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Abstract—Robot path planning is a key technology for 

achieving autonomous navigation and efficient operation of robots. 

In order to improve the autonomous navigation capability of 

mobile robots, a global path planning model based on an improved 

A* algorithm and a local path planning model based on an 

improved artificial potential field method were designed. The 

results showed that the turns in the optimal path under the 

improved A* algorithm were 8, 5, 9, and 5, respectively. The 

improved artificial potential field method achieved a maximum 

planning time of 0.17s and a minimum planning time of 0.11s. The 

designed global and local path planning models for mobile robots 

have good performance and can provide technical support for 

improving the autonomous navigation capability of mobile robots 

for industrial manufacturing. 
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I. INTRODUCTION 

With the development of information technologies and the 
concerned policies, China's industrial sectors are transitioning 
towards informatization and intelligence. Mobile robots play an 
important role in intelligent workshops, effectively enhancing 
industrial production efficiency and reducing production costs. 
Navigation, dynamic obstacle avoidance, and localization are 
key technologies in mobile robotics, with path planning being a 
major focus within the navigation technologies [1-2]. Global 
planning and local path planning are two categories. Common 
methods for the global path planning include the A* algorithm, 
Dijkstra's algorithm, and Floyd's algorithm. However, these 
algorithms have some shortcomings, such as the long search 
time of the A* algorithm and the lack of path smoothness in the 
generated paths [3]. With the development of intelligent 
biomimetic algorithms, more researchers have applied these 
methods to global path planning and made improvements to 
address specific shortcomings. Common methods at present 
include the artificial potential field (APF) and dynamic window 
approach for the local path planning. However, the former is 
prone to local minimum, the dynamic window approach heavily 
relies on weight coefficients. The rapid exploration random tree 
(RRT) exhibits randomness in node expansion, which may lead 
to path failure [4-5]. Therefore, the research question is how to 
improve the existing A* algorithm and APF method to enhance 
the global and local path planning performance of mobile robots 
and strengthen their autonomous navigation capabilities. To 
enhance the autonomous navigation capability of mobile robots, 
research has been conducted from two perspectives: global and 
local path planning. As a result, a variety of path planning 
methods have been designed. An enhanced version of the A* 
algorithm has been developed for global path planning purposes. 

In the context of local path planning, an enhanced APF method 
was devised. It can be seen that the purpose of the research is to 
design and optimize global and local path planning models for 
mobile robots, and to improve the adaptability and stability of 
the algorithm. The objective of this research is to enhance the 
autonomous navigation capability of mobile robots, improve 
their operational efficiency, and reduce industrial production 
costs. The contribution of the research is the enhancement of the 
A* algorithm and APF method in path planning. This is 
achieved by improving their performance in global or local path 
rules, reducing the number of optimal path turns, and lowering 
the time required for path planning. The research has two main 
innovations. First, it is the improvement of the repulsive 
potential field (RPF) in the APF. Second, simulated annealing 
algorithm (SA) and Doppler cooling strategy are introduced in 
the APF. The novelty of the research is reflected in the 
improvement of the heuristic function of the traditional A* 
algorithm through Manhattan distance and angle-based breaking 
of the "tie" strategy, making the algorithm more cost-effective 
and effectively reducing the number of turns on the optimal path. 
Meanwhile, the APF has been optimized through the 
enhancement of RPF, SA, and Doppler cooling strategy. This 
has led to the successful resolution of the local minimum 
problem and the enhancement of adaptability and stability in 
path planning. The significance of this research is that the results 
will help to improve the autonomous navigation ability of 
mobile robots in industrial manufacturing and other fields. It can 
reduce the production cost, improve the production efficiency, 
and provide technical support for intelligent workshop and 
automated production. In addition, the improved algorithms and 
strategies proposed in the study also provide new ideas and 
methods for research in the field of path planning. The research 
is further divided into five sections. The second section provides 
an overview of relevant literature on mobile robot path planning. 
The third section presents the specific design of the global 
planning and the local path planning models. The fourth section 
validates and analyzes the experimental results of the global and 
local path planning models. The fifth section presents a 
discussion of the research, which combines a literature analysis 
with a review of previous studies to provide a more 
comprehensive account of the comparative analysis results and 
details. The sixth section concludes the research, highlights 
shortcomings, and provides future perspectives. 

II. RELATED WORKS 

With the advancement of industrial manufacturing, mobile 
robots are increasingly used in intelligent industrial workshops 
and play an important role. Many researchers have conducted 
studies on path planning for mobile robots. Hossain et al. 
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designed a local algorithm combined with the follow-the-gap 
method to improve the obstacle avoidance function of mobile 
robots. The algorithm successfully generated collision-free 
trajectories and demonstrated good performance without 
encountering a local minimum [6]. Wang et al. addressed the 
autonomous navigation of unmanned aerial vehicles by 
proposing fixed charge set and discrete charge set problems. The 
fixed charge set problem was solved by using a two-stage 
traveling salesman problem method. Graph transformation 
techniques were used to handle the discrete charge set. 
Experimental results showed that both the fixed charge set and 
discrete charge set problems enabled unmanned aerial vehicles 
to operate continuously [7]. Hu et al. developed a motion 
planning framework for wheeled robots that incorporated the 
RRT algorithm. The study also introduced a path deformation 
strategy and posture-based motion control laws. Experimental 
results showed that the framework had computational 
advantages and generated smoother and shorter trajectories for 
wheeled robots [8]. Liu et al. addressed the complete coverage 
problem in hilly regions by proposing a path planning algorithm 
based on an energy consumption model. The SA solution was 
employed for traversing the optimal sequences for the fields. 
Moreover, a functional relationship between the driving angle 
and the energy consumption was established in the turning area. 
Experimental results indicated that considering energy 
consumption in the turning area reduced the minimum energy 
consumption [9]. 

Wang X et al. proposed a guided fast-exploring random tree 
algorithm and an improved discrete adaptive differential 
evolution algorithm to obtain the shortest collision-free path for 
arc welding robots. In addition, the welding environment of arc 
welding robots was modeled using packing and lattice methods. 
Experimental results showed that the invented algorithm 
optimized the paths of arc welding robots with good 
performance [10]. Liu A et al. presented a pigeon-inspired 
optimization algorithm improved by the logistic chaotic beetle 
algorithm for the path planning of mobile robots. This method 
reduced the iterations and search time, which optimized the path 
evaluation function. Experimental results demonstrated that the 
proposed improved pigeon-inspired optimization algorithm 
quickly found the global optimum solution and generated 
smoother paths [11]. Sun Y et al. developed two B-spline-based 
fast-searching random tree methods to generate collision-free 
trajectories in cluttered environments. The first method 
introduced dynamic feasible regions and designed two guiding 
functions. The second method guided the rapid growth of the 
tree in the first method through a fast marching path. 
Experimental results showed that the proposed algorithm had 
good performance and effectiveness [12]. Zhang Z et al. 
proposed an improved hybrid A* algorithm for path planning of 
spherical mobile robots. This study also designed a feasible and 
reachable path method that satisfied kinematic constraints and 
introduced the optimal minimum rotation region for robots. 
Experimental results demonstrated that the proposed method 
had good performance in path planning for spherical mobile 
robots and improved search efficiency to some extent [13]. 

In summary, there have been studies on mobile robot path 
planning, and different algorithms have been discussed. 
However, commonly used global path planning algorithms such 

as the A* algorithm, Dijkstra's algorithm, and Floyd's algorithm 
have their own drawbacks. The A* algorithm suffers from a long 
search time and produces less smooth paths, the Dijkstra 
algorithm is less efficient, and the Floyd algorithm is not suitable 
for computationally large graphs. Therefore, this research will 
design methods from global and local path planning to form a 
complete path planning method for mobile robots. Firstly, a 
global path planning model with the improved A* algorithm is 
designed for global path planning. Secondly, in terms of local 
path planning, a local path planning model based on an 
improved APF method is designed to enhance the autonomous 
navigation capability of mobile robots. 

III. MOBILE ROBOT GLOBAL AND LOCAL PATH PLANNING 

MODEL DESIGN 

Models are designed separately for the global path planning 
and the local path planning for mobile robots. In the global path 
planning, an improved A* algorithm is used, with modifications 
made to the heuristic function. The improvement of heuristic 
functions is mainly reflected in two aspects. Firstly, the existing 
heuristic function is optimized by using the minimum difference 
between the Manhattan distance and the horizontal and vertical 
coordinates of the current node and the next node. Second, the 
angle-based strategy of breaking the "tie" is adopted to further 
optimize the heuristic function based on the first improvement. 
This is somewhat different from previous work, which mainly 
improved the A* algorithm through dynamic heuristic weight 
adjustment, incremental reprogramming, predictive obstacle 
avoidance, and redundant node removal. In the local path 
planning, an improved APF is employed to address the local 
minimum for both single and multiple obstacles. First, the study 
improves RPF in APF. Then the improved RPF exponentially 
decays with distance within the range of obstacle influence and 
maintains the continuity of the function outside the range of 
obstacle influence. Afterwards, SA is introduced to solve the 
local minimum. Meanwhile, an improved APF method and SA 
are combined to form the final hybrid algorithm. This approach 
diverges from previous works, which primarily enhanced the 
APF algorithm through the following methods: dynamic 
repulsion function design, hybrid algorithm architecture design, 
enhancement of dynamic environment adaptability, and 
implementation of path smoothing and optimization. 

A. Design of Global Path Planning Model Hiring Improved 

A* Algorithm for Mobile Robot 

Models for both global path planning and local path planning 
are developed to improve the autonomous navigation capability 
of mobile robots. First, the research designs a global path 
planning method for mobile robots. The A* algorithm is a 
common and widely used method in global path planning, which 
is known for its good search accuracy and performance in 
efficiently planning the global optimal path. However, the A* 
algorithm has certain limitations, such as longer search time and 
unbalanced optimal paths. Therefore, an improved A* algorithm 
is adopted for designing the global path planning model of 
mobile robots, focusing on modifications to the heuristic 
function and the strategy to break ties. In the global path 
planning, the environment map is static and known. The 
traditional A* algorithm is one of the commonly used methods 
for solving global path planning problems, known for its good 
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performance. The traditional A* algorithm utilizes heuristic 
search techniques. The choice of the evaluation function in this 
search technique affects the efficiency of the algorithm. The 
evaluation function used in the traditional A* algorithm is 
expressed as Eq. (1) [14-15]. 

     f x g x h x  

In Eq. (1), x  represents the current node.  g x  represents 

the cost already incurred from the start node s  to x .  h x  is 

the estimated cost from x  to the target node t , which is a 

heuristic function. The value of  h x  affects the computational 

efficiency of the A* algorithm. Therefore, this value should be 
as close as possible to the actual cost from x  to t  when 

designing the heuristic function. The Manhattan distance and 

Euclidean distance are the most common heuristic functions in 
the A* algorithm, with the calculation of the Manhattan distance 
shown in Eq. (2) [16]. 


2 1 2 1Md x x y y    

In Eq. (2),  1 1,x y  and  2 2,x y  represent the coordinates of 

different nodes. The calculation of the Euclidean distance is 
shown in Eq. (3) [17]. 

    
2 2

2 1 2 1ogldd x x y y    

Generally, the Euclidean distance is more effective. 
However, the Manhattan distance may be more appropriate in 
certain scenarios, such as warehouse environment, where 
movement is limited to north-south or east-west directions. The 
original A* algorithm is shown in Fig. 1. 

Initialization

Place the starting node in the newly created 

Openlist table and all other nodes in the newly 

created Closelist table

Finding the smallest node i

Determine whether the minimum node i found is 

the target node
Output path

End

Traverse the adjacent nodes j of node i, calculate 

the distance d(i,j) between them, and calculate the 

sum of d(i,j) and g(j)

Determine if the sum of d(i,j) and 

g(i) is less than g(j)

j=d(i,j)+g(i) and transfer node j to 

the Openlist table

Determine whether the Closelist 

table is empty

Search failed

Y

N

Y

N

Y

N

 
Fig. 1. The Operational process of traditional A* algorithm. 

In Fig. 1, the first step of the traditional A* algorithm is to 
initialize the environment map and input the start and target 
nodes. The second step is to place the start node in a newly 
created Openlist and all other nodes in a newly created Closelist. 
The third step is to find the smallest value node. The fourth step 
is to check if the found node i  is the target node. If i  is the 

target node, the search is successful and the path needs to be 
outputted. The process ends. If i  is not the target node, the next 

step is carried out. The fifth step is to iterate through the 
neighboring nodes of the smallest node j , calculate the distance 

 ,d i j  between the nodes, and calculate the sum of  ,d i j  and 

 g i .  g i  represents the cost incurred from the start node s  

to i . The sixth step is to check if the sum of  ,d i j  and  g i  is 

less than  g j .  g j  represents the cost incurred from the start 

node s  to j . If the sum of  ,d i j  and  g i  is less than  g j , 

j  is assigned the sum of  ,d i j  and  g i , and the node j  is 

moved to the Openlist. Otherwise, the next step is carried out. 
The seventh step is to check if the Closelist is empty. If the 
Closelist is empty, it means the search has failed and the process 
ends. Otherwise, the process goes back to the third step. The 
relationship between the Manhattan distance and Euclidean 
distance used in the traditional A* algorithm and the actual cost 
is shown in Fig. 2. 

In Fig. 2, there is a certain gap between both the Manhattan 
distance and the Euclidean distance and the actual cost, 
especially for the Manhattan distance, which has the largest gap. 
Therefore, the heuristic function of the traditional A* algorithm 
is improved to ensure that the heuristic function is near the actual 
cost, which is displayed in Eq. (4). 


        ' 2 2d M dh x h x h x h x  


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Manhattan 

distance

Euclidean 

distance

Actual cost

 ,B BB x y

 ,A AA x y

B Ax x

B Ay y

B A B Ax x y y  

   
2 2

B A B Ax x y y  

 
Fig. 2. The relationship between Manhattan distance and Euclidean distance and actual costs. 

In Eq. (4),  Mh x  represents the Manhattan distance. 

   min ,d B A B Ah x x x y y   .  ,A Ax y  represents the 

coordinate of the current node.  ,B Bx y  represents the 

coordinate of the next node. The randomness of the traditional 
A* algorithm may lead to a failure in finding the optimal path 
when dealing with the "draw" situation. The specific schematic 
of the "draw" situation is shown in Fig. 3. 

G

Z

G

h(G) t

h(Z)

Z

dZ

x

S

 

Fig. 3. Specific schematic of the 'draw' situation. 

From Fig. 3, st  represents the line between the start node s  

and the target node t . Nodes G  and Z  are the expansion nodes 

of the current node x . Their distances to the target node t  are 

the same, i.e.    h G h Z . 
Gd  and 

Zd  represent the vertical 

distances from nodes G  and Z  to st . 
G  and 

Z  represent the 

angles between nodes G  and Z  and the start node s . 

Therefore, a strategy is designed to deal with the "draw" 
situation. This strategy is to choose the expansion node with the 
shortest vertical distance between the line connecting the start 
node s  and the target node t . The heuristic function is further 

improved using this strategy. The further improved heuristic 
function is shown in Eq. (5). 

   '' 'h x h x 

In Eq. (5),   represents the weight coefficient, which is 

within [0, 1].   represents the angle between the line 

connecting the start and target nodes and the line connecting the 

expansion and start nodes.  0,90  . The evaluation 

function of the improved A* algorithm is shown in Eq. (6). 

         '' 'f x g x h x g x h x    

B. Design of Mobile Robot Local Path Planning Model with 

Improved APF 

The research designs the local path planning method for 
mobile robots after designing the global path planning method 
to form the complete path planning method for mobile robots. 
Local path planning plays a crucial role in obstacle avoidance 
and autonomous movement in the autonomous navigation of 
mobile robots. Local path planning involves avoiding sudden 
obstacles in the optimal path obtained from global path 
planning. Therefore, the environment faced in local path 
planning is dynamic and unknown [18]. The APF, a commonly 
used approach, is chosen when designing the local path planning 
model for mobile robots. However, the APF method tends to get 
stuck in the local minimum [19]. Solutions are developed for 
both single and multiple obstacles to address this issue. The 
basic idea of APF is to create potential fields at the obstacles and 
at the target location. Meanwhile, obstacles are controlled and 
avoided by using these potential fields. Attractive forces are 
generated by the attractive potential field at the target point in 
the generated potential fields. Repulsive forces are generated by 
the RPF at the obstacles. Obstacle avoidance for the robot is 
achieved by the combined effect of these forces. The attractive 
potential field is generally set at the target point, and its 
magnitude is calculated using Eq. (7) [20]. 

21

2
att attU K X T  

In Eq. (7), 
attK  represents the attractive gain coefficient, 

 ,t tT x y  is the target site coordinate, 
attU  represents the 

attractive potential field exerted on the mobile robot, and 

 ,X x y  represents the coordinate of the mobile robot. The 

force exerted on the mobile robot due to the attractive potential 
field is calculated using Eq. (8). 

att attF K X T   



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

232 | P a g e  

www.ijacsa.thesai.org 

The force 
attF  can be decomposed into the coordinate axes. 

attF  can be transformed into a vector to improve computational 

efficiency. The representations of 
attF  along the x-axis and y-

axis are given in Eq. (9). 

cos

sin

attx att

atty att

F F

F F

 


   

In Eq. (9), 
attxF  represents the component of 

attF  along the 

x-axis.   is the angle between the vector 
attF  and the positive 

direction of the x-axis. attyF  represents the component of 
attF  

along the y-axis. The RPF is primarily set at the obstacles. Once 
the mobile robot enters the influence area of an obstacle, it will 
be affected by the repulsive force. The calculation of the 
magnitude of the RPF is shown in Eq. (10) [21]. 

2

1 1
,

2

0,

rep

rep

K O X R
U O X

O X R

  
        


  

In Eq. (10), repK  represents the repulsion gain coefficient. 

 ,o oO x y  represents the coordinate of the obstacles. R  

represents the range of repulsion. O X  represents the 

distance between the obstacle and the mobile robot. The force 
exerted on the mobile robot by the RPF is calculated as shown 
in Eq. (11). 

2

1 1 1
,

0,

rep

rep

K O X R
O X RF O X

O X R

  
        


  

The force repF  can be decomposed into the coordinate axes. 

repF  can be converted into a vector to improve computational 

efficiency. The representations of the force on the x-axis and y-
axis are shown in Eq. (12). 

cos

sin

repx rep

repy rep

F F

F F









 

In Eq. (12), repxF  represents the component of repF  on the x-

axis.   represents the angle between the vectors repF  and the 

positive x-axis direction. repyF  represents the component of repF  

on the y-axis. The attractive potential field and multiple RPFs 
together form the superposed potential field, which is expressed 
in Eq. (13). 

1

N

att rep att repU U U U U 

 

   


In Eq. (13), N  represents the number of obstacles,   

represents the  th obstacle, and 
repU   represents the RPF of the 

 th obstacle. The magnitude of the resultant force exerted on 

the mobile robot is calculated as shown in Eq. (14). 

1

N

att repF F F
 

  

Although the APF method produces relatively smooth paths, 
it is prone to local minimum [22]. Therefore, methods are 
developed to address the local minimum problems. 
Improvements are made to the RPF to address the local 
minimum for a single obstacle. Meanwhile, SA is applied to the 
method together with the Doppler cooling strategy. The 
improved RPF is expressed in Eq. (15). 

2

2

1
,

2

1
,

2

O X

rep

rep

R

rep

K e O X R

U

K e O X R

 




 

 
  
 

The core function of SA is to solve the local optimum values 
that occur during optimization. The SA uses the Metropolis 
criterion to avoid local minimum values. The main process of 
SA is shown in Fig. 4 [23]. 

In Fig. 4, the first step of SA is to initialize the parameters, 
including initial temperature, cooling rate, final temperature, 
and the iterations. The second step is to randomly generate an 
initial solution and compute the objective function. The third 
step is to generate a new solution and calculate the objective 
function of the new solution. The fourth step is to calculate the 
difference in objective function between the new solution and 
the initial solution. The fifth step is to determine whether the 
difference is less than zero. If the difference is less than zero, the 
new solution is accepted. Otherwise, SA proceeds to the next 
step. The sixth step is to determine whether the calculated 
probability is greater than or equal to a randomly generated 
number between 0 and 1. If the probability is greater than or 
equal to the random number, the new solution is accepted. 
Otherwise, SA returns to the third step. The seventh step is to 
lower the temperature. The eighth step is to determine if the 
termination conditions are met. If the termination conditions are 
met, the process terminates. If not, it returns to the third step. 
The Doppler cooling strategy is introduced to accelerate the 
convergence of SA. The combined algorithm of the improved 
APF method and SA is shown in Fig. 5. 

From Fig. 5, the first step of the combined algorithm is to 
use the APF method to search for the path. The second step is to 
determine whether the algorithm falls into the local minimum. 
If the algorithm doesn’t fall into the local minimum, it returns to 
the first step and continues the search until reaching the target 
point. Then the process ends. Otherwise, it proceeds to the next 
step. The third step is to use SA. The fourth step is to determine 
whether the algorithm escapes from the local minimum. If the 
algorithm escapes from the local minimum, it returns to the first 
step and continues searching until it finds the target point. Then 
the process ends. Otherwise, it returns to the third step. For the 
local minimum in the multiple obstacles, the combined 
algorithm of the improved APF method and SA may also 
encounter situations, where the target point cannot be reached. 
To solve this problem, a strategy of adding a virtual target point 
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is introduced. The main idea of this strategy is to use the 
attractive field of the virtual target point to help the mobile robot 

escape from the local minimum area of multiple obstacles [24]. 
The virtual target point strategy is shown in Fig. 6. 
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Fig. 4. The main process of SA. 
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Fig. 5. The main process of combining the improved APF method and SA. 
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Fig. 6. Virtual target point strategy. 
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In Fig. 6,  ,f f fX x y  represents the coordinate of the 

virtual target point. 
cR  represents the detection radius of the 

obstacles.   is a constant, which needs to be set to ensure that 

the mobile robot can escape from the local minimum range of 
multiple obstacles. Once the mobile robot leaves the local 
minimum range of multiple obstacles, the attractive field of the 
virtual target point weakens. The mobile robot continues the 
search under the original potential field. 

IV. ANALYSIS OF GLOBAL AND LOCAL PATH PLANNING 

RESULTS FOR MOBILE ROBOTS 

In this section, the performance of the improved A* 
algorithm was verified in terms of path length, turns, and 
iterations. The performance of the combined algorithm of the 
improved APF method and SA was validated based on 
simulation results of the planning time and local minimum. 

A. Analysis of Results for Global Path Planning based on the 

Improved A* Algorithm 

The traditional A* algorithm was used to verify the 
performance of the improved A* algorithm. Simulation 
experiments were conducted using MATLAB R2019b software. 
The experiments were conducted on an Intel Core i5-11600K 
processor with 128GB memory, running on Windows 10 
operating system. Four experiments were conducted, with 
different start and target nodes for each experiment. The start 
and target nodes for experiment 1 were (4, 4) and (29, 27), 
respectively. For experiment 2, they were (3, 12) and (29, 3). For 
experiment 3, they were (6, 21) and (29, 23). For experiment 4, 
they were (8, 29) and (28, 4). The evaluation metrics include 
path length, turns, and iterations, with a simulation map size of 
30m*30m. The comparison of the turns for the optimal path 
between the pre-improved and post-improved A* algorithms 
under different experiments is shown in Fig. 7. 
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Fig. 7. Comparison of the turns in the optimal path of A* algorithm before and after improvement in different experiments. 

From Fig. 7(a), the turns in the optimal path for experiment 
1 were 13 in the original A* algorithm, 8 for experiment 2, 16 
for experiment 3, and 8 for experiment 4. Fig. 7(b) shows that 
the turns in the optimal path for experiments 1, 2, 3, and 4 were 
reduced to 8, 5, 9, and 5 after improving the A* algorithm, 
respectively. In experiments 1, 2, 3, and 4, the difference in the 
optimal number of turns for the A * algorithm before and after 
improvement was 5, 3, 7, and 3 times, respectively. The turns in 
the optimal path significantly decreased after improving the A* 
algorithm, indicating better performance compared to the 
original A* algorithm. Other path planning algorithms were also 
selected for comparison in the study to better validate the 
performance of the improved A* algorithm. Additional 
comparative algorithms include ant colony algorithm, genetic 
algorithm, and SA. In addition, the study also selected other path 
planning simulation maps for experimental verification, which 
were obtained from researchers such as Lai X [25]. The 
comparison of optimal path lengths for different algorithms on 
different simulation maps is shown in Fig. 8. 

From Fig. 8(a), the maximum optimal path length for the 
pre-improved A* algorithm, ant colony algorithm, genetic 
algorithm, SA, and improved A* algorithm was 59.56m, 
58.03m, 57.88m, 59.89m, and 56.39m, respectively, under four 
experiments, while the minimum value was 42.49m, 47.03m, 
44.97m, 45.17m, and 40.83m, respectively. The maximum 
optimal path length of the A* algorithm, ant colony algorithm, 
genetic algorithm, and simulated SA before improvement was 
3.17m, 1.64m, 1.49m, and 3.50m longer than that of the 
improved A* algorithm, respectively. According to Fig. 8(b), on 
the simulation map designed by Lai X et al., the maximum 
optimal path length for the five algorithms was 61.3m, 53.2m, 
50.0m, 52.5m, and 41.9m, respectively. The maximum optimal 
path length of the improved A* algorithm was 19.4m, 11.3m, 
8.1m, and 10.6m less than the maximum values of the other four 
algorithms, respectively. This also demonstrated that the 
performance of the improved A* algorithm was better. The 
convergence curves of the original and improved A* algorithms 
in the four experiments were compared, as shown in Fig. 9. 
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Fig. 8. Comparison of the optimal path length planned by two algorithms under four experiments. 
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Fig. 9. Comparison of convergence curves of A* algorithm before and after improvement in four experiments. 

From Fig. 9(a), the original A* algorithm required nearly 
180 iterations to converge in experiment 1, and around 200, 210, 
and 190 iterations to converge in experiments 2, 3, and 4, 
respectively. In Fig. 9(b), the improved A* algorithm converged 
after approximately 95, 90, 100, and 85 iterations in experiments 
1 to 4, respectively. In experiments 1, 2, 3, and 4, the number of 
iterations required for the enhanced A* algorithm to reach a 

convergence state was found to decrease by 85, 110, 110, and 
105 times, respectively, in comparison to the original A* 
algorithm. The improved A* algorithm achieved faster 
convergence compared to the original A* algorithm, indicating 
its superior performance. The comparison of path planning time 
for different algorithms is shown in Table I. 

TABLE I.  COMPARISON OF PATH PLANNING TIME FOR DIFFERENT ALGORITHMS 

Algorithm 
Runs 

10 20 30 40 

Original A* algorithm 2.371s 2.397s 2.412s 2.435s 

Ant colony 2.246s 2.269s 2.280s 2.297s 

Genetic algorithm 2.017s 2.043s 2.067s 2.081s 

Simulated annealing algorithm 1.943s 1.966s 1.987s 1.996s 

Improved A* algorithm 1.732s 1.755s 1.773s 1.782s 
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From Table I, as the runs increased, the running time of all 
algorithms also increased synchronously. When the runs 
increased from 10 to 40, the maximum and minimum values of 
all algorithms were 2.435s and 1.732s, respectively, which 
appeared on the original A* algorithm and the improved A* 
algorithm. In addition, the running time of the improved A* 
algorithm was always lower than that of the compared 
algorithms. For example, when running 40 times, the improved 
A* algorithm had a running time that was 0.653s, 0.515s, 
0.299s, and 0.214s lower than the other four algorithms, 
respectively. The improved A* algorithm took less time to plan 
the path and determined the optimal path more quickly. The 
study also placed three obstacles of different sizes on the 
simulation map, namely minor, moderate, and multiple 
obstacles. The configuration of obstacles at this time is shown in 
Table II. 

In Table II, a limited number of obstacles were comprised of 

six rectangular obstacles of varying lengths, all with a width 

of 1.5 meters. Furthermore, the MATLAB code fragment 

intended to simulate map layout is displayed in Fig. 10. 
As illustrated in Fig. 10, the MATLAB format code for 

simulating map layout comprised of five primary components: 
map size, obstacle configuration, map drawing, obstacle 
drawing, and adding networks and labels. The comparison of 
path planning results using different methods is shown in Fig. 
11. 

TABLE II.  THE CONFIGURATION OF OBSTACLES 

Obstacle 

configuration type 

Number of 

obstacles 

Obstacle 

shape 

Obstacle size 

(width/m) 

A small amount 6 Rectangle 1.5 

Medium 10 Rectangle 1.5 

More 16 Rectangle 1.5 
 

% Map size

mapSize = [10, 10];

% Obstacle configuration

obstacleConfig = {

    'Minor', 6, 'rectangle', 1.5, [ (0,16), (0,17) ];

    'Moderate', 10, 'rectangle', 1.5, [ % Obstacle positions need to be specifically defined

    ];

    'More', 16, 'rectangle', 1.5, [ % Obstacle positions need to be specifically defined

    ];

};

% Create a new figure

figure;

axis([0, mapSize(2), 0, mapSize(1)]);

hold on;

set(gca, 'YDir', 'reverse');

% Draw obstacles

for i = 1:size(obstacleConfig, 1)

    obstacleType = obstacleConfig{i, 1};

    obstacleCount = obstacleConfig{i, 2};

    obstacleShape = obstacleConfig{i, 3};

    obstacleSize = obstacleConfig{i, 4};

    obstaclePositions = obstacleConfig{i, 5};

    

    for j = 1:obstacleCount

        position = obstaclePositions(j, :);

        if strcmp(obstacleShape, 'rectangle')

            rectangle('Position', [position(1), position(2), obstacleSize, obstacleSize], ...

                'Curvature', [0, 0], 'FaceColor', 'r', 'EdgeColor', 'k');

        end

    end

end

% Add grid and labels

grid on;

xlabel('X (m)');

ylabel('Y (m)');

title('Simulation Map');

hold off;

 
Fig. 10. The MATLAB format code snippet for simulating map layout. 
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Fig. 11. Comparison of path planning results using different methods. 

From Fig. 11(a), when the number of obstacles was small, 
the path smoothness of the improved A* algorithm, ant colony 
algorithm, genetic algorithm, SA, and improved A* algorithm 
was 0.532, 0.651, 0.702, 0.735, and 0.956, respectively. 
Moreover, the path smoothness of the enhanced A* algorithm 
was 0.424, 0.305, 0.254, and 0.221 greater than that of the 
original A* algorithm, the ant colony algorithm, the genetic 
algorithm, and the simulated SA, respectively. From Fig. 11(b), 
the improved A* algorithm planned shorter paths and had higher 
smoothness in moderate obstacle environments, with a value of 
0.948, which was significantly better than the comparison 

algorithms. From Fig. 11(c), the path smoothness of the five 
algorithms was 0.498, 0.572, 0.698, 0.703, and 0.937, 
respectively, in environments with many obstacles. It can be 
concluded that when there were many obstacles, the path 
smoothness of the improved A* algorithm was 0.439, 0.365, 
0.239, and 0.234 higher than the other four algorithms, 
respectively. In summary, the improved A* algorithm 
performed better. The comparison of central processing unit 
(CPU) utilization and memory usage of different algorithms 
under different numbers of obstacles is shown in Table III. 

TABLE III.  COMPARISON OF CPU UTILIZATION AND MEMORY USAGE OF DIFFERENT ALGORITHMS UNDER DIFFERENT NUMBERS OF OBSTACLES 

Algorithm 

CPU utilization/% Memory usage/% 

Scale of obstacles Scale of obstacles 

Minor Moderate Multiple Minor Moderate Multiple 

Before improving the A* algorithm 27.12 33.54 38.07 26.31 32.46 36.97 

Ant colony 25.88 32.09 35.11 23.55 28.49 33.62 

Genetic algorithm 23.35 25.73 30.71 21.82 26.61 30.04 

Simulated annealing algorithm 21.09 23.86 29.58 19.51 22.33 26.97 

Improved A* algorithm 12.01 15.46 18.73 13.96 16.23 18.02 
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In Table III, the CPU utilization rates of the improved A* 
algorithm were 12.01%, 15.46%, and 18.73%, respectively, 
under a small number of obstacles, moderate obstacles, and a 
large number of obstacles, which were significantly lower than 
the comparison algorithm. For example, under a small number 
of obstacles, the CPU utilization rates of the improved A* 
algorithm, ant colony algorithm, genetic algorithm, and 
simulated SA were 15.11%, 13.87%, 11.34%, and 9.08% higher 
than those of the improved A* algorithm, respectively. 
Meanwhile, under different numbers of obstacles, the memory 
consumption of the improved A* algorithm was significantly 
lower than that of the comparison algorithm, and the value 
remained below 20%. In summary, the improved A* algorithm 

had lower CPU and memory consumption, better performance, 
and more advantages in practical applications of path planning. 

B. Analysis of Local Path Planning Results with Improved 

APF 

Simulations were conducted using MATLAB R2019b 
software to verify the performance of the combined algorithm of 
the improved APF method and SA. The algorithms compared 
include the original APF, the improved APF, and the combined 
algorithm of the improved APF method and SA. The size of the 
simulation map was 10m*10m. The compared indicators were 
the planning time of the algorithm and the simulation results of 
the local minimum. The comparison of planning time for 
different algorithms is shown in Fig. 12. 
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Fig. 12. Planning time of different algorithms. 

In Fig. 12(a), the planning time of the original APF method 
ranged from 0.38s to 0.47s. The planning time of the pre-
improved APF method ranged from 0.27s to 0.36s. The 
maximum and minimum planning times of the improved APF 
method were both 0.11s lower than before the improvement. In 
Fig. 12(b), the planning time for the combined algorithm of the 
pre-improved APF method and SA ranged from 0.21s to 0.28s. 
The planning time for the combined algorithm of the improved 
APF method and SA ranged from 0.11s to 0.17s. The combined 
algorithm of the improved APF method and SA had a 
significantly lower planning time compared to other algorithms, 

indicating better performance. This study selected APF, SA, 
dynamic window method (DWM), the RRT algorithm, and ant 
colony optimization with adaptive mechanism (ACOAM) for 
comparative verification to better verify the performance of the 
combined algorithm of the improved APF method and SA. 
Three types of obstacles of different scales were set up on the 
simulation map, namely minor, moderate, and multiple 
obstacles. The comparison of the number of path turns and 
average convergence times of different algorithms is shown in 
Table IV. 

TABLE IV.  COMPARISON OF PATH TURNING TIMES AND AVERAGE CONVERGENCE TIMES OF DIFFERENT ALGORITHMS 

Algorithm 

Path turning times Average convergence times 

Scale of obstacles Scale of obstacles 

Minor Moderate Multiple Minor Moderate Multiple 

SA 8 11 12 19.7 20.9 22.4 

APF 9 10 13 19.5 21.6 23.4 

DWM 10 13 14 21.5 22.9 26.1 

RRT 9 12 13 20.7 22.3 25.8 

ACOAM 7 9 11 17.9 18.8 20.3 

Manuscript 6 8 10 14.7 15.1 17.3 
 

From Table IV, the path turning times and average 
convergence times of the designed algorithm were always 
smaller than those of the comparison algorithms under obstacles 
of different scales. The path turns for the designed algorithm 

were 6, 8, and 10, with an average convergence of 14.7, 15.1, 
and 17.3 under minor, moderate, and multiple obstacles, 
respectively. The performance of the ACOAM algorithm was 
closest to that of the designed algorithm, with 7, 9, and 11 path 
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transitions, and an average convergence rate of 17.9, 18.8, and 
20.3, respectively. In summary, the designed algorithm had 
better performance and performed well when facing obstacles of 

different scales. The comparison of running time and path length 
of different algorithms under different obstacle scales is shown 
in Table V. 

TABLE V.  COMPARISON OF RUNTIME AND PATH LENGTH OF DIFFERENT ALGORITHMS UNDER DIFFERENT OBSTACLE SCALES 

Algorithm 

Running time/s Path length/cm 

Scale of obstacles Scale of obstacles 

Minor Moderate Multiple Minor Moderate Multiple 

SA 2.987 4.659 5.742 33.715 54.263 72.645 

APF 3.012 4.583 6.776 36.854 57.312 75.791 

DWM 3.227 5.317 7.462 38.213 59.621 76.373 

RRT 3.452 5.472 7.550 38.336 60.082 77.591 

ACOAM 2.632 4.447 5.576 32.176 52.537 71.998 

Manuscript 1.941 3.294 4.733 30.386 50.558 68.168 
 

From Table V, the minimum running time was 1.941s. The 
minimum path length was 30.386cm under minor obstacles. 
Both of them appeared in the combined algorithm. The running 
time of this combined algorithm under moderate and multiple 
obstacles was 3.294s and 4.733s, respectively. The path length 
was 50.558cm and 68.168cm. At different obstacle scales, the 
running time and path length of the combined algorithm were 

significantly lower than those of the comparison algorithms, 
indicating that the algorithm had strong path planning ability. 
The study compared the arrival rates and average rewards of 
different algorithms to further verify the performance of the 
combined algorithm of the improved APF method and SA. The 
comparison results are shown in Fig. 13. 
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Fig. 13. Comparison of arrival rates and average rewards of different algorithms. 

Fig. 13(a) shows that the arrival rates of the different 
algorithms increased synchronously with the number of 
iterations. After more than 700 iterations, the combined 
algorithm of the improved APF method and SA showed a 
significant improvement in the arrival rate, which was 
significantly higher than the comparison algorithm. The 
maximum arrival rate of this hybrid algorithm was 72.3%, and 
the maximum arrival rates of the SA, APF, DWM, RRT, and 
ACOAM algorithms were 67.51%, 58.12%, 55.37%, 52.73%, 
and 69.34%, respectively. The research on building hybrid 
algorithms had a strong ability to approach the target point. In 
Fig. 13(b), with the increase of training times, the average 
rewards of different algorithms showed a synchronous 
increasing trend overall. Specifically, after 100 iterations, the 
average reward oscillation of the combined algorithm tended to 
stabilize at a smaller amplitude, which was significantly faster 
than the comparison algorithms. SA did not show oscillation 
stability in the limited training iterations, and the amplitude of 
the oscillation was relatively large. The combined algorithm was 
able to explore paths faster and more stably. To further verify 

the performance of the combined algorithm, the simulation 
results of the local minimum in the presence of a single obstacle 
for different algorithms were compared, as shown in Fig. 14. 

From Fig. 14(a) and Fig. 14(b), both the original and the 
improved APF methods failed to reach the target node when 
facing a single obstacle and get trapped in the local minimum. 
In Fig. 14(c), the combined algorithm of the original APF 
method and SA reached the target node after iterating nearly 60 
times to escape from the local minimum. In Fig. 14(d), the 
combined algorithm of the improved APF method and SA also 
reached the target node and escaped from the local minimum 
after only about 8 iterations. This demonstrated that the 
combined algorithm of the improved APF method and SA 
quickly escaped from the local minimum in the presence of a 
single obstacle, indicating better performance. The effectiveness 
of the strategy of adding a virtual target point was validated. 
Experiments were also conducted to escape the local minimum 
in the presence of multiple obstacles. The results are shown in 
Fig. 15. 
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Fig. 14. Comparison of simulation results of different algorithms for local minimum values under a single obstacle. 
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Fig. 15. Results of detachment from local minimum values under multiple 

obstacles. 

In Fig. 15, the combined algorithm of the improved APF 
method and SA under multiple obstacles, with the introduction 
of the strategy of adding a virtual target point, successfully 
reached the target node. This method escaped from the local 
minimum under multiple obstacles after iterating for about 10 
times. The strategy of adding a virtual target point helped the 
combined algorithm of the improved APF method and SA to 
escape from the local minimum under multiple obstacles, 
indicating the effectiveness of this strategy. 

V. DISCUSSION 

To improve the autonomous navigation capability of mobile 
robots, an improved A* algorithm for global path planning and 
an improved APF method for local path planning have been 
studied and designed. The improvement of the A* algorithm in 
this study mainly started with the optimization of the heuristic 
function, which achieved a reduction in the optimal path length, 
and the shortest time in multiple experiments was 1.732 seconds. 
Qi S et al. improved the A* algorithm by introducing 
geomagnetic information entropy into the fitness function, 
achieving a 42.02% reduction in path length [26]. Xiang Y et al. 
enhanced the A* algorithm by developing a novel hybrid 
heuristic function based on Euclidean distance and projection 
distance, thereby optimizing the path length through the 
potential field function of the APF algorithm [27]. This study 
presented an improvement to the APF algorithm that optimized 
the RPF, introduced the simulated annealing method to facilitate 
escape from local minima, and combined the improved APF 
with the simulated annealing method to achieve a reduction in 
running time. Firdos I et al. developed an improved APF that 
combined Q-learning and combined dynamic and static reward 
functions, achieving a 67.25% improvement in path length [28]. 
The more comprehensive comparative analysis results and 
details of different studies are shown in Table VI. 

In Table VI, the A* and APF algorithms for path planning 
problems have undergone significant advancements, resulting a 
reduction in optimal path length and enhanced obstacle 
avoidance efficacy. Meanwhile, there was still room for 
improvement in the reduction of path length in research. The 
comparison of path smoothness and path diversity across studies 
is shown in Table VII. 
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TABLE VI.  MORE COMPREHENSIVE COMPARATIVE ANALYSIS RESULTS AND DETAILS OF DIFFERENT STUDIES 

Number Advantage Disadvantage 

[26] 
The path length has been shortened by 42.02%, and the number of turns has been 

reduced by 92.31% 
Difficulty in obtaining and processing geomagnetic data 

[27] 
Reduced the search nodes of the A * algorithm and improved the obstacle avoidance 

effect 
There is a possibility of losing the optimal solution 

[28] 
A 67.25% path length improvement was achieved, with an average performance 

improvement of about 14.68% 
There may be a conflict issue with reward signals 

Manuscript 
The maximum reduction in path length for the improved A * and APF algorithms 

is 5.32% and 10.06%, respectively. 
Not considering dynamic obstacle avoidance yet 

TABLE VII.  COMPARISON OF PATH SMOOTHNESS AND DIVERSITY IN DIFFERENT STUDIES 

Number 

Path smoothness Path diversity 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

[26] 0.851 0.899 0.894 0.860 0.891 0.856 0.894 0.875 0.861 0.889 

[27] 0.890 0.881 0.890 0.868 0.862 0.885 0.897 0.879 0.906 0.866 

[28] 0.902 0.887 0.919 0.892 0.894 0.916 0.887 0.884 0.887 0.897 

Improved A* 0.982 0.974 0.933 0.961 0.952 0.973 0.953 0.944 0.943 0.953 

Improved APF 0.985 0.957 0.962 0.954 0.971 0.948 0.972 0.987 0.957 0.970 
 

The smoothness of a path was measured by standardization, 
with a value range of [0, 1], and the larger the value, the 
smoother the path. Path diversity was achieved by measuring the 
similarity of paths generated from multiple runs, with a value 
range of [0, 1], and the larger the value, the higher the diversity. 
As illustrated in Table VII, the mean path smoothness values 
reported in earlier studies [26], [27], and [28] were 0.879, 0.878, 
and 0.899, respectively. In this study, the average path 
smoothness values of improved A * and improved APF were 
0.960 and 0.966, respectively, which were significantly better 
than previous studies. In addition, in terms of path diversity, the 
average values of the five methods were 0.875, 0.887, 0.894, 
0.953, and 0.967, respectively. In summary, the designed 
algorithm was demonstrated to exhibit higher path smoothness 
and diversity, generate paths with reduced sharp turns and 
acceleration changes, and possess strong randomness and 
adaptability. These characteristics had the potential to enhance 
the probability of robots identifying feasible paths. 

VI. CONCLUSION 

A global path planning model based on the improved A* 
algorithm and a local path planning model based on the 
improved APF algorithm were developed to improve the 
autonomous navigation capability of mobile robots. The 
experimental results showed that the turns in the optimal path 
for the original A* algorithm in the four experiments were 13, 
8, 16, and 8, respectively. For the improved A* algorithm, the 
turns in the optimal path were reduced to 8, 5, 9, and 5, 
respectively. There was a reduction of 5, 3, 7, and 3 turns 
compared to the original algorithm. The length of the optimal 
path for the original A* algorithm in the four experiments was 
59.56m, 42.49m, 53.15m, and 53.32m, respectively. For the 
improved A* algorithm, the length of the optimal path was 
reduced to 56.39m, 40.83m, 50.56m, and 50.83m, respectively. 
There was a reduction of 3.17m, 1.66m, 2.59m, and 2.49m 
compared to the original algorithm. The performance of the 

improved A* algorithm was superior to the original A* 
algorithm. The maximum planning time for the original APF 
method was 0.47s. The maximum planning time for the 
improved APF method was 0.36s. The maximum planning time 
for the combined algorithm of the original APF method and SA 
was 0.28s. The maximum planning time for the combined 
algorithm of the improved APF method and SA was 0.17s. The 
combined algorithm of the improved APF method and SA had 
better performance. The combined algorithm of the improved 
APF method and SA reached the target node and avoided being 
trapped in the local minimum under the single obstacle. In 
addition, the strategy of adding a virtual target point can help the 
combined algorithm of the improved APF method and SA to 
escape from the local minimum under multiple obstacles. 
However, there are still limitations in this study. The designed 
local path planning model mainly focuses on static obstacle 
environments. Future research can explore the avoidance of 
dynamic obstacles that may appear unexpectedly. In addition, 
although the improved algorithm performs well in terms of path 
planning performance, there is still room for improvement in 
terms of computational resource consumption. Future research 
can reduce the computational cost of the algorithms and improve 
their real-time performance and applicability through algorithm 
optimization, hardware acceleration, and other methods. Finally, 
current path planning methods mainly focus on finding optimal 
paths. However, in some practical scenarios, it may be necessary 
to generate multiple feasible paths for selection. Future research 
could explore ways to enhance the algorithm's ability to generate 
path diversity to meet different task requirements. The research 
makes a significant contribution to the field by optimizing the 
performance of global and local path planning for mobile robots. 
This is achieved by improving the A* algorithm and APF 
method, thereby reducing the number of turns and path length of 
the optimal path. Additionally, the research reduces path 
planning time, improves the adaptability and stability of the 
algorithm, and provides efficient technical support for 
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autonomous navigation of robots in industrial manufacturing 
and other fields. Mobile robot path planning technology has a 
wide range of applications and is important in the field of 
industrial manufacturing, such as automatic material handling 
and component distribution in scenarios such as intelligent 
workshops and automated warehouses. However, in real-world 
implementation, the designed planning algorithm must be 
adapted to address issues such as dynamic environment 
adaptability, sensor accuracy and reliability, computational 
resource limitations, multi-robot collaboration, and real-time 
requirements. These are also issues that need to be addressed in 
practical applications. In the real-world, the global and local 
path planning models developed by the research can be directly 
applied to the autonomous navigation system of mobile robots. 
Specifically, the algorithm must first be integrated into the 
robot's embedded system, and real-time environmental data can 
be obtained through sensors, such as using LiDAR for obstacle 
detection and mapping. Then, by combining the kinematic 
model and the dynamic constraints of the robot, the algorithm is 
optimized and adapted to ensure the feasibility and real-time 
performance of the path planning. In terms of dynamic 
environment perception, deep learning techniques can be 
introduced. In addition, by combining it with hardware 
acceleration technology, the algorithm's computational resource 
consumption can be further reduced, which is expected to 
significantly improve its real-time performance and 
applicability in practical applications. 
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