
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

217 | P a g e  

www.ijacsa.thesai.org 

 

Hybrid Structure Query Language Injection (SQLi) 

Detection Using Deep Q-Networks: A Reinforcement 

Machine Learning Model

Carlo Jude P. Abuda1 , Cristina E. Dumdumaya2  

College of Information and Computing, University of Southeastern Philippines, Davao, City, Philippines1, 2 

Department of Information Technology, Visayas State University Alangalang, Alangalang, Leyte, Philippines1 

 

 
Abstract—Structured Query Language injection (SQLi) 

remains one of the most pervasive and dangerous threats to web-

based systems, capable of compromising databases and bypassing 

authentication protocols. Despite advancements in machine 

learning for cybersecurity, many models rely on static detection 

rules or require extensive labeled datasets, making them less 

adaptable to evolving threats. Addressing this limitation, the 

present study aimed to design, implement, and evaluate a Deep Q-

Network (DQN) model capable of detecting SQLi attacks using 

reinforcement learning. The research employed a Design and 

Development Research (DDR) methodology, supported by an 

evolutionary prototyping framework, and utilized a dataset of 

30,919 labeled SQL queries, balanced between malicious and safe 

inputs. Preprocessing involved query normalization and vector 

encoding into fixed-length ASCII representations. The DQN 

model was trained over 2,000 episodes, using experience replay 

and an epsilon-greedy strategy. Key evaluation metrics—

accuracy, cumulative reward, and epsilon decay—showed 

performance improvements, with accuracy increasing from 52% 

to 82% and stabilizing between 65% and 73% in later episodes. 

The agent demonstrated consistent adaptability by successfully 

generalizing across various injection patterns. This outcome 

suggests that reinforcement learning, particularly using DQN, 

provides a viable alternative to traditional models, with superior 

resilience and dynamic learning capabilities. The model's 

convergence trend highlights its practical application in real-time 

SQLi detection systems, contributing significantly to 

cybersecurity measures for database-driven applications. 

Keywords—Adaptive systems; cybersecurity; deep q-network; 

intrusion detection; query classification; reinforcement learning; 

SQL injection 

I. INTRODUCTION 

Structured Query Language Injection (SQLi) is a malicious 
technique that enables attackers to interfere with the queries that 
an application makes to its database [1]. As statistics shows, this 
remains one of the most critical threats in cybersecurity [2], 
frequently exploited to bypass authentication [3], retrieve 
confidential data [4], or even manipulate databases [5]. 
Understanding the core types of SQLi is essential in developing 
effective countermeasures. Starting with In-band SQLi (also 
known as classic SQLi) allows attackers to use the same 
communication channel for both launching the attack and 
gathering results [6]. Inferential SQLi, or blind SQLi, enables 
attackers to reconstruct the database structure based on 

application behavior and response time without direct data 
retrieval [2]. Out-of-band SQLi, meanwhile, leverages separate 
channels such as Domain Name System (DNS) or Hypertext 
Transfer Protocol (HTTP) requests to exfiltrate data, often when 
direct feedback mechanisms are disabled [3]. 

The persistent nature of SQLi attacks underlines the 
importance of continuous innovation in threat detection. 
Traditional approaches like signature-based detection [7] and 
rule-based filtering [8] often fail to keep up with new attack 
variants. More recently, anomaly detection models and deep 
learning algorithms, including Long Short-Term Memory 
(LSTM) networks, have been deployed to detect suspicious 
patterns in SQL queries [9]. Despite their success, these models 
face significant drawbacks such as overfitting, high false 
positive rates, and challenges in recognizing sophisticated or 
obfuscated attack vectors [10]. 

Several machine learning (ML) algorithms—such as 
decision trees, support vector machines (SVMs), convolutional 
neural networks (CNNs), and recurrent neural networks 
(RNNs)—have demonstrated promising results in identifying 
SQLi behaviors [11][12]. However, they still struggle with 
issues like computational complexity and a lack of adaptability 
to evolving threats [13]. A notable limitation of these models is 
their dependence on large labeled datasets and static learning 
paradigms, which reduce their effectiveness in dynamic 
environments. 

To address these limitations, existing research have begun 
exploring the capabilities of Reinforcement Learning (RL), a 
model-free learning paradigm where agents learn optimal 
actions through interaction with their environment [14]. In 
particular, Deep Q-Networks (DQNs) combine Q-learning with 
deep neural networks to approximate action-value functions and 
make intelligent decisions [15]. Moreover, DQN can adjust 
detection strategies based on feedback, which makes them 
suitable for dynamic, real-time security scenarios [16]. 
Enhancements in reward function design, policy optimization, 
and experience replay mechanisms have enabled DQNs to 
outperform conventional models in several intrusion detection 
use cases [17]. 

However, two significant research gaps have emerged. First, 
most existing DQN-based intrusion detection studies do not 
focus exclusively on SQLi detection using diverse query 
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datasets [14]; and second, many models are trained and tested 
using synthetic or simplified datasets that do not accurately 
reflect real-world injection techniques. And based on 
researchers it was reported with a high accuracy rates for 
anomaly detection models but acknowledged that their dataset 
lacked common obfuscation and encoding schemes found in 
actual attacks [18][19]. 

There is a noticeable gap in research dedicated to the 
application of reinforcement learning in SQLi prevention 
[20][21], local studies have emphasize static defense 
mechanisms like input validation or firewall implementation. 
For instance, a research was conducted [22] to  study on 
common SQLi attack vectors in the e-commerce platforms but 
proposed only conventional validation techniques as 
countermeasure. 

As drawbacks were evidently presented regarding the 
various gaps among existing models, this research seeks to 
address the gaps by developing a DQN-based model specifically 
designed to detect SQLi attacks. Furthermore, the specific 
objectives are to preprocess SQL queries into state 
representations suitable for reinforcement learning; design and 
implement a DQN model for SQLi detection; and evaluate the 
model’s accuracy, adaptability, and performance across multiple 
episodes using labeled datasets. Additionally, the aim of this 
research is also to contribute a hybrid, dynamic, and intelligent 
framework for mitigating SQLi attacks in web-based systems, 
thus integrating reinforcement learning into cybersecurity 
applications. 

Additionally, this study also aimed to contribute to 
Sustainable Development Goal (SDG) No. 9: Industry, 
Innovation, and Infrastructure, which emphasizes the 
advancement of reliable, sustainable, and resilient digital 
infrastructure through scientific innovation. By introducing a 
Deep Q-Network-based detection model against SQL injection 
attacks, the research promotes the integration of cutting-edge 
cybersecurity mechanisms into web systems. Strengthening the 
security foundations of digital platforms not only supports 
industrial innovation but also enhances trust in digital 
technologies that is an essential element in building inclusive 
and secure infrastructures in today’s interconnected society. 

However, the scope of this study is limited to the 
development and evaluation of the model itself and does not 
extend to the creation of a user interface or the full deployment 
pipeline for applying the model in production environments. 
Moreover, this study does not cover the identification and 
classification of specific query structures such as subqueries, 
inner queries whether independent or correlated, scalar queries, 
column queries, row queries, or table queries. The focus remains 
solely on detecting the presence of SQLi patterns at the query 
level without dissecting or categorizing the internal query 
composition. 

II. REVIEW OF RELATED STUDIES 

A. Feasbility of Reinforcement Machine Leaning Model 

Preprocessing SQL queries is a critical step in developing 
machine learning models for SQLi detection. This process 
involves transforming raw SQL queries into structured formats 
that can be effectively analyzed by machine learning algorithms. 

The primary goal is to convert the unstructured text of SQL 
queries into numerical representations that capture the essential 
features of the queries while preserving their semantic meaning. 
One fundamental technique in preprocessing is tokenization, 
which involves breaking down a SQL query into its constituent 
components, such as keywords, operators, and operands [23]. 
This segmentation facilitates the identification of patterns and 
anomalies within the queries. For instance, in the SQL query 
SELECT * FROM users WHERE username = 'admin' AND 
password = 'password', tokenization would separate the query 
into individual elements like SELECT, *, FROM, users, 
WHERE, username, =, 'admin', AND, password, =, and 
'password'. By analyzing these tokens, machine learning models 
can more easily detect unusual or malicious patterns indicative 
of SQLi attempts [24]. 

Beyond tokenization, parsing is employed to understand the 
syntactic and semantic relationships between the tokens [25]. 
Parsing involves analyzing the grammatical structure of the SQL 
query to build a parse tree or abstract syntax tree that represents 
the hierarchical relationships between different components of 
the query [26]. This structured representation allows for a deeper 
understanding of the query's intent and can help in identifying 
complex injection patterns that simple token-based analysis 
might miss. 

After tokenization and parsing, the next step is vectorization, 
where the structured representations are converted into 
numerical formats suitable for input into machine learning 
algorithms [27]. One common approach is to use techniques like 
word embeddings, where each token is mapped to a high-
dimensional vector that captures its semantic meaning. Methods 
such as Word2Vec or GloVe [28] can be employed to generate 
these embeddings, allowing the model to understand similarities 
and relationships between different tokens based on their 
contextual usage in a large corpus of text. An alternative 
vectorization method involves creating bag-of-words (BoW) or 
term frequency-inverse document frequency (TF-IDF) 
representations [29]. In these approaches, each query is 
represented as a vector of token frequencies, either as raw counts 
(BoW) or weighted by the inverse frequency of the token across 
the entire dataset (TF-IDF) [30][31]. While these methods are 
simpler and less computationally intensive than word 
embeddings, they may not capture the semantic relationships 
between tokens as effectively. 

The choice of preprocessing techniques can significantly 
impact the performance of the SQLi detection model. For 
example, Santos et al. [32] proposed a method that involves 
analyzing SQL queries by stripping parameters to form 
generalized query structures, enabling the detection of structural 
deviations indicative of potential attacks [33]. Their approach 
demonstrated that by focusing on the structural aspects of SQL 
queries, it is possible to identify anomalies that may signify 
injection attempts. 

Similarly, Shah et al. (2022) developed a deep neural 
network-based detection model that converts SQL data into 
word vectors, forming a sparse matrix input for training. Their 
model incorporated multiple hidden layers with Rectified 
Learning Unit (ReLU) activation functions and optimized loss 
functions, achieving an accuracy exceeding 76%. This study 
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highlights the effectiveness of using deep learning architectures 
in conjunction with advanced preprocessing techniques to 
capture complex patterns associated with SQLi attacks [34]. 

Effective preprocessing also involves handling noise and 
irrelevant information in the SQL queries [32]. This may include 
removing comments, extra whitespace, or other non-essential 
elements that do not contribute to the semantic meaning of the 
query but could introduce variability that confounds the model 
[34]. By cleaning the queries and standardizing their format, the 
model can focus on the meaningful components that are 
indicative of normal or malicious behavior. 

Another important consideration is the handling of dynamic 
elements within SQL queries, such as user inputs or session 
variables [35]. These elements can introduce variability and 
complexity into the queries, making it more challenging to 
detect injections. Techniques such as parameterization or the use 
of placeholders can help in normalizing these dynamic 
components, allowing the model to focus on the structural 
patterns of the queries [36]. Furthermore, the preprocessing 
pipeline should be designed to handle multilingual or locale-
specific elements, especially in applications that support 
multiple languages or character sets. Ensuring that the 
tokenization and parsing processes are robust to different 
languages and encodings is crucial for maintaining the 
effectiveness of the SQLi detection model across diverse user 
bases. Incorporating contextual information into the 
preprocessing stage can also enhance the model's performance 
[37]. This may involve considering the source of the query, the 
role of the user executing it, or the application's state at the time 
of the query. By integrating this contextual data, the model can 
make more informed decisions about the likelihood of a query 
being malicious. 

Moreover, the preprocessing techniques should be evaluated 
for their computational efficiency, especially in real-time 
detection scenarios. Techniques that are too computationally 
intensive may introduce latency, which is unacceptable in high-
performance applications. Balancing the depth of analysis with 
the need for speed is a key consideration in the design of the 
preprocessing pipeline [38]. Finally, it is essential to 
continuously update and refine the preprocessing techniques to 
adapt to evolving SQLi tactics. Attackers continually develop 
new methods to evade detection, and the preprocessing pipeline 
must be agile enough to incorporate new patterns and anomalies 
as they emerge. Regularly updating the tokenization, parsing, 
and vectorization methods, as well as retraining the detection 
models with recent data, can help maintain the effectiveness of 
the SQLi detection system [39]. 

In summary, preprocessing SQL queries into state 
representations suitable for reinforcement learning involves a 
series of steps aimed at transforming raw queries into structured, 
numerical formats that capture their semantic essence. 
Techniques such as tokenization, parsing, and vectorization are 
employed to break down queries into their fundamental 
components, understand their structural relationships, and 
convert them into formats amenable to machine learning 
analysis. Effective preprocessing enhances the model's ability to 
detect anomalies and improves the overall accuracy of SQLi. 

B. Existing Methods Integrated with DQN 

Designing and implementing a DQN model for web 
vulnerability detection combines concepts from both deep 
learning and reinforcement learning to provide a dynamic and 
intelligent solution to one of the most persistent threats in web 
security [40]. A DQN is a reinforcement learning algorithm that 
uses a neural network to approximate Q-values, which represent 
the expected rewards of taking certain actions in specific states. 
Unlike traditional machine learning models that require 
manually labeled input-output pairs, reinforcement learning 
models like DQN learn through interaction with an environment. 
In the context of SQLi detection, this “environment” can be 
simulated using a dataset of labeled SQL queries, including both 
legitimate and malicious examples [41]. 

The model learns by receiving feedback when it correctly 
identifies an injection attack, it receives a positive reward; when 
it fails, it receives a penalty. Over time, the agent becomes more 
accurate in identifying which features of SQL queries indicate 
an attack [42]. A key part of this process is defining the state 
space, which involves transforming raw SQL queries into 
numerical formats that preserve both structure and semantics. 
These could include vectorized tokens, embeddings, or one-hot 
encodings based on preprocessed query components. This 
numerical input is then fed into the DQN’s input layer [43]. The 
architecture typically consists of multiple dense (fully 
connected) hidden layers, often using ReLU as the activation 
function, to process and learn patterns in the data. 

The output layer of the network contains Q-values 
representing possible actions the model can take — in this case, 
labeling a query as either normal or malicious. During training, 
the DQN updates its internal weights to maximize the total 
expected reward across all episodes. It uses algorithms like 
experience replay, which stores past experiences in a memory 
buffer and samples them randomly during training to break the 
correlation between sequential data. Another technique used is 
the target network [44], a separate copy of the Q-network that is 
updated less frequently to improve stability in learning. 

One of the strengths of using DQNs for this problem is 
adaptability [45]. Unlike static detection systems that rely on 
fixed rules or signatures, a reinforcement learning model can 
continuously improve by learning from new attack patterns. It 
can generalize from past experiences to detect previously unseen 
types of SQLi attacks, making it especially effective in 
environments where threats evolve rapidly. Moreover, the 
model’s ability to self-learn reduces the need for continuous 
human intervention, streamlining the cybersecurity workflow. 
Researcher from  Salah et al. [46] have shown promising results 
using deep learning models for SQLi detection, achieving high 
accuracy by allowing the model to learn complex patterns 
directly from data. 

Designing the reward function is a crucial part of the 
implementation process. It must encourage correct classification 
while penalizing false positives and false negatives 
appropriately [47]. A poorly designed reward function could 
lead the agent to adopt suboptimal policies. Additionally, 
balancing the exploration and exploitation trade-off is vital: the 
agent must try new actions to discover better policies 
(exploration) while using known strategies to maximize reward 
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(exploitation). This is typically managed using an epsilon-
greedy strategy, where the model explores randomly with 
probability ε and exploits the best-known action otherwise [48]. 

The success of the DQN model also depends on the quality 
and diversity of the training data. The dataset must include a 
wide variety of SQL queries — including obfuscated, encoded, 
or uncommon attack patterns — to ensure the model learns to 
detect a broad range of malicious behaviors. In practice, 
developers may use benchmark datasets or simulate realistic 
web traffic that includes injection attempts. Once trained, the 
model must be evaluated using metrics such as accuracy, 
precision, recall, F1-score, and Area Under the Curve (AUC) to 
determine its effectiveness. Performance across these metrics 
helps identify whether the model favors false positives (flagging 
good queries as attacks) or false negatives (failing to detect 
actual attacks), both of which have serious implications [49]. 

Another consideration during implementation is 
computational efficiency. DQNs require substantial resources to 
train, especially when using large datasets or deep architectures. 
This means selecting an appropriate model complexity that 
balances detection performance with processing speed, 
especially if the model is to be deployed in real-time 
environments [50]. Moreover, to avoid overfitting — where the 
model performs well on training data but poorly on unseen 
queries — techniques such as dropout, regularization, and cross-
validation may be applied. Once trained, the model can be 
integrated into a web application’s backend or a security 
monitoring system to intercept and evaluate SQL queries in real-
time. 

Another factor, in the implementation process of this model 
involves managing the progression of learning phases to 
maximize training effectiveness. During the early exploration 
phase, the model is intentionally encouraged to sample a wide 
range of state-action pairs, typically by employing strategies 
such as epsilon-greedy exploration [51]. This ensures that DQN 
does not prematurely converge on suboptimal policies by 
relying solely on immediate rewards but instead develops a 
broader understanding of the environment's dynamics. Early 
exploration is vital in avoiding bias in action selection, 
particularly when the initial model weights are random and 
uninformed. 

As training proceeds, learning growth becomes evident 
through the gradual refinement of the Q-function 
approximation. The model's predictions for future rewards 
become more accurate, and learning curves typically exhibit a 
consistent reduction in loss metrics [52]. At this stage, 
computational efficiency techniques such as prioritized 
experience replay, and target network stabilization are often 
applied to further optimize the training process without 
sacrificing generalization. 

Eventually, the model enters a phase of policy exploitation, 
where it leverages its accumulated knowledge to consistently 
select actions that maximize long-term rewards. Fine-tuning of 
hyperparameters, including the reduction of exploration rates 
and adaptive learning rate adjustments, supports this transition 
from exploration to exploitation [53]. Towards the progression 
of this process, careful monitoring was observed by the 
researcher during this phase as this is necessary to prevent 

overfitting, as the model might otherwise memorize specific 
patterns in the training dataset, reducing its capacity to 
generalize to novel queries. 

Finally, the training process aims for final convergence, 
where Q-value estimates stabilize, and policy updates produce 
negligible changes. Achieving convergence indicates that the 
DQN has sufficiently learned to distinguish between benign and 
malicious SQL queries under diverse input conditions. 
Validation against independent test sets and cross-validation 
strategies are crucial during this stage to confirm that the model's 
performance is not limited to training data alone but extends 
effectively to unseen inputs. Once final convergence is 
validated, the DQN model can be confidently deployed into a 
web application's backend or integrated within a real-time 
security monitoring infrastructure [54]. 

In summary, designing and implementing a DQN model for 
SQLi detection involves more than coding a neural network — 
it requires careful planning, data preparation, environmental 
simulation, algorithmic tuning, and continuous validation. The 
strength of this approach lies in its ability to self-learn, adapt, 
and generalize across a wide range of attack types, making it a 
promising solution in the ever-evolving field of cybersecurity. 
By mimicking the behavior of intelligent agents that learn from 
trial and error, the model contributes not only to improved threat 
detection but also to building smarter, more secure digital 
systems. 

C. Evaluating the Model’s Accuracy, Adaptability, and 

Performance Across Multiple Episodes Using Labeled 

Datasets 

Evaluating a Deep Q-Network (DQN) model for SQLi 
detection is a crucial phase in determining its practical value and 
effectiveness in real-world cybersecurity applications. The 
evaluation process helps to measure not only how accurately the 
model detects malicious SQL queries but also how adaptable it 
is to unseen threats and how consistently it performs across 
different training and testing episodes. In particular, the 
parameters includes the following key aspects of 1) accuracy, 
2) reward, 3) epsilon decay, and 4) performance stability, these 
objectively ensures that the model is not just theoretically sound 
but also operationally reliable when deployed in actual web 
systems [49]. 

Accuracy is one of the most fundamental metrics used in 
evaluating machine learning models. In SQLi detection, 
accuracy refers to the proportion of correct predictions (both 
malicious and benign) over the total number of predictions. A 
high accuracy rate indicates that the model can reliably 
distinguish between safe and unsafe SQL queries. However, 
accuracy alone can be misleading, especially when dealing with 
imbalanced datasets where benign queries significantly 
outnumber malicious ones. In such cases, other metrics such as 
precision, recall, and F1-score are more informative. Precision 
measures how many of the queries flagged as SQLi were 
actually malicious, while recall determines how many of the 
actual SQLi queries were successfully identified [55][56]. Then, 
F1-score is the harmonic mean of precision and recall, offering 
a balanced measure that is particularly useful when false 
positives and false negatives carry significant risks. 
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Beyond these standard metrics, model adaptability is another 
key dimension to assess. Adaptability refers to the model’s 
ability to maintain performance when exposed to new or 
previously unseen types of SQL injection attacks . A good DQN 
model should not just memorize patterns from the training 
data—it should generalize, learning underlying principles that 
allow it to detect variants of attacks that were not explicitly 
present during training. This is especially important in 
cybersecurity, where attackers frequently change tactics to 
evade detection [57]. Therefore, part of the evaluation involves 
exposing the trained model to new datasets or adversarial 
examples that simulate evolving attack methods and monitoring 
how well the model maintains its detection capabilities. 

Another critical aspect of the evaluation process is observing 
the model’s performance across multiple episodes. In 
reinforcement learning, the agent interacts with the environment 
over episodes, learning incrementally based on the rewards 
received for its actions. Evaluating the model over many 
episodes ensures that its learning is stable and that performance 
improvements are not just the result of random fluctuations or 
overfitting [58]. Performance can be tracked using cumulative 
reward plots, convergence rates, and episode-wise accuracy 
metrics. These indicators help identify whether the model is 
learning effectively or if it is plateauing or regressing in its 
performance over time. 

The quality and diversity of the dataset used for evaluation 
also play a crucial role. Using a labeled dataset means that every 
SQL query has been previously classified as either safe or 
malicious. This allows for objective measurement of the model’s 
predictions. A good evaluation dataset should include a wide 
range of SQL queries: traditional injection patterns, obfuscated 
payloads, encoded strings, and even polymorphic SQL attacks 
[58]. Inclusion of noise and real-world queries that closely 
mimic normal user behavior adds further robustness to the 
testing process [59]. 

To ensure fairness and reproducibility, the evaluation should 
use standard data splitting techniques. Typically, datasets are 
divided into training, validation, and test sets. The model is 
trained on the training set, tuned on the validation set, and its 
final performance is reported on the test set. Cross-validation 
techniques, such as k-fold validation [60], can further improve 
reliability by averaging performance over multiple data 
partitions [61]. This reduces bias and helps in understanding 
how the model behaves under different data distributions. 

Performance should also be measured in terms of 
computational efficiency. In practical deployments, a model 
must make decisions in real-time or near real-time. This means 
latency—how long it takes to analyze and classify a single 
query—becomes a critical metric. A high-performing model that 
takes several seconds to respond may not be suitable for real-
time applications such as intrusion prevention systems. 
Therefore, evaluating the DQN model’s inference time, memory 
consumption, and Central Processing Unit (CPU)/Graphic 
Processing Unit (GPU) utilization becomes essential, 

particularly when planning for integration into existing web 
architectures [62]. 

Robustness testing is another valuable part of evaluation. 
This involves intentionally introducing noise, incorrect data 
formatting, or adversarial inputs to observe whether the model 
can still make correct classifications [63]. A vigorous SQLi 
detection model must to not break down or perform erratically 
when encountering slight deviations from expected input. 
Testing under these conditions gives insights into the model’s 
stability and readiness for deployment in unpredictable 
environments. 

Furthermore, comparative evaluation against baseline 
models is vital. The DQN model’s performance should be 
compared with traditional classifiers such as Decision Trees, 
Support Vector Machines (SVM) [64], Random Forests [65], or 
even static rule-based systems [66]. If the DQN model 
consistently outperforms these alternatives across all evaluation 
metrics, it justifies the additional complexity and computational 
cost involved in implementing reinforcement learning. Studies 
such as those by Anwar (2023) [67] and Alghawazi et al. (2023) 
[68] have demonstrated how deep learning models can 
significantly surpass conventional techniques in detecting SQLi 
attacks, particularly in adapting to real-world query patterns and 
minimizing false alarms. 

III. METHODOLOGY 

This study employed the Design and Development Research 
(DDR)  methodology approach [69][70] to develop a DQN-
based detection model for SQLi attacks. DDR is a research 
methodology that focuses on designing, building, and evaluating 
models to solve identified problems—in this research, that the 
persistent threat of SQL injection in database-driven web 
systems. 

 
Fig. 1. Research implementation of evolutionary prototype software 

development life cycle framework. 

In Fig. 1, the study further adopted the Evolutionary 
Prototyping Model [71]–[73] as the Software Development Life 
Cycle (SDLC) framework, wherein in this approach supported 
iterative development and refinement of a functional prototype 
was developed by the researcher to align the reinforcement 
learning structure of the proposed model. 

A. Requirements Analysis and Gathering 

The development process began with the requirements 
analysis phase, during which the nature of SQLi attacks was 
studied in detail as presented in Pseudocode 1.
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Pseudocode 1: RL Development 

START 

 LOAD and preprocess dataset 

  NORMALIZE and CLEAN SQL queries 

  ENCODE queries into fixed-length vectors 

  LABEL each query as Safe or Malicious 

 SPLIT data into training and testing sets (80/20) 

 

DEFINE environment to: 

  PROVIDE query input 

  RETURN reward based on prediction accuracy 

 INITIALIZE DQN agent: 

  BUILD neural network 

  SET learning parameters (epsilon, gamma, learning 
rate) 

  

 FOR each training episode: 

  RESET environment and GET initial state 

  FOR 

   SELECT action (predict Safe or SQLi) 

   GET reward and next state 

   STORE experience 

  UPDATE model from memory (experience replay) 

  DECAY exploration rate (epsilon) 

  

 PLOT accuracy and reward trends over episodes 

END  

This included a review of known SQLi patterns and 
classification techniques, which collected from existing or 
secondary data sets creating a labeled dataset online. The dataset 
identified both safe and malicious SQL queries, representing 
various types of attacks such as In-band SQLi, Inferential SQLi, 
and Out-of-band SQLi. At this stage, the specific need to 
transform human-readable queries into machine-processable 
formats was identified, directly addressing the first research 
objective: to preprocess SQL queries into state representations 
suitable for reinforcement learning. Next is the quick design 
phase, it is now the preliminary logic was implemented to 
preprocess the queries. A custom text normalization function 
was applied which involved converting all characters to 
lowercase and removing special characters. Then, to enrich the 
dataset, a rule-based classifier was also applied to detect and 
label different SQLi attack types based on keyword patterns. 
Each query was then encoded into a fixed-length numeric vector 
using character-level ordinal encoding. This transformation 
enabled uniform input for the DQN model while preserving 
critical structural features of the SQL statements. 

B. Quick Design, Prototype Development and Refinement 

The subsequent phase focused on prototype development, 
where the actual Deep Q-Network was implemented using 
Python and TensorFlow. A simulated environment was 
developed using a custom class SQLiEnv that allowed the agent 
to interact with the dataset by analyzing queries one at a time. 
The DQN agent was structured with neural network architecture 
comprising an input layer, two hidden layers using ReLU 
activation functions, a dropout layer for regularization, and an 
output layer with softmax activation for classification. The DQN 
model was trained to classify each query as either safe or 
malicious, thus delivering the second research objective of the 
study that is to design and implement a DQN model for SQLi 
detection. 

In the testing and refinement stage, the developed prototype 
took place over 2,000 training episodes, each consisting of 100 
interactions between the agent and the environment. For each 
interaction, the model is expected to receive a reward of +1 for 
correct predictions and -1 for incorrect ones as provided in 
Fig. 2. 

 

Fig. 2. Reinforcement learning training loop for SQLi detection. 

Fig. 2 shows that feedback loops were used to adjust the 
model's policy over time. The model employed reinforcement 
learning principles such as experience replay and epsilon-greedy 
exploration to balance learning from past experiences with 
discovering new strategies. 

In the evaluation of the DQN-based SQLi hybrid detection 
model was guided by key reinforcement learning metrics. First, 
accuracy per episode was tracked and stored in the accuracy list. 
This metric was calculated as the percentage of correct 
predictions out of 100 interactions per episode, providing a clear 
measure of how the model’s classification ability improved over 
time. Additionally, the total reward per episode, recorded in the 
rewards list, reflected how many actions (classifications) were 
correctly taken by the agent in each training cycle. Since a 
correct classification yielded a reward of +1 and an incorrect one 
a reward of -1, the total reward served as a direct indicator of 
learning success. 

1) Model evaluation: To guide the learning behavior, the 

model employed an epsilon-greedy exploration strategy. The 

epsilon value, initialized at 1.0, decayed exponentially by a 

factor of 0.995 after each episode until reaching a minimum of 
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0.01. This ensured a balance between exploration (trying new 

actions) and exploitation (using the best-known policy), 

allowing the agent to learn optimally over time. As training 

progressed, convergence and stability were observed around 

among episodes, as indicated by the flattening trend in both 

accuracy and reward outcomes as expected. 

2) Hybrid model (output): The stable metrics referencing 

from the literatures [74] shows that the agent had learned a near-

optimal classification policy and ceased making significant 

changes in behavior. Furthermore, a learning curve 

visualization was generated using Matplotlib, which illustrated 

the progression of both total rewards and classification 

accuracy over 2,000 training episodes. These evaluation 

metrics, drawn directly from the model’s training logs and 

source code implementation, demonstrate that the agent not 

only learned effectively but also maintained consistent 

performance in SQLi detection tasks. 

Moreover, the application and integration of various tools in 
the study included Python for development, TensorFlow for 
deep learning modeling, Pandas and NumPy for data handling, 
Scikit-learn for data partitioning, and Matplotlib for 
visualization. This toolchain enabled smooth development and 
evaluation of the prototype in alignment with the DDR 
methodology and the evolutionary prototyping model. 

3) Ethical considerations: The study adhered to ethical 

research standards by exclusively utilizing secondary datasets 

sourced from Kaggle’s publicly accessible SQL injection 

repositories. These datasets, contributed for academic and 

educational purposes, were fully anonymized and contained no 

personally identifiable information, ensuring that data privacy 

and confidentiality were consistently protected. Throughout the 

research process, the researcher complied with Kaggle’s 

licensing terms by restricting the use of the datasets strictly for 

academic analysis without any redistribution or unauthorized 

modification. Since the investigation involved no direct 

engagement with human subjects, institutional review board 

(IRB) approval and informed consent requirements were 

deemed unnecessary. The study-maintained transparency, 

integrity, and responsible data handling practices, aiming to 

contribute meaningfully to cybersecurity research while 

upholding the rights and intentions of the original data 

contributors. 

IV. RESULTS AND DISCUSSION 

The dataset used in this study consisted of a total of 30,919 
SQL queries, comprising both malicious and safe inputs. 
Specifically, 11,382 queries (36.8%) were labeled as SQL 
injection attacks, while 19,537 queries (63.2%) were labeled as 
safe queries. This balance provided the DQN agent with a 
realistic and diverse set of inputs for training and evaluation. 

As observed in Table I, it presents sample SQL queries after 
preprocessing, along with their assigned labels and identified 
SQLi types. Each raw query was normalized to remove special 
characters and standardize structure, enabling uniform 
encoding. The table shows that typical SQL injection patterns—

such as 'admin' OR 1=1--—were correctly categorized as In-
band SQLi (Classic), while safe queries like SELECT password 
FROM users were labeled as Unknown/Normal Query. This 
structured labeling allowed the model to differentiate malicious 
input from benign ones during training. 

Now, for the Table II, the researcher then summarizes the 
classification output of SQLi types after preprocessing and 
labeling. Out of the total 30,919 SQL queries, the majority 
(27,425 or 88.7%) were categorized as Unknown/Normal 
Queries, while 3,494 queries (11.3%) were identified as In-band 
SQLi (Classic). No samples were labeled under Inferential SQLi 
(Blind), reflecting the specific distribution present in the dataset 
used. This breakdown provided the model with a representative 
dataset for distinguishing between malicious and safe query 
types. 

TABLE I.  DATASET AFTER PREPROCESSING AND SQLI TYPE 

CLASSIFICATION 

Query (Raw) Processed Query Label SQLi Type 

SELECT * 

FROM users ... 
select from users 1 In-band SQLi (Classic) 

admin' OR 1=1 

-- 
admin or 11 1 In-band SQLi (Classic) 

SELECT 

password 

FROM users 

select password 
from users 

0 
Unknown/Normal 
Query 

TABLE II.  SQLI TYPE CLASSIFICATION 

SQLi Type Count Percentage (%) 

Unknown/Normal Query 27,425 88.7 

In-band SQLi (Classic) 3,494 11.30 

Inferential SQLi (Blind) 0 0.00 

 
Fig. 3. Distribution of Safe Vs Malicious in train and test sets. 

Consequently, Fig. 3 illustrates the distribution of safe 
versus malicious SQL queries across the training and test sets 
after applying an 80/20 split. The training set consisted of 24,735 
queries, while the test set included 6,184 queries. Both sets 
preserved the original ratio of benign to malicious inputs, 
ensuring that the model was exposed to a balanced 
representation during learning and evaluation phases. 

Furthermore it is also significantly observed that the model 
was capable of learning how to detect SQL injection (SQLi) 
attacks based on query patterns. Notably, this was proven that a 
successful integration of a reinforcement learning environment 
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(SQLiEnv) and a learning agent (DQN Agent) within a 
simulation loop running across 2,000 episodes. The model was 
constructed using a neural architecture with an input layer of 100 
units (matching the encoded vector length of preprocessed 
queries), followed by two hidden layers with 128 and 64 neurons 
activated by ReLU, and a softmax-activated output layer for 
binary classification (safe vs. SQLi). A dropout layer with a rate 
of 0.3 was introduced to prevent overfitting, and the model was 
compiled using categorical cross-entropy loss with the Adaptive 
Moment Estimation (ADAM) optimizer set at a learning rate of 
0.001. 

Following the preprocessing and encoding of SQL queries 
as discussed, the second phase of this study aimed to design and 
implement a Deep Q-Network (DQN) capable of classifying 
SQL injection (SQLi) attacks from safe queries. The 
implementation utilized a reinforcement learning framework, in 
which a DQN agent interacted with a simulated environment 
(SQLiEnv), learned from experience through reward-based 
feedback, and refined its prediction policy over multiple 
episodes. 

The training process was conducted over 2,000 episodes, 
with each episode consisting of 100 interactions. For each 
interaction, the agent was either rewarded (+1) for correct 
predictions or penalized (–1) for incorrect ones. 

The learning process was guided by reinforcement principles 
such as experience replay and epsilon-greedy exploration, 
allowing the agent to explore new actions early in training while 
gradually focusing on exploiting learned policies as training 
progressed. 

 
Fig. 4. Reinforcement learning progressions (left) & model accuracy over 

training (right).  

As shown in Fig. 4, the total reward (left graph) displayed a 
notable upward trend in the early episodes, although with some 
fluctuations—particularly during the exploration phase when 
epsilon was still high. After approximately 500 episodes, both 
reward and accuracy metrics showed significant improvements, 
stabilizing around Episodes 600 to 800. The right-hand side of 
the figure reveals the accuracy curve, which began in the 40–
50% range and climbed steadily to reach peak values of up to 
82%, with a sustained accuracy range between 63–73% toward 
the end of the training cycle. Additionally, Table III presents the 
Training Progressions across 2000 episodes and to better 
understand this progression, Table IV categorizes the model’s 
development across four key training phases. 

TABLE III.  TRAINING PHASES OF THE DQN MODEL 

Training 

Phase 

Epsilon 

Range 

Accuracy 

Trend 
Notable Highlights 

Early 
Exploration 

1.0 → ~0.6 43%–57% 

Inconsistent 

learning; mixed 

performance 

Learning 
Growth 

~0.6 → 0.2 60%–72% 
First signs of 
reliable detection 

Policy 
Exploitation 

0.2 → 0.01 63%–82% 

Peak accuracy, 

stable and high 

performance 

Final 
Convergence 

Steady at 
0.01 

65%–73% (avg. 
sustained) 

Long-term 

generalization and 

robustness 

Table III further illustrates how the epsilon decay 
mechanism guided the agent’s transition from exploration to 
exploitation. In the Early Exploration phase, the model exhibited 
erratic behavior as it attempted to learn the structure of the input 
data. As the epsilon value decreased, the model entered the 
Learning Growth stage, where it started making increasingly 
accurate classifications. The Policy Exploitation phase, 
characterized by a low epsilon, allowed the agent to rely on 
learned behavior with minimal randomness. Finally, in the Final 
Convergence phase, the model achieved sustained, stable 
performance with an average accuracy consistently above 65%. 

Hence, these indicators significantly provided a 
comprehensive understanding of this research  that aimed to 
propose, develop, integrate and evaluate the model’s accuracy, 
adaptability, and performance across multiple episodes was 
confirmed using labeled dataset. It was also strengthen the 
researcher’s observation by applying and finding the optimal 
hyperparameters in analyzing the model’s behavior over 2,000 
training episodes, with three key performance indicators 
tracked: Accuracy, Total Reward (Reward), Epsilon Decay 
(exploration rate/decay) and Performance Stability (model 
stability across epochs/episodes) as presented in Table IV. 

TABLE IV.  MODEL EVALUATION 

Performance 

Metrics 
Observation/Evaluation Interpretation 

Accuracy 43% (early) → 73% (final average), peaked at 82% 

Reward 
–22 (low point) → +64 (high point), stable at +30–40 

range 

Epsilon Decay 1.0 → 0.01, indicating improved policy confidence 

Performance 
Stability 

Stabilized from Episode ~600 onwards 

Hence, these indicators significantly provided a 
comprehensive understanding of the DQN model’s learning 
effectiveness and generalization ability in classifying SQLi 
queries. 

V. CONCLUSION 

This study evidently provided the effectiveness of a DQN-
based reinforcement learning model in detecting SQLi attacks 
within structured web query patterns. The model then exhibited 
a clear learning trajectory—starting with unstable predictions 
and evolving toward sustained classification accuracy. Notably, 
it achieved a peak accuracy of 82% and maintained consistent 
performance between 65% and 73% across extended episodes, 
affirming its capacity for pattern recognition and generalization. 
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The sustained gains in reward and accuracy reflect a successful 
convergence and an optimized policy that effectively 
differentiated between malicious and benign SQL statements. 
The findings notably contributed to the theoretical advancement 
of intelligent intrusion detection systems by validating 
reinforcement learning’s adaptive capabilities in cybersecurity 
contexts. Unlike traditional models, which often rely on static 
features or handcrafted rules, the DQN framework leveraged 
dynamic policy updates and experience replacing iteratively 
improve its classification strategy. These results also align with 
existing literature highlighting the importance of policy-based 
agents in real-time threat mitigation and expand prior works by 
demonstrating DQN’s capacity for maintaining long-term 
accuracy over diverse query structures. 

Furthermore, this research highlights the relevance of 
reinforcement learning for evolving cyber threats and affirms 
the model’s applicability in practical deployment scenarios. The 
model’s consistent performance across a diverse dataset 
suggests its potential for integration into adaptive security layers 
of web systems, where real-time learning and response are 
crucial. Overall, this study provides empirical evidence that a 
DQN-based model, when properly tuned and trained, can serve 
as a robust, intelligent mechanism for mitigating SQLi attacks, 
thereby enhancing the theoretical discourse on automated and 
interpretable cybersecurity solutions. 

VI. RECOMMENDATIONS 

Based on the findings of this research, it is recommended 
that future studies focus on enhancing the data preprocessing 
pipeline to further improve model performance. Although 
character-level encoding and rule-based SQLi classification 
supported the detection of malicious queries, the application of 
more advanced natural language processing (NLP), GPT-4 
embeddings, Quantum Machine Learning approaches or in 
multi-modal frameworks that cover similar techniques, 
including tokenization, word embeddings, and syntactic parsing, 
may enable the model to better recognize obfuscated or 
sophisticated SQL injection attempts. Incorporating sequence 
modeling methods, such as bidirectional encoders, could also 
strengthen the contextual understanding of logical query 
structures, leading to more accurate threat detection. 

Considering the achieved classification accuracy, additional 
refinements to the Deep Q-Network architecture are encouraged 
to optimize both learning efficiency and generalization. While 
the present network configuration demonstrated consistent 
performance improvements across training episodes, 
experimentation with deeper architectures, attention-based 
mechanisms, and advanced variants such as Double DQN and 
Dueling DQN is recommended to further enhance the model’s 
resilience against diverse and adversarial input patterns. 
Furthermore, collecting and curating primary datasets, rather 
than relying solely on secondary sources, would provide a richer 
and more realistic foundation for training models capable of 
adapting to evolving SQL injection techniques. Introducing real-
time feedback mechanisms, wherein the model interacts with 
live web traffic, could also offer dynamic learning opportunities, 
equipping the system to respond swiftly to emerging threats. 

Aligned with the limitations identified in this study, future 
initiatives should extend beyond the model’s detection 
capabilities and explore the practical integration of the system 
within application environments. As this research was confined 
to model development and evaluation, without designing a user 
interface or a complete deployment framework, subsequent 
efforts should address the operationalization of the model to 
ensure usability and scalability in production settings. 
Moreover, since this study did not delve into the identification 
or categorization of specific query structures such as subqueries, 
inner queries, scalar queries, column queries, row queries, and 
table queries, future research could investigate techniques for 
parsing and analyzing internal SQL query compositions to 
achieve finer-grained threat classification. 

Lastly, it is recommended that the developed model be 
evaluated under live operational conditions to thoroughly assess 
its robustness, adaptability, and scalability across diverse 
database systems and application environments. Validation 
across varying technological contexts is crucial to ensure the 
model’s generalizability and practical effectiveness in real-
world scenarios. Future research may also consider expanding 
the scope to address other types of injection attacks beyond SQL 
injection, implement on machine learning embeddings 
visualizations, hence this broadens the model’s 
understandability, applicability and complexity to a wider range 
of cybersecurity threats. Integrating the model into 
comprehensive security frameworks would further contribute to 
strengthening system defenses and enhancing overall resilience 
against evolving vulnerabilities. 
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