
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

217 | P a g e

www.ijacsa.thesai.org

Hybrid Structure Query Language Injection (SQLi)

Detection Using Deep Q-Networks: A Reinforcement

Machine Learning Model

Carlo Jude P. Abuda1 , Cristina E. Dumdumaya2

College of Information and Computing, University of Southeastern Philippines, Davao, City, Philippines1, 2

Department of Information Technology, Visayas State University Alangalang, Alangalang, Leyte, Philippines1

Abstract—Structured Query Language injection (SQLi)

remains one of the most pervasive and dangerous threats to web-

based systems, capable of compromising databases and bypassing

authentication protocols. Despite advancements in machine

learning for cybersecurity, many models rely on static detection

rules or require extensive labeled datasets, making them less

adaptable to evolving threats. Addressing this limitation, the

present study aimed to design, implement, and evaluate a Deep Q-

Network (DQN) model capable of detecting SQLi attacks using

reinforcement learning. The research employed a Design and

Development Research (DDR) methodology, supported by an

evolutionary prototyping framework, and utilized a dataset of

30,919 labeled SQL queries, balanced between malicious and safe

inputs. Preprocessing involved query normalization and vector

encoding into fixed-length ASCII representations. The DQN

model was trained over 2,000 episodes, using experience replay

and an epsilon-greedy strategy. Key evaluation metrics—

accuracy, cumulative reward, and epsilon decay—showed

performance improvements, with accuracy increasing from 52%

to 82% and stabilizing between 65% and 73% in later episodes.

The agent demonstrated consistent adaptability by successfully

generalizing across various injection patterns. This outcome

suggests that reinforcement learning, particularly using DQN,

provides a viable alternative to traditional models, with superior

resilience and dynamic learning capabilities. The model's

convergence trend highlights its practical application in real-time

SQLi detection systems, contributing significantly to

cybersecurity measures for database-driven applications.

Keywords—Adaptive systems; cybersecurity; deep q-network;

intrusion detection; query classification; reinforcement learning;

SQL injection

I. INTRODUCTION

Structured Query Language Injection (SQLi) is a malicious
technique that enables attackers to interfere with the queries that
an application makes to its database [1]. As statistics shows, this
remains one of the most critical threats in cybersecurity [2],
frequently exploited to bypass authentication [3], retrieve
confidential data [4], or even manipulate databases [5].
Understanding the core types of SQLi is essential in developing
effective countermeasures. Starting with In-band SQLi (also
known as classic SQLi) allows attackers to use the same
communication channel for both launching the attack and
gathering results [6]. Inferential SQLi, or blind SQLi, enables
attackers to reconstruct the database structure based on

application behavior and response time without direct data
retrieval [2]. Out-of-band SQLi, meanwhile, leverages separate
channels such as Domain Name System (DNS) or Hypertext
Transfer Protocol (HTTP) requests to exfiltrate data, often when
direct feedback mechanisms are disabled [3].

The persistent nature of SQLi attacks underlines the
importance of continuous innovation in threat detection.
Traditional approaches like signature-based detection [7] and
rule-based filtering [8] often fail to keep up with new attack
variants. More recently, anomaly detection models and deep
learning algorithms, including Long Short-Term Memory
(LSTM) networks, have been deployed to detect suspicious
patterns in SQL queries [9]. Despite their success, these models
face significant drawbacks such as overfitting, high false
positive rates, and challenges in recognizing sophisticated or
obfuscated attack vectors [10].

Several machine learning (ML) algorithms—such as
decision trees, support vector machines (SVMs), convolutional
neural networks (CNNs), and recurrent neural networks
(RNNs)—have demonstrated promising results in identifying
SQLi behaviors [11][12]. However, they still struggle with
issues like computational complexity and a lack of adaptability
to evolving threats [13]. A notable limitation of these models is
their dependence on large labeled datasets and static learning
paradigms, which reduce their effectiveness in dynamic
environments.

To address these limitations, existing research have begun
exploring the capabilities of Reinforcement Learning (RL), a
model-free learning paradigm where agents learn optimal
actions through interaction with their environment [14]. In
particular, Deep Q-Networks (DQNs) combine Q-learning with
deep neural networks to approximate action-value functions and
make intelligent decisions [15]. Moreover, DQN can adjust
detection strategies based on feedback, which makes them
suitable for dynamic, real-time security scenarios [16].
Enhancements in reward function design, policy optimization,
and experience replay mechanisms have enabled DQNs to
outperform conventional models in several intrusion detection
use cases [17].

However, two significant research gaps have emerged. First,
most existing DQN-based intrusion detection studies do not
focus exclusively on SQLi detection using diverse query

https://orcid.org/0009-0007-9285-0262
https://orcid.org/0000-0003-2148-5003

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

218 | P a g e

www.ijacsa.thesai.org

datasets [14]; and second, many models are trained and tested
using synthetic or simplified datasets that do not accurately
reflect real-world injection techniques. And based on
researchers it was reported with a high accuracy rates for
anomaly detection models but acknowledged that their dataset
lacked common obfuscation and encoding schemes found in
actual attacks [18][19].

There is a noticeable gap in research dedicated to the
application of reinforcement learning in SQLi prevention
[20][21], local studies have emphasize static defense
mechanisms like input validation or firewall implementation.
For instance, a research was conducted [22] to study on
common SQLi attack vectors in the e-commerce platforms but
proposed only conventional validation techniques as
countermeasure.

As drawbacks were evidently presented regarding the
various gaps among existing models, this research seeks to
address the gaps by developing a DQN-based model specifically
designed to detect SQLi attacks. Furthermore, the specific
objectives are to preprocess SQL queries into state
representations suitable for reinforcement learning; design and
implement a DQN model for SQLi detection; and evaluate the
model’s accuracy, adaptability, and performance across multiple
episodes using labeled datasets. Additionally, the aim of this
research is also to contribute a hybrid, dynamic, and intelligent
framework for mitigating SQLi attacks in web-based systems,
thus integrating reinforcement learning into cybersecurity
applications.

Additionally, this study also aimed to contribute to
Sustainable Development Goal (SDG) No. 9: Industry,
Innovation, and Infrastructure, which emphasizes the
advancement of reliable, sustainable, and resilient digital
infrastructure through scientific innovation. By introducing a
Deep Q-Network-based detection model against SQL injection
attacks, the research promotes the integration of cutting-edge
cybersecurity mechanisms into web systems. Strengthening the
security foundations of digital platforms not only supports
industrial innovation but also enhances trust in digital
technologies that is an essential element in building inclusive
and secure infrastructures in today’s interconnected society.

However, the scope of this study is limited to the
development and evaluation of the model itself and does not
extend to the creation of a user interface or the full deployment
pipeline for applying the model in production environments.
Moreover, this study does not cover the identification and
classification of specific query structures such as subqueries,
inner queries whether independent or correlated, scalar queries,
column queries, row queries, or table queries. The focus remains
solely on detecting the presence of SQLi patterns at the query
level without dissecting or categorizing the internal query
composition.

II. REVIEW OF RELATED STUDIES

A. Feasbility of Reinforcement Machine Leaning Model

Preprocessing SQL queries is a critical step in developing
machine learning models for SQLi detection. This process
involves transforming raw SQL queries into structured formats
that can be effectively analyzed by machine learning algorithms.

The primary goal is to convert the unstructured text of SQL
queries into numerical representations that capture the essential
features of the queries while preserving their semantic meaning.
One fundamental technique in preprocessing is tokenization,
which involves breaking down a SQL query into its constituent
components, such as keywords, operators, and operands [23].
This segmentation facilitates the identification of patterns and
anomalies within the queries. For instance, in the SQL query
SELECT * FROM users WHERE username = 'admin' AND
password = 'password', tokenization would separate the query
into individual elements like SELECT, *, FROM, users,
WHERE, username, =, 'admin', AND, password, =, and
'password'. By analyzing these tokens, machine learning models
can more easily detect unusual or malicious patterns indicative
of SQLi attempts [24].

Beyond tokenization, parsing is employed to understand the
syntactic and semantic relationships between the tokens [25].
Parsing involves analyzing the grammatical structure of the SQL
query to build a parse tree or abstract syntax tree that represents
the hierarchical relationships between different components of
the query [26]. This structured representation allows for a deeper
understanding of the query's intent and can help in identifying
complex injection patterns that simple token-based analysis
might miss.

After tokenization and parsing, the next step is vectorization,
where the structured representations are converted into
numerical formats suitable for input into machine learning
algorithms [27]. One common approach is to use techniques like
word embeddings, where each token is mapped to a high-
dimensional vector that captures its semantic meaning. Methods
such as Word2Vec or GloVe [28] can be employed to generate
these embeddings, allowing the model to understand similarities
and relationships between different tokens based on their
contextual usage in a large corpus of text. An alternative
vectorization method involves creating bag-of-words (BoW) or
term frequency-inverse document frequency (TF-IDF)
representations [29]. In these approaches, each query is
represented as a vector of token frequencies, either as raw counts
(BoW) or weighted by the inverse frequency of the token across
the entire dataset (TF-IDF) [30][31]. While these methods are
simpler and less computationally intensive than word
embeddings, they may not capture the semantic relationships
between tokens as effectively.

The choice of preprocessing techniques can significantly
impact the performance of the SQLi detection model. For
example, Santos et al. [32] proposed a method that involves
analyzing SQL queries by stripping parameters to form
generalized query structures, enabling the detection of structural
deviations indicative of potential attacks [33]. Their approach
demonstrated that by focusing on the structural aspects of SQL
queries, it is possible to identify anomalies that may signify
injection attempts.

Similarly, Shah et al. (2022) developed a deep neural
network-based detection model that converts SQL data into
word vectors, forming a sparse matrix input for training. Their
model incorporated multiple hidden layers with Rectified
Learning Unit (ReLU) activation functions and optimized loss
functions, achieving an accuracy exceeding 76%. This study

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

219 | P a g e

www.ijacsa.thesai.org

highlights the effectiveness of using deep learning architectures
in conjunction with advanced preprocessing techniques to
capture complex patterns associated with SQLi attacks [34].

Effective preprocessing also involves handling noise and
irrelevant information in the SQL queries [32]. This may include
removing comments, extra whitespace, or other non-essential
elements that do not contribute to the semantic meaning of the
query but could introduce variability that confounds the model
[34]. By cleaning the queries and standardizing their format, the
model can focus on the meaningful components that are
indicative of normal or malicious behavior.

Another important consideration is the handling of dynamic
elements within SQL queries, such as user inputs or session
variables [35]. These elements can introduce variability and
complexity into the queries, making it more challenging to
detect injections. Techniques such as parameterization or the use
of placeholders can help in normalizing these dynamic
components, allowing the model to focus on the structural
patterns of the queries [36]. Furthermore, the preprocessing
pipeline should be designed to handle multilingual or locale-
specific elements, especially in applications that support
multiple languages or character sets. Ensuring that the
tokenization and parsing processes are robust to different
languages and encodings is crucial for maintaining the
effectiveness of the SQLi detection model across diverse user
bases. Incorporating contextual information into the
preprocessing stage can also enhance the model's performance
[37]. This may involve considering the source of the query, the
role of the user executing it, or the application's state at the time
of the query. By integrating this contextual data, the model can
make more informed decisions about the likelihood of a query
being malicious.

Moreover, the preprocessing techniques should be evaluated
for their computational efficiency, especially in real-time
detection scenarios. Techniques that are too computationally
intensive may introduce latency, which is unacceptable in high-
performance applications. Balancing the depth of analysis with
the need for speed is a key consideration in the design of the
preprocessing pipeline [38]. Finally, it is essential to
continuously update and refine the preprocessing techniques to
adapt to evolving SQLi tactics. Attackers continually develop
new methods to evade detection, and the preprocessing pipeline
must be agile enough to incorporate new patterns and anomalies
as they emerge. Regularly updating the tokenization, parsing,
and vectorization methods, as well as retraining the detection
models with recent data, can help maintain the effectiveness of
the SQLi detection system [39].

In summary, preprocessing SQL queries into state
representations suitable for reinforcement learning involves a
series of steps aimed at transforming raw queries into structured,
numerical formats that capture their semantic essence.
Techniques such as tokenization, parsing, and vectorization are
employed to break down queries into their fundamental
components, understand their structural relationships, and
convert them into formats amenable to machine learning
analysis. Effective preprocessing enhances the model's ability to
detect anomalies and improves the overall accuracy of SQLi.

B. Existing Methods Integrated with DQN

Designing and implementing a DQN model for web
vulnerability detection combines concepts from both deep
learning and reinforcement learning to provide a dynamic and
intelligent solution to one of the most persistent threats in web
security [40]. A DQN is a reinforcement learning algorithm that
uses a neural network to approximate Q-values, which represent
the expected rewards of taking certain actions in specific states.
Unlike traditional machine learning models that require
manually labeled input-output pairs, reinforcement learning
models like DQN learn through interaction with an environment.
In the context of SQLi detection, this “environment” can be
simulated using a dataset of labeled SQL queries, including both
legitimate and malicious examples [41].

The model learns by receiving feedback when it correctly
identifies an injection attack, it receives a positive reward; when
it fails, it receives a penalty. Over time, the agent becomes more
accurate in identifying which features of SQL queries indicate
an attack [42]. A key part of this process is defining the state
space, which involves transforming raw SQL queries into
numerical formats that preserve both structure and semantics.
These could include vectorized tokens, embeddings, or one-hot
encodings based on preprocessed query components. This
numerical input is then fed into the DQN’s input layer [43]. The
architecture typically consists of multiple dense (fully
connected) hidden layers, often using ReLU as the activation
function, to process and learn patterns in the data.

The output layer of the network contains Q-values
representing possible actions the model can take — in this case,
labeling a query as either normal or malicious. During training,
the DQN updates its internal weights to maximize the total
expected reward across all episodes. It uses algorithms like
experience replay, which stores past experiences in a memory
buffer and samples them randomly during training to break the
correlation between sequential data. Another technique used is
the target network [44], a separate copy of the Q-network that is
updated less frequently to improve stability in learning.

One of the strengths of using DQNs for this problem is
adaptability [45]. Unlike static detection systems that rely on
fixed rules or signatures, a reinforcement learning model can
continuously improve by learning from new attack patterns. It
can generalize from past experiences to detect previously unseen
types of SQLi attacks, making it especially effective in
environments where threats evolve rapidly. Moreover, the
model’s ability to self-learn reduces the need for continuous
human intervention, streamlining the cybersecurity workflow.
Researcher from Salah et al. [46] have shown promising results
using deep learning models for SQLi detection, achieving high
accuracy by allowing the model to learn complex patterns
directly from data.

Designing the reward function is a crucial part of the
implementation process. It must encourage correct classification
while penalizing false positives and false negatives
appropriately [47]. A poorly designed reward function could
lead the agent to adopt suboptimal policies. Additionally,
balancing the exploration and exploitation trade-off is vital: the
agent must try new actions to discover better policies
(exploration) while using known strategies to maximize reward

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

220 | P a g e

www.ijacsa.thesai.org

(exploitation). This is typically managed using an epsilon-
greedy strategy, where the model explores randomly with
probability ε and exploits the best-known action otherwise [48].

The success of the DQN model also depends on the quality
and diversity of the training data. The dataset must include a
wide variety of SQL queries — including obfuscated, encoded,
or uncommon attack patterns — to ensure the model learns to
detect a broad range of malicious behaviors. In practice,
developers may use benchmark datasets or simulate realistic
web traffic that includes injection attempts. Once trained, the
model must be evaluated using metrics such as accuracy,
precision, recall, F1-score, and Area Under the Curve (AUC) to
determine its effectiveness. Performance across these metrics
helps identify whether the model favors false positives (flagging
good queries as attacks) or false negatives (failing to detect
actual attacks), both of which have serious implications [49].

Another consideration during implementation is
computational efficiency. DQNs require substantial resources to
train, especially when using large datasets or deep architectures.
This means selecting an appropriate model complexity that
balances detection performance with processing speed,
especially if the model is to be deployed in real-time
environments [50]. Moreover, to avoid overfitting — where the
model performs well on training data but poorly on unseen
queries — techniques such as dropout, regularization, and cross-
validation may be applied. Once trained, the model can be
integrated into a web application’s backend or a security
monitoring system to intercept and evaluate SQL queries in real-
time.

Another factor, in the implementation process of this model
involves managing the progression of learning phases to
maximize training effectiveness. During the early exploration
phase, the model is intentionally encouraged to sample a wide
range of state-action pairs, typically by employing strategies
such as epsilon-greedy exploration [51]. This ensures that DQN
does not prematurely converge on suboptimal policies by
relying solely on immediate rewards but instead develops a
broader understanding of the environment's dynamics. Early
exploration is vital in avoiding bias in action selection,
particularly when the initial model weights are random and
uninformed.

As training proceeds, learning growth becomes evident
through the gradual refinement of the Q-function
approximation. The model's predictions for future rewards
become more accurate, and learning curves typically exhibit a
consistent reduction in loss metrics [52]. At this stage,
computational efficiency techniques such as prioritized
experience replay, and target network stabilization are often
applied to further optimize the training process without
sacrificing generalization.

Eventually, the model enters a phase of policy exploitation,
where it leverages its accumulated knowledge to consistently
select actions that maximize long-term rewards. Fine-tuning of
hyperparameters, including the reduction of exploration rates
and adaptive learning rate adjustments, supports this transition
from exploration to exploitation [53]. Towards the progression
of this process, careful monitoring was observed by the
researcher during this phase as this is necessary to prevent

overfitting, as the model might otherwise memorize specific
patterns in the training dataset, reducing its capacity to
generalize to novel queries.

Finally, the training process aims for final convergence,
where Q-value estimates stabilize, and policy updates produce
negligible changes. Achieving convergence indicates that the
DQN has sufficiently learned to distinguish between benign and
malicious SQL queries under diverse input conditions.
Validation against independent test sets and cross-validation
strategies are crucial during this stage to confirm that the model's
performance is not limited to training data alone but extends
effectively to unseen inputs. Once final convergence is
validated, the DQN model can be confidently deployed into a
web application's backend or integrated within a real-time
security monitoring infrastructure [54].

In summary, designing and implementing a DQN model for
SQLi detection involves more than coding a neural network —
it requires careful planning, data preparation, environmental
simulation, algorithmic tuning, and continuous validation. The
strength of this approach lies in its ability to self-learn, adapt,
and generalize across a wide range of attack types, making it a
promising solution in the ever-evolving field of cybersecurity.
By mimicking the behavior of intelligent agents that learn from
trial and error, the model contributes not only to improved threat
detection but also to building smarter, more secure digital
systems.

C. Evaluating the Model’s Accuracy, Adaptability, and

Performance Across Multiple Episodes Using Labeled

Datasets

Evaluating a Deep Q-Network (DQN) model for SQLi
detection is a crucial phase in determining its practical value and
effectiveness in real-world cybersecurity applications. The
evaluation process helps to measure not only how accurately the
model detects malicious SQL queries but also how adaptable it
is to unseen threats and how consistently it performs across
different training and testing episodes. In particular, the
parameters includes the following key aspects of 1) accuracy,
2) reward, 3) epsilon decay, and 4) performance stability, these
objectively ensures that the model is not just theoretically sound
but also operationally reliable when deployed in actual web
systems [49].

Accuracy is one of the most fundamental metrics used in
evaluating machine learning models. In SQLi detection,
accuracy refers to the proportion of correct predictions (both
malicious and benign) over the total number of predictions. A
high accuracy rate indicates that the model can reliably
distinguish between safe and unsafe SQL queries. However,
accuracy alone can be misleading, especially when dealing with
imbalanced datasets where benign queries significantly
outnumber malicious ones. In such cases, other metrics such as
precision, recall, and F1-score are more informative. Precision
measures how many of the queries flagged as SQLi were
actually malicious, while recall determines how many of the
actual SQLi queries were successfully identified [55][56]. Then,
F1-score is the harmonic mean of precision and recall, offering
a balanced measure that is particularly useful when false
positives and false negatives carry significant risks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

221 | P a g e

www.ijacsa.thesai.org

Beyond these standard metrics, model adaptability is another
key dimension to assess. Adaptability refers to the model’s
ability to maintain performance when exposed to new or
previously unseen types of SQL injection attacks . A good DQN
model should not just memorize patterns from the training
data—it should generalize, learning underlying principles that
allow it to detect variants of attacks that were not explicitly
present during training. This is especially important in
cybersecurity, where attackers frequently change tactics to
evade detection [57]. Therefore, part of the evaluation involves
exposing the trained model to new datasets or adversarial
examples that simulate evolving attack methods and monitoring
how well the model maintains its detection capabilities.

Another critical aspect of the evaluation process is observing
the model’s performance across multiple episodes. In
reinforcement learning, the agent interacts with the environment
over episodes, learning incrementally based on the rewards
received for its actions. Evaluating the model over many
episodes ensures that its learning is stable and that performance
improvements are not just the result of random fluctuations or
overfitting [58]. Performance can be tracked using cumulative
reward plots, convergence rates, and episode-wise accuracy
metrics. These indicators help identify whether the model is
learning effectively or if it is plateauing or regressing in its
performance over time.

The quality and diversity of the dataset used for evaluation
also play a crucial role. Using a labeled dataset means that every
SQL query has been previously classified as either safe or
malicious. This allows for objective measurement of the model’s
predictions. A good evaluation dataset should include a wide
range of SQL queries: traditional injection patterns, obfuscated
payloads, encoded strings, and even polymorphic SQL attacks
[58]. Inclusion of noise and real-world queries that closely
mimic normal user behavior adds further robustness to the
testing process [59].

To ensure fairness and reproducibility, the evaluation should
use standard data splitting techniques. Typically, datasets are
divided into training, validation, and test sets. The model is
trained on the training set, tuned on the validation set, and its
final performance is reported on the test set. Cross-validation
techniques, such as k-fold validation [60], can further improve
reliability by averaging performance over multiple data
partitions [61]. This reduces bias and helps in understanding
how the model behaves under different data distributions.

Performance should also be measured in terms of
computational efficiency. In practical deployments, a model
must make decisions in real-time or near real-time. This means
latency—how long it takes to analyze and classify a single
query—becomes a critical metric. A high-performing model that
takes several seconds to respond may not be suitable for real-
time applications such as intrusion prevention systems.
Therefore, evaluating the DQN model’s inference time, memory
consumption, and Central Processing Unit (CPU)/Graphic
Processing Unit (GPU) utilization becomes essential,

particularly when planning for integration into existing web
architectures [62].

Robustness testing is another valuable part of evaluation.
This involves intentionally introducing noise, incorrect data
formatting, or adversarial inputs to observe whether the model
can still make correct classifications [63]. A vigorous SQLi
detection model must to not break down or perform erratically
when encountering slight deviations from expected input.
Testing under these conditions gives insights into the model’s
stability and readiness for deployment in unpredictable
environments.

Furthermore, comparative evaluation against baseline
models is vital. The DQN model’s performance should be
compared with traditional classifiers such as Decision Trees,
Support Vector Machines (SVM) [64], Random Forests [65], or
even static rule-based systems [66]. If the DQN model
consistently outperforms these alternatives across all evaluation
metrics, it justifies the additional complexity and computational
cost involved in implementing reinforcement learning. Studies
such as those by Anwar (2023) [67] and Alghawazi et al. (2023)
[68] have demonstrated how deep learning models can
significantly surpass conventional techniques in detecting SQLi
attacks, particularly in adapting to real-world query patterns and
minimizing false alarms.

III. METHODOLOGY

This study employed the Design and Development Research
(DDR) methodology approach [69][70] to develop a DQN-
based detection model for SQLi attacks. DDR is a research
methodology that focuses on designing, building, and evaluating
models to solve identified problems—in this research, that the
persistent threat of SQL injection in database-driven web
systems.

Fig. 1. Research implementation of evolutionary prototype software

development life cycle framework.

In Fig. 1, the study further adopted the Evolutionary
Prototyping Model [71]–[73] as the Software Development Life
Cycle (SDLC) framework, wherein in this approach supported
iterative development and refinement of a functional prototype
was developed by the researcher to align the reinforcement
learning structure of the proposed model.

A. Requirements Analysis and Gathering

The development process began with the requirements
analysis phase, during which the nature of SQLi attacks was
studied in detail as presented in Pseudocode 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

222 | P a g e

www.ijacsa.thesai.org

Pseudocode 1: RL Development

START

 LOAD and preprocess dataset

 NORMALIZE and CLEAN SQL queries

 ENCODE queries into fixed-length vectors

 LABEL each query as Safe or Malicious

 SPLIT data into training and testing sets (80/20)

DEFINE environment to:

 PROVIDE query input

 RETURN reward based on prediction accuracy

 INITIALIZE DQN agent:

 BUILD neural network

 SET learning parameters (epsilon, gamma, learning
rate)

 FOR each training episode:

 RESET environment and GET initial state

 FOR

 SELECT action (predict Safe or SQLi)

 GET reward and next state

 STORE experience

 UPDATE model from memory (experience replay)

 DECAY exploration rate (epsilon)

 PLOT accuracy and reward trends over episodes

END

This included a review of known SQLi patterns and
classification techniques, which collected from existing or
secondary data sets creating a labeled dataset online. The dataset
identified both safe and malicious SQL queries, representing
various types of attacks such as In-band SQLi, Inferential SQLi,
and Out-of-band SQLi. At this stage, the specific need to
transform human-readable queries into machine-processable
formats was identified, directly addressing the first research
objective: to preprocess SQL queries into state representations
suitable for reinforcement learning. Next is the quick design
phase, it is now the preliminary logic was implemented to
preprocess the queries. A custom text normalization function
was applied which involved converting all characters to
lowercase and removing special characters. Then, to enrich the
dataset, a rule-based classifier was also applied to detect and
label different SQLi attack types based on keyword patterns.
Each query was then encoded into a fixed-length numeric vector
using character-level ordinal encoding. This transformation
enabled uniform input for the DQN model while preserving
critical structural features of the SQL statements.

B. Quick Design, Prototype Development and Refinement

The subsequent phase focused on prototype development,
where the actual Deep Q-Network was implemented using
Python and TensorFlow. A simulated environment was
developed using a custom class SQLiEnv that allowed the agent
to interact with the dataset by analyzing queries one at a time.
The DQN agent was structured with neural network architecture
comprising an input layer, two hidden layers using ReLU
activation functions, a dropout layer for regularization, and an
output layer with softmax activation for classification. The DQN
model was trained to classify each query as either safe or
malicious, thus delivering the second research objective of the
study that is to design and implement a DQN model for SQLi
detection.

In the testing and refinement stage, the developed prototype
took place over 2,000 training episodes, each consisting of 100
interactions between the agent and the environment. For each
interaction, the model is expected to receive a reward of +1 for
correct predictions and -1 for incorrect ones as provided in
Fig. 2.

Fig. 2. Reinforcement learning training loop for SQLi detection.

Fig. 2 shows that feedback loops were used to adjust the
model's policy over time. The model employed reinforcement
learning principles such as experience replay and epsilon-greedy
exploration to balance learning from past experiences with
discovering new strategies.

In the evaluation of the DQN-based SQLi hybrid detection
model was guided by key reinforcement learning metrics. First,
accuracy per episode was tracked and stored in the accuracy list.
This metric was calculated as the percentage of correct
predictions out of 100 interactions per episode, providing a clear
measure of how the model’s classification ability improved over
time. Additionally, the total reward per episode, recorded in the
rewards list, reflected how many actions (classifications) were
correctly taken by the agent in each training cycle. Since a
correct classification yielded a reward of +1 and an incorrect one
a reward of -1, the total reward served as a direct indicator of
learning success.

1) Model evaluation: To guide the learning behavior, the

model employed an epsilon-greedy exploration strategy. The

epsilon value, initialized at 1.0, decayed exponentially by a

factor of 0.995 after each episode until reaching a minimum of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

223 | P a g e

www.ijacsa.thesai.org

0.01. This ensured a balance between exploration (trying new

actions) and exploitation (using the best-known policy),

allowing the agent to learn optimally over time. As training

progressed, convergence and stability were observed around

among episodes, as indicated by the flattening trend in both

accuracy and reward outcomes as expected.

2) Hybrid model (output): The stable metrics referencing

from the literatures [74] shows that the agent had learned a near-

optimal classification policy and ceased making significant

changes in behavior. Furthermore, a learning curve

visualization was generated using Matplotlib, which illustrated

the progression of both total rewards and classification

accuracy over 2,000 training episodes. These evaluation

metrics, drawn directly from the model’s training logs and

source code implementation, demonstrate that the agent not

only learned effectively but also maintained consistent

performance in SQLi detection tasks.

Moreover, the application and integration of various tools in
the study included Python for development, TensorFlow for
deep learning modeling, Pandas and NumPy for data handling,
Scikit-learn for data partitioning, and Matplotlib for
visualization. This toolchain enabled smooth development and
evaluation of the prototype in alignment with the DDR
methodology and the evolutionary prototyping model.

3) Ethical considerations: The study adhered to ethical

research standards by exclusively utilizing secondary datasets

sourced from Kaggle’s publicly accessible SQL injection

repositories. These datasets, contributed for academic and

educational purposes, were fully anonymized and contained no

personally identifiable information, ensuring that data privacy

and confidentiality were consistently protected. Throughout the

research process, the researcher complied with Kaggle’s

licensing terms by restricting the use of the datasets strictly for

academic analysis without any redistribution or unauthorized

modification. Since the investigation involved no direct

engagement with human subjects, institutional review board

(IRB) approval and informed consent requirements were

deemed unnecessary. The study-maintained transparency,

integrity, and responsible data handling practices, aiming to

contribute meaningfully to cybersecurity research while

upholding the rights and intentions of the original data

contributors.

IV. RESULTS AND DISCUSSION

The dataset used in this study consisted of a total of 30,919
SQL queries, comprising both malicious and safe inputs.
Specifically, 11,382 queries (36.8%) were labeled as SQL
injection attacks, while 19,537 queries (63.2%) were labeled as
safe queries. This balance provided the DQN agent with a
realistic and diverse set of inputs for training and evaluation.

As observed in Table I, it presents sample SQL queries after
preprocessing, along with their assigned labels and identified
SQLi types. Each raw query was normalized to remove special
characters and standardize structure, enabling uniform
encoding. The table shows that typical SQL injection patterns—

such as 'admin' OR 1=1--—were correctly categorized as In-
band SQLi (Classic), while safe queries like SELECT password
FROM users were labeled as Unknown/Normal Query. This
structured labeling allowed the model to differentiate malicious
input from benign ones during training.

Now, for the Table II, the researcher then summarizes the
classification output of SQLi types after preprocessing and
labeling. Out of the total 30,919 SQL queries, the majority
(27,425 or 88.7%) were categorized as Unknown/Normal
Queries, while 3,494 queries (11.3%) were identified as In-band
SQLi (Classic). No samples were labeled under Inferential SQLi
(Blind), reflecting the specific distribution present in the dataset
used. This breakdown provided the model with a representative
dataset for distinguishing between malicious and safe query
types.

TABLE I. DATASET AFTER PREPROCESSING AND SQLI TYPE

CLASSIFICATION

Query (Raw) Processed Query Label SQLi Type

SELECT *

FROM users ...
select from users 1 In-band SQLi (Classic)

admin' OR 1=1

--
admin or 11 1 In-band SQLi (Classic)

SELECT

password

FROM users

select password
from users

0
Unknown/Normal
Query

TABLE II. SQLI TYPE CLASSIFICATION

SQLi Type Count Percentage (%)

Unknown/Normal Query 27,425 88.7

In-band SQLi (Classic) 3,494 11.30

Inferential SQLi (Blind) 0 0.00

Fig. 3. Distribution of Safe Vs Malicious in train and test sets.

Consequently, Fig. 3 illustrates the distribution of safe
versus malicious SQL queries across the training and test sets
after applying an 80/20 split. The training set consisted of 24,735
queries, while the test set included 6,184 queries. Both sets
preserved the original ratio of benign to malicious inputs,
ensuring that the model was exposed to a balanced
representation during learning and evaluation phases.

Furthermore it is also significantly observed that the model
was capable of learning how to detect SQL injection (SQLi)
attacks based on query patterns. Notably, this was proven that a
successful integration of a reinforcement learning environment

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

224 | P a g e

www.ijacsa.thesai.org

(SQLiEnv) and a learning agent (DQN Agent) within a
simulation loop running across 2,000 episodes. The model was
constructed using a neural architecture with an input layer of 100
units (matching the encoded vector length of preprocessed
queries), followed by two hidden layers with 128 and 64 neurons
activated by ReLU, and a softmax-activated output layer for
binary classification (safe vs. SQLi). A dropout layer with a rate
of 0.3 was introduced to prevent overfitting, and the model was
compiled using categorical cross-entropy loss with the Adaptive
Moment Estimation (ADAM) optimizer set at a learning rate of
0.001.

Following the preprocessing and encoding of SQL queries
as discussed, the second phase of this study aimed to design and
implement a Deep Q-Network (DQN) capable of classifying
SQL injection (SQLi) attacks from safe queries. The
implementation utilized a reinforcement learning framework, in
which a DQN agent interacted with a simulated environment
(SQLiEnv), learned from experience through reward-based
feedback, and refined its prediction policy over multiple
episodes.

The training process was conducted over 2,000 episodes,
with each episode consisting of 100 interactions. For each
interaction, the agent was either rewarded (+1) for correct
predictions or penalized (–1) for incorrect ones.

The learning process was guided by reinforcement principles
such as experience replay and epsilon-greedy exploration,
allowing the agent to explore new actions early in training while
gradually focusing on exploiting learned policies as training
progressed.

Fig. 4. Reinforcement learning progressions (left) & model accuracy over

training (right).

As shown in Fig. 4, the total reward (left graph) displayed a
notable upward trend in the early episodes, although with some
fluctuations—particularly during the exploration phase when
epsilon was still high. After approximately 500 episodes, both
reward and accuracy metrics showed significant improvements,
stabilizing around Episodes 600 to 800. The right-hand side of
the figure reveals the accuracy curve, which began in the 40–
50% range and climbed steadily to reach peak values of up to
82%, with a sustained accuracy range between 63–73% toward
the end of the training cycle. Additionally, Table III presents the
Training Progressions across 2000 episodes and to better
understand this progression, Table IV categorizes the model’s
development across four key training phases.

TABLE III. TRAINING PHASES OF THE DQN MODEL

Training

Phase

Epsilon

Range

Accuracy

Trend
Notable Highlights

Early
Exploration

1.0 → ~0.6 43%–57%

Inconsistent

learning; mixed

performance

Learning
Growth

~0.6 → 0.2 60%–72%
First signs of
reliable detection

Policy
Exploitation

0.2 → 0.01 63%–82%

Peak accuracy,

stable and high

performance

Final
Convergence

Steady at
0.01

65%–73% (avg.
sustained)

Long-term

generalization and

robustness

Table III further illustrates how the epsilon decay
mechanism guided the agent’s transition from exploration to
exploitation. In the Early Exploration phase, the model exhibited
erratic behavior as it attempted to learn the structure of the input
data. As the epsilon value decreased, the model entered the
Learning Growth stage, where it started making increasingly
accurate classifications. The Policy Exploitation phase,
characterized by a low epsilon, allowed the agent to rely on
learned behavior with minimal randomness. Finally, in the Final
Convergence phase, the model achieved sustained, stable
performance with an average accuracy consistently above 65%.

Hence, these indicators significantly provided a
comprehensive understanding of this research that aimed to
propose, develop, integrate and evaluate the model’s accuracy,
adaptability, and performance across multiple episodes was
confirmed using labeled dataset. It was also strengthen the
researcher’s observation by applying and finding the optimal
hyperparameters in analyzing the model’s behavior over 2,000
training episodes, with three key performance indicators
tracked: Accuracy, Total Reward (Reward), Epsilon Decay
(exploration rate/decay) and Performance Stability (model
stability across epochs/episodes) as presented in Table IV.

TABLE IV. MODEL EVALUATION

Performance

Metrics
Observation/Evaluation Interpretation

Accuracy 43% (early) → 73% (final average), peaked at 82%

Reward
–22 (low point) → +64 (high point), stable at +30–40

range

Epsilon Decay 1.0 → 0.01, indicating improved policy confidence

Performance
Stability

Stabilized from Episode ~600 onwards

Hence, these indicators significantly provided a
comprehensive understanding of the DQN model’s learning
effectiveness and generalization ability in classifying SQLi
queries.

V. CONCLUSION

This study evidently provided the effectiveness of a DQN-
based reinforcement learning model in detecting SQLi attacks
within structured web query patterns. The model then exhibited
a clear learning trajectory—starting with unstable predictions
and evolving toward sustained classification accuracy. Notably,
it achieved a peak accuracy of 82% and maintained consistent
performance between 65% and 73% across extended episodes,
affirming its capacity for pattern recognition and generalization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

225 | P a g e

www.ijacsa.thesai.org

The sustained gains in reward and accuracy reflect a successful
convergence and an optimized policy that effectively
differentiated between malicious and benign SQL statements.
The findings notably contributed to the theoretical advancement
of intelligent intrusion detection systems by validating
reinforcement learning’s adaptive capabilities in cybersecurity
contexts. Unlike traditional models, which often rely on static
features or handcrafted rules, the DQN framework leveraged
dynamic policy updates and experience replacing iteratively
improve its classification strategy. These results also align with
existing literature highlighting the importance of policy-based
agents in real-time threat mitigation and expand prior works by
demonstrating DQN’s capacity for maintaining long-term
accuracy over diverse query structures.

Furthermore, this research highlights the relevance of
reinforcement learning for evolving cyber threats and affirms
the model’s applicability in practical deployment scenarios. The
model’s consistent performance across a diverse dataset
suggests its potential for integration into adaptive security layers
of web systems, where real-time learning and response are
crucial. Overall, this study provides empirical evidence that a
DQN-based model, when properly tuned and trained, can serve
as a robust, intelligent mechanism for mitigating SQLi attacks,
thereby enhancing the theoretical discourse on automated and
interpretable cybersecurity solutions.

VI. RECOMMENDATIONS

Based on the findings of this research, it is recommended
that future studies focus on enhancing the data preprocessing
pipeline to further improve model performance. Although
character-level encoding and rule-based SQLi classification
supported the detection of malicious queries, the application of
more advanced natural language processing (NLP), GPT-4
embeddings, Quantum Machine Learning approaches or in
multi-modal frameworks that cover similar techniques,
including tokenization, word embeddings, and syntactic parsing,
may enable the model to better recognize obfuscated or
sophisticated SQL injection attempts. Incorporating sequence
modeling methods, such as bidirectional encoders, could also
strengthen the contextual understanding of logical query
structures, leading to more accurate threat detection.

Considering the achieved classification accuracy, additional
refinements to the Deep Q-Network architecture are encouraged
to optimize both learning efficiency and generalization. While
the present network configuration demonstrated consistent
performance improvements across training episodes,
experimentation with deeper architectures, attention-based
mechanisms, and advanced variants such as Double DQN and
Dueling DQN is recommended to further enhance the model’s
resilience against diverse and adversarial input patterns.
Furthermore, collecting and curating primary datasets, rather
than relying solely on secondary sources, would provide a richer
and more realistic foundation for training models capable of
adapting to evolving SQL injection techniques. Introducing real-
time feedback mechanisms, wherein the model interacts with
live web traffic, could also offer dynamic learning opportunities,
equipping the system to respond swiftly to emerging threats.

Aligned with the limitations identified in this study, future
initiatives should extend beyond the model’s detection
capabilities and explore the practical integration of the system
within application environments. As this research was confined
to model development and evaluation, without designing a user
interface or a complete deployment framework, subsequent
efforts should address the operationalization of the model to
ensure usability and scalability in production settings.
Moreover, since this study did not delve into the identification
or categorization of specific query structures such as subqueries,
inner queries, scalar queries, column queries, row queries, and
table queries, future research could investigate techniques for
parsing and analyzing internal SQL query compositions to
achieve finer-grained threat classification.

Lastly, it is recommended that the developed model be
evaluated under live operational conditions to thoroughly assess
its robustness, adaptability, and scalability across diverse
database systems and application environments. Validation
across varying technological contexts is crucial to ensure the
model’s generalizability and practical effectiveness in real-
world scenarios. Future research may also consider expanding
the scope to address other types of injection attacks beyond SQL
injection, implement on machine learning embeddings
visualizations, hence this broadens the model’s
understandability, applicability and complexity to a wider range
of cybersecurity threats. Integrating the model into
comprehensive security frameworks would further contribute to
strengthening system defenses and enhancing overall resilience
against evolving vulnerabilities.

REFERENCES

[1] N. Salih and A. Samad, “Protection Web Applications using Real-Time
Technique to Detect Structured Query Language Injection Attacks,” Int.
J. Comput. Appl., vol. 149, no. 6, pp. 26–32, 2016, doi:
10.5120/ijca2016911424.

[2] H. Furhad, R. K. Chakrabortty, M. J. Ryan, J. Uddin, and I. H. Sarker, “A
hybrid framework for detecting structured query language injection
attacks in web-based applications,” Int. J. Electr. Comput. Eng., vol. 12,
no. 5, pp. 5405–5414, 2022, doi: 10.11591/ijece.v12i5.pp5405-5414.

[3] N. S. Ali, “Investigation framework of web applications vulnerabilities,
attacks and protection techniques in structured query language injection
attacks,” Int. J. Wirel. Mob. Comput., vol. 14, no. 2, pp. 103–122, 2018,
doi: 10.1504/IJWMC.2018.091137.

[4] Z. Lu, “Sql injection detection using Naïve Bayes classifier : a
probabilistic approach for web application security,” vol. 04016, 2025.

[5] W. B. Demilie and F. G. Deriba, “Detection and prevention of SQLI
attacks and developing compressive framework using machine learning
and hybrid techniques,” J. Big Data, vol. 9, no. 1, 2022, doi:
10.1186/s40537-022-00678-0.

[6] A. Odeh and A. A. Taleb, “Ensemble learning techniques against
structured query language injection attacks,” Indones. J. Electr. Eng.
Comput. Sci., vol. 35, no. 2, pp. 1004–1012, 2024, doi:
10.11591/ijeecs.v35.i2.pp1004-1012.

[7] E. Peralta-Garcia, J. Quevedo-Monsalbe, V. Tuesta-Monteza, and J.
Arcila-Diaz, “Detecting Structured Query Language Injections in Web
Microservices Using Machine Learning,” Informatics, vol. 11, no. 2,
2024, doi: 10.3390/informatics11020015.

[8] Y. Guan, J. He, T. Li, H. Zhao, and B. Ma, “SSQLi: A Black-Box
Adversarial Attack Method for SQL Injection Based on Reinforcement
Learning,” Futur. Internet, vol. 15, no. 4, 2023, doi: 10.3390/fi15040133.

[9] M. Hasan, A. Al-Maliki, and N. Jasim, “Review of SQL injection attacks:
Detection, to enhance the security of the website from client-side attacks,”
Int. J. Nonlinear Anal. Appl, vol. 13, no. October 2021, pp. 2008–6822,
2022, [Online]. Available: http://dx.doi.org/10.22075/ijnaa.2022.6152

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

226 | P a g e

www.ijacsa.thesai.org

[10] A. M. Ahmed, “The Scientific Journal of Cihan University –
Sulaimaniya,” Sci. J. Cihan Univ. – Sulaimaniya, vol. 6, no. 1, pp. 145–
156, 2022.

[11] M. Abdulridha Hussain et al., “Provably throttling SQLI using an
enciphering query and secure matching,” Egypt. Informatics J., vol. 23,
no. 4, pp. 145–162, 2022, doi: https://doi.org/10.1016/j.eij.2022.10.001.

[12] S. M. Shagari, D. Gabi, N. M. Dankolo, and N. N. Gana, “Countermeasure
to Structured Query Language Injection Attack for Web Applications
using Hybrid Logistic Regression Technique,” J. Niger. Soc. Phys. Sci.,
vol. 4, no. 4, pp. 1–8, 2022, doi: 10.46481/jnsps.2022.832.

[13] V. Abdullayev and A. S. Chauhan, “SQL Injection Attack: Quick View,”
Mesopotamian J. CyberSecurity, vol. 2023, pp. 30–34, 2023, doi:
10.58496/MJCS/2023/006.

[14] J. Ramírez, W. Yu, and A. Perrusquía, Model-free reinforcement learning
from expert demonstrations: a survey, vol. 55, no. 4. 2022. doi:
10.1007/s10462-021-10085-1.

[15] E. Ginzburg-Ganz et al., “Reinforcement Learning Model-Based and
Model-Free Paradigms for Optimal Control Problems in Power Systems:
Comprehensive Review and Future Directions,” Energies, vol. 17, no. 21,
2024, doi: 10.3390/en17215307.

[16] H. Kheddar, D. W. Dawoud, A. I. Awad, Y. Himeur, and M. K. Khan,
“Reinforcement-Learning-Based Intrusion Detection in Communication
Networks: A Review,” IEEE Commun. Surv. Tutorials, p. 1, 2024, doi:
10.1109/COMST.2024.3484491.

[17] Zabeehullah et al., “DQQS: Deep Reinforcement Learning-Based
Technique for Enhancing Security and Performance in SDN-IoT
Environments,” IEEE Access, vol. 12, pp. 60568–60587, 2024, doi:
10.1109/ACCESS.2024.3392279.

[18] H. Alavizadeh, H. Alavizadeh, and J. Jang-Jaccard, “Deep Q-Learning
Based Reinforcement Learning Approach for Network Intrusion
Detection,” Computers, vol. 11, no. 3, pp. 1–19, 2022, doi:
10.3390/computers11030041.

[19] L. Hu, C. Han, X. Wang, H. Zhu, and J. Ouyang, “Security Enhancement
for Deep Reinforcement Learning-Based Strategy in Energy-Efficient
Wireless Sensor Networks,” Sensors, vol. 24, no. 6, pp. 1–14, 2024, doi:
10.3390/s24061993.

[20] U. Habib, “A Survey on Implication of Artificial Intelligence in detecting
SQL Injections International Journal of Computer and Applications A
Survey on Implication of Artificial Intelligence in detecting SQL
Injections,” Artic. Int. J. Comput. Appl., no. February, 2024, [Online].
Available: https://www.researchgate.net/publication/378496266

[21] S. T. Hossain, T. Yigitcanlar, K. Nguyen, and Y. Xu, “Local Government
Cybersecurity Landscape: A Systematic Review and Conceptual
Framework,” Appl. Sci., vol. 14, no. 13, 2024, doi:
10.3390/app14135501.

[22] S. Bamohabbat Chafjiri, P. Legg, J. Hong, and M.-A. Tsompanas,
“Vulnerability detection through machine learning-based fuzzing: A
systematic review,” Comput. Secur., vol. 143, p. 103903, 2024, doi:
https://doi.org/10.1016/j.cose.2024.103903.

[23] J. R. Tadhani, V. Vekariya, V. Sorathiya, S. Alshathri, and W. El-Shafai,
“Securing web applications against XSS and SQLi attacks using a novel
deep learning approach,” Sci. Rep., vol. 14, no. 1, pp. 1–17, 2024, doi:
10.1038/s41598-023-48845-4.

[24] R. R. Choudhary, S. Verma, and G. Meena, “Detection of SQL Injection
attack Using Machine Learning,” 2021 IEEE Int. Conf. Technol. Res.
Innov. Betterment Soc. TRIBES 2021, 2021, doi:
10.1109/TRIBES52498.2021.9751616.

[25] H. Sun, Y. Du, and Q. Li, “Deep Learning-Based Detection Technology
for SQL Injection Research and Implementation,” Appl. Sci., vol. 13, no.
16, 2023, doi: 10.3390/app13169466.

[26] S. Islam, “Future Trends in Sql Databases and Big Data Analytics: Impact
of Machine Learning and Artificial Intelligence,” Int. J. Sci. Eng., vol. 1,
no. 4, pp. 47–62, 2024, doi: 10.62304/ijse.v1i04.188.

[27] A. Khan, K. Khan, W. Khan, S. N. Khan, and R. Haq, “Knowledge-based
Word Tokenization System for Urdu,” J. Informatics Web Eng., vol. 3,
no. 2, pp. 86–97, 2024, doi: 10.33093/jiwe.2024.3.2.6.

[28] R. L. Alaoui and E. H. Nfaoui, “Web attacks detection using stacked
generalization ensemble for LSTMs and word embedding,” Procedia

Comput. Sci., vol. 215, pp. 687–696, 2022, doi:
https://doi.org/10.1016/j.procs.2022.12.070.

[29] F. Jáñez-Martino, R. Alaiz-Rodríguez, V. González-Castro, E. Fidalgo,
and E. Alegre, “Classifying spam emails using agglomerative hierarchical
clustering and a topic-based approach,” Appl. Soft Comput., vol. 139, p.
110226, 2023, doi: https://doi.org/10.1016/j.asoc.2023.110226.

[30] E. Sk, Text Representation Methods for Big Social Data.

[31] W. Hsieh et al., “Deep Learning, Machine Learning -- Digital Signal and
Image Processing: From Theory to Application,” 2024, [Online].
Available: http://arxiv.org/abs/2410.20304

[32] K. C. Santos, R. S. Miani, and F. de Oliveira Silva, “Evaluating the Impact
of Data Preprocessing Techniques on the Performance of Intrusion
Detection Systems,” J. Netw. Syst. Manag., vol. 32, no. 2, p. 36, 2024,
doi: 10.1007/s10922-024-09813-z.

[33] A. Zahid, “VULNERABILITY DETECTION AND PREVENTION : AN
APPROACH TO ENHANCE CYBERSECURITY,” no. August, 2024,
doi: 10.13140/RG.2.2.31687.71841.

[34] I. A. Shah, N. Z. Jhanjhi, and S. N. Brohi, “Proposing Model for
Classification of Malicious SQLi Code Using Machine Learning
Approach,” 1st Int. Conf. Innov. Eng. Sci. Technol. Res. ICIESTR 2024
- Proc., pp. 1–5, 2024, doi: 10.1109/ICIESTR60916.2024.10798230.

[35] A. Kumar, P. Nagarkar, P. Nalhe, and S. Vijayakumar, “Deep Learning
Driven Natural Languages Text to SQL Query Conversion: A Survey,”
vol. 14, no. 8, pp. 1–18, 2022, [Online]. Available:
http://arxiv.org/abs/2208.04415

[36] T. Houichime and Y. El Amrani, “Context Is All You Need: A Hybrid
Attention-Based Method for Detecting Code Design Patterns,” IEEE
Access, vol. 13, pp. 9689–9707, 2025, doi:
10.1109/ACCESS.2025.3525849.

[37] H. Salem, H. Salloum, O. Orabi, K. Sabbagh, and M. Mazzara,
“Enhancing News Articles: Automatic SEO Linked Data Injection for
Semantic Web Integration,” Appl. Sci., vol. 15, no. 3, pp. 1–18, 2025, doi:
10.3390/app15031262.

[38] C. Zhao, X. Yuan, J. Long, L. Jin, and B. Guan, “Chinese stock market Pr
ep rin t n ot pe er re v Pr ep rin t n ot pe er re v ed”.

[39] V. Franzoni, S. Tagliente, and A. Milani, “Generative Models for Source
Code: Fine-Tuning Techniques for Structured Pattern Learning,”
Technologies, vol. 12, no. 11, pp. 1–21, 2024, doi:
10.3390/technologies12110219.

[40] M. Sewak, S. K. Sahay, and H. Rathore, “Deep Reinforcement Learning
in the Advanced Cybersecurity Threat Detection and Protection,” Inf.
Syst. Front., vol. 25, no. 2, pp. 589–611, 2023, doi: 10.1007/s10796-022-
10333-x.

[41] Z. Qiu, Y. Tao, S. Pan, and A. W. C. Liew, “Knowledge Graphs and
Pretrained Language Models Enhanced Representation Learning for
Conversational Recommender Systems,” IEEE Trans. Neural Networks
Learn. Syst., vol. 14, no. 8, pp. 1–15, 2024, doi:
10.1109/TNNLS.2024.3395334.

[42] M. S. Hamidi and M. Doostari, “Automated Multi-Step Web Application
Attack Analysis Using Reinforcement Learning and Vulnerability
Assessment Tools,” 2023.

[43] A. A. Hammad, S. R. Ahmed, M. K. Abdul-Hussein, M. R. Ahmed, D. A.
Majeed, and S. Algburi, “Deep Reinforcement Learning for Adaptive
Cyber Defense in Network Security,” in Proceedings of the Cognitive
Models and Artificial Intelligence Conference, in AICCONF ’24. New
York, NY, USA: Association for Computing Machinery, 2024, pp. 292–
297. doi: 10.1145/3660853.3660930.

[44] E. Prediction, “Spectrum of Engineering Sciences,” vol. 3, no. 2, pp. 272–
303, 2025.

[45] M. S. Ramzan et al., “Spectrum of Engineering Sciences,” vol. 3, no. 2,
pp. 90–125, 2025.

[46] K. Salah Fathi, S. Barakat, and A. Rezk, “An effective SQL injection
detection model using LSTM for imbalanced datasets,” Comput. Secur.,
vol. 153, p. 104391, 2025, doi:
https://doi.org/10.1016/j.cose.2025.104391.

[47] A. Sharma, V. G. K. Kumar, and A. Poojari, “Prioritize Threat Alerts
Based on False Positives Qualifiers Provided by Multiple AI Models

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

227 | P a g e

www.ijacsa.thesai.org

Using Evolutionary Computation and Reinforcement Learning,” J. Inst.
Eng. Ser. B, 2024, doi: 10.1007/s40031-024-01175-z.

[48] M. Vasconcelos and L. Cavique, “Mitigating false negatives in
imbalanced datasets: An ensemble approach,” Expert Syst. Appl., vol.
262, p. 125674, 2025, doi: https://doi.org/10.1016/j.eswa.2024.125674.

[49] J. H. Cabot and E. G. Ross, “Evaluating prediction model performance,”
Surgery, vol. 174, no. 3, pp. 723–726, 2023, doi:
https://doi.org/10.1016/j.surg.2023.05.023.

[50] G. Naidu, T. Zuva, and E. M. Sibanda, “A Review of Evaluation Metrics
in Machine Learning Algorithms,” in Artificial Intelligence Application
in Networks and Systems, R. Silhavy and P. Silhavy, Eds., Cham:
Springer International Publishing, 2023, pp. 15–25.

[51] S. Niu, X. Pan, J. Wang, and G. Li, “Deep reinforcement learning from
human preferences for ROV path tracking,” Ocean Eng., vol. 317, p.
120036, 2025, doi: https://doi.org/10.1016/j.oceaneng.2024.120036.

[52] A. Corrêa, A. Jesus, C. Silva, P. Peças, and S. Moniz, “Rainbow Versus
Deep Q-Network: A Reinforcement Learning Comparison on The
Flexible Job-Shop Problem,” IFAC-PapersOnLine, vol. 58, no. 19, pp.
870–875, 2024, doi: https://doi.org/10.1016/j.ifacol.2024.09.176.

[53] Z. Dai and Y. Zhang, “DJAYA-RL: Discrete JAYA algorithm integrating
reinforcement learning for the discounted {0-1} knapsack problem,”
Swarm Evol. Comput., vol. 95, p. 101927, 2025, doi:
https://doi.org/10.1016/j.swevo.2025.101927.

[54] N. Trabelsi, L. Chaari Fourati, and W. Jaafar, “Deep reinforcement
learning for autonomous SideLink radio resource management in platoon-
based C-V2X networks: An overview,” Comput. Networks, vol. 255, p.
110901, 2024, doi: https://doi.org/10.1016/j.comnet.2024.110901.

[55] J. B. Rola et al., “Convolutional Neural Network Model for Cacao
Phytophthora Palmivora Disease Recognition,” Int. J. Adv. Comput. Sci.
Appl., vol. 15, no. 8, pp. 986–990, 2024, doi:
10.14569/IJACSA.2024.0150897.

[56] H. Babbar, S. Rani, and M. Driss, Effective DDoS attack detection in
software-defined vehicular networks using statistical flow analysis and
machine learning, vol. 19, no. 12. 2024. doi:
10.1371/journal.pone.0314695.

[57] S. Zhou, C. Liu, D. Ye, T. Zhu, W. Zhou, and P. S. Yu, “Adversarial
Attacks and Defenses in Deep Learning: From a Perspective of
Cybersecurity,” ACM Comput. Surv., vol. 55, no. 8, Dec. 2022, doi:
10.1145/3547330.

[58] V. Kumar, N. Kedam, K. V. Sharma, D. J. Mehta, and T. Caloiero,
“Advanced Machine Learning Techniques to Improve Hydrological
Prediction: A Comparative Analysis of Streamflow Prediction Models,”
Water (Switzerland), vol. 15, no. 14, 2023, doi: 10.3390/w15142572.

[59] “SQL Injection Dataset.” https://www.kaggle.com/datasets/sajid576/sql-
injection-dataset?resource=download

[60] J. M. Gorriz, F. Segovia, J. Ramirez, A. Ortiz, and J. Suckling, “Is K-fold
cross validation the best model selection method for Machine Learning?,”
2024, [Online]. Available: http://arxiv.org/abs/2401.16407

[61] A. Seraj et al., “Chapter 5 - Cross-validation,” in Handbook of
Hydroinformatics, S. Eslamian and F. Eslamian, Eds., Elsevier, 2023, pp.
89–105. doi: https://doi.org/10.1016/B978-0-12-821285-1.00021-X.

[62] W. Shen, W. Lin, W. Wu, H. Wu, and K. Li, “Reinforcement learning-
based task scheduling for heterogeneous computing in end-edge-cloud
environment,” Cluster Comput., vol. 28, no. 3, 2025, doi:
10.1007/s10586-024-04828-2.

[63] J. Liu et al., “HeterPS: Distributed deep learning with reinforcement
learning based scheduling in heterogeneous environments,” Futur. Gener.
Comput. Syst., vol. 148, pp. 106–117, 2023, doi:
10.1016/j.future.2023.05.032.

[64] K. Galbraith, O. Alaca, A. R. Ekti, A. Wilson, I. Snyder, and N. M.
Stenvig, “On the Investigation of Phase Fault Classification in Power Grid
Signals: A Case Study for Support Vector Machines, Decision Tree and
Random Forest,” 2023 North Am. Power Symp. NAPS 2023, no. Ll,
2023, doi: 10.1109/NAPS58826.2023.10318740.

[65] J. Program and S. Pendidikan, “3 1,2*,3,” vol. 12, no. 1, pp. 1309–1321,
2023.

[66] M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-
Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and
Long Short Term Memory algorithms in machine learning,” Decis. Anal.
J., vol. 3, p. 100071, 2022, doi:
https://doi.org/10.1016/j.dajour.2022.100071.

[67] B. Mondal, A. Banerjee, and S. Gupta, “review of SQLI detection
strategies using machine learning,” Int. J. Health Sci. (Qassim)., vol. 6,
no. May, pp. 9663–9676, 2022, doi: 10.53730/ijhs.v6ns2.7519.

[68] G. Ali and M. M. Mijwil, “Cybersecurity for Sustainable Smart
Healthcare: State of the Art, Taxonomy, Mechanisms, and Essential
Roles,” Mesopotamian J. CyberSecurity, vol. 4, no. 2, pp. 20–62, 2024,
doi: 10.58496/mjcs/2024/006.

[69] N. M. Aris, N. H. Ibrahim, and N. D. A. Halim, “Design and Development
Research (DDR) Approach in Designing Design Thinking Chemistry
Module to Empower Students’ Innovation Competencies,” J. Adv. Res.
Appl. Sci. Eng. Technol., vol. 44, no. 1, pp. 55–68, 2025, doi:
10.37934/araset.44.1.5568.

[70] C. J. P. Abuda and R. S. Villafuerte, “Development of an Algorithm-
Based Analysis-Compression Integrated Communication Tracking
Management Information System (iCTMIS),” Int. J. Adv. Comput. Sci.
Appl., vol. 16, no. 3, pp. 107–118, 2025, doi:
10.14569/ijacsa.2025.0160311.

[71] X. Zhang, S. Lv, M. Xu, and W. Mu, “Applying evolutionary prototyping
model for eliciting system requirement of meat traceability at agribusiness
level,” Food Control, vol. 21, no. 11, pp. 1556–1562, 2010, doi:
https://doi.org/10.1016/j.foodcont.2010.03.020.

[72] R. A. Carter, A. I. Anton, A. Dagnino, and L. Williams, “Evolving beyond
requirements creep: a risk-based evolutionary prototyping model,” in
Proceedings Fifth IEEE International Symposium on Requirements
Engineering, 2001, pp. 94–101. doi: 10.1109/ISRE.2001.948548.

[73] C. J. P. Abuda and R. S. Villafuerte, “Development of an Algorithm-
Based Analysis-Compression Integrated Communication Tracking
Management Information System (iCTMIS),” 2024 IEEE Open Conf.
Electr. Electron. Inf. Sci. eStream 2024 - Proc., 2024, doi:
10.1109/eStream61684.2024.10542580.

[74] L. L. Pullum, “Review of Metrics to Measure the Stability, Robustness
and Resilience of Reinforcement Learning,” pp. 59–78, 2023, doi:
10.5121/csit.2023.130205.

