
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

253 | P a g e  

www.ijacsa.thesai.org 

Binary–Source Code Matching Based on 

Decompilation Techniques and Graph Analysis

Ghader Aljebreen1, Reem Alnanih2, Fathy Eassa3, Maher Khemakhem4, Kamal Jambi5, Muhammed Usman Ashraf6 

Department of Computer Science-Faculty of Computing and Information Technology, King Abdulaziz University,  

Jeddah 21589, Saudi Arabia1, 2, 3, 4, 5 

Software Engineering and Distributed System Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia2, 3, 4, 5, 6 

Department of Computer Science, Government College Women University, Sialkot, Pakistan6 

 

 
Abstract—Recent approaches to binary–source code matching 

often operate at the intermediate representation (IR) level, with 

some applying the matching process at the binary level by 

compiling the source code to binary and then matching it directly 

with the binary code. Others, though less common, perform 

matching at the decompiler-generated pseudo-code level by first 

decompiling the binary code into pseudo-code and then 

comparing it with the source code. However, all these approaches 

are limited by the loss of semantic information in the original 

source code and the introduction of noise during compilation and 

decompilation, making accurate matching challenging and often 

requiring specialized expertise. To address these limitations, this 

study introduces a system for binary–source code matching 

based on decompilation techniques and Graph analysis 

(BSMDG) that matches binary code with source code at the 

source code level. Our method utilizes the Ghidra decompiler in 

conjunction with a custom-built transpiler to reconstruct high-

level C++ source code from binary executables. Subsequently, 

call graphs (CGs) and control flow graphs (CFGs) are generated 

for both the original and translated code to evaluate their 

structural and semantic similarities. To evaluate our system, we 

used a curated dataset of C++ source code and corresponding 

binary files collected from the AtCoder website for training and 

testing. Additionally, a case study was conducted using the widely 

recognized POJ-104 benchmark dataset to assess the system's 

generalizability. The results demonstrate the effectiveness of 

combining decompilation with graph-based analysis, with our 

system achieving 90% accuracy on POJ-104, highlighting its 

potential in code clone detection, vulnerability identification, and 

reverse engineering tasks. 

Keywords—Binary–source code matching; call graphs; code 

clone detection; control flow graphs; decompiler 

I. INTRODUCTION 

Since free software has become more popular, companies 
have adopted it widely and integrated it into closed-source 
projects. In addition to its economic appeal, its popularity is 
primarily driven by its convenience and flexibility for 
customization. Therefore, it is common for code to be 
modified, adapted, or reused before being redistributed or 
republished. 

The practice of reusing or cloning code has become 
widespread. The reuse of code snippets, however, can 
introduce other risks besides license violations, including 
potential harm or security flaws that have already been 
addressed in the original code [1]. 

There have been numerous tools created in recent years that 
handle clone detection at a lower level than source code, 
including Java Bytecode [2] and LLVM IR [3]. Several 
techniques have been proposed to detect code clones, at 
binary–binary [4], source–source [5], or binary–source code 
level [6, 7]. Token-based [8], tree-based [9], and graph-based 
methods are among these techniques [10]. Combining two or 
more techniques can also be achieved, as in [11], which 
combines tree-based and graph-based methods. Binary–source 
code matching is used in many security software engineering 
activities, including malware detection [12], vulnerability 
searches [10], reverse engineering [13], and code clone or 
similarity detection [10] , etc. Using semantic features 
extracted from binary and source code, binary–source code 
matching calculates the semantic similarity between binary and 
source code [14]. 

Some previous studies in the field of binary-source code 
matching and clone detection have adopted the approach of 
matching source code with binary code or decompiler-
generated pseudo-code [15]. However, most efforts have 
concentrated on binary-source code matching and clone 
detection at the intermediate representation (IR) level. 
Nevertheless, a recent study [16] identified significant 
disparities between the intermediate representation (IR) 
obtained through the decompilation of binary code and the IR 
derived from the corresponding source code. These disparities 
can hinder the learning process, as the decompiled IR is often 
difficult to comprehend. Consequently, all the aforementioned 
approaches are constrained by the loss of the rich semantic 
information inherent in the original source code or by the 
introduction of noise during compilation and decompilation, 
making accurate matching challenging and often requiring 
specialized expertise. This limitation makes it difficult to detect 
and capture clones based on semantic similarities rather than 
solely on structural similarities. Conversely, binary–source 
code matching at the source code level offers advantages in 
terms of language familiarity, compatibility with existing 
source code analysis tools, contextual understanding, 
maintainability, and developer productivity, making it a 
valuable approach to code matching and clone detection in 
real-world software systems. 

Hence, the main goal of this study is to match a binary code 
(target) with a source code (reference) at the source code level, 
where the binary code may have been compiled on different 
machines or compilers. By leveraging the source code 
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(reference), we can incorporate more semantic information, 
such as variable names and types, improving the accuracy of 
the matching process. This approach not only helps in 
identifying whether a corresponding binary code is included in 
a binary file—thus warning against potential vulnerabilities 
[7]—but also dramatically enhances the performance of binary-
source code matching and clone detection compared to binary–
binary code matching or decompiling binary (target) to pseudo-
code and matching it with the original source code (reference). 

In binary–source code matching, the main challenge is to 
bridge the semantic gap between the low-level machine code 
and high-level programming languages [14]. Binary files are 
obtained through the compilation process, and analyzing their 
similarity with the source code typically requires 
decompilation. Decompilation is the process of reconstructing 
high-level source code from a binary file [17]. 

For this purpose, we utilize decompilation techniques, 
specifically the Ghidra decompiler [18], along with a custom 
transpiler or translator to convert binary code compiled from 
C++ source code back into its corresponding high-level source 
code in C++, which serves as our target high-level language. A 
graph similarity analysis is then performed on both the original 
and generated C++ source codes (code pairs). By generating 
graph representations for both code snippets, specifically call 
graphs (CGs) and control flow graphs (CFGs), and measuring 
the similarity between these graphs using the weighted Jaccard 
index, this approach can effectively identify potential matching 
code pairs. We use only statically extracted code features (CGs 
and CFGs) in our binary–source code matching system. Due to 
this, BSMDG is easily scalable to programs with sizes in the 
hundreds of thousands and requires minimal RAM resources. 
The goal of BSMDG is to detect similarities between source 
code and binary code, which are syntactically different. Thus, it 
computes similarity based on semantic code features such as 
function declarations. 

This approach goes beyond traditional methods that rely 
solely on textual or token-based comparisons, as it takes into 
account the underlying program structure and the relationships 
between elements. By representing code snippets as graphs, it 
becomes possible to capture complex dependencies and control 
flow within the code. 

Overall, the contributions of this study are as follows: 

 To the best of our knowledge, we have developed the 
first translator or transpiler (source-to-source compiler) 
that translates Ghidra's decompiler output (C-like 
pseudocode) from an input C++ binary file into its 
corresponding high-level C++ source code. This 
innovation enables binary–source code matching 
directly at the source code level (C++), rather than at 
the binary, IR, or pseudocode levels. Matching at the 
source code level significantly improves matching 
accuracy. 

 We developed graphs (CGs, CFGs) generator based on 
the C++ source code generated by the transpiler. 

 As function-level binary–source code matching is vital 
in computer security, we developed a prototype system 

for function-level binary–source code clone detection 
based on decompilation techniques and graph similarity 
at the source code (C++) level, focusing on both 
semantic and syntactic clones. 

 We used the weighted Jaccard index as a similarity 
measure for graph-based binary-source code matching 
and clone detection at the source code level. 

 We curated a new C++ dataset from Atcoder website 
[19]. Then, we conducted comprehensive experiments 
to train and test the proposed approach based on this 
dataset. 

 As a case study, we evaluated the proposed rule-based 
approach against several baseline AI-based methods 
that detect C++ code clones at the IR level. These AI-
based systems typically require extensive data training 
to achieve accurate results, often involving large 
datasets and significant computational resources. We 
evaluated our approach using the POJ-104 dataset—a 
widely recognized benchmark in the field of code clone 
detection—which served as unseen data for our method. 
Despite the lack of such extensive training, our 
approach demonstrated superior performance, offering 
significant time-saving while achieving better accuracy. 

The remainder of this study is organized as follows: The 
literature is reviewed in Section II. In Section III, we describe 
the proposed materials and methods in detail. Section IV and 
Section V show the experimental setup and discuss the 
experimental results, respectively. Section VI presents the case 
study on clone detection and evaluates our proposed system by 
comparing it with baseline studies. Section VII illustrates the 
limitations of the current work. Lastly, Section VIII concludes 
the study and suggests future work directions. 

II. LITERATURE REVIEW 

This section covers the literature related to binary–binary, 
source–source, and binary–source code similarity (matching) 
and clone detection. 

A. Binary–Binary Code Similarity 

Binary code similarity approaches date back to 1999. For 
example, Baker et al. [20] developed a prototype diffing tool 
called Exediff for compressing differences of executable code. 
Exediff was one of the first approaches that studied binary 
code similarity by disassembling raw bytes into instructions 
and utilizing the code structure. 

In the decades that followed Exediff, several binary code 
similarity approaches were developed. Some of these are 
highly influential as they extend binary code similarity beyond 
purely syntactical similarity to encompass semantic similarity 
as well. 

In 2004, Thomas Dullien, also known as Halvar Flake, 
proposed a graph-based binary code diffing approach [21]. 
This method involved constructing a call graph isomorphism 
and aligning functions of different binary program versions. 
This advancement marked the foundation for the BinDiff 
binary code diffing plugin for the Interactive DisAssembler 
(IDA) [22]. 
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During the last decade, binary code similarity has gained 
popularity, as it has the integration of machine learning and 
deep learning. 

In a recent study [23], the authors presented a novel 
approach to detect function-level clones in binary code. With 
their proposed control flow graph (CFG) refinement algorithm, 
code reuse can be easily tracked, even in binaries compiled for 
different processor architectures. The CFG refinement 
algorithm works by extracting various function flows and 
reconstructing a higher-level structure, leveraging architectural 
differences and allowing efficient comparison in linear time 
with structural hashing. The study mentions several limitations 
and threats to validity. One limitation is that the approach is 
based on the assumption that the same function will have the 
same behavior across different architectures, which may not 
always be true. Another limitation is that the approach may not 
be effective in detecting clones that have been obfuscated or 
transformed in some way. Finally, the study acknowledges that 
the approach may not be suitable for detecting clones in certain 
architectures, such as ARM, where predication is used as an 
alternative to branching. 

B. Source–Source Code Similarity 

In [24], the authors presented a framework for code clone 
detection at the level of source code using either control flow 
graphs (CFGs) or PDG (Program Dependency Graph). While 
effective, the approach's reliance on deep learning requires 
substantial data and computational resources, impacting its 
practical utility. 

Another study [25] also used deep learning, introducing a 
novel approach for detecting functional code clones with 
different structures but matching functionality. The approach 
combines fusion embedding and fine-grained functionality 
identification using abstract syntax trees (ASTs) and CFGs. 
Despite promising results, the fused code representation might 
not encompass all possible syntax and semantic variations, 
leading to potential false negatives in clone detection. 

As a means of exploiting control and data flow information, 
the authors of [11] created a graph representation of programs 
named the flow-augmented abstract syntax tree (FA-AST). The 
FA-AST was constructed by adding explicit control and data 
flow edges to the source code’s ASTs. Two different types of 
graph neural networks (GNNs) were then applied to FA-AST 
to measure code similarity. The authors were the first to use 
GNNs to detect code clones. 

Similar to this, source-code-level exploitation of the data 
from the CFG and DFG was used in [26]. Program Graphs for 
Machine Learning (PROGRAML) is a low-level, portable 
format that leverages machine learning models that may be 
utilized to carry out challenging downstream tasks. It can be 
used to offer a unique graph-based program representation. The 
types and orders of operands and instructions, as well as 
control, data, and call relationships, are recorded, compiled, 
and represented using the PROGRAML representation. 
Learnable models may perform several kinds of program 
analyses using the general-purpose program representation 
provided by PROGRAML. 

Existing program dependence graph (PDG) generators for 
C and Java code have limitations as they only support 
compilable programs, restricting their practical application. 
Addressing this issue, the authors of [27] introduced CCGraph, 
a novel code clone detection tool. CCGraph focuses on 
identifying code clones within PDG-based environments. To 
achieve this, CCGraph utilizes graph kernels and an 
approximate graph matching technique. This approach aims to 
overcome the constraints posed by traditional PDG generators 
and expand the scope of code clone detection on the 
Weisfeiler-Lehman (WL) graph kernel. Compared to current 
state-of-the-art technologies, this approach improves efficiency 
and finds more semantic clones. However, it necessitates using 
complete compilable programs as test datasets, constraining the 
applicability of the PDG-based clone detection approach. 
Developing a PDG generator capable of handling code 
segments is recommended to broaden implementation. 

Moreover, the authors of [28] investigated the use of CFGs 
for static analysis in grading programming assignments. The 
study assesses the degree of similarity between students’ codes 
submissions and teacher reference code through an experiment 
using a CFG comparison algorithm. The research concludes 
that CFG comparison is more suited for boosting students with 
minor errors rather than being employed as the primary scoring 
algorithm for all submissions. The study solely assesses the 
CFG structure, neglecting the content of CFG nodes, which 
could lead to inaccurate scoring. 

Another study [29] presented CODE-MVP, a model 
integrating multiple source code views—plain text, abstract 
syntax tree (AST), and control or data flow graphs (CFGs or 
DFGs)—through multi-view contrastive pre-training. The 
model learns complementary information across these views, 
augmented by fine-grained type inference during pre-training. 
Experiments demonstrated CODE-MVP's superiority over 
state-of-the-art baselines across five datasets and three 
downstream tasks. However, the exclusion of call graphs limits 
the capture of essential program behavior aspects, hindering a 
comprehensive view of functions and their relationships. 

C. Binary–Source Code Similarity 

Certain studies adopt binary–source code similarity 
detection techniques to enhance similarity results. These 
approaches integrate both source code and corresponding 
binary code to achieve improved accuracy compared to 
traditional binary–binary, and source–source code similarity 
methods. 

An example is described in [7], which proposed a 
framework for function-level binary-source code matching that 
involves extracting semantic features and code literals from 
both source and binary code, merging them into embeddings, 
and using triplet loss to learn the relation. The proposed model 
uses a deep pyramid convolutional neural network (DPCNN) 
on character-level source code and graph neural network 
(GNN) models on binary code, as well as integer-LSTM and 
hierarchical-LSTM for code literals. LSTM stands for long 
short-term memory, which is a type of recurrent neural 
network architecture commonly used for processing sequential 
data such as text. The study also discusses the potential 
benefits and drawbacks of the proposed model, as well as some 
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limitations and future research directions. Overall, the 
proposed model achieves promising results on two datasets and 
could have practical applications in computer security. 
However, the model relies on the availability of large-scale 
source-binary code pairs for training, which may not always be 
feasible in practice. 

In [10], the authors used two steps to identify similarities 
between source code and binary code. They first generated 
source code using the provenance of the target binary code. 
Code similarity was then ranked using a unique graph triplet 
loss network. The method performs better for syntactic code 
clones but is less effective against semantic clones. 

In [14], a novel approach for cross-language binary–source 
code matching was introduced, leveraging intermediate 
representations (IRs). These IRs provide high-level code 
representation that abstracts away language-specific intricacies. 
The methodology involves the conversion of both binary and 
source code into IRs, followed by the utilization of a 
transformer-based neural network to learn the correlation 
between these two IRs. The evaluation, conducted on tasks 
involving cross-language binary–source and source–source 
code matching, shows the method's superiority compared to 
other state-of-the-art techniques. However, this approach still 
requires a number of enhancements, including the need for a 
larger dataset and large pre-training corpora to overcome the 
challenges related to cross-language information retrieval. 

In few studies, binary-source code matching was conducted 
at the level of decompiler-generated pseudo-code by first 
converting binary code into pseudo-code and then comparing it 
with the source code. For example, a recent study [15] 
introduces a framework (DBSM) that enhances binary-source 
function matching by decompiling binaries into pseudo-code 
using the IDA Pro decompiler and utilizing a self-attention-
based siamese network for function comparison. Although this 
approach outperforms other methods, its limitation lies in its 
reliance on pseudo-code, which lacks the rich semantic 
nuances of high-level source code, potentially leading to less 
accurate results compared to matching at the source code level. 
Additionally, their evaluation was conducted solely on two 
self-curated datasets (R0 and R3) without testing against any 
benchmark dataset, which hinders direct comparison with other 
baseline studies. 

From the aforementioned studies’ limitations, we can 
conclude that the proposed solution should utilize code graphs, 
namely call graphs (CGs) and control flow graphs (CFGs), to 
provide more semantic (contextual) information; these are 
more stable during code transformations (obfuscation resilient). 
This enhances the detection of semantic clones, which reflects 
positively on the performance of the target down-stream tasks, 
such as clone detection and vulnerability analysis. Moreover, 
some of the previously mentioned works that used AI 
techniques suffered from limitations, such as depending on 
existing datasets that were not applied in real operational cases. 

Furthermore, most research in the field of binary–source code 
matching and clone detection focuses on implementing the 
matching process at the IR level, with some studies addressing 
binary or decompiler-generated pseudo-code. These 
approaches typically emphasize the structural representation of 
code, often lacking the rich semantic context present in the 
original source code. This limitation makes it challenging to 
capture and detect clones that rely on semantic similarities 
rather than structural ones. Additionally, the analysis often 
requires expertise in IR languages. Therefore, to address these 
gaps, we focus on software reverse engineering and rule-based 
techniques for binary–source code matching and clone 
detection at the source code level, specifically in C++ in our 
study. Detecting matches and clones at the source code level 
offers benefits in terms of accuracy, interpretability, and direct 
applicability to the source code that developers interact with. 

III. MATERIALS AND METHODS 

The aim of this research is to match or determine the 
similarity between a given C++ source code (reference) and a 
binary code compiled from the same or a different C++ source 
code (target) based on the percentage of binary code functions 
that match source code functions. High similarity scores 
indicate that the binary was compiled from the given source 
code. The proposed system (BSMDG) remains unaffected by 
minor alterations, including the alteration or elimination of 
sections in the source code that do not compile (e.g., comments 
or white space), or changes to variable names, function names, 
or the order of declarations. We measure the likelihood rather 
than conclusively determining that the given source code 
contributed to the binary's compilation, highlighting the 
nuanced approach needed for code clone detection within 
security contexts. 

Three main steps are taken to accomplish this goal: 
preprocessing, graph generation, and measuring code 
similarity. Fig. 1 shows the detailed design of the proposed 
system. In the preprocessing step, the binary executable is 
decompiled into C-like pseudocode, which is then translated 
into C++ source code to facilitate comparison with the original 
C++ source code (reference). The graph generation step 
involves creating call graphs (CGs) and control flow graphs 
(CFGs) for both the original and generated C++ source code, 
capturing the structural and functional relationships within the 
code. Finally, in the measuring code similarity step, these 
graphs are compared using the weighted Jaccard index to 
quantify the similarity between the source and binary code, 
providing a nuanced assessment of whether the binary was 
likely compiled from the given source code. This systematic 
approach ensures a thorough and reliable evaluation of code 
similarity. 

A. Preprocessing 

This step involves decompiling the binary executable into 
pseudo-code and then translating this pseudo-code into its 
corresponding C++ source code. 
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Fig. 1. Detailed design of the proposed system. 

1) Decompilation: The binary executable is decompiled 

using the Ghidra decompiler (version 10.1.2) [18] into C-like 

pseudo-code. Our focus in the Ghidra decompiler output is 

primarily on the (main) function, excluding libraries (DLL 

files) and compiler functions. Analyzing the (main) function 

in the decompiler output (C-like pseudo-code) is crucial not 

only for reducing analysis costs but also for providing more 

accurate similarity results. Since it represents the actual user 

code, this focus offers valuable insights into the overall 

functionality and behavior of the binary executable, assisting 

in debugging and determining the program's purpose. 

 

Fig. 2. Example C++ source code from atcoder. 

Fig. 2 illustrates example C++ source code obtained from 
the Atcoder website [19]. Fig. 3 shows the C-like pseudo-code 
generated by Ghidra for the binary file compiled from the C++ 
source code shown in Fig. 2. 

2) Translation: During this step, a dedicated transpiler or 

translator is used to translate Ghidra decompiler's output (C-

like pseudocode) into its corresponding C++ source code. 

Throughout this study, the term ‘translated code’ refers to the 

C++ source code obtained from decompiled binary via the 

custom transpiler. This translation bridges the gap between 

binary and high-level code, enabling more accurate 

comparisons. The transpiler module utilizes ANother Tool for 

Language Recognition's (ANTLR’s) lexer and parser version 

4.13.0 [30, 31], which is a parser generator, to tokenize and 

parse the C-like pseudo-code, based on customized grammar (. 

g4) files developed by the authors of this study. The grammar 

files are specifically tailored to meet the unique requirements 

and specifications of the translation process, ensuring accurate 

and precise conversion of the C-like pseudo-code into 

corresponding C++ source code. Fig. 4 displays the output of 

the translation phase for the C-like pseudo-code example 

depicted in Fig. 3. In some cases, the translated code may not 

be fully compilable due to certain syntax errors, which result 

from the current limitations of the transpiler. These issues 

include missing type declarations, unmatched brackets, or 

irregular function signatures that occasionally arise from the 

decompiled pseudo-code structure. Although these syntax 

errors do not prevent the generation of call graphs (CGs) and 

control flow graphs (CFGs), they may introduce minor 

inaccuracies in the graph structure, such as missing or 

misrepresented nodes. As a result, these inaccuracies could 

slightly affect the computed similarity scores, particularly in 

cases, where structural details play a key role in clone 

detection. However, based on our empirical observations, the 

overall impact on semantic similarity is limited, as the primary 

structural patterns and control flow are still preserved. Due to 

time constraints, resolving these syntax issues is part of our 

planned future work to further enhance translation accuracy 

and improve similarity measurement reliability. Fig. 5 

illustrates Algorithm 1 which is a depiction of the translation 

process. This algorithm is designed to systematically translate 

the C-like pseudo-code output from Ghidra into its 

corresponding C++ source code. The algorithm begins by 
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initializing an ordered collection to store the translated lines 

(step 1). Then, it iterates through the C-like pseudo-code, line 

by line (steps 2 and 3), modifying each line to adhere to the 

syntax of C++ as closely as possible. The modified lines are 

then added to the ordered collection in the order they appear in 

the pseudo-code (step 4). Once the translation of all lines is 

complete, a new source code file is created to store the 

translated code (step 5). The lines from the ordered collection 

are then written to the source code file in the same order (step 

6), ensuring the translated code maintains the original 

sequence. 

 
Fig. 3. Example C-like pseudo-code (output of Ghidra's decompiler). 

 

Fig. 4. Example output of the translation module. 

 
Fig. 5. Algorithm 1: Translate the C-like pseudo-code to its corresponding 

C++ source code. 

B. Graph Generation 

Once the binary code is translated into a high-level 
representation (C++ source code), call graphs (CGs) and 
control flow graphs (CFGs) are generated for both the original 
C++ source code (reference) and the generated C++ source 
code produced by the translation module (target). CGs and 
CFGs are essential tools in software analysis that capture the 
relationships and dependencies between different components 
of the code, facilitating a more comprehensive analysis. 

1) Call Graph (CG): A CG is a directed graph that 

represents calling (caller-callee) relationships between 

different functions or methods within a program. It captures 

the flow of control between different functions, providing 

insights into how the program's components interact with each 

other. 

2) Control Flow Graph (CFG): A CFG is a directed graph 

that represents the control flow within a function or method. It 

illustrates the flow of execution through the function, 

depicting the sequence of statements and the decision points, 

such as conditional branches or loops, within the function. 

The generation of CGs and CFGs in this study is carried 
out using a proprietary graph generator, developed by the 
authors of this study, in Java (version JDK17). Off-the-shelf 
graph generators are unsuitable for this purpose due to the 
potential presence of syntactical errors in the generated C++ 
source code from the translation process, rendering it non-
compilable. Consequently, we employ a dedicated graph 
generator to overcome this limitation. To generate CGs and 
CFGs, ANTLR's lexer and parser are used to tokenize and 
parse the C++ source code pairs (original and generated) based 
on the C++ grammar file (CPP14.g4) [32] to produce abstract 
syntax trees (ASTs), which are then utilized to generate call 
and control flow graphs. Algorithms 2 and 3, in Fig. 6 and 
Fig.7, show how CGs and CFGs are generated, respectively. 

In clone detection, call graphs represent how functions are 
called, identifying function-level clones in programs. Using 
call graphs, you can detect both direct copies and complex 
clones by analyzing the structure and flow of function calls. 
Therefore, they are essential for identifying code similarities 
with a high degree of reliability. 
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Fig. 6. Algorithm 2: Call Graph (CG) generation. 

Algorithm 2 starts by establishing a class called 
CallGraphListener (step 1) and initializing three variables 
(root, parent, and child), all of which are of the type 
GenericGraphItem (step 2). These variables serve as nodes in 
the call graph. Additionally, a new instance of the 
GenericGraph class, callGraph, is created to act as the 
container for the call graph (step 3). The algorithm proceeds by 
defining procedures for entering function definitions (step 4), 
statements (step 6), and exiting function definitions (step 10). 
These procedures handle the creation of nodes and their 
connections within the call graph. Steps 6 to 11 of the Call 
Graph Generation algorithm describe the handling of 
individual statements within a function and the management of 
the call graph structure. When the parser encounters a 
statement within a function (step 6), it checks whether the 
statement is relevant, such as an output operation (cout), input 
operation (cin), a function call, or a method call (step 7). If the 
statement is relevant, a new node (childItem) representing the 
statement is created and associated with the current parent 
node, which represents the context or function in which this 
statement resides (step 8). This new childItem is then added to 
the callGraph, linking it to the parent node and integrating the 
statement into the call graph (step 9). When the parser exits a 
function definition (step 10), the parent and child variables are 
reset to null, clearing the current function's context and 
ensuring that subsequent function definitions start with a fresh 
state (step 11). This process ensures that the call graph 
accurately reflects the function calls and control flow in the 
C++ source code. Finally, the algorithm includes a 
generateOutput procedure (step 12) responsible for generating 
the desired output from the callGraph. It also incorporates error 
handling to address any exceptions that may occur during the 
graph generation process (steps 14 and 15). The algorithm 
concludes with the termination of the CallGraphListener class 
(step 16), marking the end of the CG generation process and 
the encapsulation of all related functionalities within the class. 

 
Fig. 7. Algorithm 3: Control Flow Graph (CFG) generation. 

Control Flow Graphs (CFGs) are essential in clone 
detection as they show the execution flow within functions, 
highlighting both structural and semantic similarities between 
code snippets. By capturing the sequence of statements and 
decision points, such as if-else conditions or switch-case 
statements, CFGs help to identify function-level clones, even 
when syntactic variations, such as variable renaming or code 
reordering, are present. This makes CFGs crucial for detecting 
deeper, logic-based similarities that go beyond syntactic-level 
code comparisons. 

Algorithm 3 starts with the definition of a class named 
ControlFlowGraphListener (step 1), which is responsible for 
managing the generation of the CFG. Within this class, three 
key variables—root, parent, and child—are declared as 
instances of GenericGraphItem (step 2). These variables 
represent the nodes within the control flow graph, where root 
serves as the starting point of the graph, parent indicates the 
current node or context within the graph, and child represents 
new nodes created by control statements. Additionally, a new 
instance of GenericGraph, referred to as flowGraph, is 
initialized (step 3). This flowGraph will store the entire 
structure of the CFG, capturing the relationships between 
control statements in the C++ source code. 

The algorithm proceeds by defining a procedure for 
entering function definitions (step 4), which is executed upon 
entering a function definition. Within this procedure, a new 
root node is created using the appropriate name, and it is added 
as the root node of the flowgraph (step 5). 
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In (step 6) the enterControlStatement procedure is then 
defined to handle the entry of control statements, such as 
statements or loops. When encountering a control statement, a 
new child node is created with the corresponding name and 
parentItem (step 7). The child node is added to the flowGraph, 
and if a parent node exists, it is also added as a subItem of the 
parent (step 8). The parent variable is updated to the child 
node, reflecting the current hierarchy within the control flow 
graph (step 9). 

To ensure the correct structure of the control flow graph, 
the algorithm includes the exitControlStatement procedure 
(step 10). This procedure updates the parent variable to the 
parent of the current child node, facilitating the proper traversal 
of the control flow hierarchy (step 11). 

The algorithm proceeds with the generateOutput procedure 
(step 12), which is responsible for generating the desired output 
from the flowGraph. It attempts to generate graphs from the 
flowGraph and, if an exception occurs during the process, it 
prints an error message to indicate the issue (step 13). 

The algorithm concludes with the termination of the 
ControlFlowGraphListener class (step 14), marking the end of 

the CFG generation process and the encapsulation of all related 
functionalities within the class. 

The output of this phase is a set of (.dot) files that utilize 
the (Graphviz) library [33] to visualize the CGs and CFGs for 
both code snippets being matched, providing valuable insights 
into the relationships and structure of the code components. 

Fig. 8 and Fig. 9 show the CGs and CFGs for the C++ code 
snippet (a) depicted in Fig. 2 and its corresponding translated 
binary (b) in Fig. 4. 

 
Fig. 8. CG example: (a) CG for the C++ source code; (b) CG for the 

corresponding translated binary code. 

 

Fig. 9. CFG example: (a) CFG for the C++ source code; (b) CFG for the corresponding translated binary code. 

C. Measuring Code Similarity 

In this phase, the generated CGs and CFGs of both the 
original and generated C++ source code are matched using 
appropriate similarity measurement technique to quantify the 
degree of similarity between the two code snippets. This step 
helps in identifying the common patterns and structures shared 
by the two representations. 

We adopt the weighted Jaccard index as a similarity metric, 
which is a similarity measure that compares the similarity 
between elements of two sets, taking into account the weights 
associated with the elements in the sets. It extends the standard 
Jaccard index by considering both the presence of common 

elements and their respective weights. By incorporating 
weights, it provides a more nuanced measure of similarity, 
allowing for a more accurate comparison of sets. The regular 
Jaccard index treats all elements equally, ignoring any 
variation in their significance, whereas the weighted Jaccard 
index acknowledges the diverse impact that elements may have 
on the overall similarity. 

In the context of code clone detection, where the goal is to 
identify code fragments that are similar or nearly identical to 
each other, the weighted Jaccard index plays a crucial role. 
Code clones may not be exact replicas but can have variations 
due to modifications, such as variable renaming or code 
reordering. To capture these variations, the weighted Jaccard 
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index considers elements occurring in code snippets (specific 
C++ keywords noted in Table I). This makes it particularly 
useful in detecting code clones that have undergone 
modifications while maintaining a core similarity. 
Furthermore, the weighted Jaccard index enables fine-grained 
clone detection, where different parts of a code snippet can be 
assigned different weights based on their significance. This 
allows for more precise code clone detection by focusing on 
specific parts of the code that are deemed more critical or 
unique. 

The weighted Jaccard index can be calculated as follows: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑖𝑛𝑑𝑒𝑥 =
 (∑ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) /

 (∑ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)

Eq. (1) represents the calculation of the weighted Jaccard 
index between two sets (nodes contents of CGs and CFGs of 
the given two code snippets), where the weights associated 
with the elements (keywords) are taken into consideration. The 
numerator of the equation involves summing the minimum 
weights of the common elements (keywords), indicating the 
combined importance of the shared elements. The denominator 
involves summing the maximum weights of all elements 
(keywords) in both sets (nodes contents of CGs and CFGs of 
the given two code snippets), representing the total potential 
importance of any element in the sets. By dividing the sum of 
the minimum weights by the sum of the maximum weights, the 
weighted Jaccard index provides a value between 0 
(completely unmatched) and 1 (completely matched), 
indicating the degree of similarity between the nodes contents 
of CGs and CFGs of the given two code snippets, while 
considering the weights assigned to their elements (keywords). 

As for the weights of C++ keywords, we gathered all 
standard C++ keywords from the Microsoft website 
(https://learn.microsoft.com/en-us/cpp/cpp/keywords-
cpp?view=msvc-170#standard-c-keywords). Then, different 
weights were assigned to the keywords according to their 
significance in the context of CGs and CFGs and the thorough 
analysis of the code within our curated dataset. For one source 
code file, the weights were assigned to the keywords based on 
Table I, with 100 total weights. 

TABLE I.  WEIGHTS ASSIGNED TO C++ KEYWORDS 

Keyword type Weight 

Function call (main, cin, cout) 2 

Control statements (if, for, while, do) 2 

Data types, frequently used 2 

Data types, infrequently used 1 

All other keywords 0.1 – 0.9 

The Jaccard index for measuring the similarity score 
between two functions has been used in many studies, 
including [4], in which the authors emphasize that their method 
is relatively accurate but also slow. They utilize a combination 
of the Jaccard index and the longest common subsequence 
(LCS) algorithm, which takes into account the order of 
elements in two sequences to perform function comparisons. 

However, in our own work, we are primarily concerned with 
accurately determining the similarity between graphs of two 
code snippets, regardless of the order of their nodes or 
keywords. As a result, we only use the Jaccard index, which 
has high accuracy, and we do not consider sequence order in 
our analysis. By avoiding the LCS algorithm, which has a high 
time complexity of O (n^2), we are able to achieve faster 
execution times. 

We developed the matching module using Python (version 
3.10.10) with the libraries NetworkX (version 2.8.4) [34], 
openpyxl (version 3.0.10) [35], NumPy (version 1.23.5) [36], 
and PyGhraphviz (version 1.9) [37] to import the generated 
call and control flow graphs (.dot files) in the previous step, 
read the node components, and compute the combined 
weighted Jaccard index between the graphs. By computing the 
weighted Jaccard index between the call graphs and control 
flow graphs of the original C++ source code and translated 
binary code (generated C++ source code), we can obtain a 
quantitative measure of the similarity between the two code 
representations. A high-level algorithm for measuring code 
similarity based on the generated graphs applied in this step is 
illustrated in Fig. 10. Algorithm 4 is designed to quantify the 
similarity between two given code graphs represented as text. 
The algorithm follows a step-by-step process to accomplish 
this task. 

 
Fig. 10. Algorithm 4: Measuring code similarity. 
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In step 1, the function "get_text_weighted_similarity" takes 
three input parameters: "graph1Text" and "graph2Text" 
(textual representations of CGs and CFGs nodes of the two 
code snippets being compared), and "weights" (a set of weights 
associated with each keyword). 

Step 2 of the algorithm involves cleaning the "graph1Text" 
and "graph2Text" by removing punctuation, digits, and non-
relevant words, ensuring that only meaningful keywords, 
which are related to the context of CGs and CFGs, are 
considered in the similarity calculation. 

Next, the variables "total_weights" and "similarity" are 
initialized to zero, representing the cumulative weights and 
similarity score, respectively (step 3). 

The algorithm then proceeds to create two sets, "set1" and 
"set2", which contain the cleaned words from the first code 
snippet "graph1Text" and the second code snippet 
"graph2Text" respectively (steps 4 and 5). 

The algorithm enters a loop where it iterates over each 
keyword in "set1" (step 6). For every keyword encountered, it 
checks if the keyword is present in "set2" (step 7). If it is, the 
keyword's weight is added to both the similarity and 
total_weights variables (step 8). If the keyword is not found in 
"set2" (step 9), only the keyword's weight is added to 
total_weights (step 10). After processing all keywords in 
"set1", the algorithm proceeds to iterate over each keyword in 
"set2" (step 13). If a keyword is not present in "set1" (step 14), 
its weight is added to total_weights (step 15). Conversely, if 
the keyword is found in "set1" (step 16), its weight is added to 
both similarity and total_weights (step 17). 

Once both sets have been processed, the algorithm 
calculates the similarity by dividing the similarity score by the 
total_weights (step 20). This normalization ensures that the 
similarity value falls within a meaningful range. Finally, the 
algorithm outputs the calculated similarity (S) as the result 
(step 21). 

The resulting similarity score ranges from 0 
(unmatched/completely different) to 1 (matched/ completely 
identical). Within the scope of our research, achieving a perfect 
matching score of 1 between a C++ source code and its 
corresponding translated binary code is unfeasible. This is 
because the Ghidra decompiler, in processing compiled source 
code (binary file), renames original variables and introduces 
auxiliary variables to manage complex data structures such as 
arrays, vectors, and lists. These modifications inherently 
decrease the similarity between the original source code and its 
corresponding decompiled binary. Thus, a perfect similarity 
score of 1 remains un-attainable for the CFGs of matched pairs, 
highlighting the inevitable differences caused by such changes. 

When assessing the similarity between two different code 
snippets (C++ source code and a binary code compiled from 
another C++ source code), a threshold value of up to 0.55 is 
considered indicative of a high degree of similarity, attributed 
to the syntactical similarities inherent in C++ programs. 
Furthermore, these inherent syntactical similarities ensure that 
code pairs exhibit a significant degree of similarity, 
necessitating categorization within the range 0<S<1. 

Consequently, a similarity score below the predefined 
threshold of 0.55 (0≤S<0.55) is considered evidence of 
unmatched pairs (minimal similarity), indicating substantial 
differences between the code pairs. On the other hand, a score 
in the range of 0.55 ≤ S < 1 indicates matched pairs (highly 
similar), reflecting a significant degree of similarity between 
the code pairs. This differentiation is crucial for discerning the 
gradations of similarity and the threshold separating matched 
from unmatched code pairs in our analysis. 

The optimal similarity threshold of 0.55 was selected after 
a thorough analysis of our curated dataset from Atcoder 
website. This value was determined by examining the 
similarity levels in the dataset's code pairs (C++ source code 
and binary code, whether the binary originated from the same 
source code or a different one). In this study, we tested various 
thresholds and, through empirical analysis, fine-tuned the 
similarity values to enhance precision and recall. This 
refinement contributes to the overall accuracy of the system. 

IV. EVALUATION AND RESULTS 

A. Dataset 

To construct our dataset, we collected 100 C++ source code 
files from AtCoder [19], a reputable online platform 
recognized for hosting competitive programming competitions 
and serving as a hub for programmers. The selection of 
AtCoder was based on its diverse range of problem types, 
solution strategies, and user contributed submissions which 
collectively provide a rich variety of real-world coding styles. 
This diversity enhances the generalizability and robustness of 
our system in clone detection scenarios. The collected files 
span multiple versions of the C++ language, from CPP 11 to 
CPP 20, ensuring relevance to modern software development 
practices. The use of AtCoder as a dataset source is supported 
by recent studies such as CLCDSA [38], ZC3 [39], and 
TCCCD [40], which employed AtCoder submissions to 
evaluate clone detection models. Based on these studies, we 
can confirm AtCoder's capability of capturing diverse coding 
patterns and use it for training and validating our proposed 
BSMDG system. Each C++ source code file in the dataset was 
accompanied by relevant information, including submission 
time, task title, user who uploaded the code, code size, and 
execution time. 

To facilitate the matching process, each C++ source code 
file was compiled using the GNU Compiler Collection (GCC 
13.2), resulting in the generation of its corresponding binary 
(.exe) file. We trained and tested the proposed system using 
this dataset on a Fedora Linux 39 machine with four 2.40 GHz 
processors and 15.5 GB of RAM. 

To organize the dataset, we implemented the 80/20 rule 
[41], which is a practical guide-line suggesting that 
approximately 80% of the data should be allocated to training 
the system and 20% should be used to test its performance. 
Accordingly, eighty C++ source code files and their 
corresponding binary files were allocated for training our 
proposed system, which involved determining thresholds, 
where 50% of the subset (forty code pairs) was considered 
matched (binary and matching source code from which it was 
compiled), and 50% (the other forty code pairs) was considered 
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unmatched (binary and unmatching source code) to ensure that 
neither set was biased during training. The remaining 20 C++ 
source code files and their corresponding binary files from the 
dataset were reserved for testing the proposed system, where 
50% of this subset comprised matched pairs and 50% 
comprised unmatched pairs. 

Afterwards, a series of steps were carried out (illustrated in 
Section III), resulting in the creation of eleven files for each 
individual C++ source code file. In total, the dataset contains 
1100 files encompassing all of the C++ source code files and 
the files generated for each of them including the 
corresponding binary files. 

We labeled each pair of C++ source code and binary files 
in the dataset according to the nature of the matching process. 
Specifically, the labels indicate whether the matching was 
performed between a C++ source code file and its 
corresponding binary file (matched pairs), or between a C++ 
source code file and a binary file of another C++ source code 
file (unmatched pairs). 

B.  Evaluation Metrics 

A predefined threshold value of 0.55 was used to test the 
performance of the proposed system. During this procedure, 20 
pairs of C++ source code files and their corresponding 
translated counterparts—C++ source code generated from 
binary files by our translation module—were tested. These files 
were randomly selected from our curated dataset from Atcoder 
and categorized as matched (M) if the source code file was 
compared against its corresponding binary file, or unmatched 
(UM) if the source code file was compared against a binary file 
compiled from different source code. 

To assess the effectiveness of the proposed system, several 
performance metrics were computed, including precision, 
recall, F-score, and accuracy. The equations used to calculate 
these metrics are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)

In the context of our research, precision represents the 
proportion of correctly classified matched pairs out of all pairs 
classified as matched. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)

Recall signifies the proportion of matched pairs that were 
correctly identified by the system among all actual matched 
pairs. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
 𝑅𝑒𝑐𝑎𝑙𝑙)

The F-score considers both precision and recall 
simultaneously and provides an overall measure of the 
system’s effectiveness in identifying matched pairs in our 
dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +
 𝐹𝑁)

Accuracy provides an assessment of the system’s ability to 
correctly classify both matched and unmatched pairs, 
representing the overall performance of the system. 

Therefore, the precision was 0.75, the recall was 0.9, the F-
score was 0.82, and the accuracy was 0.80 for the given test 
subset. Table II summarizes the performance metrics of the 
proposed system (BSMDG). Fig. 11 shows the bar chart for 
these metrics. 

TABLE II.  PERFORMANCE METRICS OF THE PROPOSED SYSTEM 

(BSMDG) ON OUR CURATED DATASET FROM ATCODER (THRESHOLD AT 0.55) 

Precision Recall F-score Accuracy 

0.75 0.9 0.82 0.80 

 
Fig. 11. Performance metrics of the proposed system (BSMDG) on our 

curated dataset from Atcoder (threshold at 0.55). 

V. DISCUSSION 

The bar chart (Fig. 11) visualizing the system’s 
performance metrics—precision (0.75), recall (0.9), F-score 
(0.818), and accuracy (0.8)—provides a comprehensive 
quantitative assessment of its effectiveness. The precision of 
0.75 indicates that 75% of the positive (matched) predictions 
made by the proposed system are accurate, reflecting a solid 
performance in specificity. However, this also means that 25% 
of the positive predictions are false positives, which suggests 
that the system may be identifying unmatched pairs as 
matched. This could be due to the system's sensitivity to minor 
code similarities (syntactical similarities inherent in C++ 
programs) that do not constitute true matches, indicating a need 
for refinement in the matching (measuring similarity) 
algorithms to reduce false positives. 

The recall of 0.9 is particularly high, showing that the 
system successfully identifies 90% of all actual positive cases. 
This high recall underscores the system's effectiveness in 
detecting binary–source code matches, which is critical in 
applications like code clone detection, copyright infringement 
detection and software forensics, where missing a genuine 
clone could be highly detrimental. The high recall suggests that 
the system is comprehensive in its search for potential matches, 
but this comes at the cost of lower precision, indicating a trade-
off between sensitivity and specificity. BinPro [13], B2SFinder 
[42],  and XLIR [14] have also found a trade-off between 
precision and recall. This trade-off highlights the importance of 
parameter tuning. Several parameters were empirically 
adjusted based on dataset characteristics, such as keyword 
weights in Algorithm 4 and similarity thresholds. 

The F-score, which balances precision and recall, is 0.82. 
This score suggests that while the system performs well 
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overall, there is still room for improvement, particularly in 
reducing the false positive rate to enhance precision without 
sacrificing recall. The fact that the F-score is closer to the recall 
than the precision indicates that the system is more inclined 
towards sensitivity, which is advantageous in scenarios, where 
detecting all potential matches is more important than 
minimizing false positives. 

An overall accuracy of 0.80 confirms the system’s 
reliability in distinguishing between matched and unmatched 
pairs across the test subset. However, the accuracy metric alone 
may not fully capture the system's performance, especially 
given the imbalance between precision and recall. The system's 
ability to correctly identify true negatives (unmatched pairs) 
also contributes to this accuracy, but the relatively lower 
precision suggests that there are still challenges in 
distinguishing between true matches and near-misses. 

In summary, while the BSMDG system demonstrates 
strong recall and overall accuracy, its lower precision 
highlights the need for further refinement in its matching 
(measuring similarity) algorithms. These improvements could 
involve more sophisticated filtering of minor code similarities 
that do not represent true matches, thereby enhancing the 
system’s specificity. Such enhancements would be crucial for 
increasing the precision while maintaining the high recall, 
leading to a more balanced and effective tool for binary–source 
code matching detection. 

Researchers have demonstrated similar results in recent 
work with binary-source code similarity and clone detection, 
such as CCGraph [27] and GraphBinMatch [43], , highlighting 
the need to combine structural and semantic features to make 
accurate comparisons. 

VI. CASE STUDY 

A. Experimental Setup and Evaluation Dataset 

We further evaluated the performance of our proposed 
system (BSMDG) on unseen data using the POJ-104 dataset 
[44] to assess the system’s generalizability and real-world 
applicability. Several studies have focused on code clone 
detection using various methodologies and datasets. However, 
to provide a comprehensive analysis of our findings, we 
compared our performance metrics (precision, recall, F-score) 
against those reported in previous research studies that utilized 
the POJ-104 dataset for code clone detection. POJ-104 is a 
comprehensive dataset designed for the evaluation of code 
clone detection methodologies. It consists of C++ source code 
submissions provided by 500 students in response to 104 
distinct programming challenges from an online judge (OJ) 
platform designed for educational uses, resulting in a total of 
52,000 source code files. In this study, the compilation of C++ 
source code files into binary executables was performed using 
the GNU Compiler Collection (GCC version 13.2). Source 
code files that failed to compile were excluded from further 
analysis, resulting in the generation of 44,096 binary 
executables. The primary cause for the inability to compile 
certain files was identified as the pre-processing stage of 
dataset preparation, during which headers were removed, 
leading to compilation failures. To address this issue, essential 
headers, including 'iostream' and 'string', were reintegrated into 

the source code files to facilitate successful compilation. This 
process of header reintegration was executed through the 
deployment of Python scripts, designed to automate the 
inclusion of frequently used headers. Nonetheless, a subset of 
the source code files required libraries that are either rarely 
used or not frequently encountered, which, in turn, led to a 
reduction in the total number of source code files that could be 
successfully compiled. Next, we leveraged a virtual machine 
from Amazon Elastic Compute Cloud (Amazon EC2 t2.2xlarge 
instance) [45], equipped with 8 vCPUs and 32 GB of RAM, to 
enhance the efficiency of the Ghidra decompilation process 
and boost our system's performance. In the decompilation 
process we used multithreading in our Python scripts to 
execute Ghidra’s headless analyzer [46], a command-line-
based (non-GUI) version of Ghidra, through calling the 
‘analyzeHeadless‘ shell script, which is located in the Ghidra 
program path. The ‘analyzeHeadless‘ script facilitates 
automated, headless (non-interactive) analysis of binary files, 
enabling users to automate importing, decompiling, 
disassembling, and other analyses on binary executables and 
object files. This can be particularly useful in environments, 
where graphical interfaces are not available, such as servers, or 
in automated pipelines, where human interaction is not 
feasible. As such, it is a powerful tool for automating binary 
file analysis in reverse engineering and security auditing. 
BSMDG takes the decompiled binary–source code pairs 
(cloned or matched and non-cloned or unmatched) as input to 
assess their similarity scores. Next, the system assesses 
whether the pairs are classified as cloned or non-cloned by 
utilizing a similarity threshold of 0.7. This threshold was 
determined through empirical analysis of the POJ-104 dataset, 
where precision and recall were fine-tuned to identify the 
optimal value. 

B.  Baselines and Comparison 

Since most previous studies have conducted binary-source 
code matching at the IR level, we compared our proposed 
system with the pioneering research that utilized the POJ-104 
dataset in their analysis to facilitate direct comparison. The 
baseline studies employing the POJ-104 dataset for clone 
detection are as follows: 

1) BinPro [13]: This model was designed to address the 

issue of detecting similarities between source code and binary 

code, even in cases, where the compiler or optimization level 

remains unspecified. Utilizing machine learning approaches, 

BinPro identifies the most effective code features (FCGs) for 

assessing the similarity between binary and source code. 

Through the application of static analysis tools, these features 

are extracted and analyzed, enabling the matching of binary 

and source codes via a bipartite matching algorithm (i.e., 

Hungarian algorithm). 

2) B2SFinder [42]: This model leverages a sophisticated 

approach to identify binary code clones, extracting seven 

distinct features from both binary and source code across three 

key dimensions: strings, integers, and control-flow. It utilizes 

a weighted feature-matching algorithm designed to 

accommodate the diverse nature of these features. This 

algorithm assigns weights to code feature instances, taking 
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into account their uniqueness and the frequency of their 

appearance, to efficiently match binary and source code by 

inferring traceable characteristics. 

3) XLIR (Transformer) [14]: This method involves a 

state-of-the art neural network model based on transformer 

technology in binary–source code matching. Central to XLIR's 

methodology is the use of LLVM intermediate representation 

(IR), as implied by its name. To process LLVM IR tokens, 

XLIR utilizes a BERT model that has been pre-trained. The 

initial phase involves pre-training the neural network on a 

large corpus of external LLVM-IR, employing masked 

language modeling (MLM) as a preliminary step. This process 

is designed to capture meaningful representations of LLVM-

IR tokens effectively. Following the embedding of these 

tokens, XLIR maps them into a common space, where the 

representations of LLVM-IR are jointly learned through a 

ternary loss function. By adopting this strategy, XLIR can 

match binary and source code from various programming 

languages. 

4) XLIR (LSTM) is a variant of the proposed approach 

XLIR (Transformer) [14] in which LSTM network is used to 

encode the IRs. 

5) GraphBinMatch [43]: This model leverages a graph 

neural network to learn the similarity between binary and 

source codes. It represents binary and source codes as graphs, 

incorporating control flow, data flow, and call flow 

information. This graph-based representation helps the neural 

network model better understand the structure and semantics 

of the code. 

Table III presents a comparison of performance metrics 
between our proposed system (BSMDG) and the baselines on 
the POJ-104 dataset. Fig. 12 visually represents the 
comparative performance metrics listed in Table III. 

TABLE III.  PERFORMANCE OF THE PROPOSED SYSTEM (BSMDG) AGAINST BASELINES ON THE POJ-104 DATASET (THRESHOLD AT 0.7) 

System Matching Level Methodology Precision Recall F-score 

BinPro [13] Source code with Assembly code (IR) of corresponding binary code AI-based 0.38 0.42 0.40 

B2SFinder [42] Source code with Assembly code (IR) of corresponding binary code Rule-based 0.43 0.46 0.44 

XLIR(Transformer) [14] 
LLVM_IR of source code with LLVM-IR of corresponding binary 

code 
AI-based 0.85 0.86 0.85 

XLIR (LSTM) [14] 
LLVM_IR of source code with LLVM-IR of corresponding binary 
code 

AI-based 0.67 0.72 0.69 

GraphBinMatch [43] 
LLVM_IR of source code with LLVM-IR of corresponding binary 

code 
AI-based 0.88 0.86 0.87 

BSMDG (the proposed system) 
Source code with generated source code of corresponding binary 

code 
Rule-based 0.97 0.83 0.89 

 

 
Fig. 12. Performance of the proposed system (BSMDG) against baselines on 

the POJ-104 dataset (threshold at 0.7). 

In comparison to the previous studies on the POJ-104 
dataset, our decompilation graph-based clone detection system 
(BSMDG) demonstrates favorable performance metrics, 
showcasing its effectiveness in identifying code clones within 
the POJ-104. 

Fig. 12 shows the performance of various binary analysis 
tools, including our proposed system (BSMDG). All of these, 
except B2SFinder, employ advanced AI models, such as 
LSTM and Transformer architectures. This visualization 
highlights the precision, recall, and F-score of each system, 
offering a clear comparison across these critical performance 
metrics. 

Our proposed system stands out for achieving the highest 
precision (0.97) among all the tools evaluated, indicating its 
exceptional ability to correctly identify true positives while 

minimizing false positives. This is particularly noteworthy 
considering that BSMDG achieves this performance without 
relying on AI models, which are typically associated with 
higher computational costs and complexities. 

The comparison reveals that while AI-based systems like 
XLIR (using both LSTM and Transformer architectures) and 
GraphBinMatch demonstrate strong performance, especially in 
terms of recall and F-score, BSMDG surpasses these systems 
in precision. Moreover, BSMDG achieves a competitive F-
score of 0.89, highlighting its balanced performance in both 
precision and recall. Despite having a slightly lower recall rate 
compared to the highest AI-based systems, this calls for 
enhancements to boost its performance and improve its 
competitive stance. 

The benefit of our proposed rule-based system over AI-
based systems lies in its efficiency and simplicity. By not 
relying on AI, BSMDG avoids the need for extensive training 
data, computational resources, and tuning of complex models, 
making it a more accessible and easier-to-deploy solution for 
code analysis and clone detection scenarios. Additionally, the 
high precision of BSMDG makes it particularly valuable in 
contexts, where the cost of false positives is high, ensuring that 
resources are focused on truly relevant findings. 

This comparison underscores the significance of 
developing innovative, non-AI methodologies for binary 
analysis, demonstrating that such approaches can not only 
compete with but, in some aspects, surpass AI-based models. 
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BSMDG represents a significant advancement in the field, 
providing a highly accurate, efficient, and practical tool for 
binary analysis and clone detection that is particularly suited 
for applications requiring high precision without the overhead 
of AI models, making it an invaluable asset in the field of 
software engineering and security. 

VII. LIMITATIONS 

Although our proposed binary–source code clone detection 
approach is promising, there are some limitations to consider: 

1) The proposed approach could lead to either false 

positives or false negatives based on the selected similarity 

threshold for comparing code graphs. Setting the threshold too 

low might lead to an increase in false positives, whereas a 

higher threshold could cause more false negatives. 

2) The task of decompiling and translating code that 

includes non-standard headers remains a significant challenge 

that demands specialized knowledge and careful analysis. For 

instance, decompiling and translating code that employs the 

<bits/stdc++.h> header presents obstacles due to its non-

standard nature, making it difficult to ascertain the precise 

headers it encompasses. Recognizing that decompilation is a 

complex process, success in managing particular headers 

greatly depends on the sophistication of the tools and 

methodologies employed. Additionally, it is vital to 

understand that the decompiled code may not be an exact 

representation of the original source code, as some details and 

optimizations could be lost in the compilation process. 

3) The presence of goto statements in the decompiled code 

can reduce the similarity level between the original C++ 

source code and the generated C++ source code produced by 

the transpiler. 

4) The evaluation was performed using specific datasets, 

and the system’s performance could vary when applied to 

other datasets that have different degrees of code similarity. 

VIII. CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this research, we conducted an extensive investigation 
into code clone detection by integrating innovative techniques 
and methodologies, focusing on the matching between C++ 
source code and binary code at the source code level, rather 
than at the binary, intermediate representation (IR), or pseudo-
code levels. A pivotal strategy we employed is decompilation, 
which plays a crucial role in bridging the semantic gap 
between binary and source code. This step is facilitated by the 
use of Ghidra's decompiler and a custom-developed transpiler 
(source-to-source compiler) based on ANTLR, enabling the 
transformation of binary code into a high-level C++ source 
code. 

Using these cutting-edge tools, we improved the precision 
and dependability of our experiments, contributing to the 
robustness of our findings. We captured the intricate 
relationships and structures embedded within the code by 
fusing graph-based code representations, namely call and 
control flow graphs. We conducted a nuanced analysis that 

outperforms conventional clone detection methods by 
employing the weighted Jaccard index as a similarity measure. 

The integration of decompilation and graph similarity 
analysis in our methodology not only enhances the capability 
to detect code clones in binary–source code by considering 
structural and semantic similarities, but also addresses the 
challenges posed by the limited availability of source-level 
information in binaries and disassemblies and the significant 
differences between source code and binary or object code 
after compilation. Our approach contributes a novel 
perspective to the field, suggesting a shift towards more 
context-rich, semantic-based analyses for binary-source code 
matching and clone detection. 

As a case study, we evaluated the proposed rule-based 
approach (BSMDG) against several baseline studies that use 
AI techniques to detect C++ code clones, using the POJ-104 
dataset. The experimental results show that BSMDG 
outperforms other baseline studies. When compared with 
BinPro, B2SFinder, XLIR, and GraphBinMatch, BSMDG 
improves the F-score from 0.40, 0.44, 0.69, 0.85, and 0.87, 
respectively, to 0.89, achieving a 90% accuracy rate. 

The methodology demonstrated in this study not only 
underlines the importance of analyzing clones at the source 
code level but also emphasizes the potential of our approach to 
contribute significantly to areas such as malware detection, 
vulnerability analysis, and reverse engineering. The BSMDG 
system can be used in real-world software development 
environments to improve security and code verification. As an 
example, it could be integrated into Continuous Integration or 
Continuous Deployment (CI or CD) pipelines to help catch any 
unwanted or suspicious changes early in the development 
cycle. As part of malware analysis, BSMDG can detect reused 
or copied code within binaries, assisting in threat identification 
and tracing the code's origin. A further benefit of BSMDG is 
that it can assist in detecting vulnerabilities by comparing 
binary code with secure source code versions, thereby 
identifying unauthorized or accidental modifications that result 
in vulnerabilities. According to the findings of this study, high-
level language analysis within binary-source code matching 
needs to be further advanced to improve clone detection tools 
for improved accuracy and applicability to software 
engineering and cybersecurity. 

B. Future Work 

While the current study has established a solid foundation 
for binary–source code matching and clone detection at the 
source code level, several avenues for future research have 
been identified to further refine and extend our methodology: 

1) Syntax error resolution: One of our priorities moving 

forward is to improve the translation module so it can generate 

a higher percentage of compilable C++ code from the C-like 

pseudo-code output by the decompiler. This will play a key 

role in making our system more accurate and dependable. To 

achieve this, we plan to refine the grammar to better handle 

common patterns in Ghidra’s pseudo-code and introduce pre-

processing steps to clean up irregular structures before 
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parsing, ultimately reducing syntax errors and improving 

translation quality. 

2) Optimization of graph similarity algorithm: We plan to 

explore more advanced graph similarity methods to improve 

the system’s precision and recall, especially for detecting 

semantic code clones. 

3) Obfuscation resistance: While the current system 

handles simple transformations, future improvements will 

focus on making it more robust against common obfuscation 

techniques like instruction substitution and control flow 

flattening. 

4) Cross-language compatibility: In future work, we plan 

to extend our approach to support cross-language binary–

source code matching, making it possible to detect code clones 

across different programming languages like Java and Python. 

5) Hybrid analysis integration: We plan to combine 

dynamic analysis with our current static analysis to build a 

hybrid approach. This will offer a more complete view of both 

code behavior and structure, which could lead to more 

accurate and reliable clone detection. 

By addressing these areas, future research can enhance the 
utility and applicability of binary–source code matching and 
clone detection tools, further bridging the gap between binary 
and high-level source code analysis for security and 
maintenance purposes. 
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