
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

278 | P a g e

www.ijacsa.thesai.org

Securing UAV Flight Data Using Lightweight

Cryptography and Image Steganography

Orkhan Valikhanli, Fargana Abdullayeva

Institute of Information Technology, Baku, Azerbaijan

Abstract—The popularity of Unmanned Aerial Vehicles

(UAVs) in various fields has been rising recently. UAV

technology is being invested in by numerous industries in order

to cut expenses and increase efficiency. Therefore, UAVs are

predicted to become much more important in the future. As

UAVs become more popular, the risk of cyberattacks on them is

also growing. One type of cyberattack involves the exposure of

important flight data. This, in turn, can lead to serious problems.

To address this problem, a new method based on lightweight

cryptography and steganography is proposed in this work. The

proposed method ensures multilayer protection of important

UAV flight data. This is achieved by two layers of encryption

using a polyalphabetic substitution cipher and ChaCha20-

Poly1305 authenticated encryption, as well as randomized least

significant bit (LSB) steganography. Most importantly, through

this work, a balance is kept between security and performance.

Additionally, all experiments are carried out on real devices,

making the proposed method more practical. The proposed

method is evaluated using MSE, PSNR, and SSIM metrics. Even

with a capacity of 8000 bytes, it achieves an MSE of 0.04, a PSNR

of 62, and an SSIM of 0.9998. It is then compared to existing

methods. The results show better practical use, stronger security,

and higher overall performance.

Keywords—UAV; GCS; cyberattack; cryptography;

steganography; flight data

I. INTRODUCTION

UAVs have become popular in many different fields
including scientific research, agriculture, military, surveillance,
aerial photography, delivery services, infrastructure
inspections, and more. UAVs can do many tasks quickly and
are cheaper compared to other traditional methods. Moreover,
they can also perform complex tasks efficiently and reduce
operational risks. This is the reason UAVs have become
common across various industries.

However, UAVs also face significant challenges related to
their cybersecurity. There are many types of cyberattacks
targeting UAVs. A cyberattack on a UAV could result in loss
of control, data leakage, mission failure, and even injuries or
death [1, 2]. In December 2011, the American UAV RQ-170
Sentinel was captured by Iranian forces. Both, GPS spoofing
and GPS jamming attacks were performed to capture the UAV
[3]. In December 2009, UAV video feed recordings were
discovered after capturing militants. Militants used SkyGrabber
software to capture satellite videos using the satellite antenna
[4]. Since the videos were not encrypted, the militants were
able to take advantage of this vulnerability. Ground Control
Stations (GCSs) of UAVs are also vulnerable to various
cyberattacks. In September 2011, a keylogger virus was

detected in the GCS of Predator and Reaper UAVs. According
to reports, technicians attempted to delete the virus however, it
kept reappearing [3, 5]. Hooper et al. [6] demonstrated that
commercial UAVs are vulnerable to common security attacks.
To prove this, authors performed buffer overflow, Denial of
Service (DoS), and ARP cache poisoning attacks. All
experiments showed that some commercial UAVs are
vulnerable to those attacks.

In this study, a novel method for the protection of important
UAV flight data is proposed. The proposed method is
multilayered which consists of three main phases. First, data
from the flight controller of the UAV is encrypted using a
polyalphabetic substitution cipher. Second, lightweight
ChaCha20-Poly1305 cryptography is implemented to encrypt
data to increase security. Finally, randomized LSB
steganography is used to hide data in an image. Only after
completing all those steps, the stego image is sent to GCS.
Subsequently, the GCS extracts encrypted data from the stego
image and then decrypts it to reveal the actual important flight
data. Overall, the proposed method uses three different keys
shared between the UAV and the GCS. One key is used for the
polyalphabetic cipher to randomize blocks. Second key is used
for lightweight ChaCha20-Poly1305 cryptography. The third
key is used for randomized LSB steganography. Moreover, a
shared secret constant is used to add more security to the
system. The main contributions of this study are as follows:

 This study proposes a novel seed derivation approach.
The proposed approach offers a high level of security.

 The proposed work uses the polyalphabetic substitution
cipher to add initial security to the system. In the
proposed scheme, not only does the same character
within a single word differ, but it also differs for each
operation (for each time an image is sent). This
approach indeed increases security.

 The proposed work uses ChaCha20-Poly1305, a
lightweight authenticated encryption scheme. While
ChaCha20 provides the stream cipher function,
Poly1305 handles message authentication. This
approach ensures the confidentiality and integrity of the
data.

 The proposed work uses randomized LSB with a key
instead of simply LSB. Moreover, similar to the first
contribution, the position of information in the image is
different for each operation. This makes the detection of
hidden information inside the image even more
difficult.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

279 | P a g e

www.ijacsa.thesai.org

 The results of various experiments demonstrate that the
proposed method outperforms others in both security
and imperceptibility. Furthermore, the experiments
were conducted in a real environment (a real flight
computer) rather than a simulated one. This is important
from a practical perspective.

The remainder of this study is organized as follows: Section
II presents related works. In Section III, the problem
statement and methods are given. Section IV presents the
proposed multilayer protection method, including
algorithms and the operational workflow of the system. In
Section V, the results of experiments are demonstrated.
Section VI concludes this work and discusses future work.

II. RELATED WORKS

There are numerous cryptography and steganography
methods available for securing data. However, only a limited
number of studies focus on UAVs. Due to this limitation,
similar systems such as IoT are also analyzed in this work.
Alkodre et al. [7] presented a shuffling-steganography
algorithm to protect UAV data. The proposed algorithm is
hybrid which uses both text-based and image-based
steganography. The main idea of the method is to divide data
based on a pattern, then hide a part in a text cover, and another
part in an image. For encrypting the data authors used Data
Encryption Standard (DES) and also implemented Advanced
Encryption Standard (AES). For image steganography,
however, LSB is used. Lin et al. [8] proposed an XOR-based
encoding strategy to transform secret digits into smaller ones.
Moreover, frequency-based encoding is used to hide data in
two images. One of the images is stored in the UAV to avoid
interception attacks. The second image, however, is sent to
command station. The proposed method determines whether
the second image has been altered by extracting the secret data
from the two images after the UAV mission is over. Rodríguez
Marco et al. [9] proposed new techniques for transmitting
information to the GCS, making it possible to accurately know
the aircraft performance in icing conditions. The idea is to use
onboard cameras to capture icing conditions on wings and
stabilizers. Moreover, information is hidden inside captured
images using LSB steganography before sending it to GCS.
Syed et al. [10] used steganography to hide UAV images
within audio file. To hide the data, the authors used LSB
coding with XOR operation. After hiding the data, the audio
file was transmitted to GCS, where the image was extracted. A
secret key was used during both the embedding and extraction
processes. Alarood et al. [11] proposed a stenographic
technique to ensure privacy and authenticity in Internet of
Things (IoT) networks. The proposed stenographic technique is
based on the pixel characteristics of the cover image in the
spatial domain. The main idea is to classify pixels into highly
smooth and less smooth domains to select the extra eligible
pixels. Hassaballah et al. [12] proposed an image
steganography method to secure data in the Industrial Internet
of Things (IIoT). The proposed method embeds secret data in
the cover images using a metaheuristic optimization algorithm
called Harris Hawks optimization to effectively choose image
pixels that can be used to hide bits of secret data within integer
wavelet transforms. AlEisa [13] used steganography to embed
the patient’s personal information in their medical images to

enhance confidentiality in case of a distant diagnosis. IoT is
used to enhance medical data security in order to preserve
confidentiality and integrity. As a steganography method, the
LSB of the approximate coefficient of integer wavelet
transform is used. Rostam et al. [14] proposed a combination
of chaos functions and steganography method based on image
blocking to preserve IoT privacy. Block centers are used to
generate the initial key of the chaos function. Subsequently,
randomly selected secret data bits are hidden in the pixels of
randomly selected blocks.

The analyzed works have some limitations. Most of them
focus only on security at the steganography level and use weak
encryption methods or don’t use cryptography at all. Many
works also ignore the fact that devices have limited resources,
which can affect how well their methods work. In this work,
however, all mentioned issues are considered.

III. PROBLEM STATEMENT AND METHODS

Flight data of UAV is important as it contains all the
necessary information about the status, operation, and
performance of the UAV. On the other hand, unprotected flight
data poses a serious risk. This is because attackers may
intercept it and take advantage of it. Moreover, some flight data
is even more essential and should be protected at all costs. For
instance, let’s consider a situation where a military UAV flies
over enemy territory. In this situation, important flight
information, such as position, altitude, etc. of the UAV should
be secure. If not, the UAV may be located and captured. This
could indeed create more problems. Videos, images, or other
secret information recorded by the UAV may be revealed to
the enemy. To solve this problem, it’s necessary to implement
various techniques to secure necessary flight information. One
solution to this problem is to use cryptography to encrypt data.
However, encryption alone might not be sufficient. In this
situation, steganography is essential. By embedding the
encrypted data within files, steganography adds an additional
layer of security. This indeed makes sensitive information less
detectable. The combination of cryptography and
steganography provides a robust approach to secure important
flight data. Considering all mentioned above, general
information about cryptography, steganography, cryptographic
hash functions, pseudorandom number generators (PRNGs)
etc. will be presented in this section.

A. Cryptography

The term “cryptography” derives from two Greek words:
κρυπτός (kryptos) – “secret” and γραφω (grapho) – “write”
[15]. Cryptography is the science of secret writing with the
goal of hiding the meaning of a message [16]. Mainly two
types of cryptography are used for the encryption of sensitive
data. These are symmetric cryptography and asymmetric
cryptography. In symmetric cryptography, the same key is used
for both encryption and decryption. In asymmetric
cryptography, however, a pair of keys are used: a public key
for encryption and a private key for decryption. Moreover, the
public key is shared openly and the private key is kept secret.
For each type of cryptography, different algorithms were
introduced. Symmetric cryptography uses algorithms like AES,
DES, Triple Data Encryption Standard (3DES), ChaCha20, and
others. Asymmetric cryptography on the other hand uses

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

280 | P a g e

www.ijacsa.thesai.org

algorithms like Rivest-Shamir-Adleman (RSA), Elliptic Curve
Cryptography (ECC), and others. In our context, some of the
symmetric cryptography algorithms will be considered.

1) Data Encryption Standard and 3DES: Data Encryption
Standard (DES) was developed in the 1970s and later adopted
as a standard by the U.S. National Institute of Standards and
Technology (NIST) in 1977. Moreover, DES itself is based on
the Lucifer cipher, developed by Horst Feistel [16]. The block
size of DES is 64 bits and the key size is 56 bits. Because of
its relatively short key size, DES is now considered unsafe.

To overcome the limitations of DES, 3DES was introduced.
3DES increases security by applying the DES algorithm three
times to each data block. This is possible by using two or three
unique 56 bit keys. Thus, 3DES supports key sizes of 112 and
168 bits. 3DES uses an encrypt-decrypt-encrypt (EDE)
scheme. If the two-key version is implemented then key 1 is
used to encrypt data. Afterwards, key 2 is used to decrypt the
same data. Finally, key 1 is used again for encryption.
However, if the three-key version is implemented, then key 1 is
used to encrypt data. Afterwards, key 2 is used to decrypt the
same data. Finally, key 3 is used for encryption. While 3DES
has stronger security compared to DES, it is computationally
intensive and slower.

2) Advanced encryption standard: In 1997 the NIST
called for proposals for a new Advanced Encryption Standard
(AES). In 2001, NIST declared the block cipher Rijndael as
the new AES and published it as a final standard [16].
Rijndael is named after cryptographers, Joan Daemen and
Vincent Rijmen. AES was developed to address the
weaknesses and limitations of DES. The block size of AES is
128 bits. AES supports 128, 192, and 256 bits key sizes. It’s
important to say that the performance of the AES can vary
depending on whether a processor has built-in hardware
acceleration for AES operations. Processors without AES
hardware support depend on software-based implementations.
This approach can be slower because AES operations are
computationally intensive.

3) Chacha20 and Chacha20-Poly1305: Chacha20 is a
modern and efficient stream cipher designed by Daniel J.
Bernstein [17]. It is a modified version of the Salsa20 cipher.
Chacha20 uses 512 bit blocks and the key size is 256 bits.
Moreover, it also uses 96 bit nonce for encryption. In most
cases, Chacha20 is faster and more efficient than traditional
ciphers like AES. This makes Chacha20 suitable for systems
like IoT, UAV, and others.

In the Chacha20-Poly1305 combination, Chacha20 is a
stream cipher and Poly1305 is a message authenticator.
Poly1305 is a message authentication code (MAC) algorithm
that ensures authenticated encryption by generating a tag to
verify the integrity and authenticity of the encrypted message
[18]. There are various protocols that use Chacha20-Poly1305
including Secure Shell Protocol (SSH), Transport Layer
Security (TLS), etc.

4) Monoalphabetic and polyalphabetic ciphers:
Monoalphabetic and polyalphabetic ciphers are substitution
ciphers. Substitution ciphers are block ciphers that replace

symbols (or groups of symbols) with other symbols or groups
of symbols [19]. In monoalphabetic ciphers, a single
substitution rule is applied throughout the entire message. This
means that every letter in the ciphertext always matches the
same letter in the plaintext. Polyalphabetic ciphers, however,
use multiple substitution rules to encrypt the message. This
means that the same letter in the plaintext matches different
letters in the ciphertext. Polyalphabetic ciphers are harder to
break than monoalphabetic ciphers, particularly if the key is
unknown.

B. Cryptographic Hash Functions

1) Hash functions take a message as input and generate a
fixed-size output referred to as hash value or simply hash. To
be more specific, a hash function h maps bitstrings of arbitrary
finite length to strings of fixed length, say n bits [19].
Cryptographic hash functions should have two main properties
to be secure. These are preimage resistance (one-wayness) and
collision resistance. Preimage resistance means that reversing
the hash value to get the original input should be infeasible.
Collision resistance however means that it should be infeasible
to find two different inputs that produce the same hash value.
There are also two main types of hash functions such as
keyless and keyed. Keyless hash functions don’t require a key
to operate. MD4, MD5, and SHA-256 are some examples of
keyless hash functions. Keyed hash functions require a key to
operate. The key provides an additional level of protection.
Hash-based Message Authentication Code (HMAC) is one of
the best examples of keyed hash functions. While keyless hash
functions provide data integrity, the keyed hash function
provides both data integrity and authentication. Therefore,
each type of hash function has its own usage.

2) Cryptographic hash functions have a wide range of
applications. For instance, hash is used to verify data integrity.
They ensure that data has not been modified during
transmission. Hash is also used to store passwords in a
database securely. This is possible by only storing the hash
value of the password instead of storing it as plain text in the
database. Later, during the authentication process, the hash of
the entered password is compared to the stored hash.
Moreover, digital signatures use hashes to generate a unique
fingerprint of the data.

C. Pseudorandom Number Generators

Pseudorandom number generators (PRNGs) are algorithms
designed to generate sequences that are computed from an
initial seed value [16]. The seed value is the starting point for
PRNG. Using seed value, PRNG generates a sequence of
numbers using a deterministic algorithm. Since the algorithm is
deterministic, the same seed will always produce the same
sequence of numbers. There are many proposed PRNG
algorithms including Mersenne Twister, linear congruential
generator (LCG), middle-square, blum blum shub (BBS),
permuted congruential generator (PCG), linear feedback shift
register (LFSR), etc. PRNGs are used in a wide range of
applications such as cryptography, modeling, statistical
analysis, gaming, and others. Cryptographically secure
pseudorandom number generators (CSPRNGs) are a special
type of PRNGs designed to be unpredictable and resistant to
cyberattacks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

281 | P a g e

www.ijacsa.thesai.org

D. Steganography

The word steganography is a composite of the Greek words
steganos, which means “covered”, and graphia, which means
“writing” [20]. Steganography is a technique of hiding secret
information within common data or objects to evade detection.
Thus, it is possible to hide secret information in various media
formats such as text, image, audio, and video. Additionally, the
secret information itself may be in any of these formats. For
example, in the case of text steganography, punctuation and
spacing can be modified to hide information. Audio
steganography uses techniques such as modifying frequencies
or embedding secret data into the LSB of the audio signal.
Video steganography may modify frames or pixels to hide
information. Image steganography uses techniques of Discrete
Cosine Transform (DCT) and Discrete Wavelet Transform
(DWT). However, LSB embedding is the most common
technique due to its simplicity and low computational
requirements. As the name suggests, LSB technique modifies
the least significant bits of pixel values of an image. Since
these bits barely affect the pixel color, the changes are
unnoticeable to the human eye. There are also some terms used
in steganography such as cover object, stego object, and stego
key. A cover object refers to the original object used as a
carrier for secret information. A stego object is the result of
embedding secret data into the cover object [20]. A stego key
is a secret key used during the embedding process to control,
where and how the secret data is embedded.

IV. THE PROPOSED WORK

In this work, we present a novel approach that combines
lightweight cryptography and steganography techniques to
securely embed important flight data into images captured by
UAV. These images are then sent to the GCS. In GCS, hidden
flight data is extracted from images. The resource limitations
that come with UAVs were carefully taken into account when
building the suggested system. It is well known that unlike
computers, servers, or other systems, UAVs may not always
have sufficient computational resources (CPU, RAM, etc.).
This especially applies to small-sized UAVs. To address these
limitations, the proposed approach keeps an optimal balance
between security and performance. The structure of the UAV
and GCS with their main components is described in Fig. 1.

Fig. 1. The structure of UAV-GCS for proposed work.

A. The Proposed Algorithms

This subsection discusses the proposed algorithms
separately. Later, it will be explained how these algorithms
work together to demonstrate the functioning of the entire
system. Some of the algorithms run on both the UAV and the
GCS, while others run only on one of them. The distinction
between these algorithms is based on their specific roles, such
as initialization, seed derivation, encryption, decryption,
embedding, and extraction. Each algorithm includes specific
parameters, and some are executed several times on both the
UAV and the GCS.

1) Initialization for polyalphabetic substitution:
Initialization for polyalphabetic substitution is performed both
on UAV and GCS. This step is used to create blocks for
polyalphabetic cipher encryption and reversed blocks for
polyalphabetic cipher decryption. As seen in Algorithm 1,
during block generation, multiple substitution blocks are
generated using the defined characters. Each block maps one
character to another character by shifting its position in the list
of characters. For instance, the letter “A” may map to the
letter “B” in one block, to the letter “C” in the next block, and
so on. For the decryption process, the code also creates a
reversed version of each block. In the reversed blocks, the
mapping is flipped. This allows retrieving the original
character from the substituted one. The final step returns
blocks (for encryption) and reversed blocks (for decryption).

Algorithm 1 Initialization for polyalphabetic substitution

Input: characters

Output: blocks and reverse_blocks

1. Generating substitution blocks:

1.1. Initialize an empty list to store blocks: blocks  []

1.2. for shift in 0 to length(characters)-1:

 blockCreateMap(characters, ShiftChrs(characters, shift))

 blocks.add(block)

 end for

2. Generate reverse blocks:

2.1. Initialize an empty list to store rev. blocks: reverse_blocks  []

2.2. for block in blocks:

 reverse_block  ReverseMapping(block)

 reverse_blocks.add(reverse_block)

 end for

3. Return blocks and reverse_blocks

2) Seed derivation: Deriving seeds is one of the most
important steps, because in our proposed approach, seeds are
both used by polyalphabetic cipher and randomized LSB. The
process of seed derivation in this work uses a cryptographic
hash function. One of the properties of hash functions is their
avalanche effect. The avalanche effect ensures that a small
change in the input produces a significantly different output.
In this work, date and time are used as the source of change.
Since date and time values vary constantly, the hash function
reacts to these small differences. As a result, the seed value
becomes highly sensitive to even small changes. Therefore,
this property of the hash function is taken advantage of in this
work. However, using a keyless hash for our approach has
potential risks. This is because attackers may analyze how the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

282 | P a g e

www.ijacsa.thesai.org

seed information is generated. Initially, they could determine
whether date and time information is used for seed. Then, they
could try all hash functions and try to generate seeds
themselves. To solve this problem, HMAC-SHA256 is
implemented. Since HMAC-SHA256 requires a key to
generate a hash, it will be difficult for attackers to achieve
their goals. Furthermore, additional secret constant parameter
is also used in input along with date and time. The main idea
behind using both date and time information along with a
secret constant is to increase security. Generally, using only
date and time information to derive a seed is secure in our
system because the key size is sufficient to provide security.
However, including a secret constant in the system makes it
even more secure. Even with the secret key, an attacker will
be unable to determine exactly which information the hash is
derived from. Moreover, the attacker must know both the key
and the secret constant to get the correct hash value. Thus,
while date and time information make the system dynamic, the
secret constant increases its security even further. Algorithm 2
demonstrates the proposed seed derivation algorithm.

Algorithm 2 Seed derivation

Input: key, date_time and secret_constant

Output: derived_seed

1. Combining input data:

combined_data  CombineInputData(date_time, secret_constant)

2. Convert combined data into a byte encoded representation:

encoded_data  encode (combined_data)

3. Compute keyed-hash HMAC-SHA256:

hash  HMAC-SHA256 (key, encoded_data)

4. Extract the first 8 bytes of the hash and represent them as a big-

endian integer seed:

derived_seed  IntegerFromBytes(hash[0:8],"big-endian")

5. Return derived_seed

As seen in Algorithm 2, the first step is combining input
data including date and time information and secret constant.
In the next step, combined data is encoded. The encoded data
then is passed to HMAC-SHA256 as a parameter, along with
the secret key. The length of the secret key is 256 bits. After
generating the hash, the first 8 bytes (64 bits) of hash value are
selected. This is because for our case the input of the PRNG
function requires 8 bytes of data.

3) Encryption using polyalphabetic cipher (UAV): As
mentioned earlier, polyalphabetic cipher uses multiple
substitution rules to encrypt the data which makes them more
secure compared to monoalphabetic ciphers. Therefore, the
polyalphabetic cipher is selected as initial encryption method
in this work. Algorithm 3 demonstrates the process of
encryption using the polyalphabetic cipher. During
initialization, an empty list is assigned to ciphertext and then
PRNG is initialized using seed. As a PRNG function, Small
Fast Chaotic 64 (SFC64) is selected due to its high
performance. The PRNG generates random values, which are
used to select substitution blocks. The seed ensures that the
same sequence of random values is produced each time
encryption is performed. This in turn makes the process
deterministic and reproducible for decryption. After
initialization, the algorithm processes every character in the

input plaintext. A random substitution block is chosen if the
character is part of the specified character set. The character is
then replaced with its counterpart from the chosen block. If a
character is not found in the character set then it remains
unchanged. Finally, the ciphertext is returned.

Algorithm 3 Encryption using polyalphabetic cipher

Input: plaintext, seed, characters, and blocks

Output: ciphertext

1. Initialize an empty list to ciphertext:

ciphertext  []

2. Initialize random generator rng with seed:

rng  InitializeRNG(seed)

3. Process every character and replace it with its counterpart from

blocks:

3.1 for each char in plaintext:

3.2 if char in characters:

 block  GetRandomBlock(rng, blocks)

 ciphertext.add(block[char])

 else:

 ciphertext.add(char)

 end if

 end for

4. Return ciphertext

4) Encryption using ChaCha20-Poly1305: Using
polyalphabetic cipher only may not secure the important data.
To increase the security even further, ChaCha20-Poly1305 is
implemented as the main encryption method. The encryption
process for ChaCha20-Poly1305 is demonstrated in Algorithm
4. First, ChaCha20-Poly1305 is initialized with the provided
encryption key. Then, the data is encrypted using the cipher
and a nonce. Once the data is encrypted, an authentication tag
is also generated. An authentication tag is important since it
ensures the integrity of the encrypted data. This tag is then
added to the encrypted data to form the final encrypted data
with the tag. Finally, the function returns the encrypted data
with a tag. Thus, using ChaCha20-Poly1305 instead of
ChaCha20 alone ensures not only confidentiality but also both
confidentiality and integrity of the data.

Algorithm 4 Encryption using ChaCha20-Poly1305

Input: key, data, and nonce

Output: encrypted_data_with_tag

1. Initialize ChaCha20-Poly1305:

cipher  InitializeChaCha20Poly1305(key)

2. Encrypt the plaintext and generate the authentication tag:

encrypted_data, auth_tag  EncryptAndAuthenticate(cipher, nonce,

data)

3. Add the authentication tag to the encrypted data:

encrypted_data_with_tag  Concatenate(encrypted_data, auth_tag)

4. Return encrypted_data_with_tag

5) Using randomized LSB for embedding: Implementation
of only LSB instead of randomized LSB is not secure. This is
because an attacker can use steganography analysis techniques
to detect hidden data. Since the LSB is modified in a
predictable manner, patterns may easily be detected. This, in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

283 | P a g e

www.ijacsa.thesai.org

turn, makes it easier for an attacker to extract the hidden
information. Therefore, randomized LSB with seed is
implemented in this work. The algorithm of implementation is
demonstrated in Algorithm 5. First, the input image is loaded
and processed in RGB format. This means that each pixel
consists of three color channels: red, green, and blue. After the
image is converted into a pixel array. Next, the input data is
converted into binary form. This ensures that data can be
embedded as individual bits within the image pixels. This step
is important since the LSB technique works at the bit level.
To add randomization to the system, SFC64 as a PRNG
function is initialized using the given seed. The PRNG
function generates a randomized sequence of pixel positions.
This ensures that data is embedded in an unpredictable order.
The use of a seed means that the same random sequence can
be reproduced later during extraction. The algorithm then goes
through the randomly chosen pixel positions one by one,
embedding a single bit of binary data into the LSB of the
corresponding pixel channel. This process repeats until every
bit of data has been embedded. The modified pixel array is
then converted back into an image. Finally, modified image is
saved.

Algorithm 5 Using randomized LSB for embedding

Input: image_path, output_image_path, data, seed

Output: stego_image

1. Load the image and convert to array format:

pixels  LoadImageAsArray(image_path)

2. Convert data into binary representation:

binary_data  ConvertToBinary(data)

3. Initialize pseudorandom generator with seed and shuffle pixel

positions:

indices  GenerateRandomizedPixelIndices(pixels, seed)

4. Embed binary data into least significant bits of pixel values:

4.1 data_index  0

4.2 for each (i, j) in indices while data_index < Len(binary_data) do

 ModifyLSB(pixels[i, j], binary_data[data_index])

 data_index  data_index + 1

 end for

5. Convert to image form:

stego_image  ConvertToImageForm(pixels)

6. Save the modified image:

SaveImage(stego_image, output_image_path)

6) Using randomized LSB for extraction: During the
extraction of data, the first step is loading the stego image and
converting it into a pixel array as demonsrated in Algorithm 6.
Then SFC64 as PRNG is initialized. Using the same seed
allows the generation of a randomized sequence of pixel
positions identical to the one used during embedding. This
ensures that data is extracted in the same order as it was
previously embedded. Next, the length prefix is extracted. The
length prefix determines the exact length of the hidden
message to ensure the correct amount of data is read. After
determining the message length, the function continues to
extract the encrypted message and nonce from the randomized
pixel sequence. The process continues until the expected
number of bits has been collected. Finally, the binary data is
converted into bytes and returned as the extracted data,

preserving the original encoding of the hidden information.
This completes the LSB extarction process.

Algorithm 6 Using randomized LSB for extraction

Input: stego_image_path, seed

Output: extracted_data

1. Load the image and convert to array format:

pixels  LoadImageAsArray(stego_image_path)

2. Initialize pseudorandom generator with seed and shuffle pixel

positions:

indices  GenerateRandomizedPixelIndices(pixels, seed)

3. Extract the length prefix:

message_length  ExtractLength(pixels, indices)

4 Extract the actual encrypted message:

4.1 Initialize_Empty(binary_data)

4.2 data_index  0

4.3 total_bits  ComputeTotalBits(message_length)

4.4 for each (i, j) in indices while data_index < total_bits do

 binary_data  binary_data + ExtractLSB(pixels[i, j])

 data_index  data_index + 1

 end for

5. Convert binary data:

extracted_data  ConvertBinaryToBytes(binary_data)

6. Return extracted_data

7) Decryption using ChaCha20-Poly1305: During the
decryption process, the first step is to initialize the ChaCha20-
Poly1305 cipher using a key (Algorithm 7). In the next step,
the authentication tag and the encrypted data are parsed from
the encrypted data with the tag. To ensure that the data is not
modified, the authentication tag is verified. If the verification
fails, an invalid tag error is raised, indicating possible
corruption or modification. As a result, the decryption process
is terminated and does not continue. If authenticated, however,
the data is decrypted using the ChaCha20 cipher and the
nonce. Finally, the original data is returned.

Algorithm 7 Decryption using ChaCha20-Poly1305

Input: key, encrypted_data_with_tag, nonce

Output: decrypted_data

1. Initialize ChaCha20-Poly1305:

cipher  InitializeChaCha20Poly1305(key)

2. Parse encrypted_data and auth_tag:

encrypted_data, auth_tag  Parse(encrypted_data_with_tag)

3. Verify the authenticity of the encrypted information:

 if VerifyAuthTag(cipher, nonce, encrypted_data, auth_tag) is false:

 throw InvalidTag

4. Decrypt the data using the cipher:

decrypted_data  decrypt(cipher, nonce, encrypted_data)

5. Return the decrypted_data

8) Decryption using polyalphabetic cipher: Polyalphabetic
decryption follows the same structure as encryption. However,
it uses the reverse transformation to recover the original data.
As seen in Algorithm 8, the first step is to initialize the
random generator (similar to polyalphabetic encryption).
Since the PRNG produces the same sequence of random
values using the same key, the decryption process selects the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

284 | P a g e

www.ijacsa.thesai.org

same sequence of blocks that were used during encryption.
Next, the algorithm processes each character in the encrypted
text. If the character is part of the defined character set, then
the corresponding reverse mapping block is retrieved based on
the sequence generated by the PRNG. This ensures that each
character is restored to its original form. If the character is not
in the defined set then it remains unchanged.

Algorithm 8 Decryption using polyalphabetic cipher

Input: ciphertext, seed, characters, reverse_blocks

Output: plaintext

1. Initialize an empty list to plaintext:

plaintext  []

2. Initialize random generator rng with seed:

rng  InitializeRNG(seed)

3. Process every character and replace it with its counterpart from

reverse blocks:

3.1 for each char in ciphertext:

3.2 if char in characters:

 block  GetRandomBlock(rng, reverse_blocks)

 plaintext.Add(block[char])

 else:

 plaintext.Add(char)

 end if

 end for

4. Return plaintext

B. Operational Workflow of the Proposed System

In this section, we describe the operational workflow of the
proposed system. Thus, this section presents how the proposed
algorithms can be implemented and executed in practice. While
the previous section describes the algorithms individually, this
section however focuses on their integration, data flow, and
execution within the system.

1) UAV: The all secure embedding process takes action in
UAV as described in Fig. 2. Initially, operators of UAV
initialize 3 shared keys and one secret constant in UAV as
well as in GCS. The substitution key (key 1) is used to derive
a seed for polyalphabetic cipher to randomize blocks. Stream
cipher key (key 2) is used for Chacha20-Poly1305 encryption
and decryption. Stego key (key 3) is used to derive seed for
randomized LSB image steganography. Finally, the secret
constant is used by the proposed seed derivation function.
After initializing keys and secret constant, a set of characters
is created that includes uppercase letters (A to Z), lowercase
letters (a to z), digits (0 to 9), and some common special
symbols (,.-_/!@#$%^&*()). Choosing characters depends on
flight controller. In most cases, flight controllers use those
characters to record flight data. After initialization of those
characters, they are passed to Algorithm 1. Algorithm 1 then
initializes blocks for polyalphabetic cipher encryption. Once
the initialization step is done, the UAV starts its mission and
waits for command from the GCS. When a command is
received, the UAV captures an aerial image using the onboard
camera. The UAV’s flight computer also requests the flight

controller to get necessary flight data. The type of flight data
required depends on the application. It may include sensor
readings, power statues, telemetry data and others. If the flight
data includes location information and the channel in which
the image is sent, is not secure, then the image itself can reveal
the position of the UAV. To solve this problem, the image can
be sent using a secure channel, or instead of the actual aerial
image, a previously stored decoy image can be sent. Next,
current date and time information is obtained, which includes
the following sequence: year, month, day, hour, minute,
second, and millisecond. It is important to note that obtained
date and time information are used multiple times in each
secure embedding process (each cycle). Therefore, they are
kept until the next secure embedding process. After obtaining
date and time information, Algorithm 2 is implemented to
generate a seed for polyalphabetic cipher. To achieve this, the
substitution key, secret constant, and the obtained date and
time information are used. The generated seed is then passed
to Algorithm 3 along with flight data (in text form), defined
characters, and initialized blocks. As a result, the initial
encryption process is finalized. However, as mentioned
earlier, only substitution encryption may not be safe. That’s
why, the outcome of Algorithm 3 is then passed to Algorithm
4 for furthermore encryption using ChaCha20-Poly1305.
Algorithm 4 also requires both a key and a nonce to operate.
Therefore, a stream cipher key is provided as the key, while a
12-byte nonce is generated using a CSPRNG and passed to
Algorithm 4. Algorithm 4 then encrypts the data, ensuring
both its confidentiality and integrity. The next step is to hide
the encrypted data in an image. To achieve this, the structure
of the message must first be established. This structure
consists of a length prefix, a nonce, and the encrypted data.
The length prefix is necessary because the length must be
known during extraction. Additionally, the nonce is included
in the hidden message for later ChaCha20-Poly1305
decryption. It is important to note that, in most cases, a nonce
should be unique rather than secure. However, in this work, it
is still included in the hidden message to provide an additional
layer of security for nonce. After creating a hidden message
structure, Algorithm 2 is implemented again to generate a seed
for image steganography, however, this time stego key is used.
Once the seed is generated, it is then used by Algorithm 5 to
embed a hidden message in the image. The image format in
this work is selected as PNG. This is because PNG supports
lossless compression as well as metadata. After using
Algorithm 5, the stego image is created with the hidden
message inside. In the final step, time and date information are
embedded in the metadata of stego image. This step is
important since the GCS will use this metadata to derive seed
using keys and secret constant. Once the secure embedding
process completes, the image is sent to GCS.

2) GCS: Similar to UAV, GCS also begins its operation
by initialization. First, 3 same shared keys and secret constant
are initialized. Then, the same set of characters is created.
After initialization of those characters, they are passed to
Algorithm 1. However, this time reverse blocks are returned
instead of blocks for polyalphabetic cipher decryption. Those
steps complete the GCS initialization process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

285 | P a g e

www.ijacsa.thesai.org

Fig. 2. Operational workflow for UAV.

When the GCS sends a command to the UAV and receives
a stego image, it begins the reversing process to retrieve the
hidden message (Fig. 3). To accomplish this, the date and time
information from the stego image’s metadata is first extracted.
Next, the date and time information, along with the stego key
and secret constant, is used to derive the seed by implementing
Algorithm 2. This seed is then used by Algorithm 6 to extract
the hidden message from the image. Since the message length
and structure are known, nonce along with encrypted data are

separated. Then for ChaCha20-Poly1305 decryption,
Algorithm 7 is provided with encrypted data, stream cipher
key, and nonce. Once ChaCha20-Poly1305 decryption is done,
the ciphertext is produced. To decrypt the ciphertext,
Algorithm 2 is implemented using the substitution key, along
with the date and time information and the secret constant, to
derive the seed. Finally, Algorithm 8 is implemented to decrypt
ciphertext using seed, defined characters, and previously
initialized reverse blocks. Decrypted ciphertext reveals the
plaintext which includes important flight data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

286 | P a g e

www.ijacsa.thesai.org

Fig. 3. Operational workflow for GCS.

V. THE EXPERIMENTS

In this section, the experimental setup, evaluation metrics,
results of various experiments, and a comparison of the
proposed work with other studies are presented.

A. Experimental Setup

The proposed approach was implemented in a real-world
environment using a UAV-GCS system rather than a simulated
setup. This ensures that the results accurately reflect real-world
conditions. The main components used in this work are given
below:

1) Flight controller. The flight controller used in this work
is Pixhawk 2.4.8. Pixhawk 2.4.8 has 32-bit STM32F427
Cortex-M4 processor. It is equipped with 256KB RAM, 2MB
flash memory, I/O ports, and various sensors. The controller
runs ArduPilot firmware.

2) Flight computer. The secure embedding process is
carried out in Raspberry Pi 3 Model B+ acting as a flight

computer. Raspberry Pi 3 Model B+ has a Broadcom
BCM2837B0 processor, which is a quad-core Cortex-A53
(ARMv8) 64-bit SoC running at 1.4GHz. It comes with 1GB
of LPDDR2 SDRAM. The device’s operating system is
Raspberry Pi OS (previously referred to as Raspbian). As a
programming language, Python 3.8 is used.

3) Protocol. The communication between the flight
controller and the flight computer is established using a
special protocol, MAVLink.

4) GCS computer. The entire extraction process is carried
out on a Lenovo Ideapad 330, which is used as the GCS
computer in the experiments. The computer is equipped with
an Intel Core i7 8550U processor running at 1.80 GHz, and
16GB of DDR4 DRAM. The operating system is Windows
10. Python 3.8 is used as the programming language.

Fig. 4 demonstrates the connection of the UAV’s flight
controller, flight computer, and camera module.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

287 | P a g e

www.ijacsa.thesai.org

Fig. 4. Connection of UAV’s components.

B. Evaluation Metrics

To assess the performance of the proposed method, various
evaluation metrics are used in this work including Mean
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index Measure (SSIM). MSE measures
the average squared difference between the original and
modified images. A lower value of MSE indicates better image
quality. MSE can be calculated using Eq. (1).

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [𝑅(𝑖, 𝑗) − 𝐶(𝑖, 𝑗)]2𝑁−1

𝑗=0
𝑀−1
𝑖=0 (1)

where, M, N are the dimensions of the image, R(i,j) is the
original image pixel, C(i,j) is the modified image pixel. PSNR
measures the quality of the modified image compared to the
original one. A higher value of PSNR indicates better image
quality. PSNR can be calculated using Eq. (2).

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (2)

where, MAXI is the maximum possible pixel value of the
image. SSIM is used to measure the structural similarity
between two images. A higher value of SSIM indicates better
image quality. SSIM can be calculated using Eq. (3).

𝑆𝐼𝑀 (𝑖, 𝑗) =
(2𝜇𝑖𝜇𝑗+ 𝐶1)(2𝜎𝑖𝑗+𝐶2)

(𝜇𝑖
2+𝜇𝑗

2+𝐶1)(𝜎𝑖
2+𝜎𝑗

2+𝐶2)
 (3)

where, μi,μj are the mean values of images i and j, C1,C2 are
constants, σi σj are variances, and σij is covariance.

C. Results

In systems such as UAVs, processing time is a critical
factor that must be considered. Table I demonstrates the
average encryption (UAV) and decryption (GCS) duration of
the main cryptographic algorithms depending on the data size.
As seen from the results, ChaCha20-Poly1305 outperforms the
others during the encryption process. Moreover, while other
cryptographic algorithms only perform encryption, ChaCha20-
Poly1305 handles both encryption and MAC calculation for
data integrity. Even while performing this additional task, it
still outperforms other algorithms. However, during the
decryption phase, AES has a slightly faster decryption time
when the data size is larger. This is understandable since, as
mentioned earlier in this study, most processors support

hardware acceleration for AES. Because the GCS (laptop) used
in this work supports hardware acceleration, AES may
occasionally achieve better performance than the other
algorithms.

TABLE I. PERFORMANCE OF MAIN CRYPTOGRAPHIC ALGORITHMS

Main

cryptographic

algorithms

Data size

(bytes)

Encryption

duration

(milliseconds)

Decryption

duration

(milliseconds)

ChaCha20-
Poly1305

100 1.201 0.118

8000 1.279 0.271

AES
100 1.502 0.181

8000 1.692 0.232

3DES
100 1.515 0.197

8000 2.229 0.490

Table II demonstrates the steganographic performance
metrics of the proposed method. For a comprehensive
evaluation, results are presented for a variety of capacities,
ranging from 100 bytes to 8000 bytes. This ensures an
evaluation of the performance of the suggested method at both
low and high embedding rates. Even at 8000 bytes, the method
maintains high performance, demonstrating its effectiveness in
preserving image quality while embedding larger amounts of
data.

TABLE II. STEGANOGRAPHIC PERFORMANCE METRICS FOR DIFFERENT

CAPACITIES

Capacity (bytes) MSE PSNR SSIM

100 0.0006637 79.9107 0.9999

500 0.0026791 73.8507 0.9999

1000 0.0052515 70.9279 0.9999

2000 0.0103632 67.9758 0.9999

3000 0.0154202 66.2498 0.9999

4000 0.0203997 65.0345 0.9999

5000 0.0255533 64.0563 0.9998

8000 0.0409431 62.0089 0.9998

To evaluate the proposed system, it is also necessary to
present the total time for the crypto-steganography process.
Table III demonstrates the total average secure embedding
duration and the total average secure extraction duration for
different capacities.

TABLE III. TOTAL EMBEDDING AND EXTRACTION DURATIONS

Capacity (bytes)
Total secure embedding

duration (seconds)

Total secure extraction

duration (seconds)

100 1.758 0.182

500 1.799 0.185

1000 1.926 0.207

2000 2.093 0.238

3000 2.294 0.262

4000 2.624 0.298

5000 2.767 0.321

8000 3.138 0.429

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

288 | P a g e

www.ijacsa.thesai.org

Fig. 5 demonstrates a side-by-side comparison of the
original and stego image captured and processed by the UAV’s
flight computer. As can be seen from the images, there are no
visible differences.

Fig. 5. Side-by-side comparison of original (left) and stego image (right).

D. A Comparison of the Proposed Work with other Studies

A direct comparison between our proposed method and the
works discussed in Section II of this study is challenging due to
inconsistencies in the evaluation metrics. Some of these studies
do not accurately mention necessary image quality metrics
such as MSE, PSNR, or SSIM, which are important for
comparison. Moreover, these metrics are affected by various
factors, including image dimensions and the amount of
information embedded in the image. However, these factors
vary across studies. Furthermore, most of the works analyzed
either use weak cryptographic techniques or do not use
encryption at all before using steganography. As a result, they
rely only on the steganographic level of security. This is
insufficient from a security perspective. Some of the works
analyzed are as follows. Syed et al. [10] achieved an MSE of
0.001 and SSIM of 0.97 using the LSB-XOR technique.
According to the study, the security only relies on the
steganography level and no encryption was used beforehand.
As a result, this approach may lack security. Rostam et al. [14]
achieved a PSNR value above 45, an SSIM value above 0.98
and MSE value less than 1.02 using chaotic LSB
steganography with block-based embedding. The system's
security relies entirely on chaotic functions. While chaotic
systems can provide some level of security, they do not offer
the same cryptographic guarantees as encryption algorithms.
The system mainly hides data rather than encrypting it. Thus,
the hidden data may be extracted if the technique is discovered.
Alarood et al. [11] achieved a PSNR value of 66.61 and an
SSIM value of 0.9998 using a pixel classification-based spatial
domain. Similar to other works, no additional encryption
method is used in their work. Also, the study states that it
cannot work as a real-time system.

In contrast to other works, our approach ensures security at
every level. It uses two different encryption techniques to
increase resilience before implementing steganography. Most
importantly, even though the keys are static, the seed
derivation algorithm makes the system dynamic. Furthermore,
even with a high data capacity, the proposed approach

maintains strong steganographic performance. As a result, the
system becomes difficult to analyze and exploit.

VI. CONCLUSION AND FUTURE WORK

In this work, a multilayer protection method is proposed to
secure important UAV flight data. The main idea behind this
approach is to make it as difficult and resource-intensive as
possible for an attacker to succeed. By adding multiple layers
of security, attackers are forced to waste their time and
resources. Additionally, even if one layer is bypassed, the
others remain active to protect the data. Moreover, various
experiments are conducted using real hardware. The results of
these experiments demonstrate that the proposed work is better
both from the point of security and performance. It’s important
to mention that older and slower version of the flight computer
was intentionally chosen for our experiments to test how our
system would perform on it. Even with earlier hardware
versions, the entire process took only a few seconds to
complete. It will be significantly faster on newer versions of
the flight computer.

In the future, this study will be extended by employing
other cryptographic and stenographic methods. Additionally,
while this study focuses on hiding text-type information within
images, future research could explore other steganographic
methods. For instance, it could involve hiding sensitive images
within images or within transmitted video, etc. Furthermore,
future studies might examine more adaptable techniques that
change according to the type of data being sent.

ACKNOWLEDGMENT

This work was supported by the Azerbaijan Science
Foundation-Grant № AEF-MCG-2023- 1(43)-13/04/1-M-04.

REFERENCES

[1] F.J. Abdullayeva, “Cybersecurity issues of some class unmanned aerial
vehicle systems: A survey”, in NATO Science for Peace and Security
Series – D: Information and Communication Security. IOS press, vol.
62, pp. 31-39, 2022.

[2] F. Abdullayeva and O. Valikhanli, “A survey on UAVs security issues:
attack modeling, security aspects, countermeasures, open issues”,
Control Cybern., vol. 52, no. 4, pp. 405–439, 2023.

[3] C. G. L. Krishna and R. R. Murphy, “A review on cybersecurity
vulnerabilities for unmanned aerial vehicles”, in 2017 IEEE Int. Symp.
Saf., Secur. Rescue Robot. (SSRR), Shanghai, China, pp. 194-199, Oct.
11–13, 2017.

[4] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam, “Cyber
security threat analysis and modeling of an unmanned aerial vehicle
system”, in 2012 IEEE Int. Conf. Technol. Homeland Secur. (HST),
Waltham, MA, USA, pp. 585-590, Nov. 13–15, 2012.

[5] N. Shachtman, “Exclusive: Computer virus hits U.S. drone fleet”,
Wired, 2011. Available at: https://www.wired.com/2011/10/virus-hits-
drone-fleet/ [Accessed: 09 January 2025].

[6] M. Hooper et al., “Securing commercial WiFi-based UAVs from
common security attacks”, in MILCOM 2016 - 2016 IEEE Mil.
Commun. Conf. (MILCOM), Baltimore, MD, USA, pp. 1-6, Nov. 1–3,
2016.

[7] A. B. Alkodre et al., “A shuffling-steganography algorithm to protect
data of drone applications”, Comput., Mater. and Continua, vol. 81, no.
2, pp. 2727–2751, 2024.

[8] Y.-I. Lin, Y.-H. Huang, and C.-C. Chen, “An Effective Dual-Image
Reversible Hiding for UAV’s Image Communication”, Symmetry, vol.
10, no. 7, p. 271, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

289 | P a g e

www.ijacsa.thesai.org

[9] J. E. Rodríguez Marco, M. Sánchez Rubio, J. J. Martínez Herráiz, R.
González Armengod, and J. C. P. Del Pino, “Contributions to Image
Transmission in Icing Conditions on Unmanned Aerial Vehicles”,
Drones, vol. 7, no. 9, p. 571, 2023.

[10] F. Syed, S. H. Alsamhi, S. K. Gupta, and A. Saif, “LSB‐XOR
technique for securing captured images from disaster by UAVs in B5G
networks”, Concurrency Computation: Pract. Experience, vol. 36, no.
12, pp. 1-13, 2024.

[11] A. Alarood, N. Ababneh, M. Al-Khasawneh, M. Rawashdeh, and M. Al-
Omari, “IoTSteg: ensuring privacy and authenticity in internet of things
networks using weighted pixels classification based image
steganography”, Cluster Comput., vol. 25. no. 3. pp. 1607–1618, 2021.

[12] M. Hassaballah, M. A. Hameed, A. I. Awad, and K. Muhammad, “A
Novel Image Steganography Method for Industrial Internet of Things
Security”, IEEE Trans. Ind. Inform., vol. 17, no. 11, pp. 7743–7751,
2021.

[13] H. N. AlEisa, “Data Confidentiality in Healthcare Monitoring Systems
Based on Image Steganography to Improve the Exchange of Patient
Information Using the Internet of Things”, J. Healthcare Eng., vol. 2022,
pp. 1–11, 2022.

[14] H. E. Rostam, H. Motameni, and R. Enayatifar, “Privacy-preserving in
the Internet of Things based on steganography and chaotic functions”,
Optik, vol. 258, pp. 1-15, 2022.

[15] R. Alguliyev and Y. Imamverdiyev, Kriptoqrafiyanın əsasları
[Fundamentals of cryptography], Baku, Azerbaijan: İnfor. Texno., 2006.
(in Azerbaijani)

[16] C. Paar and J. Pelzl, Understanding Cryptography a Textbook for
Students and Practitioners. Berlin, Heidelberg: Sprin. Berlin Heidel.,
2010.

[17] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop record of
SASC, pp. 3–5, 2008.

[18] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols”,
RFC Editor, p. 46, 2018.

[19] A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot, Handbook of
App. Crypt. CRC Press, 1997.

[20] J. Fridrich, Steganography in Digital Media: Principles, algorithms, and
applications. Cambridge Univ. Press, 2010.

