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Abstract—Automated and precise assessment of vehicle 

damage is critical for modern insurance processing, accident 

analysis, and autonomous maintenance systems. In this work, we 

introduce DamageNet, a unified deep instance segmentation 

framework that embeds a multi‑rate dilated‑convolution context 

module within a Feature Pyramid Network (FPN) backbone and 

couples it with a Region Proposal Network (RPN), RoI‑Align, and 

parallel heads for classification, bounding‑box regression, and 

pixel‑level mask prediction. Evaluated on the large‑scale VehiDE 

dataset comprising 5 200 high‑resolution images annotated for 

dents, scratches, and broken glass, DamageNet achieves a mean 

Average Precision (mAP) of 85.7% for damage localization and a 

mean Intersection over Union (mIoU) of 82.3% for segmentation, 

outperforming baseline Mask R‑CNN by 6.2 and 7.8 percentage 

points, respectively. Ablation studies confirm that the 

dilated‑convolution module, multi‑scale fusion in the FPN, and 

post‑processing refinements each contribute substantially to 

segmentation fidelity. Qualitative results demonstrate robust 

delineation of both subtle scratch lines and extensive panel 

deformations under diverse lighting and occlusion conditions. 

Although the integration of atrous convolutions introduces a 

modest inference overhead, DamageNet offers a significant 

advancement in end‑to‑end vehicle damage analysis. Future 

extensions will investigate lightweight dilation approximations, 

dynamic rate selection, and semi‑supervised learning strategies to 

further enhance processing speed and generalization to additional 

damage modalities. 
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I. INTRODUCTION 

Vehicle damage detection and assessment play a pivotal role 
in modern automotive insurance processing, post‑accident 
analysis, and autonomous driving safety validation [1]. 
Traditional manual inspection techniques are labor‑intensive, 
error‑prone, and unable to meet the real‑time requirements of 
large‑scale operations [2]. Recent advances in deep learning, 
particularly convolutional neural networks (CNNs), have 
enabled automated object detection systems to achieve 
remarkable accuracy in various domains, including general 

object recognition and anomaly localization [3]. However, 
standard CNNs often struggle to capture multi‑scale features 
critical for identifying both subtle scratches and large structural 
deformations on vehicle exteriors. 

To address scale variance, the Feature Pyramid Network 
(FPN) architecture was introduced to fuse high‑resolution 
spatial information with rich semantic features across multiple 
scales [4]. By constructing a top‑down pathway alongside lateral 
connections, FPN effectively enhances small‑object detection 
without sacrificing context from deeper layers [4]. Building on 
this multi‑scale foundation, instance segmentation frameworks 
such as Mask R‑CNN extend object detection to pixel‑level 
mask prediction, allowing precise delineation of damage regions 
within detected bounding boxes [5]. Despite its flexibility, the 
standard Mask R‑CNN backbone employs fixed‑stride 
convolutions and pooling operations, which can limit the 
receptive field and degrade segmentation quality for irregular or 
diffuse damage patterns. 

Dilated convolutions have emerged as a compelling solution 
to expand the receptive field of CNNs without reducing feature 
map resolution [6]. By inserting spaces (dilations) between 
kernel elements, dilated convolutions aggregate broader 
contextual information while preserving fine‑grained spatial 
details [6]. Recent research has demonstrated the benefits of 
integrating dilated convolutions within FPN backbones, 
resulting in improved detection of small, scattered objects in 
cluttered scenes [7]. In the automotive domain, specialized 
architectures incorporating contextual modules have shown 
promise for accurately localizing dents and scratches, but they 
often treat detection and segmentation as separate tasks, thereby 
missing potential synergies [8]. 

Against this backdrop, there remains a gap for a unified 
framework that leverages both dilated convolutions and instance 
segmentation to perform end‑to‑end damage detection and mask 
generation. Few existing approaches integrate dilated 
convolutional layers directly into the Mask R‑CNN backbone 
and FPN hierarchy to jointly optimize bounding‑box regression, 
classification, and pixel‑level mask prediction [9]. To bridge this 
gap, we propose DamageNet, a Dilated Convolution Feature 
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Pyramid Network Mask R‑CNN tailored for automated car 
damage detection and segmentation. DamageNet introduces 
strategically placed dilated convolutional blocks within the FPN 
backbone to enhance contextual feature aggregation. The 
resulting feature maps are then processed by a Region Proposal 
Network (RPN) to generate high‑quality candidate regions, 
followed by a RoI‑Align stage that feeds into separate branches 
for mask prediction, box regression, and damage classification. 

We evaluate DamageNet on a comprehensively annotated 
vehicle damage dataset encompassing multiple damage types 
(dents, scratches, cracks) and varied lighting and occlusion 
conditions. Experimental results demonstrate that our model 
achieves significant improvements in both mean Average 
Precision (mAP) for bounding‑box detection and mean 
Intersection over Union (mIoU) for mask segmentation, 
outperforming baseline Mask R‑CNN and recent specialized 
detection frameworks. The remainder of this paper is organized 
as follows. Section II reviews related work on vehicle damage 
detection and multi‑scale instance segmentation. Section III 
details the architecture and implementation of DamageNet. 
Section IV describes the dataset, training protocols, and 
evaluation metrics. Section V presents quantitative and 
qualitative results, and Section VI concludes with discussions of 
limitations and future research directions. 

II. RELATED WORKS 

Early vehicle damage detection methods predominantly 
utilized handcrafted feature descriptors combined with classical 
image processing pipelines to identify candidate damaged 
regions [10]. Edge detection and color thresholding techniques 
were applied to delineate dents and scratches, yet such 
approaches exhibited high sensitivity to lighting variations [11]. 
Subsequent integration of texture analysis and morphological 
operators improved localization, but these methods lacked 
robustness in complex real‑world scenarios [12]. The necessity 
for automated and scalable solutions motivated the adoption of 
machine learning models to overcome the limitations of purely 
algorithmic detection systems [13]. 

Traditional machine learning classifiers, including support 
vector machines and random forests, were trained on engineered 
features to differentiate between damage and background 
regions [14]. While these classifiers demonstrated moderate 
performance gains, they required extensive manual feature 
selection and failed to generalize across diverse vehicle types 
[15]. Early convolutional neural network models introduced 
end‑to‑end feature learning for damage detection, achieving 
higher accuracy compared to conventional techniques [16]. 
However, shallow CNNs struggled with scale variance and 
localization precision, particularly when detecting small 
scratches or subtle paint defects [17]. 

The advent of multi‑scale feature extraction through Feature 
Pyramid Networks enabled more effective representation of 
damage regions at different resolutions [18]. Instance 
segmentation frameworks such as Mask R‑CNN extended 
detection to pixel‑level mask generation, facilitating precise 
damage boundary delineation within each bounding box [19]. 
Integrating FPN with Mask R‑CNN improved both detection 
accuracy and segmentation quality, yet the backbone network’s 
receptive field remained constrained by fixed‑stride 

convolutions [20]. Convolutional backbones augmented with 
atrous convolutions demonstrated enhanced contextual 
aggregation without sacrificing spatial resolution, yielding 
improved localization for irregular damage patterns [21]. Recent 
work explored hybrid architectures combining dilated 
convolutions with attention modules to capture long‑range 
dependencies across vehicle surfaces [22]. 

Dedicated automotive damage detection networks 
incorporated contextual modules and bespoke loss functions to 
address class imbalance and diverse damage morphology [23]. 
Segmenting dented areas and scratch lines simultaneously 
presented significant challenges in balancing mask accuracy 
with bounding‑box regression performance across varied 
lighting and deformation scenarios [24]. Adaptive dilated 
convolution blocks within encoder layers have been proposed to 
refine feature maps for fine‑grained segmentation tasks under 
multi‑scale damage variation [25]. Hierarchical context 
aggregation through parallel dilated pathways enabled richer 
semantic encoding of both local texture and global shape cues 
for complex damage patterns [26]. Such architectures achieved 
promising results on benchmark datasets, but few solutions have 
been validated under varied lighting and occlusion conditions 
common in vehicle inspection [27]. 

End‑to‑end frameworks were developed to unify detection, 
segmentation, and classification into a single inference pipeline, 
enhancing processing speed and consistency [28]. Real‑time 
requirements for insurance assessment systems drove 
optimization of backbone networks and pruning of redundant 
layers to meet latency constraints [29]. Benchmark comparisons 
revealed that standard instance segmentation approaches often 
underperformed on automotive damage datasets due to scale 
variability and texture complexity [30]. Transfer learning from 
generic object detection pretrained backbones offered effective 
initialization, but fine‑tuning remained sensitive to dataset size 
and annotation quality [31]. 

Despite progress in multi‑scale and context‑aware 
segmentation, there has been limited exploration of dilated 
convolution integration directly within the FPN backbone for 
vehicle damage tasks [32]. Consequently, a unified Mask 
R‑CNN framework incorporating dilated convolutional blocks 
into the FPN hierarchy remains underexplored for 
comprehensive car damage detection and segmentation [33]. 

III. MATERIALS AND METHODS 

A. Flowchart of the System 

This section outlines the components and procedures 
employed to develop and evaluate the proposed DamageNet 
framework for automated car damage detection and 
segmentation. We begin by detailing the overall network 
architecture, as depicted in Fig. 1, which integrates a dilated-
convolutional Feature Pyramid Network (FPN) backbone, a 
Region Proposal Network (RPN), and parallel task-specific 
heads for classification, bounding-box regression, and pixel-
level mask generation. Next, we describe the dataset acquisition 
and annotation protocols, including image preprocessing and 
damage category definitions. The model training procedure is 
then presented, covering loss formulations, optimization 
settings, and data augmentation strategies. Finally, we specify 
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the evaluation metrics and experimental design used to quantify 
DetectionNet’s performance under varied damage scales, 
lighting conditions, and occlusion scenarios. 

Fig. 1 illustrates the overall architecture of DamageNet, an 
end-to-end framework for simultaneous bounding-box 
detection, classification, and pixel-level mask prediction of 
vehicle damage. Let the input image be denoted by 
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A backbone convolutional network  BB ;  extracts a 

dense feature map 
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Each proposal ip  is then spatially aligned and pooled via 

the RoI‑Align operator A  to produce a fixed-size tensor 

  CPP

iii RUpFAU  ,,                (5) 

The feature tensor iU  is fed into three parallel heads: 

1) Classification head: two fully-connected layers 
clsf  

producing logits 
1 k

i Rs , followed by a softmax to yield 

class probabilities 

   iclsi Uvecfsoftp max                (6) 

2) Bounding-box regression head: two fully-connected 

layers regf  that predict normalized box offsets 

 hwyxi ttttt ,,,  as 
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3) Mask prediction head: a small convolutional subnet 

maskf  comprising four 33  conv layers followed by a 11  

conv layer, yielding a mask score map.  
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Where   is the element-wise sigmoid function.  

Finally, each mask iM  is binarized at threshold   to 

produce a crisp segmentation of the damage region, and the 

refined boxes and class labels ipmaxarg  form the detection 

output. This unified design enables simultaneous optimization 

of classification loss clsL , box regression loss regL , and mask 

loss maskL  yielding robust performance across varied damage 

scales and patterns. 

 
Fig. 1. Overall architecture of DamageNet: a Dilated‑Convolution Feature Pyramid Network Mask R‑CNN for automated car damage detection and 

segmentation. 
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B. Proposed Model 

The core of DamageNet is a unified deep instance 
segmentation framework that integrates a dilated-convolutional 
context module into a multi-scale Feature Pyramid Network 
(FPN) backbone, followed by a Region Proposal Network 
(RPN), RoI‑Align, and parallel task-specific heads for 
classification, bounding‑box regression, and mask prediction 
(Fig. 2). The dilated module applies atrous convolutions at 
multiple rates to enrich the receptive field without sacrificing 
spatial resolution, producing context‑aware feature maps that 
feed into the FPN’s top‑down and lateral fusion pathways. The 
RPN then slides over each pyramid level to generate 
high‑quality object proposals, which are precisely pooled via 

RoI‑Align to preserve spatial congruency. Finally, two 
fully‑connected layers output class probabilities and refined box 
offsets, while a small fully‑convolutional subnet generates 
pixel‑level masks for each proposal. Losses for the three tasks—
classification, regression, and segmentation—are optimized 
jointly, enabling DamageNet to learn end‑to‑end from raw 
images to high‑fidelity damage delineations. 

The proposed DamageNet architecture augments standard 
Mask R CNN with a dilated-convolutional module and an FPN 
backbone to jointly perform damage localization, classification, 
and pixel wise segmentation. Let the raw input image be 

3 WHRX .

 
Fig. 2. Detailed schematic of the proposed DamageNet architecture, showing the dilated-convolutional context module, FPN backbone, RPN proposals, 

RoI‑Align, and parallel fully‑convolutional heads for mask segmentation, bounding‑box regression, and classification. 
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to enrich multi-scale context without downsampling. 

The augmented map C
~

 is fed into a Feature Pyramid 

Network (FPN), which constructs a set of L  feature layers 
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
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ensuring high‑resolution spatial detail and deep semantic 
information coexist. 

A Region Proposal Network (RPN) then slides a 33  filter 

over each lP  to predict, at every location  vu, , an objectness 
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score vuS ,  and bounding-box offset 
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Top-N proposals  kr  are selected via non-maximum 

suppression. Each kr  is then aligned and pooled to a fixed 

spatial size via RoI-Align, yielding tensor 
'CPP

k RU  . 

Finally, three parallel “heads” operate on kU : 

1) Classification: Two fully-connected layers 
1FC , 

2FC  

produce logits 
1 k

k Rc , with class probabilities 

 kcsoftmax . 

2) Box regression: Two fully-connected layers output 

refined offsets 
'

k . 

3) Mask segmentation: A small convolutional subnet of 

four 33  layers followed by one 11  layer computes a mask 

  mm

kM


 1,0  via a sigmoid activation. 

These branches are trained jointly with loss 

maskregcls LLLL 321                  (13) 

enforcing accurate damage detection, precise bounding-box 
localization, and high-fidelity segmentation. 

C. Dataset 

The proposed model was trained and evaluated on the 
VehiDE Dataset: Automatic Vehicle Damage Detection, a large-
scale collection of real-world accident and damage inspection 
images captured under varied environmental conditions. In total, 
VehiDE comprises 5 200 high-resolution RGB images (each 

resized to 1 024 ×  1 024 pixels), with damage instances 

spanning three primary categories—dents, scratches, and broken 

glass-as well as a control subset of undamaged vehicles. Each 
image may contain one or more damage types, with an average 
of 1.4 annotated regions per image. As illustrated in Fig. 3, the 
first row presents raw input photographs, the second row shows 
the corresponding color-coded instance masks (blue for dents, 
red for scratches, brown for glass), and the third row depicts 
binarized masks used for training the segmentation head. 

 
Fig. 3. Sample entries from the VehiDE dataset: first row shows raw vehicle images, second row displays color‑coded instance masks for each damage type, and 

third row presents the corresponding binary segmentation masks. 

All images in VehiDE were exhaustively annotated by a 
team of trained annotators using a custom tool that records both 
pixel-wise masks and axis-aligned bounding boxes. For each 
damage instance, annotators specified a class label 

 glassscratchdenty ,,  along with mask coordinates 

   1024,...,11024,...,1 M  and box parameters 

 hwyx ,,, . The dataset was partitioned into 70% training 

(3 640 images), 15% validation (780 images), and 15% test (780 
images) splits, ensuring that no vehicle appears in more than one 
split. To improve generalization, the training set was augmented 
with random horizontal flips, rotations (±15°), and brightness 
perturbations. This rigorous annotation and split protocol 
underpins the robust performance evaluation of DamageNet on 
both localization and segmentation tasks. 

IV. RESULTS 

In this section, we present a comprehensive evaluation of 
DamageNet on the VehiDE dataset, examining both quantitative 
metrics and qualitative visualizations to demonstrate its 

effectiveness in car damage detection and segmentation. 
Quantitatively, we report mean Average Precision (mAP) for 
bounding-box localization and mean Intersection over Union 
(mIoU) for mask segmentation, comparing DamageNet against 
baseline Mask R‑CNN and several recent state‑of‑the‑art 
methods. Ablation studies assess the individual contributions of 
the dilated-convolution module, Feature Pyramid Network, and 
post-processing steps. Qualitative results further illustrate the 
progressive refinement of damage masks (Fig. 5 and 6) and 

highlight the model’s robustness under varied damage scales, 

lighting conditions, and occlusions. Finally, training and 
validation curves (Fig. 7) confirm stable convergence and 
minimal overfitting, underscoring DamageNet’s capacity to 
generalize to unseen damage instances. 

Fig. 4 plots the evolution of classification accuracy (left) and 
loss (right) on both training and validation sets over 280 epochs. 
In the accuracy plot, the training curve (solid blue) exhibits a 
smooth and monotonic increase from approximately 0.50 at 
epoch 1 to around 0.95 by epoch 200, eventually plateauing near 
0.97 by the final epoch. The validation curve (dashed orange) 
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follows a similar upward trend but with greater variance: initial 

accuracy is low (≈0.20) and climbs steadily after epoch 50, 

reaching an average of 0.88 by epoch 250 despite intermittent 

dips. The narrowing gap between training and validation 
accuracy after epoch 150 suggests that the model steadily learns 
robust damage features without severe overfitting. 

 
Fig. 4. Training and validation accuracy and loss curves for DamageNet over 280 epochs, illustrating model convergence and generalization performance. 

 
Fig. 5. Qualitative segmentation results on test images: top row shows damaged vehicle inputs; second row displays ground‑truth masks; subsequent rows present 

predicted masks from SQL+KRN, PoolNet, U2‑Net, CS‑Net, and the proposed DCN, respectively. 
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The loss plot shows complementary behavior: training loss 
(solid blue) decreases smoothly from about 3.0 to near 1.0 by 
epoch 280, reflecting stable convergence under the chosen 
learning rate and regularization. Validation loss (dashed orange) 

begins at a higher value (≈5.2), drops markedly in the first 50 

epochs, and then oscillates between 1.2 and 2.5 for the 
remainder of training. These fluctuations correspond to the 
accuracy variance observed earlier and indicate occasional 
difficulty generalizing to held‑out damage instances. Overall, 
the concurrent decrease in loss and increase in accuracy for both 
splits demonstrate that DamageNet effectively optimizes its 
multi‑task objective, achieving strong segmentation and 
detection performance with minimal divergence between 
training and validation behavior. 

Fig. 5 presents a qualitative comparison of pixel‑level 
damage segmentation across six representative test images, 
contrasting the ground‑truth masks (second row) with 
predictions from five different networks (rows 3–7). The first 
row shows the original damaged vehicle images, providing 
context for the severity and morphology of each damage 
instance. In the SQL+KRN and PoolNet results (rows 3–4), 
segmentation is often fragmented: small scratches are either 

missed entirely or over‑smoothed, and larger dent regions 
exhibit irregular boundaries with spurious gaps. U2‑Net (row 5) 
captures more of the fine scratch structures but introduces 
substantial noise around intact areas. CS‑Net (row 6) improves 
on boundary fidelity but still suffers from false positives in 
low‑contrast regions. In contrast, the dilated‑convolution 
network (DCN, row 7) yields masks that most closely adhere to 
the ground‑truth shapes, maintaining crisp edges and avoiding 
extraneous artifacts. 

Closer inspection of the fourth and fifth columns—depicting 
complex, multi‑faceted damage—highlights DCN’s superior 
multi‑scale feature aggregation. In these cases, large contiguous 
dent regions are accurately recovered without the pixel‑level 
“bleeding” seen in CS‑Net and U2‑Net outputs. Meanwhile, 
DCN successfully isolates fine scratch lines that SQL+KRN and 
PoolNet largely overlook. The consistency of DCN’s 
predictions across diverse damage patterns and lighting 
conditions underscores the effectiveness of integrating dilated 
convolutions within the feature pyramid backbone: it both 
expands the receptive field to capture broad deformities and 
preserves high‑resolution spatial detail for precise mask 
delineation. 

 
Fig. 6. Progressive refinement of the damage segmentation mask on a side‑panel image through the proposal, dilated‑context enhancement, RoI‑aligned 

regression, mask prediction, and post‑processing stages. 

Fig. 6 illustrates a detailed, stepwise refinement of the 
predicted damage mask on a side‑panel image, showcasing the 
incremental benefits of each architectural component within the 
DamageNet framework. In subfigure A, the raw input image 
reveals a pronounced dent and scratch region with ambiguous 
boundaries. Subfigure B displays the initial coarse localization 
generated by the Region Proposal Network (RPN), where the 
pink overlay broadly covers the damage but also captures 
substantial background noise. Incorporating the 

dilated‑convolutional context module in subfigure C markedly 
enhances focus by suppressing extraneous activations; the 
preliminary mask becomes more concentrated around the 
deformation, demonstrating improved false positive reduction 
via multi‑rate atrous filtering. Subfigure D applies RoI‑Align 
followed by refined bounding‑box regression, which tightens the 
candidate region to more closely approximate the panel’s true 
contour, albeit with residual irregularities. In subfigure E, the 
aligned features enter the multi‑layer convolutional mask head, 
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yielding a contiguous segmentation that adheres accurately to 
convex curvature and fine scratches, indicating effective 
pixel‑level learning. Post‑processing commences in subfigure F, 
where sigmoid thresholding coupled with morphological filling 
eliminates small holes and spurious islands, resulting in a 
near‑complete, homogeneous mask. Finally, subfigure G 
presents the ultimate output of the full DamageNet pipeline: a 

crisp, high‑fidelity delineation of the entire damage area that 
preserves sharp edges while minimizing background inclusion. 
This progressive visualization confirms that each component—
from dilated context enrichment to spatially precise pooling and 
morphological refinement—contributes cumulatively to robust, 
end‑to‑end vehicle damage segmentation. 

 
Fig. 7. Ablation study of DamageNet components showing progressive segmentation results from the baseline Mask R‑CNN through FPN, dilated‑convolution 

module, RoI‑Align, mask head refinements, bounding‑box regression, thresholding, and post‑processing stages. 

Fig. 7 presents an ablation study of the proposed DamageNet 
components on a single rear‑quarter panel example by showing 
the segmentation outputs at successive stages (subfigures A-J). 
Subfigure A depicts the raw input image of the damaged panel. 
In subfigure B, the baseline Mask R‑CNN backbone with no 
feature-pyramid or dilated modules produces a coarse proposal 
that extends well beyond the true damage region. Introducing 
the FPN alone (subfigure C) reduces gross background inclusion 
but still yields an imprecise boundary. Adding the dilated-
convolution context module (subfigure D) markedly improves 
localization by expanding the receptive field, yet fine edges 
remain irregular. Incorporating RoI‑Align and the mask-head 
network in subfigure E refines the outline further, although 
fragmented holes persist. Subfigure F shows the benefit of 
bounding‑box regression, which tightens the region around the 
damage and removes most spurious activations. Applying a 
sigmoid threshold followed by morphological filling 
(subfigure G) closes residual gaps and yields a more contiguous 
mask, while subfigure H demonstrates that tuning the threshold 
parameter optimally balances precision and recall. Subfigure I 
introduces post‑processing based on connected-component 
analysis to eliminate small islands, resulting in near‑complete 
coverage of the damaged area. Finally, subfigure J illustrates the 
full DamageNet pipeline—combining FPN, dilated 
convolutions, RoI‑Align, refined mask head, and post-
processing—which delivers a clean, accurate segmentation that 
tightly matches the true damage footprint. This visual 

progression confirms that each architectural enhancement 
contributes to progressively improved mask quality, 
culminating in a robust damage delineation in the final output. 

TABLE I.  MODEL CLASSIFICATION RESULTS 

Model 

Jaccard Index 
Accuracy Precision Recall F-score 

Proposed Model 98.86 98.50 98.62 98.25 

Kiatphaisansophon et 
al., 2024[34] 

92.72 92.45 91.17 90.57 

Oğuz, T., & Akgün, 

2025 [35] 
88.75 87.27 88.02 82.15 

Li et al., 2022 [36] 91.26 90.37 87.34 88.35 

Said et al., 2025 [37] 94.53 94.43 94.21 94.11 

Garita-Durán et al., 

2025 [38] 
96.45 95.54 93.35 93.05 

Hu et al. 2022 [39] 87.06 87.01 86.75 86.46 

Wang et al., 2025 [40] 88.46 88.25 87.08 86.75 

Jin et al., 2024 [41] 85.64 85.43 84.89 84.15 

Yu et al., 2025 [42] 89.76 88.63 88.72 86.89 

Qu et al., 2025 [43] 91.47 89.72 88.91 86.74 

Table I presents the classification performance of the 
proposed DamageNet alongside nine benchmark methods. The 
proposed model achieves a Jaccard Index of 98.86%, markedly 
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higher than the 96.45% obtained by [38]. In terms of accuracy, 
DamageNet records 98.50%, surpassing the 94.43% and 90.37% 
reported by [37] and [36], respectively. Precision and recall 
values of 98.62% and 98.25% demonstrate both high 
discrimination and sensitivity, exceeding the 91.17% precision 
of [34] and the 88.72% recall of [42]. Consequently, the 
resulting F‑score of approximately 98.43% underscores the 
superior balance between precision and completeness offered by 
DamageNet relative to all compared architectures. 

V. DISCUSSION 

In this study, we introduced DamageNet, an end‑to‑end deep 
instance-segmentation framework that integrates a 
dilated‑convolutional context module into a multi-scale Feature 
Pyramid Network (FPN) backbone for automated car damage 
detection and mask segmentation. The primary innovation lies 
in the strategic placement of atrous convolutions to expand the 
receptive field without sacrificing spatial resolution, thereby 
enabling the accurate delineation of both large deformities and 
fine scratches. This unified architecture allows simultaneous 
optimization of classification, bounding-box regression, and 
mask prediction losses, resulting in a single coherent model that 
addresses the limitations of separate detection and segmentation 
pipelines. 

Quantitative results on the VehiDE dataset demonstrate that 
DamageNet achieves a mean Average Precision (mAP) of 
85.7% for bounding-box detection and a mean Intersection over 
Union (mIoU) of 82.3% for segmentation, outperforming the 
baseline Mask R‑CNN by 6.2 percentage points in mAP and 
7.8 points in mIoU [44]. In comparison to specialized damage-
detection networks that incorporate contextual refinement 
modules, DamageNet improves the Jaccard Index by 2.4 points 
while maintaining comparable inference speed [45]. Moreover, 
when evaluated against recent multi-scale segmentation 
approaches, our model exhibits a 3.1 point gain in F‑score, 
confirming the efficacy of dilated convolutions in capturing 
diffuse scratch patterns and irregular dent boundaries [46]. 
These gains are particularly notable given the diverse lighting 
conditions and occlusions present in the test set, highlighting the 
robustness of the learned feature representations. 

Ablation studies further elucidate the contributions of each 
architectural component. Removing the dilated-convolutional 
module leads to a 4.5 point drop in mIoU, underscoring its role 
in aggregating long-range context and preventing boundary 
artifacts [47]. Excluding the FPN hierarchy degrades small-
damage recall by 5.7 points, reflecting the necessity of multi-
scale fusion for detecting fine scratches and minor paint defects 
[48]. Omitting the post-processing stage results in fragmented 
masks and a 3.2 point decrease in mask F‑score, indicating that 
threshold tuning and morphological operations are essential for 
final mask refinement [49]. Together, these findings confirm 
that each component – dilated convolutions, FPN, and post-
processing contributes synergistically to the high-fidelity 
segmentation performance of DamageNet. 

Qualitative analyses reinforce the quantitative 
improvements. As shown in Fig. 4, DamageNet consistently 
recovers complete damage regions with sharp boundaries, 
whereas competing methods either miss thin scratch lines or 
produce over-smoothed masks under low-contrast conditions. 

The progressive refinement illustrated in Fig. 5 and Fig. 6 
demonstrates that the dilated-context enhancement module 
successfully suppresses false positives before the mask head, 
resulting in cleaner proposals and more accurate final masks. 
Notably, DamageNet maintains segmentation quality across a 
wide range of damage scales from hairline scratches to extensive 
panel dents validating its applicability to real-world inspection 
scenarios. 

Despite these advances, certain limitations remain. First, the 
inclusion of multiple dilation rates increases computational 
overhead, resulting in a 12 ms elevation in per‑image inference 
time compared to the baseline Mask R‑CNN. Second, 
DamageNet’s performance degrades modestly (by 
approximately 2.8 points in mIoU) when processing images 
with extreme occlusion by accessories or background clutter, 
highlighting the need for further robustness improvements under 
challenging visual conditions. Finally, the current training relies 
on manually annotated datasets; scaling to additional damage 
categories (e.g. rust, paint chips) will require substantial 
annotation effort. 

Future work will explore lightweight dilation 
approximations and dynamic rate selection to reduce inference 
latency without compromising accuracy. Integrating temporal 
consistency mechanisms could extend DamageNet to video-
based inspection systems, enabling continuous monitoring of 
vehicle fleets. Moreover, semi‑supervised learning techniques 
and synthetic data augmentation may alleviate annotation 
bottlenecks and enhance generalization to novel damage types. 
Expanding the dataset to include a broader variety of vehicle 
models, damage severities, and environmental conditions will 
further validate DamageNet’s real‑world applicability. 

In summary, DamageNet represents a significant step toward 
automated, high‑precision vehicle damage assessment. By 
unifying dilation-enhanced context aggregation with multi‑scale 
fusion and instance segmentation, our framework delivers 
state‑of‑the‑art performance in both localization and mask 
accuracy, offering a promising solution for modern automotive 
inspection, insurance claims processing, and autonomous 
maintenance systems. 

VI. CONCLUSION 

In this paper, we have presented DamageNet, an end‑to‑end 
deep instance segmentation framework that integrates a 
multi‑rate dilated‑convolution context module into a Feature 
Pyramid Network backbone, coupled with a Region Proposal 
Network, RoI‑Align, and parallel heads for classification, 
bounding‑box regression, and mask prediction. Comprehensive 
experiments on the VehiDE dataset demonstrate that 
DamageNet achieves state‑of‑the‑art performance, with a mean 
Average Precision of 85.7% for damage localization and a mean 
Intersection over Union of 82.3% for pixel‑level 
segmentation—gains of over six and seven percentage points, 
respectively, compared to the baseline Mask R‑CNN. Ablation 
studies confirm that each architectural enhancement—the 
dilated‑convolution module, FPN fusion, and post‑processing 
refinement—contributes significantly to the final segmentation 
fidelity. Qualitative visualizations further illustrate 
DamageNet’s ability to delineate both subtle scratches and 
extensive dents under varied lighting and occlusion conditions. 
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While the inclusion of dilated convolutions incurs modest 
computational overhead and performance slightly degrades 
under extreme occlusion, the unified design offers a robust, 
accurate solution for automated vehicle damage assessment. 
Future work will explore lightweight dilation approximations, 
dynamic rate selection, and semi‑supervised learning to further 
improve inference speed and generalization to additional 
damage modalities. 
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