
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

278 | P a g e  

www.ijacsa.thesai.org 

Securing UAV Flight Data Using Lightweight 

Cryptography and Image Steganography

Orkhan Valikhanli, Fargana Abdullayeva 

Institute of Information Technology, Baku, Azerbaijan 

 

 
Abstract—The popularity of Unmanned Aerial Vehicles 

(UAVs) in various fields has been rising recently. UAV 

technology is being invested in by numerous industries in order 

to cut expenses and increase efficiency. Therefore, UAVs are 

predicted to become much more important in the future. As 

UAVs become more popular, the risk of cyberattacks on them is 

also growing. One type of cyberattack involves the exposure of 

important flight data. This, in turn, can lead to serious problems. 

To address this problem, a new method based on lightweight 

cryptography and steganography is proposed in this work. The 

proposed method ensures multilayer protection of important 

UAV flight data. This is achieved by two layers of encryption 

using a polyalphabetic substitution cipher and ChaCha20-

Poly1305 authenticated encryption, as well as randomized least 

significant bit (LSB) steganography. Most importantly, through 

this work, a balance is kept between security and performance. 

Additionally, all experiments are carried out on real devices, 

making the proposed method more practical. The proposed 

method is evaluated using MSE, PSNR, and SSIM metrics. Even 

with a capacity of 8000 bytes, it achieves an MSE of 0.04, a PSNR 

of 62, and an SSIM of 0.9998. It is then compared to existing 

methods. The results show better practical use, stronger security, 

and higher overall performance. 
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I. INTRODUCTION 

UAVs have become popular in many different fields 
including scientific research, agriculture, military, surveillance, 
aerial photography, delivery services, infrastructure 
inspections, and more. UAVs can do many tasks quickly and 
are cheaper compared to other traditional methods. Moreover, 
they can also perform complex tasks efficiently and reduce 
operational risks. This is the reason UAVs have become 
common across various industries. 

However, UAVs also face significant challenges related to 
their cybersecurity. There are many types of cyberattacks 
targeting UAVs. A cyberattack on a UAV could result in loss 
of control, data leakage, mission failure, and even injuries or 
death [1, 2]. In December 2011, the American UAV RQ-170 
Sentinel was captured by Iranian forces. Both, GPS spoofing 
and GPS jamming attacks were performed to capture the UAV 
[3]. In December 2009, UAV video feed recordings were 
discovered after capturing militants. Militants used SkyGrabber 
software to capture satellite videos using the satellite antenna 
[4]. Since the videos were not encrypted, the militants were 
able to take advantage of this vulnerability. Ground Control 
Stations (GCSs) of UAVs are also vulnerable to various 
cyberattacks. In September 2011, a keylogger virus was 

detected in the GCS of Predator and Reaper UAVs. According 
to reports, technicians attempted to delete the virus however, it 
kept reappearing [3, 5]. Hooper et al. [6] demonstrated that 
commercial UAVs are vulnerable to common security attacks. 
To prove this, authors performed buffer overflow, Denial of 
Service (DoS), and ARP cache poisoning attacks. All 
experiments showed that some commercial UAVs are 
vulnerable to those attacks. 

In this study, a novel method for the protection of important 
UAV flight data is proposed. The proposed method is 
multilayered which consists of three main phases. First, data 
from the flight controller of the UAV is encrypted using a 
polyalphabetic substitution cipher. Second, lightweight 
ChaCha20-Poly1305 cryptography is implemented to encrypt 
data to increase security. Finally, randomized LSB 
steganography is used to hide data in an image. Only after 
completing all those steps, the stego image is sent to GCS. 
Subsequently, the GCS extracts encrypted data from the stego 
image and then decrypts it to reveal the actual important flight 
data. Overall, the proposed method uses three different keys 
shared between the UAV and the GCS. One key is used for the 
polyalphabetic cipher to randomize blocks. Second key is used 
for lightweight ChaCha20-Poly1305 cryptography. The third 
key is used for randomized LSB steganography. Moreover, a 
shared secret constant is used to add more security to the 
system. The main contributions of this study are as follows: 

 This study proposes a novel seed derivation approach. 
The proposed approach offers a high level of security. 

 The proposed work uses the polyalphabetic substitution 
cipher to add initial security to the system. In the 
proposed scheme, not only does the same character 
within a single word differ, but it also differs for each 
operation (for each time an image is sent). This 
approach indeed increases security. 

 The proposed work uses ChaCha20-Poly1305, a 
lightweight authenticated encryption scheme. While 
ChaCha20 provides the stream cipher function, 
Poly1305 handles message authentication. This 
approach ensures the confidentiality and integrity of the 
data. 

 The proposed work uses randomized LSB with a key 
instead of simply LSB. Moreover, similar to the first 
contribution, the position of information in the image is 
different for each operation. This makes the detection of 
hidden information inside the image even more 
difficult. 
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 The results of various experiments demonstrate that the 
proposed method outperforms others in both security 
and imperceptibility. Furthermore, the experiments 
were conducted in a real environment (a real flight 
computer) rather than a simulated one. This is important 
from a practical perspective. 

The remainder of this study is organized as follows: Section 
II presents related works. In Section III, the problem 
statement and methods are given. Section IV presents the 
proposed multilayer protection method, including 
algorithms and the operational workflow of the system. In 
Section V, the results of experiments are demonstrated. 
Section VI concludes this work and discusses future work. 

II. RELATED WORKS 

There are numerous cryptography and steganography 
methods available for securing data. However, only a limited 
number of studies focus on UAVs. Due to this limitation, 
similar systems such as IoT are also analyzed in this work. 
Alkodre et al. [7] presented a shuffling-steganography 
algorithm to protect UAV data. The proposed algorithm is 
hybrid which uses both text-based and image-based 
steganography. The main idea of the method is to divide data 
based on a pattern, then hide a part in a text cover, and another 
part in an image. For encrypting the data authors used Data 
Encryption Standard (DES) and also implemented Advanced 
Encryption Standard (AES). For image steganography, 
however, LSB is used. Lin et al. [8] proposed an XOR-based 
encoding strategy to transform secret digits into smaller ones. 
Moreover, frequency-based encoding is used to hide data in 
two images. One of the images is stored in the UAV to avoid 
interception attacks. The second image, however, is sent to 
command station. The proposed method determines whether 
the second image has been altered by extracting the secret data 
from the two images after the UAV mission is over. Rodríguez 
Marco et al. [9] proposed new techniques for transmitting 
information to the GCS, making it possible to accurately know 
the aircraft performance in icing conditions. The idea is to use 
onboard cameras to capture icing conditions on wings and 
stabilizers. Moreover, information is hidden inside captured 
images using LSB steganography before sending it to GCS. 
Syed et al. [10] used steganography to hide UAV images 
within audio file. To hide the data, the authors used LSB 
coding with XOR operation. After hiding the data, the audio 
file was transmitted to GCS, where the image was extracted. A 
secret key was used during both the embedding and extraction 
processes. Alarood et al. [11] proposed a stenographic 
technique to ensure privacy and authenticity in Internet of 
Things (IoT) networks. The proposed stenographic technique is 
based on the pixel characteristics of the cover image in the 
spatial domain. The main idea is to classify pixels into highly 
smooth and less smooth domains to select the extra eligible 
pixels. Hassaballah et al. [12] proposed an image 
steganography method to secure data in the Industrial Internet 
of Things (IIoT). The proposed method embeds secret data in 
the cover images using a metaheuristic optimization algorithm 
called Harris Hawks optimization to effectively choose image 
pixels that can be used to hide bits of secret data within integer 
wavelet transforms. AlEisa [13] used steganography to embed 
the patient’s personal information in their medical images to 

enhance confidentiality in case of a distant diagnosis. IoT is 
used to enhance medical data security in order to preserve 
confidentiality and integrity. As a steganography method, the 
LSB of the approximate coefficient of integer wavelet 
transform is used. Rostam et al. [14] proposed a combination 
of chaos functions and steganography method based on image 
blocking to preserve IoT privacy. Block centers are used to 
generate the initial key of the chaos function. Subsequently, 
randomly selected secret data bits are hidden in the pixels of 
randomly selected blocks. 

The analyzed works have some limitations. Most of them 
focus only on security at the steganography level and use weak 
encryption methods or don’t use cryptography at all. Many 
works also ignore the fact that devices have limited resources, 
which can affect how well their methods work. In this work, 
however, all mentioned issues are considered. 

III. PROBLEM STATEMENT AND METHODS 

Flight data of UAV is important as it contains all the 
necessary information about the status, operation, and 
performance of the UAV. On the other hand, unprotected flight 
data poses a serious risk. This is because attackers may 
intercept it and take advantage of it. Moreover, some flight data 
is even more essential and should be protected at all costs. For 
instance, let’s consider a situation where a military UAV flies 
over enemy territory. In this situation, important flight 
information, such as position, altitude, etc. of the UAV should 
be secure. If not, the UAV may be located and captured. This 
could indeed create more problems. Videos, images, or other 
secret information recorded by the UAV may be revealed to 
the enemy. To solve this problem, it’s necessary to implement 
various techniques to secure necessary flight information. One 
solution to this problem is to use cryptography to encrypt data. 
However, encryption alone might not be sufficient. In this 
situation, steganography is essential. By embedding the 
encrypted data within files, steganography adds an additional 
layer of security. This indeed makes sensitive information less 
detectable. The combination of cryptography and 
steganography provides a robust approach to secure important 
flight data. Considering all mentioned above, general 
information about cryptography, steganography, cryptographic 
hash functions, pseudorandom number generators (PRNGs) 
etc. will be presented in this section. 

A. Cryptography 

The term “cryptography” derives from two Greek words: 
κρυπτός (kryptos) – “secret” and γραφω (grapho) – “write” 
[15]. Cryptography is the science of secret writing with the 
goal of hiding the meaning of a message [16]. Mainly two 
types of cryptography are used for the encryption of sensitive 
data. These are symmetric cryptography and asymmetric 
cryptography. In symmetric cryptography, the same key is used 
for both encryption and decryption. In asymmetric 
cryptography, however, a pair of keys are used: a public key 
for encryption and a private key for decryption. Moreover, the 
public key is shared openly and the private key is kept secret. 
For each type of cryptography, different algorithms were 
introduced. Symmetric cryptography uses algorithms like AES, 
DES, Triple Data Encryption Standard (3DES), ChaCha20, and 
others. Asymmetric cryptography on the other hand uses 
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algorithms like Rivest-Shamir-Adleman (RSA), Elliptic Curve 
Cryptography (ECC), and others. In our context, some of the 
symmetric cryptography algorithms will be considered. 

1) Data Encryption Standard and 3DES: Data Encryption 
Standard (DES) was developed in the 1970s and later adopted 
as a standard by the U.S. National Institute of Standards and 
Technology (NIST) in 1977. Moreover, DES itself is based on 
the Lucifer cipher, developed by Horst Feistel  [16]. The block 
size of DES is 64 bits and the key size is 56 bits. Because of 
its relatively short key size, DES is now considered unsafe. 

To overcome the limitations of DES, 3DES was introduced. 
3DES increases security by applying the DES algorithm three 
times to each data block. This is possible by using two or three 
unique 56 bit keys. Thus, 3DES supports key sizes of 112 and 
168 bits. 3DES uses an encrypt-decrypt-encrypt (EDE) 
scheme. If the two-key version is implemented then key 1 is 
used to encrypt data. Afterwards, key 2 is used to decrypt the 
same data. Finally, key 1 is used again for encryption. 
However, if the three-key version is implemented, then key 1 is 
used to encrypt data. Afterwards, key 2 is used to decrypt the 
same data. Finally, key 3 is used for encryption. While 3DES 
has stronger security compared to DES, it is computationally 
intensive and slower. 

2) Advanced encryption standard: In 1997 the NIST 
called for proposals for a new Advanced Encryption Standard 
(AES). In 2001, NIST declared the block cipher Rijndael as 
the new AES and published it as a final standard [16]. 
Rijndael is named after cryptographers, Joan Daemen and 
Vincent Rijmen. AES was developed to address the 
weaknesses and limitations of DES. The block size of AES is 
128 bits. AES supports 128, 192, and 256 bits key sizes. It’s 
important to say that the performance of the AES can vary 
depending on whether a processor has built-in hardware 
acceleration for AES operations. Processors without AES 
hardware support depend on software-based implementations. 
This approach can be slower because AES operations are 
computationally intensive. 

3) Chacha20 and Chacha20-Poly1305: Chacha20 is a 
modern and efficient stream cipher designed by Daniel J. 
Bernstein [17]. It is a modified version of the Salsa20 cipher. 
Chacha20 uses 512 bit blocks and the key size is 256 bits. 
Moreover, it also uses 96 bit nonce for encryption. In most 
cases, Chacha20 is faster and more efficient than traditional 
ciphers like AES. This makes Chacha20 suitable for systems 
like IoT, UAV, and others. 

In the Chacha20-Poly1305 combination, Chacha20 is a 
stream cipher and Poly1305 is a message authenticator. 
Poly1305 is a message authentication code (MAC) algorithm 
that ensures authenticated encryption by generating a tag to 
verify the integrity and authenticity of the encrypted message 
[18]. There are various protocols that use Chacha20-Poly1305 
including Secure Shell Protocol (SSH), Transport Layer 
Security (TLS), etc. 

4) Monoalphabetic and polyalphabetic ciphers: 
Monoalphabetic and polyalphabetic ciphers are substitution 
ciphers. Substitution ciphers are block ciphers that replace 

symbols (or groups of symbols) with other symbols or groups 
of symbols [19]. In monoalphabetic ciphers, a single 
substitution rule is applied throughout the entire message. This 
means that every letter in the ciphertext always matches the 
same letter in the plaintext. Polyalphabetic ciphers, however, 
use multiple substitution rules to encrypt the message. This 
means that the same letter in the plaintext matches different 
letters in the ciphertext. Polyalphabetic ciphers are harder to 
break than monoalphabetic ciphers, particularly if the key is 
unknown. 

B. Cryptographic Hash Functions 

1) Hash functions take a message as input and generate a 
fixed-size output referred to as hash value or simply hash.  To 
be more specific, a hash function h maps bitstrings of arbitrary 
finite length to strings of fixed length, say n bits [19]. 
Cryptographic hash functions should have two main properties 
to be secure. These are preimage resistance (one-wayness) and 
collision resistance. Preimage resistance means that reversing 
the hash value to get the original input should be infeasible. 
Collision resistance however means that it should be infeasible 
to find two different inputs that produce the same hash value. 
There are also two main types of hash functions such as 
keyless and keyed. Keyless hash functions don’t require a key 
to operate. MD4, MD5, and SHA-256 are some examples of 
keyless hash functions. Keyed hash functions require a key to 
operate. The key provides an additional level of protection. 
Hash-based Message Authentication Code (HMAC) is one of 
the best examples of keyed hash functions. While keyless hash 
functions provide data integrity, the keyed hash function 
provides both data integrity and authentication. Therefore, 
each type of hash function has its own usage. 

2) Cryptographic hash functions have a wide range of 
applications. For instance, hash is used to verify data integrity. 
They ensure that data has not been modified during 
transmission. Hash is also used to store passwords in a 
database securely. This is possible by only storing the hash 
value of the password instead of storing it as plain text in the 
database. Later, during the authentication process, the hash of 
the entered password is compared to the stored hash. 
Moreover, digital signatures use hashes to generate a unique 
fingerprint of the data. 

C. Pseudorandom Number Generators 

Pseudorandom number generators (PRNGs) are algorithms 
designed to generate sequences that are computed from an 
initial seed value [16]. The seed value is the starting point for 
PRNG. Using seed value, PRNG generates a sequence of 
numbers using a deterministic algorithm. Since the algorithm is 
deterministic, the same seed will always produce the same 
sequence of numbers. There are many proposed PRNG 
algorithms including Mersenne Twister, linear congruential 
generator (LCG), middle-square, blum blum shub (BBS), 
permuted congruential generator (PCG), linear feedback shift 
register (LFSR), etc. PRNGs are used in a wide range of 
applications such as cryptography, modeling, statistical 
analysis, gaming, and others. Cryptographically secure 
pseudorandom number generators (CSPRNGs) are a special 
type of PRNGs designed to be unpredictable and resistant to 
cyberattacks. 
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D. Steganography 

The word steganography is a composite of the Greek words 
steganos, which means “covered”, and graphia, which means 
“writing” [20]. Steganography is a technique of hiding secret 
information within common data or objects to evade detection. 
Thus, it is possible to hide secret information in various media 
formats such as text, image, audio, and video. Additionally, the 
secret information itself may be in any of these formats. For 
example, in the case of text steganography, punctuation and 
spacing can be modified to hide information. Audio 
steganography uses techniques such as modifying frequencies 
or embedding secret data into the LSB of the audio signal. 
Video steganography may modify frames or pixels to hide 
information. Image steganography uses techniques of Discrete 
Cosine Transform (DCT) and Discrete Wavelet Transform 
(DWT). However, LSB embedding is the most common 
technique due to its simplicity and low computational 
requirements. As the name suggests, LSB technique modifies 
the least significant bits of pixel values of an image. Since 
these bits barely affect the pixel color, the changes are 
unnoticeable to the human eye. There are also some terms used 
in steganography such as cover object, stego object, and stego 
key. A cover object refers to the original object used as a 
carrier for secret information. A stego object is the result of 
embedding secret data into the cover object [20]. A stego key 
is a secret key used during the embedding process to control, 
where and how the secret data is embedded. 

IV. THE PROPOSED WORK 

In this work, we present a novel approach that combines 
lightweight cryptography and steganography techniques to 
securely embed important flight data into images captured by 
UAV. These images are then sent to the GCS. In GCS, hidden 
flight data is extracted from images. The resource limitations 
that come with UAVs were carefully taken into account when 
building the suggested system. It is well known that unlike 
computers, servers, or other systems, UAVs may not always 
have sufficient computational resources (CPU, RAM, etc.). 
This especially applies to small-sized UAVs. To address these 
limitations, the proposed approach keeps an optimal balance 
between security and performance. The structure of the UAV 
and GCS with their main components is described in Fig. 1. 

 
Fig. 1. The structure of UAV-GCS for proposed work. 

A. The Proposed Algorithms 

This subsection discusses the proposed algorithms 
separately. Later, it will be explained how these algorithms 
work together to demonstrate the functioning of the entire 
system. Some of the algorithms run on both the UAV and the 
GCS, while others run only on one of them. The distinction 
between these algorithms is based on their specific roles, such 
as initialization, seed derivation, encryption, decryption, 
embedding, and extraction. Each algorithm includes specific 
parameters, and some are executed several times on both the 
UAV and the GCS. 

1) Initialization for polyalphabetic substitution: 
Initialization for polyalphabetic substitution is performed both 
on UAV and GCS. This step is used to create blocks for 
polyalphabetic cipher encryption and reversed blocks for 
polyalphabetic cipher decryption. As seen in Algorithm 1, 
during block generation, multiple substitution blocks are 
generated using the defined characters. Each block maps one 
character to another character by shifting its position in the list 
of characters. For instance, the letter “A” may map to the 
letter “B” in one block, to the letter “C” in the next block, and 
so on. For the decryption process, the code also creates a 
reversed version of each block. In the reversed blocks, the 
mapping is flipped. This allows retrieving the original 
character from the substituted one. The final step returns 
blocks (for encryption) and reversed blocks (for decryption). 

Algorithm 1 Initialization for polyalphabetic substitution 

Input: characters 

Output: blocks and reverse_blocks 

 

1. Generating substitution blocks: 

1.1. Initialize an empty list to store blocks:  blocks    []  

1.2. for shift in 0 to length(characters)-1: 

          blockCreateMap(characters, ShiftChrs(characters, shift)) 

          blocks.add(block) 

       end for 

2. Generate reverse blocks: 

2.1. Initialize an empty list to store rev. blocks: reverse_blocks    [] 

2.2. for block in blocks: 

          reverse_block    ReverseMapping(block) 

          reverse_blocks.add(reverse_block) 

       end for 

3. Return blocks and reverse_blocks 

2) Seed derivation: Deriving seeds is one of the most 
important steps, because in our proposed approach, seeds are 
both used by polyalphabetic cipher and randomized LSB. The 
process of seed derivation in this work uses a cryptographic 
hash function. One of the properties of hash functions is their 
avalanche effect. The avalanche effect ensures that a small 
change in the input produces a significantly different output. 
In this work, date and time are used as the source of change. 
Since date and time values vary constantly, the hash function 
reacts to these small differences. As a result, the seed value 
becomes highly sensitive to even small changes. Therefore, 
this property of the hash function is taken advantage of in this 
work. However, using a keyless hash for our approach has 
potential risks. This is because attackers may analyze how the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

282 | P a g e  

www.ijacsa.thesai.org 

seed information is generated. Initially, they could determine 
whether date and time information is used for seed. Then, they 
could try all hash functions and try to generate seeds 
themselves. To solve this problem, HMAC-SHA256 is 
implemented. Since HMAC-SHA256 requires a key to 
generate a hash, it will be difficult for attackers to achieve 
their goals. Furthermore, additional secret constant parameter 
is also used in input along with date and time. The main idea 
behind using both date and time information along with a 
secret constant is to increase security. Generally, using only 
date and time information to derive a seed is secure in our 
system because the key size is sufficient to provide security. 
However, including a secret constant in the system makes it 
even more secure. Even with the secret key, an attacker will 
be unable to determine exactly which information the hash is 
derived from. Moreover, the attacker must know both the key 
and the secret constant to get the correct hash value. Thus, 
while date and time information make the system dynamic, the 
secret constant increases its security even further. Algorithm 2 
demonstrates the proposed seed derivation algorithm. 

Algorithm 2 Seed derivation 

Input: key, date_time and secret_constant 

Output: derived_seed 

 

1. Combining input data: 

combined_data  CombineInputData(date_time, secret_constant) 

2. Convert combined data into a byte encoded representation: 

encoded_data  encode (combined_data) 

3. Compute keyed-hash HMAC-SHA256: 

hash  HMAC-SHA256 (key, encoded_data) 

4. Extract the first 8 bytes of the hash and represent them as a big-

endian integer seed: 

derived_seed  IntegerFromBytes(hash[0:8],"big-endian") 

5. Return derived_seed 

As seen in Algorithm 2, the first step is combining input 
data including date and time information and secret constant. 
In the next step, combined data is encoded. The encoded data 
then is passed to HMAC-SHA256 as a parameter, along with 
the secret key. The length of the secret key is 256 bits. After 
generating the hash, the first 8 bytes (64 bits) of hash value are 
selected. This is because for our case the input of the PRNG 
function requires 8 bytes of data. 

3) Encryption using polyalphabetic cipher (UAV): As 
mentioned earlier, polyalphabetic cipher uses multiple 
substitution rules to encrypt the data which makes them more 
secure compared to monoalphabetic ciphers. Therefore, the 
polyalphabetic cipher is selected as initial encryption method 
in this work. Algorithm 3 demonstrates the process of 
encryption using the polyalphabetic cipher. During 
initialization, an empty list is assigned to ciphertext and then 
PRNG is initialized using seed. As a PRNG function, Small 
Fast Chaotic 64 (SFC64) is selected due to its high 
performance. The PRNG generates random values, which are 
used to select substitution blocks. The seed ensures that the 
same sequence of random values is produced each time 
encryption is performed. This in turn makes the process 
deterministic and reproducible for decryption. After 
initialization, the algorithm processes every character in the 

input plaintext. A random substitution block is chosen if the 
character is part of the specified character set. The character is 
then replaced with its counterpart from the chosen block. If a 
character is not found in the character set then it remains 
unchanged. Finally, the ciphertext is returned. 

Algorithm 3 Encryption using polyalphabetic cipher 

Input: plaintext, seed, characters, and blocks 

Output: ciphertext 

 

1. Initialize an empty list to ciphertext:  

ciphertext   [] 

2. Initialize random generator rng with seed:  

rng  InitializeRNG(seed) 

3. Process every character and replace it with its counterpart from 

blocks: 

3.1 for each char in plaintext:   

3.2    if char in characters:   

             block   GetRandomBlock(rng, blocks)   

             ciphertext.add(block[char])   

         else:   

             ciphertext.add(char)   

         end if   

      end for  

4. Return ciphertext 

4) Encryption using ChaCha20-Poly1305: Using 
polyalphabetic cipher only may not secure the important data. 
To increase the security even further, ChaCha20-Poly1305 is 
implemented as the main encryption method. The encryption 
process for ChaCha20-Poly1305 is demonstrated in Algorithm 
4. First, ChaCha20-Poly1305 is initialized with the provided 
encryption key. Then, the data is encrypted using the cipher 
and a nonce. Once the data is encrypted, an authentication tag 
is also generated. An authentication tag is important since it 
ensures the integrity of the encrypted data. This tag is then 
added to the encrypted data to form the final encrypted data 
with the tag. Finally, the function returns the encrypted data 
with a tag. Thus, using ChaCha20-Poly1305 instead of 
ChaCha20 alone ensures not only confidentiality but also both 
confidentiality and integrity of the data. 

Algorithm 4 Encryption using ChaCha20-Poly1305 

Input: key, data, and nonce 

Output: encrypted_data_with_tag 

 

1. Initialize ChaCha20-Poly1305: 

cipher  InitializeChaCha20Poly1305(key) 

2. Encrypt the plaintext and generate the authentication tag:  

encrypted_data, auth_tag  EncryptAndAuthenticate(cipher, nonce, 

data) 

3. Add the authentication tag to the encrypted data:  

encrypted_data_with_tag  Concatenate(encrypted_data, auth_tag) 

4. Return encrypted_data_with_tag 

5) Using randomized LSB for embedding: Implementation 
of only LSB instead of randomized LSB is not secure. This is 
because an attacker can use steganography analysis techniques 
to detect hidden data. Since the LSB is modified in a 
predictable manner, patterns may easily be detected. This, in 
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turn, makes it easier for an attacker to extract the hidden 
information. Therefore, randomized LSB with seed is 
implemented in this work. The algorithm of implementation is 
demonstrated in Algorithm 5. First, the input image is loaded 
and processed in RGB format. This means that each pixel 
consists of three color channels: red, green, and blue. After the 
image is converted into a pixel array. Next, the input data is 
converted into binary form. This ensures that data can be 
embedded as individual bits within the image pixels. This step 
is important since the LSB technique works at the bit level.  
To add randomization to the system, SFC64 as a PRNG 
function is initialized using the given seed. The PRNG 
function generates a randomized sequence of pixel positions. 
This ensures that data is embedded in an unpredictable order. 
The use of a seed means that the same random sequence can 
be reproduced later during extraction. The algorithm then goes 
through the randomly chosen pixel positions one by one, 
embedding a single bit of binary data into the LSB of the 
corresponding pixel channel. This process repeats until every 
bit of data has been embedded. The modified pixel array is 
then converted back into an image. Finally, modified image is 
saved. 

Algorithm 5 Using randomized LSB for embedding 

Input: image_path, output_image_path, data, seed 

Output: stego_image 

 

1. Load the image and convert to array format: 

pixels  LoadImageAsArray(image_path) 

2.  Convert data into binary representation:   

binary_data  ConvertToBinary(data) 

3.   Initialize pseudorandom generator with seed and shuffle pixel 

positions:  

indices  GenerateRandomizedPixelIndices(pixels, seed) 

4. Embed binary data into least significant bits of pixel values:   

4.1 data_index  0   

4.2 for each (i, j) in indices while data_index < Len(binary_data) do   

          ModifyLSB(pixels[i, j], binary_data[data_index])   

          data_index  data_index + 1   

      end for 

5. Convert to image form: 

stego_image  ConvertToImageForm(pixels) 

6. Save the modified image: 

SaveImage(stego_image, output_image_path) 

6) Using randomized LSB for extraction: During the 
extraction of data, the first step is loading the stego image and 
converting it into a pixel array as demonsrated in Algorithm 6. 
Then SFC64 as PRNG is initialized. Using the same seed 
allows the generation of a randomized sequence of pixel 
positions identical to the one used during embedding. This 
ensures that data is extracted in the same order as it was 
previously embedded. Next, the length prefix is extracted. The 
length prefix determines the exact length of the hidden 
message to ensure the correct amount of data is read. After 
determining the message length, the function continues to 
extract the encrypted message and nonce from the randomized 
pixel sequence. The process continues until the expected 
number of bits has been collected. Finally, the binary data is 
converted into bytes and returned as the extracted data, 

preserving the original encoding of the hidden information. 
This completes the LSB extarction process. 

Algorithm 6 Using randomized LSB for extraction 

Input: stego_image_path, seed 

Output: extracted_data 

 

1. Load the image and convert to array format: 

pixels  LoadImageAsArray(stego_image_path) 

2. Initialize pseudorandom generator with seed and shuffle pixel 

positions: 

indices  GenerateRandomizedPixelIndices(pixels, seed) 

3. Extract the length prefix: 

message_length   ExtractLength(pixels, indices) 

4 Extract the actual encrypted message: 

4.1  Initialize_Empty(binary_data) 

4.2  data_index  0 

4.3  total_bits  ComputeTotalBits(message_length) 

4.4  for each (i, j) in indices while data_index < total_bits do 

           binary_data  binary_data + ExtractLSB(pixels[i, j]) 

           data_index  data_index + 1 

        end for 

5. Convert binary data: 

extracted_data  ConvertBinaryToBytes(binary_data) 

6. Return extracted_data 

7) Decryption using ChaCha20-Poly1305: During the 
decryption process, the first step is to initialize the ChaCha20-
Poly1305 cipher using a key (Algorithm 7). In the next step, 
the authentication tag and the encrypted data are parsed from 
the encrypted data with the tag. To ensure that the data is not 
modified, the authentication tag is verified. If the verification 
fails, an invalid tag error is raised, indicating possible 
corruption or modification. As a result, the decryption process 
is terminated and does not continue. If authenticated, however, 
the data is decrypted using the ChaCha20 cipher and the 
nonce. Finally, the original data is returned.  

Algorithm 7 Decryption using ChaCha20-Poly1305 

Input: key, encrypted_data_with_tag, nonce 

Output: decrypted_data   

 

1. Initialize ChaCha20-Poly1305: 

cipher  InitializeChaCha20Poly1305(key) 

2. Parse encrypted_data and auth_tag: 

encrypted_data, auth_tag  Parse(encrypted_data_with_tag) 

3. Verify the authenticity of the encrypted information: 

    if VerifyAuthTag(cipher, nonce, encrypted_data, auth_tag) is false: 

        throw InvalidTag  

4. Decrypt the data using the cipher: 

decrypted_data  decrypt(cipher, nonce, encrypted_data) 

5. Return the decrypted_data 

8) Decryption using polyalphabetic cipher: Polyalphabetic 
decryption follows the same structure as encryption. However, 
it uses the reverse transformation to recover the original data. 
As seen in Algorithm 8, the first step is to initialize the 
random generator (similar to polyalphabetic encryption). 
Since the PRNG produces the same sequence of random 
values using the same key, the decryption process selects the 
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same sequence of blocks that were used during encryption. 
Next, the algorithm processes each character in the encrypted 
text. If the character is part of the defined character set, then 
the corresponding reverse mapping block is retrieved based on 
the sequence generated by the PRNG. This ensures that each 
character is restored to its original form. If the character is not 
in the defined set then it remains unchanged. 

Algorithm 8 Decryption using polyalphabetic cipher 

Input: ciphertext, seed, characters, reverse_blocks 

Output: plaintext 

 

1. Initialize an empty list to plaintext:  

plaintext   [] 

2. Initialize random generator rng with seed:  

rng  InitializeRNG(seed) 

3. Process every character and replace it with its counterpart from 

reverse blocks: 

3.1 for each char in ciphertext:   

3.2    if char in characters:   

           block  GetRandomBlock(rng, reverse_blocks)   

           plaintext.Add(block[char])   

        else:   

           plaintext.Add(char)   

        end if   

      end for 

4. Return plaintext 

B. Operational Workflow of the Proposed System 

In this section, we describe the operational workflow of the 
proposed system. Thus, this section presents how the proposed 
algorithms can be implemented and executed in practice. While 
the previous section describes the algorithms individually, this 
section however focuses on their integration, data flow, and 
execution within the system. 

1) UAV: The all secure embedding process takes action in 
UAV as described in Fig. 2. Initially, operators of UAV 
initialize 3 shared keys and one secret constant in UAV as 
well as in GCS. The substitution key (key 1) is used to derive 
a seed for polyalphabetic cipher to randomize blocks. Stream 
cipher key (key 2) is used for Chacha20-Poly1305 encryption 
and decryption. Stego key (key 3) is used to derive seed for 
randomized LSB image steganography. Finally, the secret 
constant is used by the proposed seed derivation function. 
After initializing keys and secret constant, a set of characters 
is created that includes uppercase letters (A to Z), lowercase 
letters (a to z), digits (0 to 9), and some common special 
symbols (,.-_/!@#$%^&*()). Choosing characters depends on 
flight controller. In most cases, flight controllers use those 
characters to record flight data. After initialization of those 
characters, they are passed to Algorithm 1. Algorithm 1 then 
initializes blocks for polyalphabetic cipher encryption. Once 
the initialization step is done, the UAV starts its mission and 
waits for command from the GCS. When a command is 
received, the UAV captures an aerial image using the onboard 
camera. The UAV’s flight computer also requests the flight 

controller to get necessary flight data. The type of flight data 
required depends on the application. It may include sensor 
readings, power statues, telemetry data and others. If the flight 
data includes location information and the channel in which 
the image is sent, is not secure, then the image itself can reveal 
the position of the UAV. To solve this problem, the image can 
be sent using a secure channel, or instead of the actual aerial 
image, a previously stored decoy image can be sent. Next, 
current date and time information is obtained, which includes 
the following sequence: year, month, day, hour, minute, 
second, and millisecond. It is important to note that obtained 
date and time information are used multiple times in each 
secure embedding process (each cycle). Therefore, they are 
kept until the next secure embedding process. After obtaining 
date and time information, Algorithm 2 is implemented to 
generate a seed for polyalphabetic cipher. To achieve this, the 
substitution key, secret constant, and the obtained date and 
time information are used. The generated seed is then passed 
to Algorithm 3 along with flight data (in text form), defined 
characters, and initialized blocks. As a result, the initial 
encryption process is finalized. However, as mentioned 
earlier, only substitution encryption may not be safe. That’s 
why, the outcome of Algorithm 3 is then passed to Algorithm 
4 for furthermore encryption using ChaCha20-Poly1305. 
Algorithm 4 also requires both a key and a nonce to operate. 
Therefore, a stream cipher key is provided as the key, while a 
12-byte nonce is generated using a CSPRNG and passed to 
Algorithm 4. Algorithm 4 then encrypts the data, ensuring 
both its confidentiality and integrity. The next step is to hide 
the encrypted data in an image. To achieve this, the structure 
of the message must first be established. This structure 
consists of a length prefix, a nonce, and the encrypted data. 
The length prefix is necessary because the length must be 
known during extraction. Additionally, the nonce is included 
in the hidden message for later ChaCha20-Poly1305 
decryption. It is important to note that, in most cases, a nonce 
should be unique rather than secure. However, in this work, it 
is still included in the hidden message to provide an additional 
layer of security for nonce. After creating a hidden message 
structure, Algorithm 2 is implemented again to generate a seed 
for image steganography, however, this time stego key is used. 
Once the seed is generated, it is then used by Algorithm 5 to 
embed a hidden message in the image. The image format in 
this work is selected as PNG. This is because PNG supports 
lossless compression as well as metadata. After using 
Algorithm 5, the stego image is created with the hidden 
message inside. In the final step, time and date information are 
embedded in the metadata of stego image. This step is 
important since the GCS will use this metadata to derive seed 
using keys and secret constant. Once the secure embedding 
process completes, the image is sent to GCS. 

2) GCS: Similar to UAV, GCS also begins its operation 
by initialization. First, 3 same shared keys and secret constant 
are initialized. Then, the same set of characters is created. 
After initialization of those characters, they are passed to 
Algorithm 1. However, this time reverse blocks are returned 
instead of blocks for polyalphabetic cipher decryption. Those 
steps complete the GCS initialization process. 
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Fig. 2. Operational workflow for UAV.

When the GCS sends a command to the UAV and receives 
a stego image, it begins the reversing process to retrieve the 
hidden message (Fig. 3). To accomplish this, the date and time 
information from the stego image’s metadata is first extracted. 
Next, the date and time information, along with the stego key 
and secret constant, is used to derive the seed by implementing 
Algorithm 2. This seed is then used by Algorithm 6 to extract 
the hidden message from the image. Since the message length 
and structure are known, nonce along with encrypted data are 

separated. Then for ChaCha20-Poly1305 decryption, 
Algorithm 7 is provided with encrypted data, stream cipher 
key, and nonce. Once ChaCha20-Poly1305 decryption is done, 
the ciphertext is produced. To decrypt the ciphertext, 
Algorithm 2 is implemented using the substitution key, along 
with the date and time information and the secret constant, to 
derive the seed. Finally, Algorithm 8 is implemented to decrypt 
ciphertext using seed, defined characters, and previously 
initialized reverse blocks. Decrypted ciphertext reveals the 
plaintext which includes important flight data. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

286 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 3. Operational workflow for GCS.

V. THE EXPERIMENTS 

In this section, the experimental setup, evaluation metrics, 
results of various experiments, and a comparison of the 
proposed work with other studies are presented. 

A. Experimental Setup 

The proposed approach was implemented in a real-world 
environment using a UAV-GCS system rather than a simulated 
setup. This ensures that the results accurately reflect real-world 
conditions. The main components used in this work are given 
below: 

1) Flight controller. The flight controller used in this work 
is Pixhawk 2.4.8. Pixhawk 2.4.8 has 32-bit STM32F427 
Cortex-M4 processor. It is equipped with 256KB RAM, 2MB 
flash memory, I/O ports, and various sensors. The controller 
runs ArduPilot firmware. 

2) Flight computer. The secure embedding process is 
carried out in Raspberry Pi 3 Model B+ acting as a flight 

computer. Raspberry Pi 3 Model B+ has a Broadcom 
BCM2837B0 processor, which is a quad-core Cortex-A53 
(ARMv8) 64-bit SoC running at 1.4GHz. It comes with 1GB 
of LPDDR2 SDRAM. The device’s operating system is 
Raspberry Pi OS (previously referred to as Raspbian). As a 
programming language, Python 3.8 is used. 

3) Protocol. The communication between the flight 
controller and the flight computer is established using a 
special protocol, MAVLink. 

4) GCS computer. The entire extraction process is carried 
out on a Lenovo Ideapad 330, which is used as the GCS 
computer in the experiments. The computer is equipped with 
an Intel Core i7 8550U processor running at 1.80 GHz, and 
16GB of DDR4 DRAM. The operating system is Windows 
10. Python 3.8 is used as the programming language. 

Fig. 4 demonstrates the connection of the UAV’s flight 
controller, flight computer, and camera module. 
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Fig. 4. Connection of UAV’s components. 

B. Evaluation Metrics 

To assess the performance of the proposed method, various 
evaluation metrics are used in this work including Mean 
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and 
Structural Similarity Index Measure (SSIM). MSE measures 
the average squared difference between the original and 
modified images. A lower value of MSE indicates better image 
quality. MSE can be calculated using Eq. (1). 

𝑀𝑆𝐸 =  
1

𝑀𝑁
∑ ∑ [𝑅(𝑖, 𝑗) − 𝐶(𝑖, 𝑗)]2𝑁−1

𝑗=0
𝑀−1
𝑖=0           (1) 

where, M, N are the dimensions of the image, R(i,j) is the 
original image pixel, C(i,j) is the modified image pixel. PSNR 
measures the quality of the modified image compared to the 
original one. A higher value of PSNR indicates better image 
quality. PSNR can be calculated using Eq. (2). 

𝑃𝑆𝑁𝑅 =  10 log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)   (2) 

where, MAXI is the maximum possible pixel value of the 
image. SSIM is used to measure the structural similarity 
between two images. A higher value of SSIM indicates better 
image quality. SSIM can be calculated using Eq. (3). 

𝑆𝐼𝑀 (𝑖, 𝑗) =  
(2𝜇𝑖𝜇𝑗+ 𝐶1)(2𝜎𝑖𝑗+𝐶2)

(𝜇𝑖
2+𝜇𝑗

2+𝐶1)(𝜎𝑖
2+𝜎𝑗

2+𝐶2)
           (3) 

where, μi,μj are the mean values of images i and j, C1,C2 are 
constants, σi σj  are variances, and σij is covariance. 

C. Results 

In systems such as UAVs, processing time is a critical 
factor that must be considered. Table I demonstrates the 
average encryption (UAV) and decryption (GCS) duration of 
the main cryptographic algorithms depending on the data size. 
As seen from the results, ChaCha20-Poly1305 outperforms the 
others during the encryption process. Moreover, while other 
cryptographic algorithms only perform encryption, ChaCha20-
Poly1305 handles both encryption and MAC calculation for 
data integrity. Even while performing this additional task, it 
still outperforms other algorithms. However, during the 
decryption phase, AES has a slightly faster decryption time 
when the data size is larger. This is understandable since, as 
mentioned earlier in this study, most processors support 

hardware acceleration for AES. Because the GCS (laptop) used 
in this work supports hardware acceleration, AES may 
occasionally achieve better performance than the other 
algorithms. 

TABLE I.  PERFORMANCE OF MAIN CRYPTOGRAPHIC ALGORITHMS 

Main 

cryptographic 

algorithms 

Data size 

(bytes) 

Encryption 

duration 

(milliseconds) 

Decryption 

duration 

(milliseconds) 

ChaCha20-
Poly1305 

100 1.201 0.118 

8000 1.279 0.271 

AES 
100 1.502 0.181 

8000 1.692 0.232 

3DES 
100 1.515 0.197 

8000 2.229 0.490 

Table II demonstrates the steganographic performance 
metrics of the proposed method. For a comprehensive 
evaluation, results are presented for a variety of capacities, 
ranging from 100 bytes to 8000 bytes. This ensures an 
evaluation of the performance of the suggested method at both 
low and high embedding rates. Even at 8000 bytes, the method 
maintains high performance, demonstrating its effectiveness in 
preserving image quality while embedding larger amounts of 
data. 

TABLE II.  STEGANOGRAPHIC PERFORMANCE METRICS FOR DIFFERENT 

CAPACITIES 

Capacity (bytes) MSE PSNR SSIM 

100 0.0006637 79.9107 0.9999 

500 0.0026791 73.8507 0.9999 

1000 0.0052515 70.9279 0.9999 

2000 0.0103632 67.9758 0.9999 

3000 0.0154202 66.2498 0.9999 

4000 0.0203997 65.0345 0.9999 

5000 0.0255533 64.0563 0.9998 

8000 0.0409431 62.0089 0.9998 

To evaluate the proposed system, it is also necessary to 
present the total time for the crypto-steganography process. 
Table III demonstrates the total average secure embedding 
duration and the total average secure extraction duration for 
different capacities. 

TABLE III.  TOTAL EMBEDDING AND EXTRACTION DURATIONS 

Capacity (bytes) 
Total secure embedding 

duration (seconds) 

Total secure extraction 

duration (seconds) 

100 1.758 0.182 

500 1.799 0.185 

1000 1.926 0.207 

2000 2.093 0.238 

3000 2.294 0.262 

4000 2.624 0.298 

5000 2.767 0.321 

8000 3.138 0.429 
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Fig. 5 demonstrates a side-by-side comparison of the 
original and stego image captured and processed by the UAV’s 
flight computer. As can be seen from the images, there are no 
visible differences. 

 

Fig. 5. Side-by-side comparison of original (left) and stego image (right). 

D. A Comparison of the Proposed Work with other Studies 

A direct comparison between our proposed method and the 
works discussed in Section II of this study is challenging due to 
inconsistencies in the evaluation metrics. Some of these studies 
do not accurately mention necessary image quality metrics 
such as MSE, PSNR, or SSIM, which are important for 
comparison. Moreover, these metrics are affected by various 
factors, including image dimensions and the amount of 
information embedded in the image. However, these factors 
vary across studies. Furthermore, most of the works analyzed 
either use weak cryptographic techniques or do not use 
encryption at all before using steganography. As a result, they 
rely only on the steganographic level of security. This is 
insufficient from a security perspective. Some of the works 
analyzed are as follows. Syed et al. [10] achieved an MSE of 
0.001 and SSIM of 0.97 using the LSB-XOR technique. 
According to the study, the security only relies on the 
steganography level and no encryption was used beforehand. 
As a result, this approach may lack security. Rostam et al. [14] 
achieved a PSNR value above 45, an SSIM value above 0.98 
and MSE value less than 1.02 using chaotic LSB 
steganography with block-based embedding. The system's 
security relies entirely on chaotic functions. While chaotic 
systems can provide some level of security, they do not offer 
the same cryptographic guarantees as encryption algorithms. 
The system mainly hides data rather than encrypting it. Thus, 
the hidden data may be extracted if the technique is discovered. 
Alarood et al. [11] achieved a PSNR value of 66.61 and an 
SSIM value of 0.9998 using a pixel classification-based spatial 
domain. Similar to other works, no additional encryption 
method is used in their work.  Also, the study states that it 
cannot work as a real-time system. 

In contrast to other works, our approach ensures security at 
every level. It uses two different encryption techniques to 
increase resilience before implementing steganography. Most 
importantly, even though the keys are static, the seed 
derivation algorithm makes the system dynamic. Furthermore, 
even with a high data capacity, the proposed approach 

maintains strong steganographic performance. As a result, the 
system becomes difficult to analyze and exploit. 

VI. CONCLUSION AND FUTURE WORK 

In this work, a multilayer protection method is proposed to 
secure important UAV flight data. The main idea behind this 
approach is to make it as difficult and resource-intensive as 
possible for an attacker to succeed. By adding multiple layers 
of security, attackers are forced to waste their time and 
resources. Additionally, even if one layer is bypassed, the 
others remain active to protect the data. Moreover, various 
experiments are conducted using real hardware. The results of 
these experiments demonstrate that the proposed work is better 
both from the point of security and performance. It’s important 
to mention that older and slower version of the flight computer 
was intentionally chosen for our experiments to test how our 
system would perform on it. Even with earlier hardware 
versions, the entire process took only a few seconds to 
complete. It will be significantly faster on newer versions of 
the flight computer. 

In the future, this study will be extended by employing 
other cryptographic and stenographic methods. Additionally, 
while this study focuses on hiding text-type information within 
images, future research could explore other steganographic 
methods. For instance, it could involve hiding sensitive images 
within images or within transmitted video, etc. Furthermore, 
future studies might examine more adaptable techniques that 
change according to the type of data being sent. 
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