 
the robustness of the proposed dual DL framework for breast 
cancer analysis using ultrasound images Fig. 8 Displays several 
samples of the results of the images from the dataset that were 
tested on the proposed model and the samples show good 
accuracy of the model. 

 

 

 

 
Fig. 8. Several samples were tested on the proposed model and the samples 

show good accuracy of the model. 

E. Discussion Results 

The classification and segmentation results of our proposed 
deep learning framework demonstrate considerable 
improvements over existing approaches in the literature. 
Compared to recent studies employing ensemble or modified 
CNN models for breast cancer detection in ultrasound images, 
our methodology achieves superior performance in both 
classification accuracy and segmentation quality. Islam et al. 
[8] proposed an ensemble of MobileNet and Xception 
architectures (EDCNN) for classifying breast cancer, reaching 
an accuracy of 85.69%, an F1-score of 79.39%, precision of 
84.00%, and recall of 78.00%. In comparison, our MobileNet 
model significantly outperformed EDCNN, achieving 98% 

accuracy, a macro-averaged F1-score of 98%, precision of 
98%, and recall of 99%. Similarly, our second-best model, 
InceptionV3, also surpassed EDCNN, achieving 95% accuracy 
with a macro F1-score of 94%. 

From a segmentation perspective, Islam et al. used a 
conventional U-Net without detailed segmentation metrics. Our 
approach, employing a modified U-Net optimized with binary 
cross-entropy and Dice loss (bce_dice_loss), attained a Dice 
coefficient of 0.8959 and an overall accuracy of 96.48%. This 
improvement clearly demonstrates the advantages of 
optimizing segmentation techniques through carefully selected 
loss functions and model adjustments. 

In the study by Uysal and Köse [10], various CNN 
architectures including VGG16, ResNet50, and ResNeXt50 
were compared for breast cancer classification, with 
ResNeXt50 achieving the highest accuracy of 85.83%, an F1-
score of 87.31%, and AUC of 90%. When benchmarked 
against these models, our MobileNet architecture outperformed 
all configurations presented, with accuracy and F1-score 
improvements exceeding 12 and 10 percentage points, 
respectively. Table VI provides a detailed comparison of our 
classification performance relative to these prior studies. 

Despite the demonstrated improvements, our research 
exhibits certain limitations that could guide future work. 
Firstly, the dataset used, BUSI, is relatively small and 
imbalanced, potentially limiting the generalizability of our 
findings. Future studies should consider testing models on 
larger, more diverse datasets that reflect broader patient 
demographics and varied imaging conditions. Additionally, our 
current approach relies significantly on supervised learning, 
which necessitates substantial manual annotation efforts. 
Exploring semi-supervised or weakly-supervised learning 
techniques could further reduce the annotation burden while 
maintaining or improving model performance. 

Another potential limitation is the computational resource 
requirement. Although our MobileNet-based approach is 
optimized for lightweight deployment, real-time processing 
demands could still pose challenges in clinical environments 
with very limited computational infrastructure. Future research 
should further investigate model compression techniques, 
knowledge distillation, or quantization methods to enhance 
model efficiency and facilitate deployment on lower-resource 
hardware. 

TABLE VI.  CLASSIFICATION PERFORMANCE COMPARISON  

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

MobileNet (Ours) 98.0 98.0 99.0 98.0 

InceptionV3 (Ours) 95.0 93.0 95.0 94.0 

VGG16 (Ours) 90.0 94.0 86.0 89.0 

Custom CNN (Ours) 54.0 45.0 37.0 34.0 

EDCNN (MobileNet + 

Xception) [8] 
85.69 84.0 78.0 79.39 

VGG16 [10] 81.11 77.77 70.85 76.90 

ResNet50 [10] 85.40 83.20 93.67 87.93 

ResNeXt50[10] 85.83 82.92 76.80 87.31 
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Finally, incorporating multimodal imaging data, such as 
mammography or MRI, could provide complementary 
information to further enhance diagnostic accuracy. 
Investigating fusion methods to integrate multiple imaging 
modalities represents a promising direction for future research, 
potentially leading to more robust and clinically applicable 
diagnostic tools. 

V. CONCLUSION 

This research paper presents a comprehensive DL 
framework that integrates image classification and tumor 
segmentation to enhance breast cancer detection using 
ultrasound imaging. By leveraging multiple convolutional 
neural network architectures—including MobileNet, VGG16, 
InceptionV3, and a custom CNN—for classification, and a 
MobileNet-optimized U-Net for segmentation, the proposed 
system demonstrates significant improvements in diagnostic 
accuracy and spatial localization. Among the evaluated models, 
MobileNet achieved the highest classification performance 
with a 98% accuracy and near-perfect precision and recall, 
while the segmentation module attained a Dice coefficient of 
0.8959, indicating strong agreement with ground truth 
annotations. 

The results highlight the effectiveness of combining 
transfer learning and deep feature extraction in addressing the 
inherent challenges of medical image analysis, such as limited 
dataset size and variability in image quality. Furthermore, the 
use of data normalization and augmentation contributed to 
enhanced model generalizability, ensuring robustness across 
diverse imaging conditions. 

Ultimately, the dual-function framework developed in this 
paper offers a reliable, efficient, and interpretable tool that can 
assist radiologists in the early and accurate diagnosis of breast 
cancer. By reducing dependence on manual analysis and 
minimizing diagnostic inconsistencies, the system has the 
potential to support clinical decision-making and improve 
patient outcomes. Future work may explore integrating 
multimodal imaging data and advanced ensemble strategies to 
further refine diagnostic capabilities and broaden the 
framework’s applicability across diverse clinical settings. 
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