
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

228 | P a g e

www.ijacsa.thesai.org

Robot Path Planning Model Based on Improved A*

Algorithm

Jing Xie*, Chunyuan Xu, Qianxi Yang

School of Mechanical and Electrical Engineering, Nanyang Vocational College of Agriculture, Nanyang 473003, China

Abstract—Robot path planning is a key technology for

achieving autonomous navigation and efficient operation of robots.

In order to improve the autonomous navigation capability of

mobile robots, a global path planning model based on an improved

A* algorithm and a local path planning model based on an

improved artificial potential field method were designed. The

results showed that the turns in the optimal path under the

improved A* algorithm were 8, 5, 9, and 5, respectively. The

improved artificial potential field method achieved a maximum

planning time of 0.17s and a minimum planning time of 0.11s. The

designed global and local path planning models for mobile robots

have good performance and can provide technical support for

improving the autonomous navigation capability of mobile robots

for industrial manufacturing.

Keywords—Robot; path; planning; A* algorithm; artificial

potential field method; SA

I. INTRODUCTION

With the development of information technologies and the
concerned policies, China's industrial sectors are transitioning
towards informatization and intelligence. Mobile robots play an
important role in intelligent workshops, effectively enhancing
industrial production efficiency and reducing production costs.
Navigation, dynamic obstacle avoidance, and localization are
key technologies in mobile robotics, with path planning being a
major focus within the navigation technologies [1-2]. Global
planning and local path planning are two categories. Common
methods for the global path planning include the A* algorithm,
Dijkstra's algorithm, and Floyd's algorithm. However, these
algorithms have some shortcomings, such as the long search
time of the A* algorithm and the lack of path smoothness in the
generated paths [3]. With the development of intelligent
biomimetic algorithms, more researchers have applied these
methods to global path planning and made improvements to
address specific shortcomings. Common methods at present
include the artificial potential field (APF) and dynamic window
approach for the local path planning. However, the former is
prone to local minimum, the dynamic window approach heavily
relies on weight coefficients. The rapid exploration random tree
(RRT) exhibits randomness in node expansion, which may lead
to path failure [4-5]. Therefore, the research question is how to
improve the existing A* algorithm and APF method to enhance
the global and local path planning performance of mobile robots
and strengthen their autonomous navigation capabilities. To
enhance the autonomous navigation capability of mobile robots,
research has been conducted from two perspectives: global and
local path planning. As a result, a variety of path planning
methods have been designed. An enhanced version of the A*
algorithm has been developed for global path planning purposes.

In the context of local path planning, an enhanced APF method
was devised. It can be seen that the purpose of the research is to
design and optimize global and local path planning models for
mobile robots, and to improve the adaptability and stability of
the algorithm. The objective of this research is to enhance the
autonomous navigation capability of mobile robots, improve
their operational efficiency, and reduce industrial production
costs. The contribution of the research is the enhancement of the
A* algorithm and APF method in path planning. This is
achieved by improving their performance in global or local path
rules, reducing the number of optimal path turns, and lowering
the time required for path planning. The research has two main
innovations. First, it is the improvement of the repulsive
potential field (RPF) in the APF. Second, simulated annealing
algorithm (SA) and Doppler cooling strategy are introduced in
the APF. The novelty of the research is reflected in the
improvement of the heuristic function of the traditional A*
algorithm through Manhattan distance and angle-based breaking
of the "tie" strategy, making the algorithm more cost-effective
and effectively reducing the number of turns on the optimal path.
Meanwhile, the APF has been optimized through the
enhancement of RPF, SA, and Doppler cooling strategy. This
has led to the successful resolution of the local minimum
problem and the enhancement of adaptability and stability in
path planning. The significance of this research is that the results
will help to improve the autonomous navigation ability of
mobile robots in industrial manufacturing and other fields. It can
reduce the production cost, improve the production efficiency,
and provide technical support for intelligent workshop and
automated production. In addition, the improved algorithms and
strategies proposed in the study also provide new ideas and
methods for research in the field of path planning. The research
is further divided into five sections. The second section provides
an overview of relevant literature on mobile robot path planning.
The third section presents the specific design of the global
planning and the local path planning models. The fourth section
validates and analyzes the experimental results of the global and
local path planning models. The fifth section presents a
discussion of the research, which combines a literature analysis
with a review of previous studies to provide a more
comprehensive account of the comparative analysis results and
details. The sixth section concludes the research, highlights
shortcomings, and provides future perspectives.

II. RELATED WORKS

With the advancement of industrial manufacturing, mobile
robots are increasingly used in intelligent industrial workshops
and play an important role. Many researchers have conducted
studies on path planning for mobile robots. Hossain et al.

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

229 | P a g e

www.ijacsa.thesai.org

designed a local algorithm combined with the follow-the-gap
method to improve the obstacle avoidance function of mobile
robots. The algorithm successfully generated collision-free
trajectories and demonstrated good performance without
encountering a local minimum [6]. Wang et al. addressed the
autonomous navigation of unmanned aerial vehicles by
proposing fixed charge set and discrete charge set problems. The
fixed charge set problem was solved by using a two-stage
traveling salesman problem method. Graph transformation
techniques were used to handle the discrete charge set.
Experimental results showed that both the fixed charge set and
discrete charge set problems enabled unmanned aerial vehicles
to operate continuously [7]. Hu et al. developed a motion
planning framework for wheeled robots that incorporated the
RRT algorithm. The study also introduced a path deformation
strategy and posture-based motion control laws. Experimental
results showed that the framework had computational
advantages and generated smoother and shorter trajectories for
wheeled robots [8]. Liu et al. addressed the complete coverage
problem in hilly regions by proposing a path planning algorithm
based on an energy consumption model. The SA solution was
employed for traversing the optimal sequences for the fields.
Moreover, a functional relationship between the driving angle
and the energy consumption was established in the turning area.
Experimental results indicated that considering energy
consumption in the turning area reduced the minimum energy
consumption [9].

Wang X et al. proposed a guided fast-exploring random tree
algorithm and an improved discrete adaptive differential
evolution algorithm to obtain the shortest collision-free path for
arc welding robots. In addition, the welding environment of arc
welding robots was modeled using packing and lattice methods.
Experimental results showed that the invented algorithm
optimized the paths of arc welding robots with good
performance [10]. Liu A et al. presented a pigeon-inspired
optimization algorithm improved by the logistic chaotic beetle
algorithm for the path planning of mobile robots. This method
reduced the iterations and search time, which optimized the path
evaluation function. Experimental results demonstrated that the
proposed improved pigeon-inspired optimization algorithm
quickly found the global optimum solution and generated
smoother paths [11]. Sun Y et al. developed two B-spline-based
fast-searching random tree methods to generate collision-free
trajectories in cluttered environments. The first method
introduced dynamic feasible regions and designed two guiding
functions. The second method guided the rapid growth of the
tree in the first method through a fast marching path.
Experimental results showed that the proposed algorithm had
good performance and effectiveness [12]. Zhang Z et al.
proposed an improved hybrid A* algorithm for path planning of
spherical mobile robots. This study also designed a feasible and
reachable path method that satisfied kinematic constraints and
introduced the optimal minimum rotation region for robots.
Experimental results demonstrated that the proposed method
had good performance in path planning for spherical mobile
robots and improved search efficiency to some extent [13].

In summary, there have been studies on mobile robot path
planning, and different algorithms have been discussed.
However, commonly used global path planning algorithms such

as the A* algorithm, Dijkstra's algorithm, and Floyd's algorithm
have their own drawbacks. The A* algorithm suffers from a long
search time and produces less smooth paths, the Dijkstra
algorithm is less efficient, and the Floyd algorithm is not suitable
for computationally large graphs. Therefore, this research will
design methods from global and local path planning to form a
complete path planning method for mobile robots. Firstly, a
global path planning model with the improved A* algorithm is
designed for global path planning. Secondly, in terms of local
path planning, a local path planning model based on an
improved APF method is designed to enhance the autonomous
navigation capability of mobile robots.

III. MOBILE ROBOT GLOBAL AND LOCAL PATH PLANNING

MODEL DESIGN

Models are designed separately for the global path planning
and the local path planning for mobile robots. In the global path
planning, an improved A* algorithm is used, with modifications
made to the heuristic function. The improvement of heuristic
functions is mainly reflected in two aspects. Firstly, the existing
heuristic function is optimized by using the minimum difference
between the Manhattan distance and the horizontal and vertical
coordinates of the current node and the next node. Second, the
angle-based strategy of breaking the "tie" is adopted to further
optimize the heuristic function based on the first improvement.
This is somewhat different from previous work, which mainly
improved the A* algorithm through dynamic heuristic weight
adjustment, incremental reprogramming, predictive obstacle
avoidance, and redundant node removal. In the local path
planning, an improved APF is employed to address the local
minimum for both single and multiple obstacles. First, the study
improves RPF in APF. Then the improved RPF exponentially
decays with distance within the range of obstacle influence and
maintains the continuity of the function outside the range of
obstacle influence. Afterwards, SA is introduced to solve the
local minimum. Meanwhile, an improved APF method and SA
are combined to form the final hybrid algorithm. This approach
diverges from previous works, which primarily enhanced the
APF algorithm through the following methods: dynamic
repulsion function design, hybrid algorithm architecture design,
enhancement of dynamic environment adaptability, and
implementation of path smoothing and optimization.

A. Design of Global Path Planning Model Hiring Improved

A* Algorithm for Mobile Robot

Models for both global path planning and local path planning
are developed to improve the autonomous navigation capability
of mobile robots. First, the research designs a global path
planning method for mobile robots. The A* algorithm is a
common and widely used method in global path planning, which
is known for its good search accuracy and performance in
efficiently planning the global optimal path. However, the A*
algorithm has certain limitations, such as longer search time and
unbalanced optimal paths. Therefore, an improved A* algorithm
is adopted for designing the global path planning model of
mobile robots, focusing on modifications to the heuristic
function and the strategy to break ties. In the global path
planning, the environment map is static and known. The
traditional A* algorithm is one of the commonly used methods
for solving global path planning problems, known for its good

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

230 | P a g e

www.ijacsa.thesai.org

performance. The traditional A* algorithm utilizes heuristic
search techniques. The choice of the evaluation function in this
search technique affects the efficiency of the algorithm. The
evaluation function used in the traditional A* algorithm is
expressed as Eq. (1) [14-15].

     f x g x h x  

In Eq. (1), x represents the current node.  g x represents

the cost already incurred from the start node s to x .  h x is

the estimated cost from x to the target node t , which is a

heuristic function. The value of  h x affects the computational

efficiency of the A* algorithm. Therefore, this value should be
as close as possible to the actual cost from x to t when

designing the heuristic function. The Manhattan distance and

Euclidean distance are the most common heuristic functions in
the A* algorithm, with the calculation of the Manhattan distance
shown in Eq. (2) [16].


2 1 2 1Md x x y y    

In Eq. (2),  1 1,x y and  2 2,x y represent the coordinates of

different nodes. The calculation of the Euclidean distance is
shown in Eq. (3) [17].

    
2 2

2 1 2 1ogldd x x y y    

Generally, the Euclidean distance is more effective.
However, the Manhattan distance may be more appropriate in
certain scenarios, such as warehouse environment, where
movement is limited to north-south or east-west directions. The
original A* algorithm is shown in Fig. 1.

Initialization

Place the starting node in the newly created

Openlist table and all other nodes in the newly

created Closelist table

Finding the smallest node i

Determine whether the minimum node i found is

the target node
Output path

End

Traverse the adjacent nodes j of node i, calculate

the distance d(i,j) between them, and calculate the

sum of d(i,j) and g(j)

Determine if the sum of d(i,j) and

g(i) is less than g(j)

j=d(i,j)+g(i) and transfer node j to

the Openlist table

Determine whether the Closelist

table is empty

Search failed

Y

N

Y

N

Y

N

Fig. 1. The Operational process of traditional A* algorithm.

In Fig. 1, the first step of the traditional A* algorithm is to
initialize the environment map and input the start and target
nodes. The second step is to place the start node in a newly
created Openlist and all other nodes in a newly created Closelist.
The third step is to find the smallest value node. The fourth step
is to check if the found node i is the target node. If i is the

target node, the search is successful and the path needs to be
outputted. The process ends. If i is not the target node, the next

step is carried out. The fifth step is to iterate through the
neighboring nodes of the smallest node j , calculate the distance

 ,d i j between the nodes, and calculate the sum of  ,d i j and

 g i .  g i represents the cost incurred from the start node s

to i . The sixth step is to check if the sum of  ,d i j and  g i is

less than  g j .  g j represents the cost incurred from the start

node s to j . If the sum of  ,d i j and  g i is less than  g j ,

j is assigned the sum of  ,d i j and  g i , and the node j is

moved to the Openlist. Otherwise, the next step is carried out.
The seventh step is to check if the Closelist is empty. If the
Closelist is empty, it means the search has failed and the process
ends. Otherwise, the process goes back to the third step. The
relationship between the Manhattan distance and Euclidean
distance used in the traditional A* algorithm and the actual cost
is shown in Fig. 2.

In Fig. 2, there is a certain gap between both the Manhattan
distance and the Euclidean distance and the actual cost,
especially for the Manhattan distance, which has the largest gap.
Therefore, the heuristic function of the traditional A* algorithm
is improved to ensure that the heuristic function is near the actual
cost, which is displayed in Eq. (4).


        ' 2 2d M dh x h x h x h x  



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

231 | P a g e

www.ijacsa.thesai.org

Manhattan

distance

Euclidean

distance

Actual cost

 ,B BB x y

 ,A AA x y

B Ax x

B Ay y

B A B Ax x y y  

   
2 2

B A B Ax x y y  

Fig. 2. The relationship between Manhattan distance and Euclidean distance and actual costs.

In Eq. (4),  Mh x represents the Manhattan distance.

   min ,d B A B Ah x x x y y   .  ,A Ax y represents the

coordinate of the current node.  ,B Bx y represents the

coordinate of the next node. The randomness of the traditional
A* algorithm may lead to a failure in finding the optimal path
when dealing with the "draw" situation. The specific schematic
of the "draw" situation is shown in Fig. 3.

G

Z

G

h(G) t

h(Z)

Z

dZ

x

S

Fig. 3. Specific schematic of the 'draw' situation.

From Fig. 3, st represents the line between the start node s

and the target node t . Nodes G and Z are the expansion nodes

of the current node x . Their distances to the target node t are

the same, i.e.    h G h Z .
Gd and

Zd represent the vertical

distances from nodes G and Z to st .
G and

Z represent the

angles between nodes G and Z and the start node s .

Therefore, a strategy is designed to deal with the "draw"
situation. This strategy is to choose the expansion node with the
shortest vertical distance between the line connecting the start
node s and the target node t . The heuristic function is further

improved using this strategy. The further improved heuristic
function is shown in Eq. (5).

   '' 'h x h x 

In Eq. (5),  represents the weight coefficient, which is

within [0, 1].  represents the angle between the line

connecting the start and target nodes and the line connecting the

expansion and start nodes.  0,90  . The evaluation

function of the improved A* algorithm is shown in Eq. (6).

         '' 'f x g x h x g x h x    

B. Design of Mobile Robot Local Path Planning Model with

Improved APF

The research designs the local path planning method for
mobile robots after designing the global path planning method
to form the complete path planning method for mobile robots.
Local path planning plays a crucial role in obstacle avoidance
and autonomous movement in the autonomous navigation of
mobile robots. Local path planning involves avoiding sudden
obstacles in the optimal path obtained from global path
planning. Therefore, the environment faced in local path
planning is dynamic and unknown [18]. The APF, a commonly
used approach, is chosen when designing the local path planning
model for mobile robots. However, the APF method tends to get
stuck in the local minimum [19]. Solutions are developed for
both single and multiple obstacles to address this issue. The
basic idea of APF is to create potential fields at the obstacles and
at the target location. Meanwhile, obstacles are controlled and
avoided by using these potential fields. Attractive forces are
generated by the attractive potential field at the target point in
the generated potential fields. Repulsive forces are generated by
the RPF at the obstacles. Obstacle avoidance for the robot is
achieved by the combined effect of these forces. The attractive
potential field is generally set at the target point, and its
magnitude is calculated using Eq. (7) [20].

21

2
att attU K X T  

In Eq. (7),
attK represents the attractive gain coefficient,

 ,t tT x y is the target site coordinate,
attU represents the

attractive potential field exerted on the mobile robot, and

 ,X x y represents the coordinate of the mobile robot. The

force exerted on the mobile robot due to the attractive potential
field is calculated using Eq. (8).

att attF K X T   

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

232 | P a g e

www.ijacsa.thesai.org

The force
attF can be decomposed into the coordinate axes.

attF can be transformed into a vector to improve computational

efficiency. The representations of
attF along the x-axis and y-

axis are given in Eq. (9).

cos

sin

attx att

atty att

F F

F F

 


   

In Eq. (9),
attxF represents the component of

attF along the

x-axis.  is the angle between the vector
attF and the positive

direction of the x-axis. attyF represents the component of
attF

along the y-axis. The RPF is primarily set at the obstacles. Once
the mobile robot enters the influence area of an obstacle, it will
be affected by the repulsive force. The calculation of the
magnitude of the RPF is shown in Eq. (10) [21].

2

1 1
,

2

0,

rep

rep

K O X R
U O X

O X R

  
        


  

In Eq. (10), repK represents the repulsion gain coefficient.

 ,o oO x y represents the coordinate of the obstacles. R

represents the range of repulsion. O X represents the

distance between the obstacle and the mobile robot. The force
exerted on the mobile robot by the RPF is calculated as shown
in Eq. (11).

2

1 1 1
,

0,

rep

rep

K O X R
O X RF O X

O X R

  
        


  

The force repF can be decomposed into the coordinate axes.

repF can be converted into a vector to improve computational

efficiency. The representations of the force on the x-axis and y-
axis are shown in Eq. (12).

cos

sin

repx rep

repy rep

F F

F F









 

In Eq. (12), repxF represents the component of repF on the x-

axis.  represents the angle between the vectors repF and the

positive x-axis direction. repyF represents the component of repF

on the y-axis. The attractive potential field and multiple RPFs
together form the superposed potential field, which is expressed
in Eq. (13).

1

N

att rep att repU U U U U 

 

   


In Eq. (13), N represents the number of obstacles, 

represents the  th obstacle, and
repU  represents the RPF of the

 th obstacle. The magnitude of the resultant force exerted on

the mobile robot is calculated as shown in Eq. (14).

1

N

att repF F F
 

  

Although the APF method produces relatively smooth paths,
it is prone to local minimum [22]. Therefore, methods are
developed to address the local minimum problems.
Improvements are made to the RPF to address the local
minimum for a single obstacle. Meanwhile, SA is applied to the
method together with the Doppler cooling strategy. The
improved RPF is expressed in Eq. (15).

2

2

1
,

2

1
,

2

O X

rep

rep

R

rep

K e O X R

U

K e O X R

 




 

 
  
 

The core function of SA is to solve the local optimum values
that occur during optimization. The SA uses the Metropolis
criterion to avoid local minimum values. The main process of
SA is shown in Fig. 4 [23].

In Fig. 4, the first step of SA is to initialize the parameters,
including initial temperature, cooling rate, final temperature,
and the iterations. The second step is to randomly generate an
initial solution and compute the objective function. The third
step is to generate a new solution and calculate the objective
function of the new solution. The fourth step is to calculate the
difference in objective function between the new solution and
the initial solution. The fifth step is to determine whether the
difference is less than zero. If the difference is less than zero, the
new solution is accepted. Otherwise, SA proceeds to the next
step. The sixth step is to determine whether the calculated
probability is greater than or equal to a randomly generated
number between 0 and 1. If the probability is greater than or
equal to the random number, the new solution is accepted.
Otherwise, SA returns to the third step. The seventh step is to
lower the temperature. The eighth step is to determine if the
termination conditions are met. If the termination conditions are
met, the process terminates. If not, it returns to the third step.
The Doppler cooling strategy is introduced to accelerate the
convergence of SA. The combined algorithm of the improved
APF method and SA is shown in Fig. 5.

From Fig. 5, the first step of the combined algorithm is to
use the APF method to search for the path. The second step is to
determine whether the algorithm falls into the local minimum.
If the algorithm doesn’t fall into the local minimum, it returns to
the first step and continues the search until reaching the target
point. Then the process ends. Otherwise, it proceeds to the next
step. The third step is to use SA. The fourth step is to determine
whether the algorithm escapes from the local minimum. If the
algorithm escapes from the local minimum, it returns to the first
step and continues searching until it finds the target point. Then
the process ends. Otherwise, it returns to the third step. For the
local minimum in the multiple obstacles, the combined
algorithm of the improved APF method and SA may also
encounter situations, where the target point cannot be reached.
To solve this problem, a strategy of adding a virtual target point

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

233 | P a g e

www.ijacsa.thesai.org

is introduced. The main idea of this strategy is to use the
attractive field of the virtual target point to help the mobile robot

escape from the local minimum area of multiple obstacles [24].
The virtual target point strategy is shown in Fig. 6.

Parameter

initialization

Randomly generate

initial solutions and

calculate the objective

function

Generate a new solution

and calculate the

objective function of the

new solution

Calculate the difference between

the objective function of the new

solution and the initial solution

Determine if the

difference in the

objective function is

less than 0

Accept new

explanation

Determine if the calculated

probability is greater than or

equal to random(0,1)

Lower the

temperature

Determine whether the

termination conditions

are met
End

Y
N

Y

N

Y
N

Fig. 4. The main process of SA.

Start

Determine whether to jump out of the local

minimum?

Trapped at the local minimum?

Simulated annealing method

Jump out of the local minimum?

End

N

Y

Artificial

potential field

method
Y

N

N

Y

Fig. 5. The main process of combining the improved APF method and SA.

 ,f f fX x y

 ,X x y

 ,o oO x y



R/m

Rc/m

y

x

Fig. 6. Virtual target point strategy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

234 | P a g e

www.ijacsa.thesai.org

In Fig. 6,  ,f f fX x y represents the coordinate of the

virtual target point.
cR represents the detection radius of the

obstacles.  is a constant, which needs to be set to ensure that

the mobile robot can escape from the local minimum range of
multiple obstacles. Once the mobile robot leaves the local
minimum range of multiple obstacles, the attractive field of the
virtual target point weakens. The mobile robot continues the
search under the original potential field.

IV. ANALYSIS OF GLOBAL AND LOCAL PATH PLANNING

RESULTS FOR MOBILE ROBOTS

In this section, the performance of the improved A*
algorithm was verified in terms of path length, turns, and
iterations. The performance of the combined algorithm of the
improved APF method and SA was validated based on
simulation results of the planning time and local minimum.

A. Analysis of Results for Global Path Planning based on the

Improved A* Algorithm

The traditional A* algorithm was used to verify the
performance of the improved A* algorithm. Simulation
experiments were conducted using MATLAB R2019b software.
The experiments were conducted on an Intel Core i5-11600K
processor with 128GB memory, running on Windows 10
operating system. Four experiments were conducted, with
different start and target nodes for each experiment. The start
and target nodes for experiment 1 were (4, 4) and (29, 27),
respectively. For experiment 2, they were (3, 12) and (29, 3). For
experiment 3, they were (6, 21) and (29, 23). For experiment 4,
they were (8, 29) and (28, 4). The evaluation metrics include
path length, turns, and iterations, with a simulation map size of
30m*30m. The comparison of the turns for the optimal path
between the pre-improved and post-improved A* algorithms
under different experiments is shown in Fig. 7.

X/m

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Y
/m

(a) The number of turns for the traditional A *

algorithm

Experiment 1

Experiment 2

Experiment 3

Experiment 4

s

t

X/m

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Y
/m

(b) The number of turns for the improved A *

algorithm

Experiment 1

Experiment 2

Experiment 3

Experiment 4

s

t

Fig. 7. Comparison of the turns in the optimal path of A* algorithm before and after improvement in different experiments.

From Fig. 7(a), the turns in the optimal path for experiment
1 were 13 in the original A* algorithm, 8 for experiment 2, 16
for experiment 3, and 8 for experiment 4. Fig. 7(b) shows that
the turns in the optimal path for experiments 1, 2, 3, and 4 were
reduced to 8, 5, 9, and 5 after improving the A* algorithm,
respectively. In experiments 1, 2, 3, and 4, the difference in the
optimal number of turns for the A * algorithm before and after
improvement was 5, 3, 7, and 3 times, respectively. The turns in
the optimal path significantly decreased after improving the A*
algorithm, indicating better performance compared to the
original A* algorithm. Other path planning algorithms were also
selected for comparison in the study to better validate the
performance of the improved A* algorithm. Additional
comparative algorithms include ant colony algorithm, genetic
algorithm, and SA. In addition, the study also selected other path
planning simulation maps for experimental verification, which
were obtained from researchers such as Lai X [25]. The
comparison of optimal path lengths for different algorithms on
different simulation maps is shown in Fig. 8.

From Fig. 8(a), the maximum optimal path length for the
pre-improved A* algorithm, ant colony algorithm, genetic
algorithm, SA, and improved A* algorithm was 59.56m,
58.03m, 57.88m, 59.89m, and 56.39m, respectively, under four
experiments, while the minimum value was 42.49m, 47.03m,
44.97m, 45.17m, and 40.83m, respectively. The maximum
optimal path length of the A* algorithm, ant colony algorithm,
genetic algorithm, and simulated SA before improvement was
3.17m, 1.64m, 1.49m, and 3.50m longer than that of the
improved A* algorithm, respectively. According to Fig. 8(b), on
the simulation map designed by Lai X et al., the maximum
optimal path length for the five algorithms was 61.3m, 53.2m,
50.0m, 52.5m, and 41.9m, respectively. The maximum optimal
path length of the improved A* algorithm was 19.4m, 11.3m,
8.1m, and 10.6m less than the maximum values of the other four
algorithms, respectively. This also demonstrated that the
performance of the improved A* algorithm was better. The
convergence curves of the original and improved A* algorithms
in the four experiments were compared, as shown in Fig. 9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

235 | P a g e

www.ijacsa.thesai.org

30

35

40

45

50

55

60

65

70

O
p
ti

m
al

 p
at

h
 l

en
g
th

/(
m

)

Number of experiments

(a) The simulation map

used in the paper

1 2 3 4
30

35

40

45

50

55

60

65

70

O
p
ti

m
al

 p
at

h
 l

en
g
th

/(
m

)

Number of experiments

(b) On the simulation map designed

by Lai X et al

0 5 15 2510 20

A* algorithm before improvement

A* algorithm after improvement

Ant colony

Genetic algorithm

Simulated annealing algorithm

A* algorithm before improvement

A* algorithm after improvement

Ant colony

Genetic algorithm

Simulated annealing algorithm

Fig. 8. Comparison of the optimal path length planned by two algorithms under four experiments.

40

60

80

100

140

180

M
in

im
u

m
 p

at
h

 l
en

g
th

/(
m

)

Number of iterations

(a) Convergence curve before the improvement

of A* algorithm

0 200 400 600100 300 500

120

160
Experiment 1

Experiment 2

Experiment 3

Experiment 4

40

60

80

100

140

180
M

in
im

u
m

 p
at

h
 l

en
g

th
/(

m
)

Number of iterations

(b) Convergence curve after the improvement of

A* algorithm

0 200 400 600100 300 500

120

160
Experiment 1

Experiment 2

Experiment 3

Experiment 4

Fig. 9. Comparison of convergence curves of A* algorithm before and after improvement in four experiments.

From Fig. 9(a), the original A* algorithm required nearly
180 iterations to converge in experiment 1, and around 200, 210,
and 190 iterations to converge in experiments 2, 3, and 4,
respectively. In Fig. 9(b), the improved A* algorithm converged
after approximately 95, 90, 100, and 85 iterations in experiments
1 to 4, respectively. In experiments 1, 2, 3, and 4, the number of
iterations required for the enhanced A* algorithm to reach a

convergence state was found to decrease by 85, 110, 110, and
105 times, respectively, in comparison to the original A*
algorithm. The improved A* algorithm achieved faster
convergence compared to the original A* algorithm, indicating
its superior performance. The comparison of path planning time
for different algorithms is shown in Table I.

TABLE I. COMPARISON OF PATH PLANNING TIME FOR DIFFERENT ALGORITHMS

Algorithm
Runs

10 20 30 40

Original A* algorithm 2.371s 2.397s 2.412s 2.435s

Ant colony 2.246s 2.269s 2.280s 2.297s

Genetic algorithm 2.017s 2.043s 2.067s 2.081s

Simulated annealing algorithm 1.943s 1.966s 1.987s 1.996s

Improved A* algorithm 1.732s 1.755s 1.773s 1.782s

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

236 | P a g e

www.ijacsa.thesai.org

From Table I, as the runs increased, the running time of all
algorithms also increased synchronously. When the runs
increased from 10 to 40, the maximum and minimum values of
all algorithms were 2.435s and 1.732s, respectively, which
appeared on the original A* algorithm and the improved A*
algorithm. In addition, the running time of the improved A*
algorithm was always lower than that of the compared
algorithms. For example, when running 40 times, the improved
A* algorithm had a running time that was 0.653s, 0.515s,
0.299s, and 0.214s lower than the other four algorithms,
respectively. The improved A* algorithm took less time to plan
the path and determined the optimal path more quickly. The
study also placed three obstacles of different sizes on the
simulation map, namely minor, moderate, and multiple
obstacles. The configuration of obstacles at this time is shown in
Table II.

In Table II, a limited number of obstacles were comprised of

six rectangular obstacles of varying lengths, all with a width

of 1.5 meters. Furthermore, the MATLAB code fragment

intended to simulate map layout is displayed in Fig. 10.
As illustrated in Fig. 10, the MATLAB format code for

simulating map layout comprised of five primary components:
map size, obstacle configuration, map drawing, obstacle
drawing, and adding networks and labels. The comparison of
path planning results using different methods is shown in Fig.
11.

TABLE II. THE CONFIGURATION OF OBSTACLES

Obstacle

configuration type

Number of

obstacles

Obstacle

shape

Obstacle size

(width/m)

A small amount 6 Rectangle 1.5

Medium 10 Rectangle 1.5

More 16 Rectangle 1.5

% Map size

mapSize = [10, 10];

% Obstacle configuration

obstacleConfig = {

 'Minor', 6, 'rectangle', 1.5, [(0,16), (0,17)];

 'Moderate', 10, 'rectangle', 1.5, [% Obstacle positions need to be specifically defined

];

 'More', 16, 'rectangle', 1.5, [% Obstacle positions need to be specifically defined

];

};

% Create a new figure

figure;

axis([0, mapSize(2), 0, mapSize(1)]);

hold on;

set(gca, 'YDir', 'reverse');

% Draw obstacles

for i = 1:size(obstacleConfig, 1)

 obstacleType = obstacleConfig{i, 1};

 obstacleCount = obstacleConfig{i, 2};

 obstacleShape = obstacleConfig{i, 3};

 obstacleSize = obstacleConfig{i, 4};

 obstaclePositions = obstacleConfig{i, 5};

 for j = 1:obstacleCount

 position = obstaclePositions(j, :);

 if strcmp(obstacleShape, 'rectangle')

 rectangle('Position', [position(1), position(2), obstacleSize, obstacleSize], ...

 'Curvature', [0, 0], 'FaceColor', 'r', 'EdgeColor', 'k');

 end

 end

end

% Add grid and labels

grid on;

xlabel('X (m)');

ylabel('Y (m)');

title('Simulation Map');

hold off;

Fig. 10. The MATLAB format code snippet for simulating map layout.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

237 | P a g e

www.ijacsa.thesai.org

X/m

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Y
/m

(a) Minor obstacles

Before improving

the A* algorithm

Ant colony Genetic algorithm

Simulated annealing

algorithm

s tImproved A* algorithm

X/m

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Y
/m

(b) Moderate obstacles

Before improving

the A* algorithm

Ant colony Genetic algorithm

Simulated annealing

algorithm

s tImproved A* algorithm

X/m

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(c) Multiple obstacles

Before improving

the A* algorithm

Ant colony

s t

Improved A* algorithm

Genetic algorithm

Simulated annealing

algorithm

Fig. 11. Comparison of path planning results using different methods.

From Fig. 11(a), when the number of obstacles was small,
the path smoothness of the improved A* algorithm, ant colony
algorithm, genetic algorithm, SA, and improved A* algorithm
was 0.532, 0.651, 0.702, 0.735, and 0.956, respectively.
Moreover, the path smoothness of the enhanced A* algorithm
was 0.424, 0.305, 0.254, and 0.221 greater than that of the
original A* algorithm, the ant colony algorithm, the genetic
algorithm, and the simulated SA, respectively. From Fig. 11(b),
the improved A* algorithm planned shorter paths and had higher
smoothness in moderate obstacle environments, with a value of
0.948, which was significantly better than the comparison

algorithms. From Fig. 11(c), the path smoothness of the five
algorithms was 0.498, 0.572, 0.698, 0.703, and 0.937,
respectively, in environments with many obstacles. It can be
concluded that when there were many obstacles, the path
smoothness of the improved A* algorithm was 0.439, 0.365,
0.239, and 0.234 higher than the other four algorithms,
respectively. In summary, the improved A* algorithm
performed better. The comparison of central processing unit
(CPU) utilization and memory usage of different algorithms
under different numbers of obstacles is shown in Table III.

TABLE III. COMPARISON OF CPU UTILIZATION AND MEMORY USAGE OF DIFFERENT ALGORITHMS UNDER DIFFERENT NUMBERS OF OBSTACLES

Algorithm

CPU utilization/% Memory usage/%

Scale of obstacles Scale of obstacles

Minor Moderate Multiple Minor Moderate Multiple

Before improving the A* algorithm 27.12 33.54 38.07 26.31 32.46 36.97

Ant colony 25.88 32.09 35.11 23.55 28.49 33.62

Genetic algorithm 23.35 25.73 30.71 21.82 26.61 30.04

Simulated annealing algorithm 21.09 23.86 29.58 19.51 22.33 26.97

Improved A* algorithm 12.01 15.46 18.73 13.96 16.23 18.02

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

238 | P a g e

www.ijacsa.thesai.org

In Table III, the CPU utilization rates of the improved A*
algorithm were 12.01%, 15.46%, and 18.73%, respectively,
under a small number of obstacles, moderate obstacles, and a
large number of obstacles, which were significantly lower than
the comparison algorithm. For example, under a small number
of obstacles, the CPU utilization rates of the improved A*
algorithm, ant colony algorithm, genetic algorithm, and
simulated SA were 15.11%, 13.87%, 11.34%, and 9.08% higher
than those of the improved A* algorithm, respectively.
Meanwhile, under different numbers of obstacles, the memory
consumption of the improved A* algorithm was significantly
lower than that of the comparison algorithm, and the value
remained below 20%. In summary, the improved A* algorithm

had lower CPU and memory consumption, better performance,
and more advantages in practical applications of path planning.

B. Analysis of Local Path Planning Results with Improved

APF

Simulations were conducted using MATLAB R2019b
software to verify the performance of the combined algorithm of
the improved APF method and SA. The algorithms compared
include the original APF, the improved APF, and the combined
algorithm of the improved APF method and SA. The size of the
simulation map was 10m*10m. The compared indicators were
the planning time of the algorithm and the simulation results of
the local minimum. The comparison of planning time for
different algorithms is shown in Fig. 12.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
la

n
n
in

g
 t

im
e/

(s
)

Number of experiments

(a) Comparison of planning time

1 2 3 4

APF before improvement

Improved APF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
la

n
n
in

g
 t

im
e/

(s
)

Number of experiments

(b) Comparison of planning time

1 2 3 4

Pre-improved APF+SA

The combined algorithm of the

improved APF method and SA0.47
0.38

0.42
0.44

0.36
0.27

0.30
0.29 0.28

0.21
0.24

0.26

0.17

0.11 0.14
0.15

Fig. 12. Planning time of different algorithms.

In Fig. 12(a), the planning time of the original APF method
ranged from 0.38s to 0.47s. The planning time of the pre-
improved APF method ranged from 0.27s to 0.36s. The
maximum and minimum planning times of the improved APF
method were both 0.11s lower than before the improvement. In
Fig. 12(b), the planning time for the combined algorithm of the
pre-improved APF method and SA ranged from 0.21s to 0.28s.
The planning time for the combined algorithm of the improved
APF method and SA ranged from 0.11s to 0.17s. The combined
algorithm of the improved APF method and SA had a
significantly lower planning time compared to other algorithms,

indicating better performance. This study selected APF, SA,
dynamic window method (DWM), the RRT algorithm, and ant
colony optimization with adaptive mechanism (ACOAM) for
comparative verification to better verify the performance of the
combined algorithm of the improved APF method and SA.
Three types of obstacles of different scales were set up on the
simulation map, namely minor, moderate, and multiple
obstacles. The comparison of the number of path turns and
average convergence times of different algorithms is shown in
Table IV.

TABLE IV. COMPARISON OF PATH TURNING TIMES AND AVERAGE CONVERGENCE TIMES OF DIFFERENT ALGORITHMS

Algorithm

Path turning times Average convergence times

Scale of obstacles Scale of obstacles

Minor Moderate Multiple Minor Moderate Multiple

SA 8 11 12 19.7 20.9 22.4

APF 9 10 13 19.5 21.6 23.4

DWM 10 13 14 21.5 22.9 26.1

RRT 9 12 13 20.7 22.3 25.8

ACOAM 7 9 11 17.9 18.8 20.3

Manuscript 6 8 10 14.7 15.1 17.3

From Table IV, the path turning times and average
convergence times of the designed algorithm were always
smaller than those of the comparison algorithms under obstacles
of different scales. The path turns for the designed algorithm

were 6, 8, and 10, with an average convergence of 14.7, 15.1,
and 17.3 under minor, moderate, and multiple obstacles,
respectively. The performance of the ACOAM algorithm was
closest to that of the designed algorithm, with 7, 9, and 11 path

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

239 | P a g e

www.ijacsa.thesai.org

transitions, and an average convergence rate of 17.9, 18.8, and
20.3, respectively. In summary, the designed algorithm had
better performance and performed well when facing obstacles of

different scales. The comparison of running time and path length
of different algorithms under different obstacle scales is shown
in Table V.

TABLE V. COMPARISON OF RUNTIME AND PATH LENGTH OF DIFFERENT ALGORITHMS UNDER DIFFERENT OBSTACLE SCALES

Algorithm

Running time/s Path length/cm

Scale of obstacles Scale of obstacles

Minor Moderate Multiple Minor Moderate Multiple

SA 2.987 4.659 5.742 33.715 54.263 72.645

APF 3.012 4.583 6.776 36.854 57.312 75.791

DWM 3.227 5.317 7.462 38.213 59.621 76.373

RRT 3.452 5.472 7.550 38.336 60.082 77.591

ACOAM 2.632 4.447 5.576 32.176 52.537 71.998

Manuscript 1.941 3.294 4.733 30.386 50.558 68.168

From Table V, the minimum running time was 1.941s. The
minimum path length was 30.386cm under minor obstacles.
Both of them appeared in the combined algorithm. The running
time of this combined algorithm under moderate and multiple
obstacles was 3.294s and 4.733s, respectively. The path length
was 50.558cm and 68.168cm. At different obstacle scales, the
running time and path length of the combined algorithm were

significantly lower than those of the comparison algorithms,
indicating that the algorithm had strong path planning ability.
The study compared the arrival rates and average rewards of
different algorithms to further verify the performance of the
combined algorithm of the improved APF method and SA. The
comparison results are shown in Fig. 13.

0

0.2

0.4

1.0

A
rr

iv
al

 r
at

e/
%

Iterations

(a) Comparison of arrival rates

500

0.6

0.8

1000 1500 2000 3000

APF DWM

RRT SA

0
0

500

1000

2000

A
v
er

ag
e

re
w

ar
d
 v

al
u
e

Iterations

(b) Comparison of average rewards

50

1500

100 150 200 25002500

Manuscript

ACOAM

APF DWM

RRT SA

Manuscript

ACOAM

Fig. 13. Comparison of arrival rates and average rewards of different algorithms.

Fig. 13(a) shows that the arrival rates of the different
algorithms increased synchronously with the number of
iterations. After more than 700 iterations, the combined
algorithm of the improved APF method and SA showed a
significant improvement in the arrival rate, which was
significantly higher than the comparison algorithm. The
maximum arrival rate of this hybrid algorithm was 72.3%, and
the maximum arrival rates of the SA, APF, DWM, RRT, and
ACOAM algorithms were 67.51%, 58.12%, 55.37%, 52.73%,
and 69.34%, respectively. The research on building hybrid
algorithms had a strong ability to approach the target point. In
Fig. 13(b), with the increase of training times, the average
rewards of different algorithms showed a synchronous
increasing trend overall. Specifically, after 100 iterations, the
average reward oscillation of the combined algorithm tended to
stabilize at a smaller amplitude, which was significantly faster
than the comparison algorithms. SA did not show oscillation
stability in the limited training iterations, and the amplitude of
the oscillation was relatively large. The combined algorithm was
able to explore paths faster and more stably. To further verify

the performance of the combined algorithm, the simulation
results of the local minimum in the presence of a single obstacle
for different algorithms were compared, as shown in Fig. 14.

From Fig. 14(a) and Fig. 14(b), both the original and the
improved APF methods failed to reach the target node when
facing a single obstacle and get trapped in the local minimum.
In Fig. 14(c), the combined algorithm of the original APF
method and SA reached the target node after iterating nearly 60
times to escape from the local minimum. In Fig. 14(d), the
combined algorithm of the improved APF method and SA also
reached the target node and escaped from the local minimum
after only about 8 iterations. This demonstrated that the
combined algorithm of the improved APF method and SA
quickly escaped from the local minimum in the presence of a
single obstacle, indicating better performance. The effectiveness
of the strategy of adding a virtual target point was validated.
Experiments were also conducted to escape the local minimum
in the presence of multiple obstacles. The results are shown in
Fig. 15.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

240 | P a g e

www.ijacsa.thesai.org

5

6

7

8

9

10

Y
/(

m
)

X/(m)

(a) APF before improvement

4
4 5 6 7 8 109

s

t
Obstacle

Path planned by

APF

R

5

6

7

8

9

10

Y
/(

m
)

X/(m)

(b) APF after improvement

4
4 5 6 7 8 109

s

t
Obstacle

Path planned by

APF

R

5

6

7

8

9

10

Y
/(

m
)

X/(m)

(c) Combination of SA and pre-improved

APF

4
4 5 6 7 8 109

s

tObstacle

Path planned by

APF

R

Path

planned by

SA

5

6

7

8

9

10

Y
/(

m
)

X/(m)

(d) Combination of SA and improved

APF

4
4 5 6 7 8 109

s

tObstacle

Path planned by

APF

R

Path

planned by

SA

s: start point coordinates

t: end point coordinates

s: start point coordinates

t: end point coordinates

s: start point coordinates

t: end point coordinates

s: start point coordinates

t: end point coordinates

Fig. 14. Comparison of simulation results of different algorithms for local minimum values under a single obstacle.

2

6

8

10

Y
/(

m
)

X/(m)

0
0 2 4 6 8 10

4 s t

Obstacle
Path planned by

APF

Path planned by

SA

s:starting point coordinates

t:end point coordinates

Fig. 15. Results of detachment from local minimum values under multiple

obstacles.

In Fig. 15, the combined algorithm of the improved APF
method and SA under multiple obstacles, with the introduction
of the strategy of adding a virtual target point, successfully
reached the target node. This method escaped from the local
minimum under multiple obstacles after iterating for about 10
times. The strategy of adding a virtual target point helped the
combined algorithm of the improved APF method and SA to
escape from the local minimum under multiple obstacles,
indicating the effectiveness of this strategy.

V. DISCUSSION

To improve the autonomous navigation capability of mobile
robots, an improved A* algorithm for global path planning and
an improved APF method for local path planning have been
studied and designed. The improvement of the A* algorithm in
this study mainly started with the optimization of the heuristic
function, which achieved a reduction in the optimal path length,
and the shortest time in multiple experiments was 1.732 seconds.
Qi S et al. improved the A* algorithm by introducing
geomagnetic information entropy into the fitness function,
achieving a 42.02% reduction in path length [26]. Xiang Y et al.
enhanced the A* algorithm by developing a novel hybrid
heuristic function based on Euclidean distance and projection
distance, thereby optimizing the path length through the
potential field function of the APF algorithm [27]. This study
presented an improvement to the APF algorithm that optimized
the RPF, introduced the simulated annealing method to facilitate
escape from local minima, and combined the improved APF
with the simulated annealing method to achieve a reduction in
running time. Firdos I et al. developed an improved APF that
combined Q-learning and combined dynamic and static reward
functions, achieving a 67.25% improvement in path length [28].
The more comprehensive comparative analysis results and
details of different studies are shown in Table VI.

In Table VI, the A* and APF algorithms for path planning
problems have undergone significant advancements, resulting a
reduction in optimal path length and enhanced obstacle
avoidance efficacy. Meanwhile, there was still room for
improvement in the reduction of path length in research. The
comparison of path smoothness and path diversity across studies
is shown in Table VII.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

241 | P a g e

www.ijacsa.thesai.org

TABLE VI. MORE COMPREHENSIVE COMPARATIVE ANALYSIS RESULTS AND DETAILS OF DIFFERENT STUDIES

Number Advantage Disadvantage

[26]
The path length has been shortened by 42.02%, and the number of turns has been

reduced by 92.31%
Difficulty in obtaining and processing geomagnetic data

[27]
Reduced the search nodes of the A * algorithm and improved the obstacle avoidance

effect
There is a possibility of losing the optimal solution

[28]
A 67.25% path length improvement was achieved, with an average performance

improvement of about 14.68%
There may be a conflict issue with reward signals

Manuscript
The maximum reduction in path length for the improved A * and APF algorithms

is 5.32% and 10.06%, respectively.
Not considering dynamic obstacle avoidance yet

TABLE VII. COMPARISON OF PATH SMOOTHNESS AND DIVERSITY IN DIFFERENT STUDIES

Number

Path smoothness Path diversity

Number of experiments Number of experiments

1 2 3 4 5 1 2 3 4 5

[26] 0.851 0.899 0.894 0.860 0.891 0.856 0.894 0.875 0.861 0.889

[27] 0.890 0.881 0.890 0.868 0.862 0.885 0.897 0.879 0.906 0.866

[28] 0.902 0.887 0.919 0.892 0.894 0.916 0.887 0.884 0.887 0.897

Improved A* 0.982 0.974 0.933 0.961 0.952 0.973 0.953 0.944 0.943 0.953

Improved APF 0.985 0.957 0.962 0.954 0.971 0.948 0.972 0.987 0.957 0.970

The smoothness of a path was measured by standardization,
with a value range of [0, 1], and the larger the value, the
smoother the path. Path diversity was achieved by measuring the
similarity of paths generated from multiple runs, with a value
range of [0, 1], and the larger the value, the higher the diversity.
As illustrated in Table VII, the mean path smoothness values
reported in earlier studies [26], [27], and [28] were 0.879, 0.878,
and 0.899, respectively. In this study, the average path
smoothness values of improved A * and improved APF were
0.960 and 0.966, respectively, which were significantly better
than previous studies. In addition, in terms of path diversity, the
average values of the five methods were 0.875, 0.887, 0.894,
0.953, and 0.967, respectively. In summary, the designed
algorithm was demonstrated to exhibit higher path smoothness
and diversity, generate paths with reduced sharp turns and
acceleration changes, and possess strong randomness and
adaptability. These characteristics had the potential to enhance
the probability of robots identifying feasible paths.

VI. CONCLUSION

A global path planning model based on the improved A*
algorithm and a local path planning model based on the
improved APF algorithm were developed to improve the
autonomous navigation capability of mobile robots. The
experimental results showed that the turns in the optimal path
for the original A* algorithm in the four experiments were 13,
8, 16, and 8, respectively. For the improved A* algorithm, the
turns in the optimal path were reduced to 8, 5, 9, and 5,
respectively. There was a reduction of 5, 3, 7, and 3 turns
compared to the original algorithm. The length of the optimal
path for the original A* algorithm in the four experiments was
59.56m, 42.49m, 53.15m, and 53.32m, respectively. For the
improved A* algorithm, the length of the optimal path was
reduced to 56.39m, 40.83m, 50.56m, and 50.83m, respectively.
There was a reduction of 3.17m, 1.66m, 2.59m, and 2.49m
compared to the original algorithm. The performance of the

improved A* algorithm was superior to the original A*
algorithm. The maximum planning time for the original APF
method was 0.47s. The maximum planning time for the
improved APF method was 0.36s. The maximum planning time
for the combined algorithm of the original APF method and SA
was 0.28s. The maximum planning time for the combined
algorithm of the improved APF method and SA was 0.17s. The
combined algorithm of the improved APF method and SA had
better performance. The combined algorithm of the improved
APF method and SA reached the target node and avoided being
trapped in the local minimum under the single obstacle. In
addition, the strategy of adding a virtual target point can help the
combined algorithm of the improved APF method and SA to
escape from the local minimum under multiple obstacles.
However, there are still limitations in this study. The designed
local path planning model mainly focuses on static obstacle
environments. Future research can explore the avoidance of
dynamic obstacles that may appear unexpectedly. In addition,
although the improved algorithm performs well in terms of path
planning performance, there is still room for improvement in
terms of computational resource consumption. Future research
can reduce the computational cost of the algorithms and improve
their real-time performance and applicability through algorithm
optimization, hardware acceleration, and other methods. Finally,
current path planning methods mainly focus on finding optimal
paths. However, in some practical scenarios, it may be necessary
to generate multiple feasible paths for selection. Future research
could explore ways to enhance the algorithm's ability to generate
path diversity to meet different task requirements. The research
makes a significant contribution to the field by optimizing the
performance of global and local path planning for mobile robots.
This is achieved by improving the A* algorithm and APF
method, thereby reducing the number of turns and path length of
the optimal path. Additionally, the research reduces path
planning time, improves the adaptability and stability of the
algorithm, and provides efficient technical support for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

242 | P a g e

www.ijacsa.thesai.org

autonomous navigation of robots in industrial manufacturing
and other fields. Mobile robot path planning technology has a
wide range of applications and is important in the field of
industrial manufacturing, such as automatic material handling
and component distribution in scenarios such as intelligent
workshops and automated warehouses. However, in real-world
implementation, the designed planning algorithm must be
adapted to address issues such as dynamic environment
adaptability, sensor accuracy and reliability, computational
resource limitations, multi-robot collaboration, and real-time
requirements. These are also issues that need to be addressed in
practical applications. In the real-world, the global and local
path planning models developed by the research can be directly
applied to the autonomous navigation system of mobile robots.
Specifically, the algorithm must first be integrated into the
robot's embedded system, and real-time environmental data can
be obtained through sensors, such as using LiDAR for obstacle
detection and mapping. Then, by combining the kinematic
model and the dynamic constraints of the robot, the algorithm is
optimized and adapted to ensure the feasibility and real-time
performance of the path planning. In terms of dynamic
environment perception, deep learning techniques can be
introduced. In addition, by combining it with hardware
acceleration technology, the algorithm's computational resource
consumption can be further reduced, which is expected to
significantly improve its real-time performance and
applicability in practical applications.

REFERENCE

[1] S. Ziadi and M. Njah, “PSO-DVSF~2-mt: An optimized mobile robot
motion planning approach for tracking moving targets,” Int. J. Robotics
Autom., vol. 37, no. 5, pp. 421-430, January 2022.

[2] J. Wang, M. T. H. Fader, and J. A. Marshall, “Learning-based model
predictive control for improved mobile robot path following using
Gaussian processes and feedback linearization,” J. Field Robotics, vol. 40,
no. 5, pp. 1014-1033, February 2023.

[3] G. F. Chai and Y. Z. Xia, “Multi-robot path optimization and simulation
for multi-route inspection in manufacturing,” Int. J. Simul. Model., vol.
22, no. 1, pp. 121-132, March 2023.

[4] J. Li, J. Sun, L. Liu, and J. Xu, “Model predictive control for the tracking
of autonomous mobile robot combined with a local path planning,”
Measure. Control, vol. 54, no. 9, pp. 1319-1325, October 2021.

[5] X. Li, G. Zhao, and B. Li, “Generating optimal path by level set approach
for a mobile robot moving in static/dynamic environments,” Appl. Math.
Model., vol. 85, no.2, pp. 210-230, September 2020.

[6] T. Hossain, H. Habibullah, R. Islam, and R. V. Padilla, “Local path
planning for autonomous mobile robots by integrating modified dynamic
window approach and improved follow the gap method,” J. Field
Robotics, vol. 39, no.4, pp. 371-386, December 2021.

[7] Q. Wang, H. Chen, L. Qiao, J. Tian, and Y. Su, “Path planning for
UAV/UGV collaborative systems in intelligent manufacturing,” IET
Intell. Transp. Syst., vol. 14, no. 2, pp. 1475-1483, May 2020.

[8] B. Hu, Z. Cao, and M. Zhou, “An efficient RRT-based framework for
planning short and smooth wheeled robot motion under kinodynamic
constraints,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3292-3302,
April 2021.

[9] T. Liu, J. Li, S. X. Yang, Z. Gong, Z. L. Liu, and H. Zhong, “Optimal
coverage path planning for tractors in hilly areas based on energy
consumption model”, Int. J. Robotics Autom., vol. 38, no. 1, pp. 20-31,
2023.

[10] X. Wang, Z. Xia, X. Zhou, J. Wei, X. Gu, and H. Yan, “Collision-free
path planning for arc welding robot based on IDA-DE algorithm,” Int. J.
Robotics Autom., vol. 37, no. 6, pp. 476-485, 2022.

[11] A. Liu and J. Jiang, “Solving path planning problem based on logistic
beetle algorithm search-pigeon-inspired optimisation algorithm,”
Electron. Lett., vol. 56, no. 21, pp. 1105-1108, September 2020.

[12] Y. Sun, C. Zhang, and C. Liu, “Collision-free and dynamically feasible
trajectory planning for omnidirectional mobile robots using a novel B-
spline based rapidly exploring random tree,” Int. J. Advanced Robotic
Syst., vol. 18, no. 3, pp. 473-493, June 2021.

[13] Z. Zhang, Y. Wan, Y. Wang, X. Guan, W. Ren, and G. Li, “Improved
hybrid A* path planning method for spherical mobile robot based on
pendulum,” Int. J. Advanced Robotic Syst., vol. 18, no. 1, pp. 671-680,
February 2021.

[14] S. Laaroussi, A. Baataoui, A. Halli, and K. Satori, “Dynamic mosaicking:
combining A* algorithm with fractional Brownian motion for an optimal
seamline detection,” IET Image Process., vol. 14, no. 13, pp. 3169-3180,
November 2020.

[15] A. M. Usman and M. K. Abdullah, “An assessment of building energy
consumption characteristics using analytical energy and carbon footprint
assessment model,” Green Low-Carbon Econ., vol. 1, no. 1, pp. 28-40,
March 2023.

[16] S. Kansal and R. Tripathi, “A new adaptive histogram equalization
heuristic approach for contrast enhancement,” IET Image Process., vol.
14, no. 6, pp. 1110-1119, 2020.

[17] J. Chen, S. J. Song, Y. Gu, and S. X. Zhang, “A multisensor fusion
algorithm of indoor localization using derivative Euclidean distance and
the weighted extended Kalman filter,” Sens. Rev., vol. 42, no. 6, pp. 669-
681, October 2022.

[18] J. Akshya and P. L. K. Priyadarsini, “Graph-based path planning for
intelligent UAVs in area coverage applications,” J. Intell. Fuzzy Syst., vol.
39, no.6, pp. 8191-8203, December 2020.

[19] W. Zhang, G. Xu, Y. Song, and Y. Wang, “An obstacle avoidance strategy
for complex obstacles based on artificial potential field method,” J. Field
Robotics, vol. 40, no. 5, pp. 1231-1244, May 2023.

[20] A. A. Ansari and E. I. Abouelmagd, “Gravitational potential formulae
between two bodies with finite dimensions,” Astron. Nachr., vol. 341, no.
6, pp. 656-668, June 2020.

[21] W. Zhang, S. Wei, J. Zeng, and N. Wang, “Multi-UUV path planning
based on improved artificial potential field method,” Int. J. Robotics
Autom., vol. 36, no. 4, pp. 231-239, 2021.

[22] A. A. Ibrahim and R. O. Abdulaziz, “Analysis of titanic disaster using
machine learning algorithms,” Eng. Let., vol. 28, no. 4, pp. 1161-1167,
November 2020.

[23] M. Jimenez-Martinez and M. Alfaro-Ponce, “Fatigue life prediction of
aluminum using artificial neural network,” Eng. Let., vol. 29, no. 2, pp.
704-709, June 2021.

[24] M. F. Cifuentes-Molano, B. S. Hernandez, and E. Giraldo, “Comparison
of different control techniques on a bipedal robot of 6 degrees of
freedom,” Iaeng. Int. J. Ap. Mat., vol. 51, no. 2, pp. 300-306, May 2021.

[25] X. Lai, D. Wu, D. Wu, J. H. Li, and H. Yu, “Enhanced DWA algorithm
for local path planning of mobile robot,” Ind. Robot., vol. 50, no. 1, pp.
186-194, August 2022.

[26] S. Qi, B. Qiang, and T. Yude, "Path planning of improved A * algorithm
based on geomagnetic matching aided navigation," J. Jiangsu Univ. (Nat.
Sci. Ed.)., vol. 44, no. 6, pp. 696-703, 2023.

[27] Y. Xiang, J. Chen, D. Sirui, and D. Qianrui, "Path planning for
improvement of A* algorithm and artificial potential field method," J.
Syst. Simul., vol. 36, no. 3, pp. 782-794, 2024.

[28] I. Firdos, R. Firas, and N. Ahmed, "Path planning improvement using a
modified Q-learning algorithm based on artificial potential field," Int. J.
Intell. Eng. Syst., vol. 17, no. 4, pp. 411-423, July 2024.

