
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

253 | P a g e

www.ijacsa.thesai.org

Binary–Source Code Matching Based on

Decompilation Techniques and Graph Analysis

Ghader Aljebreen1, Reem Alnanih2, Fathy Eassa3, Maher Khemakhem4, Kamal Jambi5, Muhammed Usman Ashraf6

Department of Computer Science-Faculty of Computing and Information Technology, King Abdulaziz University,

Jeddah 21589, Saudi Arabia1, 2, 3, 4, 5

Software Engineering and Distributed System Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia2, 3, 4, 5, 6

Department of Computer Science, Government College Women University, Sialkot, Pakistan6

Abstract—Recent approaches to binary–source code matching

often operate at the intermediate representation (IR) level, with

some applying the matching process at the binary level by

compiling the source code to binary and then matching it directly

with the binary code. Others, though less common, perform

matching at the decompiler-generated pseudo-code level by first

decompiling the binary code into pseudo-code and then

comparing it with the source code. However, all these approaches

are limited by the loss of semantic information in the original

source code and the introduction of noise during compilation and

decompilation, making accurate matching challenging and often

requiring specialized expertise. To address these limitations, this

study introduces a system for binary–source code matching

based on decompilation techniques and Graph analysis

(BSMDG) that matches binary code with source code at the

source code level. Our method utilizes the Ghidra decompiler in

conjunction with a custom-built transpiler to reconstruct high-

level C++ source code from binary executables. Subsequently,

call graphs (CGs) and control flow graphs (CFGs) are generated

for both the original and translated code to evaluate their

structural and semantic similarities. To evaluate our system, we

used a curated dataset of C++ source code and corresponding

binary files collected from the AtCoder website for training and

testing. Additionally, a case study was conducted using the widely

recognized POJ-104 benchmark dataset to assess the system's

generalizability. The results demonstrate the effectiveness of

combining decompilation with graph-based analysis, with our

system achieving 90% accuracy on POJ-104, highlighting its

potential in code clone detection, vulnerability identification, and

reverse engineering tasks.

Keywords—Binary–source code matching; call graphs; code

clone detection; control flow graphs; decompiler

I. INTRODUCTION

Since free software has become more popular, companies
have adopted it widely and integrated it into closed-source
projects. In addition to its economic appeal, its popularity is
primarily driven by its convenience and flexibility for
customization. Therefore, it is common for code to be
modified, adapted, or reused before being redistributed or
republished.

The practice of reusing or cloning code has become
widespread. The reuse of code snippets, however, can
introduce other risks besides license violations, including
potential harm or security flaws that have already been
addressed in the original code [1].

There have been numerous tools created in recent years that
handle clone detection at a lower level than source code,
including Java Bytecode [2] and LLVM IR [3]. Several
techniques have been proposed to detect code clones, at
binary–binary [4], source–source [5], or binary–source code
level [6, 7]. Token-based [8], tree-based [9], and graph-based
methods are among these techniques [10]. Combining two or
more techniques can also be achieved, as in [11], which
combines tree-based and graph-based methods. Binary–source
code matching is used in many security software engineering
activities, including malware detection [12], vulnerability
searches [10], reverse engineering [13], and code clone or
similarity detection [10] , etc. Using semantic features
extracted from binary and source code, binary–source code
matching calculates the semantic similarity between binary and
source code [14].

Some previous studies in the field of binary-source code
matching and clone detection have adopted the approach of
matching source code with binary code or decompiler-
generated pseudo-code [15]. However, most efforts have
concentrated on binary-source code matching and clone
detection at the intermediate representation (IR) level.
Nevertheless, a recent study [16] identified significant
disparities between the intermediate representation (IR)
obtained through the decompilation of binary code and the IR
derived from the corresponding source code. These disparities
can hinder the learning process, as the decompiled IR is often
difficult to comprehend. Consequently, all the aforementioned
approaches are constrained by the loss of the rich semantic
information inherent in the original source code or by the
introduction of noise during compilation and decompilation,
making accurate matching challenging and often requiring
specialized expertise. This limitation makes it difficult to detect
and capture clones based on semantic similarities rather than
solely on structural similarities. Conversely, binary–source
code matching at the source code level offers advantages in
terms of language familiarity, compatibility with existing
source code analysis tools, contextual understanding,
maintainability, and developer productivity, making it a
valuable approach to code matching and clone detection in
real-world software systems.

Hence, the main goal of this study is to match a binary code
(target) with a source code (reference) at the source code level,
where the binary code may have been compiled on different
machines or compilers. By leveraging the source code

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

254 | P a g e

www.ijacsa.thesai.org

(reference), we can incorporate more semantic information,
such as variable names and types, improving the accuracy of
the matching process. This approach not only helps in
identifying whether a corresponding binary code is included in
a binary file—thus warning against potential vulnerabilities
[7]—but also dramatically enhances the performance of binary-
source code matching and clone detection compared to binary–
binary code matching or decompiling binary (target) to pseudo-
code and matching it with the original source code (reference).

In binary–source code matching, the main challenge is to
bridge the semantic gap between the low-level machine code
and high-level programming languages [14]. Binary files are
obtained through the compilation process, and analyzing their
similarity with the source code typically requires
decompilation. Decompilation is the process of reconstructing
high-level source code from a binary file [17].

For this purpose, we utilize decompilation techniques,
specifically the Ghidra decompiler [18], along with a custom
transpiler or translator to convert binary code compiled from
C++ source code back into its corresponding high-level source
code in C++, which serves as our target high-level language. A
graph similarity analysis is then performed on both the original
and generated C++ source codes (code pairs). By generating
graph representations for both code snippets, specifically call
graphs (CGs) and control flow graphs (CFGs), and measuring
the similarity between these graphs using the weighted Jaccard
index, this approach can effectively identify potential matching
code pairs. We use only statically extracted code features (CGs
and CFGs) in our binary–source code matching system. Due to
this, BSMDG is easily scalable to programs with sizes in the
hundreds of thousands and requires minimal RAM resources.
The goal of BSMDG is to detect similarities between source
code and binary code, which are syntactically different. Thus, it
computes similarity based on semantic code features such as
function declarations.

This approach goes beyond traditional methods that rely
solely on textual or token-based comparisons, as it takes into
account the underlying program structure and the relationships
between elements. By representing code snippets as graphs, it
becomes possible to capture complex dependencies and control
flow within the code.

Overall, the contributions of this study are as follows:

 To the best of our knowledge, we have developed the
first translator or transpiler (source-to-source compiler)
that translates Ghidra's decompiler output (C-like
pseudocode) from an input C++ binary file into its
corresponding high-level C++ source code. This
innovation enables binary–source code matching
directly at the source code level (C++), rather than at
the binary, IR, or pseudocode levels. Matching at the
source code level significantly improves matching
accuracy.

 We developed graphs (CGs, CFGs) generator based on
the C++ source code generated by the transpiler.

 As function-level binary–source code matching is vital
in computer security, we developed a prototype system

for function-level binary–source code clone detection
based on decompilation techniques and graph similarity
at the source code (C++) level, focusing on both
semantic and syntactic clones.

 We used the weighted Jaccard index as a similarity
measure for graph-based binary-source code matching
and clone detection at the source code level.

 We curated a new C++ dataset from Atcoder website
[19]. Then, we conducted comprehensive experiments
to train and test the proposed approach based on this
dataset.

 As a case study, we evaluated the proposed rule-based
approach against several baseline AI-based methods
that detect C++ code clones at the IR level. These AI-
based systems typically require extensive data training
to achieve accurate results, often involving large
datasets and significant computational resources. We
evaluated our approach using the POJ-104 dataset—a
widely recognized benchmark in the field of code clone
detection—which served as unseen data for our method.
Despite the lack of such extensive training, our
approach demonstrated superior performance, offering
significant time-saving while achieving better accuracy.

The remainder of this study is organized as follows: The
literature is reviewed in Section II. In Section III, we describe
the proposed materials and methods in detail. Section IV and
Section V show the experimental setup and discuss the
experimental results, respectively. Section VI presents the case
study on clone detection and evaluates our proposed system by
comparing it with baseline studies. Section VII illustrates the
limitations of the current work. Lastly, Section VIII concludes
the study and suggests future work directions.

II. LITERATURE REVIEW

This section covers the literature related to binary–binary,
source–source, and binary–source code similarity (matching)
and clone detection.

A. Binary–Binary Code Similarity

Binary code similarity approaches date back to 1999. For
example, Baker et al. [20] developed a prototype diffing tool
called Exediff for compressing differences of executable code.
Exediff was one of the first approaches that studied binary
code similarity by disassembling raw bytes into instructions
and utilizing the code structure.

In the decades that followed Exediff, several binary code
similarity approaches were developed. Some of these are
highly influential as they extend binary code similarity beyond
purely syntactical similarity to encompass semantic similarity
as well.

In 2004, Thomas Dullien, also known as Halvar Flake,
proposed a graph-based binary code diffing approach [21].
This method involved constructing a call graph isomorphism
and aligning functions of different binary program versions.
This advancement marked the foundation for the BinDiff
binary code diffing plugin for the Interactive DisAssembler
(IDA) [22].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

255 | P a g e

www.ijacsa.thesai.org

During the last decade, binary code similarity has gained
popularity, as it has the integration of machine learning and
deep learning.

In a recent study [23], the authors presented a novel
approach to detect function-level clones in binary code. With
their proposed control flow graph (CFG) refinement algorithm,
code reuse can be easily tracked, even in binaries compiled for
different processor architectures. The CFG refinement
algorithm works by extracting various function flows and
reconstructing a higher-level structure, leveraging architectural
differences and allowing efficient comparison in linear time
with structural hashing. The study mentions several limitations
and threats to validity. One limitation is that the approach is
based on the assumption that the same function will have the
same behavior across different architectures, which may not
always be true. Another limitation is that the approach may not
be effective in detecting clones that have been obfuscated or
transformed in some way. Finally, the study acknowledges that
the approach may not be suitable for detecting clones in certain
architectures, such as ARM, where predication is used as an
alternative to branching.

B. Source–Source Code Similarity

In [24], the authors presented a framework for code clone
detection at the level of source code using either control flow
graphs (CFGs) or PDG (Program Dependency Graph). While
effective, the approach's reliance on deep learning requires
substantial data and computational resources, impacting its
practical utility.

Another study [25] also used deep learning, introducing a
novel approach for detecting functional code clones with
different structures but matching functionality. The approach
combines fusion embedding and fine-grained functionality
identification using abstract syntax trees (ASTs) and CFGs.
Despite promising results, the fused code representation might
not encompass all possible syntax and semantic variations,
leading to potential false negatives in clone detection.

As a means of exploiting control and data flow information,
the authors of [11] created a graph representation of programs
named the flow-augmented abstract syntax tree (FA-AST). The
FA-AST was constructed by adding explicit control and data
flow edges to the source code’s ASTs. Two different types of
graph neural networks (GNNs) were then applied to FA-AST
to measure code similarity. The authors were the first to use
GNNs to detect code clones.

Similar to this, source-code-level exploitation of the data
from the CFG and DFG was used in [26]. Program Graphs for
Machine Learning (PROGRAML) is a low-level, portable
format that leverages machine learning models that may be
utilized to carry out challenging downstream tasks. It can be
used to offer a unique graph-based program representation. The
types and orders of operands and instructions, as well as
control, data, and call relationships, are recorded, compiled,
and represented using the PROGRAML representation.
Learnable models may perform several kinds of program
analyses using the general-purpose program representation
provided by PROGRAML.

Existing program dependence graph (PDG) generators for
C and Java code have limitations as they only support
compilable programs, restricting their practical application.
Addressing this issue, the authors of [27] introduced CCGraph,
a novel code clone detection tool. CCGraph focuses on
identifying code clones within PDG-based environments. To
achieve this, CCGraph utilizes graph kernels and an
approximate graph matching technique. This approach aims to
overcome the constraints posed by traditional PDG generators
and expand the scope of code clone detection on the
Weisfeiler-Lehman (WL) graph kernel. Compared to current
state-of-the-art technologies, this approach improves efficiency
and finds more semantic clones. However, it necessitates using
complete compilable programs as test datasets, constraining the
applicability of the PDG-based clone detection approach.
Developing a PDG generator capable of handling code
segments is recommended to broaden implementation.

Moreover, the authors of [28] investigated the use of CFGs
for static analysis in grading programming assignments. The
study assesses the degree of similarity between students’ codes
submissions and teacher reference code through an experiment
using a CFG comparison algorithm. The research concludes
that CFG comparison is more suited for boosting students with
minor errors rather than being employed as the primary scoring
algorithm for all submissions. The study solely assesses the
CFG structure, neglecting the content of CFG nodes, which
could lead to inaccurate scoring.

Another study [29] presented CODE-MVP, a model
integrating multiple source code views—plain text, abstract
syntax tree (AST), and control or data flow graphs (CFGs or
DFGs)—through multi-view contrastive pre-training. The
model learns complementary information across these views,
augmented by fine-grained type inference during pre-training.
Experiments demonstrated CODE-MVP's superiority over
state-of-the-art baselines across five datasets and three
downstream tasks. However, the exclusion of call graphs limits
the capture of essential program behavior aspects, hindering a
comprehensive view of functions and their relationships.

C. Binary–Source Code Similarity

Certain studies adopt binary–source code similarity
detection techniques to enhance similarity results. These
approaches integrate both source code and corresponding
binary code to achieve improved accuracy compared to
traditional binary–binary, and source–source code similarity
methods.

An example is described in [7], which proposed a
framework for function-level binary-source code matching that
involves extracting semantic features and code literals from
both source and binary code, merging them into embeddings,
and using triplet loss to learn the relation. The proposed model
uses a deep pyramid convolutional neural network (DPCNN)
on character-level source code and graph neural network
(GNN) models on binary code, as well as integer-LSTM and
hierarchical-LSTM for code literals. LSTM stands for long
short-term memory, which is a type of recurrent neural
network architecture commonly used for processing sequential
data such as text. The study also discusses the potential
benefits and drawbacks of the proposed model, as well as some

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

256 | P a g e

www.ijacsa.thesai.org

limitations and future research directions. Overall, the
proposed model achieves promising results on two datasets and
could have practical applications in computer security.
However, the model relies on the availability of large-scale
source-binary code pairs for training, which may not always be
feasible in practice.

In [10], the authors used two steps to identify similarities
between source code and binary code. They first generated
source code using the provenance of the target binary code.
Code similarity was then ranked using a unique graph triplet
loss network. The method performs better for syntactic code
clones but is less effective against semantic clones.

In [14], a novel approach for cross-language binary–source
code matching was introduced, leveraging intermediate
representations (IRs). These IRs provide high-level code
representation that abstracts away language-specific intricacies.
The methodology involves the conversion of both binary and
source code into IRs, followed by the utilization of a
transformer-based neural network to learn the correlation
between these two IRs. The evaluation, conducted on tasks
involving cross-language binary–source and source–source
code matching, shows the method's superiority compared to
other state-of-the-art techniques. However, this approach still
requires a number of enhancements, including the need for a
larger dataset and large pre-training corpora to overcome the
challenges related to cross-language information retrieval.

In few studies, binary-source code matching was conducted
at the level of decompiler-generated pseudo-code by first
converting binary code into pseudo-code and then comparing it
with the source code. For example, a recent study [15]
introduces a framework (DBSM) that enhances binary-source
function matching by decompiling binaries into pseudo-code
using the IDA Pro decompiler and utilizing a self-attention-
based siamese network for function comparison. Although this
approach outperforms other methods, its limitation lies in its
reliance on pseudo-code, which lacks the rich semantic
nuances of high-level source code, potentially leading to less
accurate results compared to matching at the source code level.
Additionally, their evaluation was conducted solely on two
self-curated datasets (R0 and R3) without testing against any
benchmark dataset, which hinders direct comparison with other
baseline studies.

From the aforementioned studies’ limitations, we can
conclude that the proposed solution should utilize code graphs,
namely call graphs (CGs) and control flow graphs (CFGs), to
provide more semantic (contextual) information; these are
more stable during code transformations (obfuscation resilient).
This enhances the detection of semantic clones, which reflects
positively on the performance of the target down-stream tasks,
such as clone detection and vulnerability analysis. Moreover,
some of the previously mentioned works that used AI
techniques suffered from limitations, such as depending on
existing datasets that were not applied in real operational cases.

Furthermore, most research in the field of binary–source code
matching and clone detection focuses on implementing the
matching process at the IR level, with some studies addressing
binary or decompiler-generated pseudo-code. These
approaches typically emphasize the structural representation of
code, often lacking the rich semantic context present in the
original source code. This limitation makes it challenging to
capture and detect clones that rely on semantic similarities
rather than structural ones. Additionally, the analysis often
requires expertise in IR languages. Therefore, to address these
gaps, we focus on software reverse engineering and rule-based
techniques for binary–source code matching and clone
detection at the source code level, specifically in C++ in our
study. Detecting matches and clones at the source code level
offers benefits in terms of accuracy, interpretability, and direct
applicability to the source code that developers interact with.

III. MATERIALS AND METHODS

The aim of this research is to match or determine the
similarity between a given C++ source code (reference) and a
binary code compiled from the same or a different C++ source
code (target) based on the percentage of binary code functions
that match source code functions. High similarity scores
indicate that the binary was compiled from the given source
code. The proposed system (BSMDG) remains unaffected by
minor alterations, including the alteration or elimination of
sections in the source code that do not compile (e.g., comments
or white space), or changes to variable names, function names,
or the order of declarations. We measure the likelihood rather
than conclusively determining that the given source code
contributed to the binary's compilation, highlighting the
nuanced approach needed for code clone detection within
security contexts.

Three main steps are taken to accomplish this goal:
preprocessing, graph generation, and measuring code
similarity. Fig. 1 shows the detailed design of the proposed
system. In the preprocessing step, the binary executable is
decompiled into C-like pseudocode, which is then translated
into C++ source code to facilitate comparison with the original
C++ source code (reference). The graph generation step
involves creating call graphs (CGs) and control flow graphs
(CFGs) for both the original and generated C++ source code,
capturing the structural and functional relationships within the
code. Finally, in the measuring code similarity step, these
graphs are compared using the weighted Jaccard index to
quantify the similarity between the source and binary code,
providing a nuanced assessment of whether the binary was
likely compiled from the given source code. This systematic
approach ensures a thorough and reliable evaluation of code
similarity.

A. Preprocessing

This step involves decompiling the binary executable into
pseudo-code and then translating this pseudo-code into its
corresponding C++ source code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

257 | P a g e

www.ijacsa.thesai.org

Fig. 1. Detailed design of the proposed system.

1) Decompilation: The binary executable is decompiled

using the Ghidra decompiler (version 10.1.2) [18] into C-like

pseudo-code. Our focus in the Ghidra decompiler output is

primarily on the (main) function, excluding libraries (DLL

files) and compiler functions. Analyzing the (main) function

in the decompiler output (C-like pseudo-code) is crucial not

only for reducing analysis costs but also for providing more

accurate similarity results. Since it represents the actual user

code, this focus offers valuable insights into the overall

functionality and behavior of the binary executable, assisting

in debugging and determining the program's purpose.

Fig. 2. Example C++ source code from atcoder.

Fig. 2 illustrates example C++ source code obtained from
the Atcoder website [19]. Fig. 3 shows the C-like pseudo-code
generated by Ghidra for the binary file compiled from the C++
source code shown in Fig. 2.

2) Translation: During this step, a dedicated transpiler or

translator is used to translate Ghidra decompiler's output (C-

like pseudocode) into its corresponding C++ source code.

Throughout this study, the term ‘translated code’ refers to the

C++ source code obtained from decompiled binary via the

custom transpiler. This translation bridges the gap between

binary and high-level code, enabling more accurate

comparisons. The transpiler module utilizes ANother Tool for

Language Recognition's (ANTLR’s) lexer and parser version

4.13.0 [30, 31], which is a parser generator, to tokenize and

parse the C-like pseudo-code, based on customized grammar (.

g4) files developed by the authors of this study. The grammar

files are specifically tailored to meet the unique requirements

and specifications of the translation process, ensuring accurate

and precise conversion of the C-like pseudo-code into

corresponding C++ source code. Fig. 4 displays the output of

the translation phase for the C-like pseudo-code example

depicted in Fig. 3. In some cases, the translated code may not

be fully compilable due to certain syntax errors, which result

from the current limitations of the transpiler. These issues

include missing type declarations, unmatched brackets, or

irregular function signatures that occasionally arise from the

decompiled pseudo-code structure. Although these syntax

errors do not prevent the generation of call graphs (CGs) and

control flow graphs (CFGs), they may introduce minor

inaccuracies in the graph structure, such as missing or

misrepresented nodes. As a result, these inaccuracies could

slightly affect the computed similarity scores, particularly in

cases, where structural details play a key role in clone

detection. However, based on our empirical observations, the

overall impact on semantic similarity is limited, as the primary

structural patterns and control flow are still preserved. Due to

time constraints, resolving these syntax issues is part of our

planned future work to further enhance translation accuracy

and improve similarity measurement reliability. Fig. 5

illustrates Algorithm 1 which is a depiction of the translation

process. This algorithm is designed to systematically translate

the C-like pseudo-code output from Ghidra into its

corresponding C++ source code. The algorithm begins by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

258 | P a g e

www.ijacsa.thesai.org

initializing an ordered collection to store the translated lines

(step 1). Then, it iterates through the C-like pseudo-code, line

by line (steps 2 and 3), modifying each line to adhere to the

syntax of C++ as closely as possible. The modified lines are

then added to the ordered collection in the order they appear in

the pseudo-code (step 4). Once the translation of all lines is

complete, a new source code file is created to store the

translated code (step 5). The lines from the ordered collection

are then written to the source code file in the same order (step

6), ensuring the translated code maintains the original

sequence.

Fig. 3. Example C-like pseudo-code (output of Ghidra's decompiler).

Fig. 4. Example output of the translation module.

Fig. 5. Algorithm 1: Translate the C-like pseudo-code to its corresponding

C++ source code.

B. Graph Generation

Once the binary code is translated into a high-level
representation (C++ source code), call graphs (CGs) and
control flow graphs (CFGs) are generated for both the original
C++ source code (reference) and the generated C++ source
code produced by the translation module (target). CGs and
CFGs are essential tools in software analysis that capture the
relationships and dependencies between different components
of the code, facilitating a more comprehensive analysis.

1) Call Graph (CG): A CG is a directed graph that

represents calling (caller-callee) relationships between

different functions or methods within a program. It captures

the flow of control between different functions, providing

insights into how the program's components interact with each

other.

2) Control Flow Graph (CFG): A CFG is a directed graph

that represents the control flow within a function or method. It

illustrates the flow of execution through the function,

depicting the sequence of statements and the decision points,

such as conditional branches or loops, within the function.

The generation of CGs and CFGs in this study is carried
out using a proprietary graph generator, developed by the
authors of this study, in Java (version JDK17). Off-the-shelf
graph generators are unsuitable for this purpose due to the
potential presence of syntactical errors in the generated C++
source code from the translation process, rendering it non-
compilable. Consequently, we employ a dedicated graph
generator to overcome this limitation. To generate CGs and
CFGs, ANTLR's lexer and parser are used to tokenize and
parse the C++ source code pairs (original and generated) based
on the C++ grammar file (CPP14.g4) [32] to produce abstract
syntax trees (ASTs), which are then utilized to generate call
and control flow graphs. Algorithms 2 and 3, in Fig. 6 and
Fig.7, show how CGs and CFGs are generated, respectively.

In clone detection, call graphs represent how functions are
called, identifying function-level clones in programs. Using
call graphs, you can detect both direct copies and complex
clones by analyzing the structure and flow of function calls.
Therefore, they are essential for identifying code similarities
with a high degree of reliability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

259 | P a g e

www.ijacsa.thesai.org

Fig. 6. Algorithm 2: Call Graph (CG) generation.

Algorithm 2 starts by establishing a class called
CallGraphListener (step 1) and initializing three variables
(root, parent, and child), all of which are of the type
GenericGraphItem (step 2). These variables serve as nodes in
the call graph. Additionally, a new instance of the
GenericGraph class, callGraph, is created to act as the
container for the call graph (step 3). The algorithm proceeds by
defining procedures for entering function definitions (step 4),
statements (step 6), and exiting function definitions (step 10).
These procedures handle the creation of nodes and their
connections within the call graph. Steps 6 to 11 of the Call
Graph Generation algorithm describe the handling of
individual statements within a function and the management of
the call graph structure. When the parser encounters a
statement within a function (step 6), it checks whether the
statement is relevant, such as an output operation (cout), input
operation (cin), a function call, or a method call (step 7). If the
statement is relevant, a new node (childItem) representing the
statement is created and associated with the current parent
node, which represents the context or function in which this
statement resides (step 8). This new childItem is then added to
the callGraph, linking it to the parent node and integrating the
statement into the call graph (step 9). When the parser exits a
function definition (step 10), the parent and child variables are
reset to null, clearing the current function's context and
ensuring that subsequent function definitions start with a fresh
state (step 11). This process ensures that the call graph
accurately reflects the function calls and control flow in the
C++ source code. Finally, the algorithm includes a
generateOutput procedure (step 12) responsible for generating
the desired output from the callGraph. It also incorporates error
handling to address any exceptions that may occur during the
graph generation process (steps 14 and 15). The algorithm
concludes with the termination of the CallGraphListener class
(step 16), marking the end of the CG generation process and
the encapsulation of all related functionalities within the class.

Fig. 7. Algorithm 3: Control Flow Graph (CFG) generation.

Control Flow Graphs (CFGs) are essential in clone
detection as they show the execution flow within functions,
highlighting both structural and semantic similarities between
code snippets. By capturing the sequence of statements and
decision points, such as if-else conditions or switch-case
statements, CFGs help to identify function-level clones, even
when syntactic variations, such as variable renaming or code
reordering, are present. This makes CFGs crucial for detecting
deeper, logic-based similarities that go beyond syntactic-level
code comparisons.

Algorithm 3 starts with the definition of a class named
ControlFlowGraphListener (step 1), which is responsible for
managing the generation of the CFG. Within this class, three
key variables—root, parent, and child—are declared as
instances of GenericGraphItem (step 2). These variables
represent the nodes within the control flow graph, where root
serves as the starting point of the graph, parent indicates the
current node or context within the graph, and child represents
new nodes created by control statements. Additionally, a new
instance of GenericGraph, referred to as flowGraph, is
initialized (step 3). This flowGraph will store the entire
structure of the CFG, capturing the relationships between
control statements in the C++ source code.

The algorithm proceeds by defining a procedure for
entering function definitions (step 4), which is executed upon
entering a function definition. Within this procedure, a new
root node is created using the appropriate name, and it is added
as the root node of the flowgraph (step 5).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

260 | P a g e

www.ijacsa.thesai.org

In (step 6) the enterControlStatement procedure is then
defined to handle the entry of control statements, such as
statements or loops. When encountering a control statement, a
new child node is created with the corresponding name and
parentItem (step 7). The child node is added to the flowGraph,
and if a parent node exists, it is also added as a subItem of the
parent (step 8). The parent variable is updated to the child
node, reflecting the current hierarchy within the control flow
graph (step 9).

To ensure the correct structure of the control flow graph,
the algorithm includes the exitControlStatement procedure
(step 10). This procedure updates the parent variable to the
parent of the current child node, facilitating the proper traversal
of the control flow hierarchy (step 11).

The algorithm proceeds with the generateOutput procedure
(step 12), which is responsible for generating the desired output
from the flowGraph. It attempts to generate graphs from the
flowGraph and, if an exception occurs during the process, it
prints an error message to indicate the issue (step 13).

The algorithm concludes with the termination of the
ControlFlowGraphListener class (step 14), marking the end of

the CFG generation process and the encapsulation of all related
functionalities within the class.

The output of this phase is a set of (.dot) files that utilize
the (Graphviz) library [33] to visualize the CGs and CFGs for
both code snippets being matched, providing valuable insights
into the relationships and structure of the code components.

Fig. 8 and Fig. 9 show the CGs and CFGs for the C++ code
snippet (a) depicted in Fig. 2 and its corresponding translated
binary (b) in Fig. 4.

Fig. 8. CG example: (a) CG for the C++ source code; (b) CG for the

corresponding translated binary code.

Fig. 9. CFG example: (a) CFG for the C++ source code; (b) CFG for the corresponding translated binary code.

C. Measuring Code Similarity

In this phase, the generated CGs and CFGs of both the
original and generated C++ source code are matched using
appropriate similarity measurement technique to quantify the
degree of similarity between the two code snippets. This step
helps in identifying the common patterns and structures shared
by the two representations.

We adopt the weighted Jaccard index as a similarity metric,
which is a similarity measure that compares the similarity
between elements of two sets, taking into account the weights
associated with the elements in the sets. It extends the standard
Jaccard index by considering both the presence of common

elements and their respective weights. By incorporating
weights, it provides a more nuanced measure of similarity,
allowing for a more accurate comparison of sets. The regular
Jaccard index treats all elements equally, ignoring any
variation in their significance, whereas the weighted Jaccard
index acknowledges the diverse impact that elements may have
on the overall similarity.

In the context of code clone detection, where the goal is to
identify code fragments that are similar or nearly identical to
each other, the weighted Jaccard index plays a crucial role.
Code clones may not be exact replicas but can have variations
due to modifications, such as variable renaming or code
reordering. To capture these variations, the weighted Jaccard

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

261 | P a g e

www.ijacsa.thesai.org

index considers elements occurring in code snippets (specific
C++ keywords noted in Table I). This makes it particularly
useful in detecting code clones that have undergone
modifications while maintaining a core similarity.
Furthermore, the weighted Jaccard index enables fine-grained
clone detection, where different parts of a code snippet can be
assigned different weights based on their significance. This
allows for more precise code clone detection by focusing on
specific parts of the code that are deemed more critical or
unique.

The weighted Jaccard index can be calculated as follows:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑖𝑛𝑑𝑒𝑥 =
 (∑ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) /

 (∑ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)

Eq. (1) represents the calculation of the weighted Jaccard
index between two sets (nodes contents of CGs and CFGs of
the given two code snippets), where the weights associated
with the elements (keywords) are taken into consideration. The
numerator of the equation involves summing the minimum
weights of the common elements (keywords), indicating the
combined importance of the shared elements. The denominator
involves summing the maximum weights of all elements
(keywords) in both sets (nodes contents of CGs and CFGs of
the given two code snippets), representing the total potential
importance of any element in the sets. By dividing the sum of
the minimum weights by the sum of the maximum weights, the
weighted Jaccard index provides a value between 0
(completely unmatched) and 1 (completely matched),
indicating the degree of similarity between the nodes contents
of CGs and CFGs of the given two code snippets, while
considering the weights assigned to their elements (keywords).

As for the weights of C++ keywords, we gathered all
standard C++ keywords from the Microsoft website
(https://learn.microsoft.com/en-us/cpp/cpp/keywords-
cpp?view=msvc-170#standard-c-keywords). Then, different
weights were assigned to the keywords according to their
significance in the context of CGs and CFGs and the thorough
analysis of the code within our curated dataset. For one source
code file, the weights were assigned to the keywords based on
Table I, with 100 total weights.

TABLE I. WEIGHTS ASSIGNED TO C++ KEYWORDS

Keyword type Weight

Function call (main, cin, cout) 2

Control statements (if, for, while, do) 2

Data types, frequently used 2

Data types, infrequently used 1

All other keywords 0.1 – 0.9

The Jaccard index for measuring the similarity score
between two functions has been used in many studies,
including [4], in which the authors emphasize that their method
is relatively accurate but also slow. They utilize a combination
of the Jaccard index and the longest common subsequence
(LCS) algorithm, which takes into account the order of
elements in two sequences to perform function comparisons.

However, in our own work, we are primarily concerned with
accurately determining the similarity between graphs of two
code snippets, regardless of the order of their nodes or
keywords. As a result, we only use the Jaccard index, which
has high accuracy, and we do not consider sequence order in
our analysis. By avoiding the LCS algorithm, which has a high
time complexity of O (n^2), we are able to achieve faster
execution times.

We developed the matching module using Python (version
3.10.10) with the libraries NetworkX (version 2.8.4) [34],
openpyxl (version 3.0.10) [35], NumPy (version 1.23.5) [36],
and PyGhraphviz (version 1.9) [37] to import the generated
call and control flow graphs (.dot files) in the previous step,
read the node components, and compute the combined
weighted Jaccard index between the graphs. By computing the
weighted Jaccard index between the call graphs and control
flow graphs of the original C++ source code and translated
binary code (generated C++ source code), we can obtain a
quantitative measure of the similarity between the two code
representations. A high-level algorithm for measuring code
similarity based on the generated graphs applied in this step is
illustrated in Fig. 10. Algorithm 4 is designed to quantify the
similarity between two given code graphs represented as text.
The algorithm follows a step-by-step process to accomplish
this task.

Fig. 10. Algorithm 4: Measuring code similarity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

262 | P a g e

www.ijacsa.thesai.org

In step 1, the function "get_text_weighted_similarity" takes
three input parameters: "graph1Text" and "graph2Text"
(textual representations of CGs and CFGs nodes of the two
code snippets being compared), and "weights" (a set of weights
associated with each keyword).

Step 2 of the algorithm involves cleaning the "graph1Text"
and "graph2Text" by removing punctuation, digits, and non-
relevant words, ensuring that only meaningful keywords,
which are related to the context of CGs and CFGs, are
considered in the similarity calculation.

Next, the variables "total_weights" and "similarity" are
initialized to zero, representing the cumulative weights and
similarity score, respectively (step 3).

The algorithm then proceeds to create two sets, "set1" and
"set2", which contain the cleaned words from the first code
snippet "graph1Text" and the second code snippet
"graph2Text" respectively (steps 4 and 5).

The algorithm enters a loop where it iterates over each
keyword in "set1" (step 6). For every keyword encountered, it
checks if the keyword is present in "set2" (step 7). If it is, the
keyword's weight is added to both the similarity and
total_weights variables (step 8). If the keyword is not found in
"set2" (step 9), only the keyword's weight is added to
total_weights (step 10). After processing all keywords in
"set1", the algorithm proceeds to iterate over each keyword in
"set2" (step 13). If a keyword is not present in "set1" (step 14),
its weight is added to total_weights (step 15). Conversely, if
the keyword is found in "set1" (step 16), its weight is added to
both similarity and total_weights (step 17).

Once both sets have been processed, the algorithm
calculates the similarity by dividing the similarity score by the
total_weights (step 20). This normalization ensures that the
similarity value falls within a meaningful range. Finally, the
algorithm outputs the calculated similarity (S) as the result
(step 21).

The resulting similarity score ranges from 0
(unmatched/completely different) to 1 (matched/ completely
identical). Within the scope of our research, achieving a perfect
matching score of 1 between a C++ source code and its
corresponding translated binary code is unfeasible. This is
because the Ghidra decompiler, in processing compiled source
code (binary file), renames original variables and introduces
auxiliary variables to manage complex data structures such as
arrays, vectors, and lists. These modifications inherently
decrease the similarity between the original source code and its
corresponding decompiled binary. Thus, a perfect similarity
score of 1 remains un-attainable for the CFGs of matched pairs,
highlighting the inevitable differences caused by such changes.

When assessing the similarity between two different code
snippets (C++ source code and a binary code compiled from
another C++ source code), a threshold value of up to 0.55 is
considered indicative of a high degree of similarity, attributed
to the syntactical similarities inherent in C++ programs.
Furthermore, these inherent syntactical similarities ensure that
code pairs exhibit a significant degree of similarity,
necessitating categorization within the range 0<S<1.

Consequently, a similarity score below the predefined
threshold of 0.55 (0≤S<0.55) is considered evidence of
unmatched pairs (minimal similarity), indicating substantial
differences between the code pairs. On the other hand, a score
in the range of 0.55 ≤ S < 1 indicates matched pairs (highly
similar), reflecting a significant degree of similarity between
the code pairs. This differentiation is crucial for discerning the
gradations of similarity and the threshold separating matched
from unmatched code pairs in our analysis.

The optimal similarity threshold of 0.55 was selected after
a thorough analysis of our curated dataset from Atcoder
website. This value was determined by examining the
similarity levels in the dataset's code pairs (C++ source code
and binary code, whether the binary originated from the same
source code or a different one). In this study, we tested various
thresholds and, through empirical analysis, fine-tuned the
similarity values to enhance precision and recall. This
refinement contributes to the overall accuracy of the system.

IV. EVALUATION AND RESULTS

A. Dataset

To construct our dataset, we collected 100 C++ source code
files from AtCoder [19], a reputable online platform
recognized for hosting competitive programming competitions
and serving as a hub for programmers. The selection of
AtCoder was based on its diverse range of problem types,
solution strategies, and user contributed submissions which
collectively provide a rich variety of real-world coding styles.
This diversity enhances the generalizability and robustness of
our system in clone detection scenarios. The collected files
span multiple versions of the C++ language, from CPP 11 to
CPP 20, ensuring relevance to modern software development
practices. The use of AtCoder as a dataset source is supported
by recent studies such as CLCDSA [38], ZC3 [39], and
TCCCD [40], which employed AtCoder submissions to
evaluate clone detection models. Based on these studies, we
can confirm AtCoder's capability of capturing diverse coding
patterns and use it for training and validating our proposed
BSMDG system. Each C++ source code file in the dataset was
accompanied by relevant information, including submission
time, task title, user who uploaded the code, code size, and
execution time.

To facilitate the matching process, each C++ source code
file was compiled using the GNU Compiler Collection (GCC
13.2), resulting in the generation of its corresponding binary
(.exe) file. We trained and tested the proposed system using
this dataset on a Fedora Linux 39 machine with four 2.40 GHz
processors and 15.5 GB of RAM.

To organize the dataset, we implemented the 80/20 rule
[41], which is a practical guide-line suggesting that
approximately 80% of the data should be allocated to training
the system and 20% should be used to test its performance.
Accordingly, eighty C++ source code files and their
corresponding binary files were allocated for training our
proposed system, which involved determining thresholds,
where 50% of the subset (forty code pairs) was considered
matched (binary and matching source code from which it was
compiled), and 50% (the other forty code pairs) was considered

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

263 | P a g e

www.ijacsa.thesai.org

unmatched (binary and unmatching source code) to ensure that
neither set was biased during training. The remaining 20 C++
source code files and their corresponding binary files from the
dataset were reserved for testing the proposed system, where
50% of this subset comprised matched pairs and 50%
comprised unmatched pairs.

Afterwards, a series of steps were carried out (illustrated in
Section III), resulting in the creation of eleven files for each
individual C++ source code file. In total, the dataset contains
1100 files encompassing all of the C++ source code files and
the files generated for each of them including the
corresponding binary files.

We labeled each pair of C++ source code and binary files
in the dataset according to the nature of the matching process.
Specifically, the labels indicate whether the matching was
performed between a C++ source code file and its
corresponding binary file (matched pairs), or between a C++
source code file and a binary file of another C++ source code
file (unmatched pairs).

B. Evaluation Metrics

A predefined threshold value of 0.55 was used to test the
performance of the proposed system. During this procedure, 20
pairs of C++ source code files and their corresponding
translated counterparts—C++ source code generated from
binary files by our translation module—were tested. These files
were randomly selected from our curated dataset from Atcoder
and categorized as matched (M) if the source code file was
compared against its corresponding binary file, or unmatched
(UM) if the source code file was compared against a binary file
compiled from different source code.

To assess the effectiveness of the proposed system, several
performance metrics were computed, including precision,
recall, F-score, and accuracy. The equations used to calculate
these metrics are as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃)

In the context of our research, precision represents the
proportion of correctly classified matched pairs out of all pairs
classified as matched.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁)

Recall signifies the proportion of matched pairs that were
correctly identified by the system among all actual matched
pairs.

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
 𝑅𝑒𝑐𝑎𝑙𝑙)

The F-score considers both precision and recall
simultaneously and provides an overall measure of the
system’s effectiveness in identifying matched pairs in our
dataset.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +
 𝐹𝑁)

Accuracy provides an assessment of the system’s ability to
correctly classify both matched and unmatched pairs,
representing the overall performance of the system.

Therefore, the precision was 0.75, the recall was 0.9, the F-
score was 0.82, and the accuracy was 0.80 for the given test
subset. Table II summarizes the performance metrics of the
proposed system (BSMDG). Fig. 11 shows the bar chart for
these metrics.

TABLE II. PERFORMANCE METRICS OF THE PROPOSED SYSTEM

(BSMDG) ON OUR CURATED DATASET FROM ATCODER (THRESHOLD AT 0.55)

Precision Recall F-score Accuracy

0.75 0.9 0.82 0.80

Fig. 11. Performance metrics of the proposed system (BSMDG) on our

curated dataset from Atcoder (threshold at 0.55).

V. DISCUSSION

The bar chart (Fig. 11) visualizing the system’s
performance metrics—precision (0.75), recall (0.9), F-score
(0.818), and accuracy (0.8)—provides a comprehensive
quantitative assessment of its effectiveness. The precision of
0.75 indicates that 75% of the positive (matched) predictions
made by the proposed system are accurate, reflecting a solid
performance in specificity. However, this also means that 25%
of the positive predictions are false positives, which suggests
that the system may be identifying unmatched pairs as
matched. This could be due to the system's sensitivity to minor
code similarities (syntactical similarities inherent in C++
programs) that do not constitute true matches, indicating a need
for refinement in the matching (measuring similarity)
algorithms to reduce false positives.

The recall of 0.9 is particularly high, showing that the
system successfully identifies 90% of all actual positive cases.
This high recall underscores the system's effectiveness in
detecting binary–source code matches, which is critical in
applications like code clone detection, copyright infringement
detection and software forensics, where missing a genuine
clone could be highly detrimental. The high recall suggests that
the system is comprehensive in its search for potential matches,
but this comes at the cost of lower precision, indicating a trade-
off between sensitivity and specificity. BinPro [13], B2SFinder
[42], and XLIR [14] have also found a trade-off between
precision and recall. This trade-off highlights the importance of
parameter tuning. Several parameters were empirically
adjusted based on dataset characteristics, such as keyword
weights in Algorithm 4 and similarity thresholds.

The F-score, which balances precision and recall, is 0.82.
This score suggests that while the system performs well

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

264 | P a g e

www.ijacsa.thesai.org

overall, there is still room for improvement, particularly in
reducing the false positive rate to enhance precision without
sacrificing recall. The fact that the F-score is closer to the recall
than the precision indicates that the system is more inclined
towards sensitivity, which is advantageous in scenarios, where
detecting all potential matches is more important than
minimizing false positives.

An overall accuracy of 0.80 confirms the system’s
reliability in distinguishing between matched and unmatched
pairs across the test subset. However, the accuracy metric alone
may not fully capture the system's performance, especially
given the imbalance between precision and recall. The system's
ability to correctly identify true negatives (unmatched pairs)
also contributes to this accuracy, but the relatively lower
precision suggests that there are still challenges in
distinguishing between true matches and near-misses.

In summary, while the BSMDG system demonstrates
strong recall and overall accuracy, its lower precision
highlights the need for further refinement in its matching
(measuring similarity) algorithms. These improvements could
involve more sophisticated filtering of minor code similarities
that do not represent true matches, thereby enhancing the
system’s specificity. Such enhancements would be crucial for
increasing the precision while maintaining the high recall,
leading to a more balanced and effective tool for binary–source
code matching detection.

Researchers have demonstrated similar results in recent
work with binary-source code similarity and clone detection,
such as CCGraph [27] and GraphBinMatch [43], , highlighting
the need to combine structural and semantic features to make
accurate comparisons.

VI. CASE STUDY

A. Experimental Setup and Evaluation Dataset

We further evaluated the performance of our proposed
system (BSMDG) on unseen data using the POJ-104 dataset
[44] to assess the system’s generalizability and real-world
applicability. Several studies have focused on code clone
detection using various methodologies and datasets. However,
to provide a comprehensive analysis of our findings, we
compared our performance metrics (precision, recall, F-score)
against those reported in previous research studies that utilized
the POJ-104 dataset for code clone detection. POJ-104 is a
comprehensive dataset designed for the evaluation of code
clone detection methodologies. It consists of C++ source code
submissions provided by 500 students in response to 104
distinct programming challenges from an online judge (OJ)
platform designed for educational uses, resulting in a total of
52,000 source code files. In this study, the compilation of C++
source code files into binary executables was performed using
the GNU Compiler Collection (GCC version 13.2). Source
code files that failed to compile were excluded from further
analysis, resulting in the generation of 44,096 binary
executables. The primary cause for the inability to compile
certain files was identified as the pre-processing stage of
dataset preparation, during which headers were removed,
leading to compilation failures. To address this issue, essential
headers, including 'iostream' and 'string', were reintegrated into

the source code files to facilitate successful compilation. This
process of header reintegration was executed through the
deployment of Python scripts, designed to automate the
inclusion of frequently used headers. Nonetheless, a subset of
the source code files required libraries that are either rarely
used or not frequently encountered, which, in turn, led to a
reduction in the total number of source code files that could be
successfully compiled. Next, we leveraged a virtual machine
from Amazon Elastic Compute Cloud (Amazon EC2 t2.2xlarge
instance) [45], equipped with 8 vCPUs and 32 GB of RAM, to
enhance the efficiency of the Ghidra decompilation process
and boost our system's performance. In the decompilation
process we used multithreading in our Python scripts to
execute Ghidra’s headless analyzer [46], a command-line-
based (non-GUI) version of Ghidra, through calling the
‘analyzeHeadless‘ shell script, which is located in the Ghidra
program path. The ‘analyzeHeadless‘ script facilitates
automated, headless (non-interactive) analysis of binary files,
enabling users to automate importing, decompiling,
disassembling, and other analyses on binary executables and
object files. This can be particularly useful in environments,
where graphical interfaces are not available, such as servers, or
in automated pipelines, where human interaction is not
feasible. As such, it is a powerful tool for automating binary
file analysis in reverse engineering and security auditing.
BSMDG takes the decompiled binary–source code pairs
(cloned or matched and non-cloned or unmatched) as input to
assess their similarity scores. Next, the system assesses
whether the pairs are classified as cloned or non-cloned by
utilizing a similarity threshold of 0.7. This threshold was
determined through empirical analysis of the POJ-104 dataset,
where precision and recall were fine-tuned to identify the
optimal value.

B. Baselines and Comparison

Since most previous studies have conducted binary-source
code matching at the IR level, we compared our proposed
system with the pioneering research that utilized the POJ-104
dataset in their analysis to facilitate direct comparison. The
baseline studies employing the POJ-104 dataset for clone
detection are as follows:

1) BinPro [13]: This model was designed to address the

issue of detecting similarities between source code and binary

code, even in cases, where the compiler or optimization level

remains unspecified. Utilizing machine learning approaches,

BinPro identifies the most effective code features (FCGs) for

assessing the similarity between binary and source code.

Through the application of static analysis tools, these features

are extracted and analyzed, enabling the matching of binary

and source codes via a bipartite matching algorithm (i.e.,

Hungarian algorithm).

2) B2SFinder [42]: This model leverages a sophisticated

approach to identify binary code clones, extracting seven

distinct features from both binary and source code across three

key dimensions: strings, integers, and control-flow. It utilizes

a weighted feature-matching algorithm designed to

accommodate the diverse nature of these features. This

algorithm assigns weights to code feature instances, taking

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

265 | P a g e

www.ijacsa.thesai.org

into account their uniqueness and the frequency of their

appearance, to efficiently match binary and source code by

inferring traceable characteristics.

3) XLIR (Transformer) [14]: This method involves a

state-of-the art neural network model based on transformer

technology in binary–source code matching. Central to XLIR's

methodology is the use of LLVM intermediate representation

(IR), as implied by its name. To process LLVM IR tokens,

XLIR utilizes a BERT model that has been pre-trained. The

initial phase involves pre-training the neural network on a

large corpus of external LLVM-IR, employing masked

language modeling (MLM) as a preliminary step. This process

is designed to capture meaningful representations of LLVM-

IR tokens effectively. Following the embedding of these

tokens, XLIR maps them into a common space, where the

representations of LLVM-IR are jointly learned through a

ternary loss function. By adopting this strategy, XLIR can

match binary and source code from various programming

languages.

4) XLIR (LSTM) is a variant of the proposed approach

XLIR (Transformer) [14] in which LSTM network is used to

encode the IRs.

5) GraphBinMatch [43]: This model leverages a graph

neural network to learn the similarity between binary and

source codes. It represents binary and source codes as graphs,

incorporating control flow, data flow, and call flow

information. This graph-based representation helps the neural

network model better understand the structure and semantics

of the code.

Table III presents a comparison of performance metrics
between our proposed system (BSMDG) and the baselines on
the POJ-104 dataset. Fig. 12 visually represents the
comparative performance metrics listed in Table III.

TABLE III. PERFORMANCE OF THE PROPOSED SYSTEM (BSMDG) AGAINST BASELINES ON THE POJ-104 DATASET (THRESHOLD AT 0.7)

System Matching Level Methodology Precision Recall F-score

BinPro [13] Source code with Assembly code (IR) of corresponding binary code AI-based 0.38 0.42 0.40

B2SFinder [42] Source code with Assembly code (IR) of corresponding binary code Rule-based 0.43 0.46 0.44

XLIR(Transformer) [14]
LLVM_IR of source code with LLVM-IR of corresponding binary

code
AI-based 0.85 0.86 0.85

XLIR (LSTM) [14]
LLVM_IR of source code with LLVM-IR of corresponding binary
code

AI-based 0.67 0.72 0.69

GraphBinMatch [43]
LLVM_IR of source code with LLVM-IR of corresponding binary

code
AI-based 0.88 0.86 0.87

BSMDG (the proposed system)
Source code with generated source code of corresponding binary

code
Rule-based 0.97 0.83 0.89

Fig. 12. Performance of the proposed system (BSMDG) against baselines on

the POJ-104 dataset (threshold at 0.7).

In comparison to the previous studies on the POJ-104
dataset, our decompilation graph-based clone detection system
(BSMDG) demonstrates favorable performance metrics,
showcasing its effectiveness in identifying code clones within
the POJ-104.

Fig. 12 shows the performance of various binary analysis
tools, including our proposed system (BSMDG). All of these,
except B2SFinder, employ advanced AI models, such as
LSTM and Transformer architectures. This visualization
highlights the precision, recall, and F-score of each system,
offering a clear comparison across these critical performance
metrics.

Our proposed system stands out for achieving the highest
precision (0.97) among all the tools evaluated, indicating its
exceptional ability to correctly identify true positives while

minimizing false positives. This is particularly noteworthy
considering that BSMDG achieves this performance without
relying on AI models, which are typically associated with
higher computational costs and complexities.

The comparison reveals that while AI-based systems like
XLIR (using both LSTM and Transformer architectures) and
GraphBinMatch demonstrate strong performance, especially in
terms of recall and F-score, BSMDG surpasses these systems
in precision. Moreover, BSMDG achieves a competitive F-
score of 0.89, highlighting its balanced performance in both
precision and recall. Despite having a slightly lower recall rate
compared to the highest AI-based systems, this calls for
enhancements to boost its performance and improve its
competitive stance.

The benefit of our proposed rule-based system over AI-
based systems lies in its efficiency and simplicity. By not
relying on AI, BSMDG avoids the need for extensive training
data, computational resources, and tuning of complex models,
making it a more accessible and easier-to-deploy solution for
code analysis and clone detection scenarios. Additionally, the
high precision of BSMDG makes it particularly valuable in
contexts, where the cost of false positives is high, ensuring that
resources are focused on truly relevant findings.

This comparison underscores the significance of
developing innovative, non-AI methodologies for binary
analysis, demonstrating that such approaches can not only
compete with but, in some aspects, surpass AI-based models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

266 | P a g e

www.ijacsa.thesai.org

BSMDG represents a significant advancement in the field,
providing a highly accurate, efficient, and practical tool for
binary analysis and clone detection that is particularly suited
for applications requiring high precision without the overhead
of AI models, making it an invaluable asset in the field of
software engineering and security.

VII. LIMITATIONS

Although our proposed binary–source code clone detection
approach is promising, there are some limitations to consider:

1) The proposed approach could lead to either false

positives or false negatives based on the selected similarity

threshold for comparing code graphs. Setting the threshold too

low might lead to an increase in false positives, whereas a

higher threshold could cause more false negatives.

2) The task of decompiling and translating code that

includes non-standard headers remains a significant challenge

that demands specialized knowledge and careful analysis. For

instance, decompiling and translating code that employs the

<bits/stdc++.h> header presents obstacles due to its non-

standard nature, making it difficult to ascertain the precise

headers it encompasses. Recognizing that decompilation is a

complex process, success in managing particular headers

greatly depends on the sophistication of the tools and

methodologies employed. Additionally, it is vital to

understand that the decompiled code may not be an exact

representation of the original source code, as some details and

optimizations could be lost in the compilation process.

3) The presence of goto statements in the decompiled code

can reduce the similarity level between the original C++

source code and the generated C++ source code produced by

the transpiler.

4) The evaluation was performed using specific datasets,

and the system’s performance could vary when applied to

other datasets that have different degrees of code similarity.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this research, we conducted an extensive investigation
into code clone detection by integrating innovative techniques
and methodologies, focusing on the matching between C++
source code and binary code at the source code level, rather
than at the binary, intermediate representation (IR), or pseudo-
code levels. A pivotal strategy we employed is decompilation,
which plays a crucial role in bridging the semantic gap
between binary and source code. This step is facilitated by the
use of Ghidra's decompiler and a custom-developed transpiler
(source-to-source compiler) based on ANTLR, enabling the
transformation of binary code into a high-level C++ source
code.

Using these cutting-edge tools, we improved the precision
and dependability of our experiments, contributing to the
robustness of our findings. We captured the intricate
relationships and structures embedded within the code by
fusing graph-based code representations, namely call and
control flow graphs. We conducted a nuanced analysis that

outperforms conventional clone detection methods by
employing the weighted Jaccard index as a similarity measure.

The integration of decompilation and graph similarity
analysis in our methodology not only enhances the capability
to detect code clones in binary–source code by considering
structural and semantic similarities, but also addresses the
challenges posed by the limited availability of source-level
information in binaries and disassemblies and the significant
differences between source code and binary or object code
after compilation. Our approach contributes a novel
perspective to the field, suggesting a shift towards more
context-rich, semantic-based analyses for binary-source code
matching and clone detection.

As a case study, we evaluated the proposed rule-based
approach (BSMDG) against several baseline studies that use
AI techniques to detect C++ code clones, using the POJ-104
dataset. The experimental results show that BSMDG
outperforms other baseline studies. When compared with
BinPro, B2SFinder, XLIR, and GraphBinMatch, BSMDG
improves the F-score from 0.40, 0.44, 0.69, 0.85, and 0.87,
respectively, to 0.89, achieving a 90% accuracy rate.

The methodology demonstrated in this study not only
underlines the importance of analyzing clones at the source
code level but also emphasizes the potential of our approach to
contribute significantly to areas such as malware detection,
vulnerability analysis, and reverse engineering. The BSMDG
system can be used in real-world software development
environments to improve security and code verification. As an
example, it could be integrated into Continuous Integration or
Continuous Deployment (CI or CD) pipelines to help catch any
unwanted or suspicious changes early in the development
cycle. As part of malware analysis, BSMDG can detect reused
or copied code within binaries, assisting in threat identification
and tracing the code's origin. A further benefit of BSMDG is
that it can assist in detecting vulnerabilities by comparing
binary code with secure source code versions, thereby
identifying unauthorized or accidental modifications that result
in vulnerabilities. According to the findings of this study, high-
level language analysis within binary-source code matching
needs to be further advanced to improve clone detection tools
for improved accuracy and applicability to software
engineering and cybersecurity.

B. Future Work

While the current study has established a solid foundation
for binary–source code matching and clone detection at the
source code level, several avenues for future research have
been identified to further refine and extend our methodology:

1) Syntax error resolution: One of our priorities moving

forward is to improve the translation module so it can generate

a higher percentage of compilable C++ code from the C-like

pseudo-code output by the decompiler. This will play a key

role in making our system more accurate and dependable. To

achieve this, we plan to refine the grammar to better handle

common patterns in Ghidra’s pseudo-code and introduce pre-

processing steps to clean up irregular structures before

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

267 | P a g e

www.ijacsa.thesai.org

parsing, ultimately reducing syntax errors and improving

translation quality.

2) Optimization of graph similarity algorithm: We plan to

explore more advanced graph similarity methods to improve

the system’s precision and recall, especially for detecting

semantic code clones.

3) Obfuscation resistance: While the current system

handles simple transformations, future improvements will

focus on making it more robust against common obfuscation

techniques like instruction substitution and control flow

flattening.

4) Cross-language compatibility: In future work, we plan

to extend our approach to support cross-language binary–

source code matching, making it possible to detect code clones

across different programming languages like Java and Python.

5) Hybrid analysis integration: We plan to combine

dynamic analysis with our current static analysis to build a

hybrid approach. This will offer a more complete view of both

code behavior and structure, which could lead to more

accurate and reliable clone detection.

By addressing these areas, future research can enhance the
utility and applicability of binary–source code matching and
clone detection tools, further bridging the gap between binary
and high-level source code analysis for security and
maintenance purposes.

ACKNOWLEDGEMENT

This research was funded by the Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah, Saudi
Arabia, under grant number “RG-12-611-43”.

REFERENCES

[1] J. Krüger and T. Berger, "An empirical analysis of the costs of clone-
and platform-oriented software reuse," presented at the Proceedings of
the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, 2020. Available:
https://doi.org/10.1145/3368089.3409684

[2] B. Wan, S. Dong, J. Zhou, and Y. Qian, "SJBCD: A Java Code Clone
Detection Method Based on Bytecode Using Siamese Neural Network,"
Applied Sciences, vol. 13, no. 17, p. 9580, 2023.

[3] P. M. Caldeira, K. Sakamoto, H. Washizaki, Y. Fukazawa, and T.
Shimada, "Improving Syntactical Clone Detection Methods through the
Use of an Intermediate Representation," presented at the 2020 IEEE
14th International Workshop on Software Clones (IWSC), 2020.
Available:
https://doi.ieeecomputersociety.org/10.1109/IWSC50091.2020.9047637

[4] Y. Hu, H. Wang, Y. Zhang, B. Li, and D. Gu, "A Semantics-Based
Hybrid Approach on Binary Code Similarity Comparison," IEEE
Transactions on Software Engineering, vol. 47, no. 06, pp. 1241-1258,
2021.

[5] K. Sendjaja, S. A. Rukmono, and R. S. Perdana, "Evaluating control-
flow graph similarity for grading programming exercises," 2021, pp. 1-
6: IEEE.

[6] Y. Gui et al., "Cross-Language Binary-Source Code Matching with
Intermediate Representations," presented at the 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2022. Available:
https://doi.ieeecomputersociety.org/10.1109/SANER53432.2022.00077

[7] Z. Yu, W. Zheng, J. Wang, Q. Tang, S. Nie, and S. Wu, "CodeCMR:
cross-modal retrieval for function-level binary source code matching,"

presented at the Proceedings of the 34th International Conference on
Neural Information Processing Systems, Vancouver, BC, Canada, 2020.

[8] S. Feng, W. Suo, Y. Wu, D. Zou, Y. Liu, and H. Jin, "Machine Learning
is All You Need: A Simple Token-based Approach for Effective Code
Clone Detection," presented at the Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, Lisbon, Portugal,
2024. Available: https://doi.org/10.1145/3597503.3639114

[9] Y.-B. Jo, J. Lee, and C.-J. Yoo, "Two-Pass Technique for Clone
Detection and Type Classification Using Tree-Based Convolution
Neural Network," Applied Sciences, vol. 11, no. 14, p. 6613, 2021.

[10] Y. Ji, L. Cui, and H. H. Huang, "BugGraph: Differentiating Source-
Binary Code Similarity with Graph Triplet-Loss Network," presented at
the Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, Virtual Event, Hong Kong, 2021. Available:
https://doi.org/10.1145/3433210.3437533

[11] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, "Detecting code clones with
graph neural network and flow-augmented abstract syntax tree," in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2020, pp. 261-271: IEEE.

[12] R. T. Yarlagadda, "Approach to computer security via binary analytics,"
International Journal of Innovations in Engineering Research and
Technology [IJIERT], 2020.

[13] D. Miyani, Z. Huang, and D. Lie, "Binpro: A tool for binary source code
provenance," arXiv preprint arXiv:1711.00830, 2017.

[14] Y. Gui et al., "Cross-language binary-source code matching with
intermediate representations," in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2022, pp.
601-612: IEEE.

[15] X. Wang et al., "Decompilation Based Deep Binary-Source Function
Matching," in International Conference on Science of Cyber Security,
2023, pp. 244-260: Springer.

[16] Z. Yu, W. Zhang, and T. Xu, "Leveraging IR based sequence and graph
features for source-binary code alignment," in 2024 4th International
Conference on Neural Networks, Information and Communication
(NNICE), 2024, pp. 175-180: IEEE.

[17] H. Tan, Q. Luo, J. Li, and Y. Zhang, "Llm4decompile: Decompiling
binary code with large language models," arXiv preprint
arXiv:2403.05286, 2024.

[18] N. S. Agency. (2019, 13/11/2024). Ghidra. Available: https://ghidra-
sre.org/

[19] A. Inc. (2024). AtCoder. Available: https://atcoder.jp/home

[20] B. S. Baker, U. Manber, and R. Muth, "Compressing differences of
executable code," 1999.

[21] H. Flake, Structural comparison of executable objects. Gesellschaft für
Informatik eV, 2004.

[22] Hex-Rays. (2024, 11/10/2024). IDA Pro. Available: https://www.hex-
rays.com/products/ida/

[23] D. Pizzolotto and K. Inoue, "BinCC: Scalable Function Similarity
Detection in Multiple Cross-Architectural Binaries," IEEE Access, vol.
10, pp. 124491-124506, 2022.

[24] D. Yu, Q. Yang, X. Chen, J. Chen, and Y. Xu, "Graph-based code
semantics learning for efficient semantic code clone detection,"
Information and Software Technology, vol. 156, p. 107130, 2023.

[25] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, "Functional code clone
detection with syntax and semantics fusion learning," in Proceedings of
the 29th ACM SIGSOFT international symposium on software testing
and analysis, 2020, pp. 516-527.

[26] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather,
"Programl: Graph-based deep learning for program optimization and
analysis," arXiv preprint arXiv:2003.10536, 2020.

[27] Y. Zou, B. Ban, Y. Xue, and Y. Xu, "CCGraph: a PDG-based code
clone detector with approximate graph matching," in Proceedings of the
35th IEEE/ACM international conference on automated software
engineering, 2020, pp. 931-942.

[28] K. Sendjaja, S. A. Rukmono, and R. S. Perdana, "Evaluating control-
flow graph similarity for grading programming exercises," in 2021
International Conference on Data and Software Engineering (ICoDSE),
2021, pp. 1-6: IEEE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

268 | P a g e

www.ijacsa.thesai.org

[29] X. Wang et al., "CODE-MVP: Learning to represent source code from
multiple views with contrastive pre-training," arXiv preprint
arXiv:2205.02029, 2022.

[30] T. Parr, The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2013.

[31] A. Project. (15/09/2024). ANTLR. Available: https://www.antlr.org/

[32] GitHub. (2024, 02/10/2024). ANTLR4 Grammar for C++14. Available:
https://github.com/antlr/grammars-
v4/blob/master/antlr/antlr4/examples/CPP14.g4

[33] T. G. project. (2024, 15/10/2024). Graphviz - Graph Visualization
Software. Available: http://www.graphviz.org/

[34] A. A. S. Hagberg, Daniel A.; Swart, Pieter J. (2024, 10/10/2024).
NetworkX. Available: https://networkx.org/

[35] E. G. Charlie Clark, and contributors. (2024, 13/10/2024). openpyxl - A
Python library to read/write Excel 2010 xlsx/xlsm files. Available:
https://openpyxl.readthedocs.io/

[36] C. R. H. a. K. J. M. a. S. e. f. J. et al. (2020, 20/09/2024). NumPy.
Available: https://numpy.org/

[37] P. Developers. (2024, 18/10/2024). PyGraphviz: Python interface to
Graphviz. Available: https://pygraphviz.github.io/

[38] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, and K. A. Schneider,
"CLCDSA: cross language code clone detection using syntactical
features and API documentation," presented at the Proceedings of the
34th IEEE/ACM International Conference on Automated Software
Engineering, San Diego, California, 2020. Available:
https://doi.org/10.1109/ASE.2019.00099

[39] J. Li, C. Tao, Z. Jin, F. Liu, J. Li, and G. Li, "ZC3: Zero-Shot Cross-
Language Code Clone Detection," presented at the Proceedings of the
38th IEEE/ACM International Conference on Automated Software
Engineering, Echternach, Luxembourg, 2024. Available:
https://doi.org/10.1109/ASE56229.2023.00210

[40] Y. Fang, F. Zhou, Y. Xu, and Z. Liu, "TCCCD: Triplet-Based Cross-
Language Code Clone Detection," Applied Sciences, vol. 13, no. 21, p.
12084, 2023.

[41] V. R. Joseph, "Optimal ratio for data splitting," Statistical Analysis and
Data Mining: The ASA Data Science Journal, vol. 15, no. 4, pp. 531-
538, 2022.

[42] Z. Yuan et al., "B2sfinder: Detecting open-source software reuse in cots
software," in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 1038-1049: IEEE.

[43] A. TehraniJamsaz, H. Chen, and A. Jannesari, "GraphBinMatch: Graph-
Based Similarity Learning for Cross-Language Binary and Source Code
Matching," presented at the 2024 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2024.
Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPSW63119.2024.00103

[44] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, "Convolutional neural
networks over tree structures for programming language processing," in
Proceedings of the AAAI conference on artificial intelligence, 2016, vol.
30, no. 1.

[45] I. Amazon Web Services. (2024, 18/11/2024). Amazon EC2 instance
types - T2. Available: https://aws.amazon.com/ec2/instance-types/t2/

[46] D. Á. Pérez, Ghidra Software Reverse Engineering for Beginners:
Analyze, identify, and avoid malicious code and potential threats in your
networks and systems. Birmingham, UK: Packt Publishing, 2021.

