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Abstract—To solve the problems of missed detection, 

segmentation errors in instance segmentation models, we propose 

an instance segmentation approach, DPA-SOLOV2, based on the 

improved segmenting objects by locations V2 (SOLO V2). Firstly, 

DPA-SOLOV2 introduces deformable convolutional networks 

(DCN) into the feature extraction network ResNet50. By freely 

sampling points to convolve features of any shape, the network can 

extract feature information more effectively. Secondly, DPA-

SOLOV2 uses the path aggregation feature pyramid network 

(PAFPN) feature fusion method to replace the feature pyramid. 

By adding a bottom-up path, it can better transmit the location 

information of features and also enhance the information 

interaction between features. To prove the effectiveness of the 

improved model, we conduct experiments on two public datasets, 

COCO and CVPPP. The experimental results show that the 

accuracy of the improved model on the COCO dataset is 1.3% 

higher than that of the original model, and the accuracy on the 

CVPPP dataset is 1.5% higher than that before the improvement. 

Finally, the improved model is applied to the insulator dataset, 

which can accurately segment the umbrella skirt of insulators and 

outperforms other mainstream instance segmentation algorithms 

such as Yolact++. 

Keywords—Instance segmentation; segmenting objects by 

locations V2; deformable convolutional networks; path 

aggregation feature pyramid network; insulator dataset 

I. INTRODUCTION 

Deep learning methods possess excellent performance in the 
field of object detection and have been widely applied in fields 
such as autonomous driving, intelligent transportation, national 
defense security [1-3]. Driven by massive amounts of data, deep 
learning-based object detection methods can learn features with 
stronger semantic representation capabilities through the feature 
extraction network. At the same time, during the forward 
propagation process of the neural network, redundant 
calculations of a large number of windows are avoided. While 
the overall detection speed is improved, the detection accuracy 
is also significantly enhanced. However, although object 
detection can locate and classify targets, it is difficult to obtain 
the precise contours of the targets. Image segmentation based on 
deep learning includes semantic segmentation and instance 
segmentation. Semantic segmentation can only divide the 
targets in an image into different categories, but it cannot 
distinguish different instances of the same category. 

Instance segmentation is an important and challenging task 
in computer vision. It not only needs to identify the target 
location but also classify it at the pixel level to obtain the 
segmentation masks of different instances, thus accurately 
identifying the category and contour information of different 

instances. Instance segmentation algorithms are mainly divided 
into two-stage and one-stage methods. Among them, Mask R-
CNN [4] and its improved networks adopt the two-stage method 
of Faster R-CNN [5]. They detect the target area through 
candidate boxes, then fine-tune these candidate boxes, and 
finally perform classification in each candidate box to generate 
bounding boxes and target masks. The two-stage method can 
improve the segmentation accuracy, but it relies on multiple 
branches and a large amount of parameter calculation, making 
real-time segmentation difficult. 

One-stage instance segmentation methods feature simple 
model structures and fast inference speeds. Currently, the 
mainstream instance segmentation methods are divided into two 
categories: anchor-based methods and anchor-free methods. 
Anchor-based instance segmentation methods group pixels into 
a set of candidate masks in the image, and then generate the final 
instance masks through embedding, aggregation, and 
combination. Bolya proposed an anchor-based method, Yolact[6] 
that can divide the instance segmentation task into two parallel 
branches and achieves real-time instance segmentation for the 
first time but its accuracy is relatively poor. Subsequently, 
Yolact++ [7] was proposed to address the above issues. By 
adding deformable convolutions, presetting more anchor boxes, 
and using mask re-scoring, the segmentation accuracy has been 
significantly improved. Later, CondInst [8] uses dynamic masks 
and does not rely on ROI operations, achieving higher accuracy 
and faster speed. The segmentation accuracy of the 
aforementioned anchor-based instance segmentation methods 
depends significantly on the precision of detection boxes, which 
in turn relies heavily on parameters such as the scale and size of 
pre-set anchor boxes. Many studies aim to improve detection 
accuracy by increasing the number of anchor boxes, which not 
only elevates computational overhead but also tends to cause an 
imbalance between positive and negative samples. Therefore, 
anchor-free methods were proposed later. SOLO [9] utilizes the 
location information of instances for instance classification. 
Since each instance has a different center point and size, SOLO 
distinguishes different instances by assigning each instance to a 
different channel. Subsequently SOLO V2 [10] improves 
accuracy and speed through decoupling design and Matrix NMS, 
but still requires substantial computational resources, and there 
is still room for optimization in target detection performance. In 
recent years, with the excellent achievements of the Transformer 
in natural language processing, it has also been applied to 
instance segmentation and achieved good results [11, 12]. 

Although instance segmentation technology has made great 
progress, there is still much room for improvement in the 
segmentation accuracy of existing models. Issues such as 
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segmentation errors and missed target detections caused by 
insufficient extraction of image feature information all lead to a 
relatively low segmentation accuracy of the models. To address 
the above problems, this study proposes an instance 
segmentation method based on the improved SOLO V2. This 
method can extract image features more comprehensively, 
effectively alleviate the problems of segmentation errors and 
missed target detections, and improve the accuracy of instance 
segmentation. The main contributions of this study are 
summarized as follows: 

 The DPA-SOLOV2 algorithm is proposed to solve the 
problems of segmentation errors and missed target 
detections in SOLO V2. 

 Deformable convolution is introduced into the model. By 
convolving features of any shape with free sampling 
points, the network can extract feature information better. 
Moreover, the PAFPN feature fusion method is used to 
replace the feature pyramid. By adding a bottom-up path, 
the position information of features can be transmitted 
better, and the information interaction between features 
is enhanced. 

 The segmentation performance of the proposed model is 
verified and compared on two publicly available datasets 
and a self-made insulator dataset. 

The rest of this study is organized as follows: Related work 
on instance segmentation and existing problems are described in 
Section II. Next, we introduce the details of our solution in 
Section III. Subsequently, we design experiments on the COCO 
dataset, CVPPP dataset, and insulator dataset to evaluate our 
model, and present the experimental results and analysis in 
Section IV. Finally, we conclude our study in Section V. 

II. RELATED WORK 

The instance segmentation method based on deep learning 
solves the problem in semantic segmentation that different 
instances within the same category cannot be distinguished. 
FCIS [13], BlendMask [14], Mask R-CNN etc. adopts a top-
down two-stage segmentation method and Mask R-CNN 
determines the relationship between pixels and objects within a 
proposed region. It uses Fast R-CNN for object detection and 
performs the instance segmentation task by adding a 
segmentation branch. Based on Mask R-CNN, the literature [15] 
employs a lightweight backbone network to reduce the number 
of network parameters and compress the model size. By 
optimizing the convolutional structure of the Feature Pyramid 
Network (FPN) and the backbone network, the feature 
information between the high-level and low-level structures can 
be completely transmitted. The literature [16] introduces a 
bottom-up path and an attention mechanism based on Mask R-
CNN for object detection and segmentation. Two-stage instance 
segmentation methods have relatively excellent segmentation 
accuracy. However, the segmentation speed makes it difficult to 
meet the requirements of the current application scenarios. 

In recent years, to reduce the complexity of instance 
segmentation methods and improve the target segmentation 
performance without increasing the complex computational 
load, Bolya proposed a bottom-up and one-stage segmentation 

method Yolact. It is improved based on RetinaNet. The 
prototype mask of each image is generated through the proton 
network, and at the same time, k mask coefficients are obtained 
by predicting each target instance and the bounding box. The 
prediction results of the category branch and the mask branch 
need to be superimposed according to the coefficients, which 
has the problem of relatively low accuracy. On this basis, to 
improve the segmentation accuracy, Shang [17] used Yolact. It 
introduced the SE attention mechanism to enhance the feature 
expression and used the FRelu activation function for the 
efficient segmentation of protozoa in microscopic images. Li 
proposed an extended network based on Yolact [18], which can 
detect fruit clusters and segment fruit stalks simultaneously to 
support the successful picking of the picking robot. The above-
mentioned one-stage segmentation methods require the setting 
of anchor boxes. The segmentation accuracy of anchor-based 
methods largely depends on the hyperparameters of the set 
anchor boxes. Many studies generally increase the number of 
anchor boxes to achieve more accurate detection. However, 
doing so will increase a large amount of computational load. 

To address the above issues, Wang proposed the anchor-free 
instance segmentation framework SOLO, which realizes 
instance segmentation by leveraging the idea of semantic 
segmentation and transforms the instance segmentation problem 
into two concurrent problems of category prediction and 
instance mask prediction. SOLO divides an image into S×S 
grids. It assigns instances to different channels based on the fact 
that each instance has a distinct center point and size, enabling 
the differentiation of various instances. However, if the targets 
in the image are too densely packed, there may be multiple 
instances appearing in the same grid, which will lead to poor 
segmentation performance. 

The SOLO V2 model was proposed to address the issues 
existing in the SOLO model. Firstly, the mask prediction is 
decoupled into the prediction of the convolutional kernel and the 
learning of the feature map. Additionally, Matrix NMS is 
proposed, which enables the process that must be traditionally 
and sequentially implemented in non-maximum suppression to 
be completed at once through parallel operations, thus 
improving the efficiency of the model. This model is simple and 
can achieve real-time segmentation. Therefore, this study selects 
the SOLO V2 model as the baseline model. Moreover, the model 
features a simple architecture and can achieve real-time 
segmentation, making it widely applied by numerous scholars in 
various fields. Based on SOLO V2, Liu improved the 
segmentation efficiency of tomato leaf disease areas by 
improving the feature extraction network and introducing 
deformable convolution and other methods [19]. MSIS [20] 
conducts multispectral instance segmentation based on SOLO 
V2. It has improved the instance segmentation performance of 
electrical equipment by introducing methods such as the feature 
fusion module. FPN-DenseNet-SOLO [21] takes the SOLO V2 
as the backbone framework, uses the optimized DenseNet-169 
as the backbone network, and combines it with the feature 
pyramid network. It detects and segments instances on the 
semantic branch and the mask branch, achieving accurate 
segmentation of poultry under normal and heat stress conditions. 
This study presents an enhanced model of SOLOV2 named 
DPA-SOLOV2. By integrating DCN and PAFPN, the model 
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strengthens the capability of feature information extraction, thus 
effectively mitigating the common issues of target missed 

detection and segmentation errors in instance segmentation tasks. 

III. MODEL OVERVIEW 

A. Principle of SOLO V2 

SOLO V2 uses ResNet50 as the backbone to extract features 
and obtains five feature maps. It takes Stage2 to 5 as the input 
of the feature pyramid network (FPN) for feature fusion. 
Deformable convolution network (DCN) is applied in Stage3 to 
5, while the original convolutional operations are retained for 
the rest parts. Finally, a total of five feature maps, namely P2 to 
P6, are obtained for subsequent operations in several branches. 
The category branch is responsible for predicting the probability 
that an instance falling within this grid belongs to each category. 
The output dimension is S×S×C, where S×S represents the 

maximum number of instances and C is the number of categories. 
The mask branch is divided into two parallel branches: the mask 
kernel branch and the mask feature branch. The convolution 
kernels and feature maps are generated dynamically. The mask 
kernel branch is responsible for generating the convolution 
kernel G according to the number of instances, with an output 
dimension of S×S×D, where D is the weight of the convolution 
kernel corresponding to its size. P2 to P5 are used as the inputs 
of the feature branch. They are resized to the same size and then 
added together to generate the feature map F. The instance map 
of the mask branch is generated through dynamic convolution 
between the generated convolution kernel G and the feature map 
F. Finally, the final instance mask map is selected through 
matrix non-maximum suppression (Matrix NMS). The structure 
of the SOLO V2 model is shown in Fig. 1. 
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H*W*E

Matrix NMS

Output

 

Fig. 1. Structure of the SOLO V2 model. 

B. Introduction of Deformable Convolution Networks 

The quality of the feature maps used for feature extraction 
directly affects subsequent detection and segmentation. 
Therefore, deformable convolution is introduced into ResNet50 
to address the problem of insufficient feature extraction. By 
convolving features of any shape with freely sampled points, the 
network is enabled to extract feature information better. 
Ordinary convolution can only extract features using a fixed 
kernel size and shape. However, most targets are irregular and 
vary in size, so ordinary convolution has certain limitations in 
extracting features from irregularly shaped targets. The DCN 
was proposed mainly to address the issue that the convolution 
ability of ordinary convolution is affected by spatial 
transformation. Instead of changing the shape of the convolution 
kernel, deformable convolution changes the shape of the 
sampling points of the convolution by adding a position offset 
to each sampling point. 

Fig. 2 shows the difference between ordinary convolution 
and deformable convolution. From the comparison in the figure, 
it can be seen that the convolution operation changes from a 
(ordinary convolution) to irregular sampling point patterns (b 

and c). DCN can learn any spatial shape of the target through 
flexible sampling points. 

(a) CNN (b) DCN1 (c) DCN2  
Fig. 2. Normal convolution vs. deformable convolution. 

The formula for performing deformable convolution on the 

sampling point 0p in the input feature map x is shown in Eq. (1). 

Here, y represents the output feature map, 0p is the center point 

of the convolution kernel, R defines the size and stride of the 

convolution kernel, w is the weight, np is the position of other 

points in the convolution kernel relative to the center point, nΔp  

is the offset of the sampling point, and x( 0p + np + nΔp ) 

calculates the coordinates of each pixel iteratively. 
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The convolution operation of DCN is shown in Fig. 3. First, 
the extracted feature map is taken as the input and passed 
through convolution for learning, obtaining 2N (where N is the 
size of the convolution kernel, and each block of the convolution 
kernel has offset coordinates x and y) offsets for the deformable 
convolution. The network can learn the weights and offsets of 
the convolution kernel simultaneously, directly combining the 
position offsets with the features. Since the offsets are not 
necessarily integers, bilinear interpolation is used to address this 
issue. The output feature map is then obtained and used as the 
input for the next layer. 

Conv

Offset field

Offsets

2N

Input feature map Output

Deformable convolution

 
Fig. 3. Diagram of the deformable convolution process. 

DCN can address the issue that ordinary convolution is 
sensitive to spatial transformations such as image translation and 
rotation. By adaptively adjusting the shape of the convolution 
kernel, it enhances the invariance to spatial transformations. 
Moreover, due to its ability to adaptively adjust the shape of the 
convolution kernel, deformable convolution can better extract 
feature information of different scales and shapes, thereby 
improving the performance of the model. 

C. Improvement of Feature Pyramid Network 

In the forward propagation of neural networks, 
convolutional operations in multiple layers are required. During 
this process, the detailed information in the shallow layers is 
continuously lost, which is not conducive to the propagation of 
shallow-layer feature information. The feature pyramid network 
(FPN) can enhance the feature representation of shallow features 
by transferring semantic information from high-level features to 
low-level features. The path aggregation feature pyramid 
network (PAFPN) supplements the FPN by adding a bottom-up 
path, which enhances the spatial information transfer between 
features and enables the network to accurately determine the 
location information of objects. PAFPN introduces a path 
aggregation module, which allows the network to better 
integrate multiple feature paths from both bottom-up and top-
down directions. The added path only requires a few 
convolutional layers, enabling the shallow-layer information to 
be transmitted to the high-layer more quickly and reducing the 
loss of feature information, thus improving the segmentation 
accuracy. The structure of PAFPN is shown in Fig. 4. The upper 
part represents the FPN structure, and a bottom-up path is added 

on the side. By performing convolution on iN , the spatial size is 

reduced to obtain a feature map of the same size as 1iP  . Then, 

the feature map is added pixel-by-pixel to 1iP  , to get a new 

feature map, which endows the feature map with richer feature 
information. Subsequently, the new feature map is used for 
classification and mask prediction, which can improve the 
segmentation accuracy. 
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Fig. 4. Structure of PAFPN. 

D. Improvement of Non-Maximum Suppression 

Matrix NMS is designed for mask suppression. Computing 
the mask IoU is far more complex than calculating the box IoU. 
If traditional NMS is used, it will consume a significant amount 
of time. Therefore, Matrix NMS can substantially save time and 
improve segmentation efficiency by computing mask IoU in 
parallel. Inspired by Soft-NMS, Matrix NMS aims to perform 
parallel operations. Based on this idea, it can complete the 
suppression process in just one iteration, which greatly reduces 
the time consumption. Traditional NMS deletes the bounding 
boxes with lower scores according to the size of the overlapping 
area. The calculation method is shown in Eq. (2). As a result, the 
detection and segmentation results are highly susceptible to the 
set threshold. If the threshold is set too low, the bounding boxes 
of two adjacent targets may be deleted because the confidence 
of one box is too small. On the contrary, if the threshold is set 
too high, the suppression effect will be weak, and false 
detections are likely to occur. To address this issue, Soft-NMS 
adopts a smoother approach. Instead of directly deleting the 
boxes that exceed the set threshold, it first calculates a relatively 
gentle value to reduce the confidence of these detection boxes. 
Then, it sorts the remaining boxes according to their scores and 
finally deletes the boxes with scores lower than the threshold. 
The filtering results are output after no more boxes are deleted. 
The formula is shown in Eq. (3), where M represents the box 

with the highest score and ib is the adjacent detection box. By 

multiplying the scores of the detection boxes with excessive 
overlap by a weight function, the scores of the detection boxes 
can be attenuated. The larger the IoU of the two boxes is, the 
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more the score is of ib will decrease. Finally, the detection 

boxes with scores greater than the set threshold are retained. 
Since Eq. (3) is a non-differentiable and discontinuous function, 
it is modified to Eq. (4), where the penalty is greater for the 
boxes closer to the center of the Gaussian distribution. This 
approach can retain more boxes and thus improve the accuracy. 
However, this process can only be carried out sequentially, 
which requires a large amount of time. 
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Soft-NMS can only operate serially, starting from the box 
with the highest score and iterating step by step. Matrix NMS, 
on the other hand, focuses on how to parallelize this process. It 
approaches the problem from the perspective of how a predicted 

mask jm is suppressed and proposes using a decay factor to 

reduce the confidence of the mask. The decay factor is 

influenced by two aspects. One is the penalty exerted on jm  by 

all im whose scores are higher than that of jm . The other is the 

probability that im is suppressed. First, the penalty of im on 

jm needs to be calculated through Eq. (5). However, calculating 

the probability that im is suppressed is not straightforward. 

Since the probability of a mask being suppressed is generally 
positively correlated with the IoU, the maximum overlap 
prediction is directly adopted for approximate calculation, as 
shown in Eq. (6). Eventually, the calculation process of the 
decay factor is as presented in Eq. (7), and the updated score is 

js = js × jdecay . The calculation process of Matrix NMS can 

be completed in one parallel operation. This allows for an 
improvement in both segmentation accuracy and efficiency. For 
example, in a complex scene with hundreds of objects, Soft-
NMS would take a relatively long time to process each mask 
sequentially. In contrast, Matrix NMS can handle all these 
masks simultaneously, reducing the processing time 
significantly while maintaining or even enhancing the accuracy 
of the segmentation results. 
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IV. EXPERIMENTAL METHODS AND ANALYSIS OF RESULTS 

A. Experimental Environment and Parameter Description 

All experiments in this study are based on the Windows 
system. MMDetection was used for code construction. PyTorch 
was selected as the underlying framework to build the model. 
The GPU was utilized to accelerate the computation by 
configuring the Cuda and Cudnn environments. The detailed 
configuration is shown in the following table. GPU processing 
six images at a time in ablation experiments, and the size of 
images are uniformly processed to 550×550. Initial momentum 
is set to 0.9, learning rate is 0.001, and weight decay is 0.0005. 
The detailed experimental configuration is shown in Table Ⅰ. 

TABLE I. EXPERIMENTAL CONFIGURATION TABLE 

Item Content 

CPU 13th Gen Intel(R) Core(TM) i7-13700KF 

GPU NVIDIA GeForce RTX 4090 

Video Memory 24GB 

Random Access Memory 32GB 

Framework Pytorch1.8.0+cu111 

Python Python3.8 

B. Datasets 

To verify the effectiveness of the improved model, this study 
uses two publicly available datasets and an insulator dataset for 
training and testing. The MS COCO dataset is a large-scale 
image dataset developed and maintained by Microsoft, and it is 
the most commonly used open-standard dataset. In this study, 
we conduct comparative experiments on instance segmentation 
algorithms using the COCO 2017 dataset, which contains eighty 
categories of daily items. The CVPPP dataset is a plant image 
dataset that provides raw images of tobacco and Arabidopsis 
thaliana, as well as labeled images for segmenting plant leaves. 
This dataset is divided into four sub-datasets, A1-A4 in total, 
and A5 is the combination of these four sub-datasets, including 
810 training set images. To accurately locate the position of the 
insulator shed, it is necessary to perform segmentation 
processing on it. Therefore, we have constructed an insulator 
dataset and used an improved algorithm to segment it. The 
collected insulator images are mainly composite insulators. 
Meanwhile, to enhance the diversity of the insulator data and 
improve the generalization ability of the model, we have also 
collected insulator images of different types and in various 
environments from the Internet. These images were labeled 
using the LabelMe tool, with a total of 581 images being labeled. 
Subsequently, through data random augmentation methods such 
as image flipping, translation, noise addition, and brightness 
adjustment, the number of images was expanded to 2316, 
containing 19,204 instances. This dataset was further divided 
into 1,481 training set images, 371 validation set images, and 
464 test set images. According to the configuration requirements 
of the experimental environment, and to ensure the effectiveness 
of the experimental comparison results, the image size in all 
experiments was uniformly adjusted to 550×550. To facilitate 
subsequent processing and result comparison, both the CVPPP 
dataset and the insulator dataset have been converted into the 
COCO dataset format. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

295 | P a g e  

www.ijacsa.thesai.org 

In this study, ablation experiments are carried out on the 
insulator dataset to verify the effectiveness of the improved 
module, and the segmentation effects before and after the model 
improvement are tested on both the COCO dataset and the 
CVPPP dataset. Comparative experiments are conducted on the 
insulator dataset to compare and analyze the segmentation 
results of different models. 

C. Evaluation Metrics 

All experiments in this study were evaluated and analyzed 
using COCO evaluation metrics, mainly showing the mAP, 

50AP , SAP , MAP , LAP . AP is the mean value of accuracy at 

an IoU of 0.5-0.9, an interval of 0.05, and a recall of 0-1 under a 
category, calculated as shown in Eq. (8), and the area under a 
two-dimensional curve plotted with recall as the horizontal axis 
and precision as the vertical axis. MAP is the mean value of AP 

for all categories, 50AP  for accuracy at IoU=0.5. S, M, and L 

are distinguished according to the size of the area of the 
examples, and the accuracy is obtained separately. 

 drr
1

0 PAP
                                    (8) 

D. Ablation Experiments 

To quantitatively analyze the impact of introducing the 
deformable convolution DCN structure and PAFPN on the 
segmentation ability of the model in SOLO V2, this study 
combines the above methods with SOLO V2 and conducts 
ablation experiments on the insulator shed segmentation dataset, 
specifically the following five ablation experiments: 

1) SOLO V2: Conduct the segmentation of insulator shed 

skirts on the model without any improvements. 

2) SOLOV2-DCN: Introduce the deformable convolution 

structure into the feature extraction network ResNet50 used in 

the model. 

3) SOLOV2-PAFPN: Replace the originally used FPN with 

the PAFPN structure for feature fusion. 

4) The final improved model that integrates the above 

methods. 

5) All of the above methods adopt transfer learning with the 

pre-trained weights that are trained on the COCO dataset for 1x 

(12 epochs). In the fifth experiment, the pre-trained weights 

trained for 3x are used. 

TABLE II. MODEL STRUCTURE AND RESULTS OF ABLATION EXPERIMENTS 

Exp. DCN PAFPN mAP AP50 APS APM APL 

1 - - 40.4 92.3 19.2 34.7 46.8 

2 √ - 41.3 92.9 19.1 36.1 47.5 

3 - √ 41.2 93.7 19.7 36.5 47.0 

4 √ √ 42.0 93.1 20.0 37.2 47.9 

5 √ √ 43.0 94.2 22.5 37.9 49.2 

As can be seen from Table Ⅱ, under the premise that the IoU 
ranges from 0.5 to 0.95 with an interval of 0.05, in Experiment 
1, the original SOLO V2 model can achieve an accuracy of 40.4% 
in the segmentation task of insulator shed skirts. 

After the DCN structure is introduced in Experiment 2, the 
mAP increases by 0.9%. This comparative experiment shows 
that the deformable convolution enables the network to better 
extract the local feature information of the target, improves the 
feature representation ability of the model, and enhances the 
segmentation accuracy. The introduction of deformable 
convolution significantly improves the accuracy for medium 
and large-sized shed skirts, but has little improvement effect on 
small shed skirts. In Experiment 3, the improvement of 
introducing the PAFPN method alone, compared with 
Experiment 1, is that because a bottom-up path is added to 
transfer the detailed information and spatial information in the 
low-level feature maps to the high-level feature maps, the 
feature maps are fused with richer feature information, resulting 
in a better segmentation effect. The mAP increases by 0.8%. In 
Experiment 4, by combining the two methods with the basic 
method, the mAP is increased by 1.6% and can reach 42.0%, 
which proves the feasibility of this improvement scheme. In 
Experiment 5, the model weights of SOLO V2 trained for 36 
epochs on the COCO dataset are used as the pre-trained weights 
of the improved model to initialize the model, and the mAP is 
increased by 2.6% compared with Experiment 1. 

Fig. 5 and Fig. 6 visualize the segmentation results of the 
ablation experiments on the insulator dataset. These two figures 
respectively show two types of insulators. Fig. 5 depicts ceramic 
insulators, and Fig. 6 shows composite insulators. 

 
Fig. 5. Comparison of the segmentation results of ceramic insulators from 

ablation experiments. 
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Fig. 6. Comparison of the segmentation results of composite insulators from 

ablation experiments. 

From these two figures, it can be observed that the basic 
model has the problem of missed segmentation when 
segmenting the insulator sheds. In the first image, a complete 
shed instance was not segmented out. In the second image, the 
segmentation of two middle sheds was poor, with some parts of 
the sheds being missed. In Experiment 2, where DCN was 
introduced, this problem was alleviated, indicating that 
deformable convolutions can better extract feature information, 
but the effect was not very satisfactory. In Experiment 3, by 
using the PAFPN to fuse feature maps from different paths and 
transfer semantic and positional information of features, the 
segmentation accuracy was improved, and the segmentation 
accuracy of the sheds was significantly enhanced. In Experiment 
4, where the above two methods were combined, as well as in 
Experiment 5, the segmentation results were the best, and the 
edges of the sheds were the smoothest, indicating that good pre-
trained weights can significantly improve the model's accuracy. 

In order to prove the effectiveness of the experiment, 
comparative experiments before and after the model 
improvement were conducted on two public datasets, CVPPP 
and COCO. The experimental results are shown in Table Ⅲ and 
Table Ⅳ. Due to the more complex background of the COCO 
dataset and the significant differences in the number and size of 
targets compared to the CVPPP dataset, the mAP of the mask is 
lower than that of the CVPPP dataset. However, the improved 
model outperforms SOLO V2 in instance segmentation on both 
datasets. On the CVPPP dataset, the average accuracy of the 
improved model increased by 1.5%, and the AP50 increased by 
2%. The segmentation accuracy of leaves of different sizes has 
been improved. On the COCO dataset, the mAP increased by 
1.3%. 

The comparison of the prediction results of the model SOLO 
V2 before and after the improvement on the CVPPP leaf 
segmentation dataset is shown in Fig. 7. The different rows in 
the image represent the segmentation results of leaves at 
different scales. The first column in the image is the ground truth 
annotation image, and the second and third columns are the 

segmentation results before and after the model improvement, 
respectively. It can be found that the segmentation effect of the 
improved model on both large-sized and small-sized leaves has 
been significantly improved, and it can segment the leaves more 
accurately. The improvement effect of the improved model on 
small leaves and leaves in densely distributed areas in the middle 
is particularly obvious, and there are significant improvements 
in the cases of missed segmentation and segmentation errors. Fig. 
8 shows the segmentation results of the model before and after 
the improvement on the COCO dataset, and it can also be seen 
that the segmentation effect of the improved model is better than 
that of the basic model. 

TABLE III. SEGMENTATION RESULTS FOR THE CVPPP DATASET 

Model mAP AP50 APS APM APL 

SOLO V2 62.2 83.3 36.3 82.3 83.7 

Improved 63.7 85.3 39.3 82.9 86.3 

TABLE IV. SEGMENTATION RESULTS FOR THE COCO DATASET 

Model mAP AP50 APS APM APL 

SOLO V2 34.8 54.9 13.4 37.8 53.7 

Improved 36.1 56.0 14.8 39.1 56.1 

 
Fig. 7. Segmentation results of different size plants for the CVPPP dataset. 

 
Fig. 8. Plot of segmentation results for the COCO dataset. 
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E. Comparison of Different Models 

To verify the segmentation effect of the DPA-SOLOV2 
method proposed in this section, this study conducted 
comparative tests on instance segmentation algorithms such as 
Mask RCNN, CondInst, Yolact++, SOLO V1, SOLO V2, and 
the R2SC-Yolact++[22]. The experimental results are shown in 
Table Ⅴ. The table lists the mAP of each model in the insulator 
dataset. Compared with other models, DPA-SOLOV2 has the 
highest average accuracy and the best segmentation effect for 
the insulator shed skirts. 

The experimental results show that CondInst has the worst 
segmentation performance. Mask RCNN and SOLO perform 
slightly worse on the insulator dataset, and their mAP is slightly 
lower than that of the baseline model. SOLO V2 and Yolact++ 
have better segmentation results. SOLO V2 can dynamically 
segment each instance in an image without the need to rely on 
bounding box detection. It differentiates the masks of different 
instances according to the size and position information of the 
instances. The mAP of the baseline model SOLO V2 is 
significantly higher than that of other methods. The improved 
model has addressed the issues existing in the baseline model, 
with its accuracy increased by 1.5% compared to the baseline 
model. The segmentation effect of the improved model based on 
SOLO V2 is better than that of R2SC-Yoolact++. The average 
precision of DPA-SOLOV2 can reach 43%, which is 1.3% 
higher than that of R2SC-Yolact++, and it has the best 
segmentation performance. The reasons can be summarized as: 
1) The introduced DCN can adaptively adjust the shape of the 
convolution kernel, enabling better extraction of feature 
information for targets of different scales and shapes. 2) PAFPN 
transfers detail information from shallow features to high-level 
feature maps, while better conveying the positional information 
of features. 

TABLE V. COMPARISON OF THE MODEL SEGMENTATION RESULTS 

Model Backbone mAP AP50 APS APM APL 

Mask 

RCNN 
Resnet50 36.3 83.0 24.3 32.0 41.0 

CondInst Resnet50 26.1 75.3 11.3 19.0 34.3 

SOLO Resnet50 37.2 87.8 18.5 32.2 42.7 

SOLO 
V2 

Resnet50 40.4 92.3 19.2 34.7 46.8 

Yolact++ Resnet50 40.2 78.5 24.7 33.5 47.6 

R2SC-

Yolact++ 
Resnet50 41.7 82.3 24.5 34.3 49.9 

Ours Resnet50 43.0 94.2 22.5 37.9 49.2 

Fig. 9 shows the comparative segmentation results of the 
insulator sheds by DPA-SOLOV2 and its best competitor, 
R2SC-Yolact++. The results indicate that the R2SC-Yolact++ 
has the problem of missed detections in images with a large 
number of sheds, and its segmentation ability for sheds at a large 
angle above or below the lens is relatively poor. DPA-SOLOV2 
has improved the problem of target missed detection in R2SC-
Yolact++ and enhanced the target segmentation accuracy. In 
addition, it can be observed from the image that DPA-SOLOV2 
does not segment the edges of the sheds smoothly enough. It is 
equivalent to sacrificing some smoothness of the segmentation 

edges of the images to improve the problem of missed detections 
in the images. Further in-depth research should be carried out on 
this issue in the future. 

 
Fig. 9. Comparison of shed segmentation results of R2SC-Yolact++ and 

DPA-SOLOV2. 

F. Discussion 

In this study, the segmentation performance of the model 
was verified and compared on two public datasets and a self-
made insulator dataset. To more conveniently compare and 
demonstrate the segmentation effects of the analysis model on 
different datasets, this study uniformly used the COCO 
evaluation metrics. The performance of the SOLO V2 model 
after introducing the deformable convolution network and 
PAFPN was compared and analyzed on the insulator dataset, 
and the performance improvement of the model before and after 
the improvement was verified on the two public datasets. The 
experimental results of the three datasets also show that the 
model has achieved greater improvements in the segmentation 
of large objects. This study can accurately locate targets and 
achieve pixel level segmentation to distinguish instances of the 
same category. It can be applied to industrial inspection (such as 
positioning insulator shed), healthcare (such as segmenting 
tumor cells), autonomous driving (such as identifying road 
targets) and other fields to promote intelligent development in 
multiple domains. However, DPA-SOLOV2 focuses on solving 
the problems of missed detections and false detections in 
instance segmentation, without paying attention to whether the 
edges of instance segmentation are smooth. Subsequent research 
will further optimize this model. 

V. CONCLUSION 

In this study, SOLO V2 is used as the baseline model, aiming 
to improve the accuracy of the model by addressing the issues 
of segmentation errors, missed segmentations, and low edge 
segmentation accuracy. First, we introduce a deformable 
convolution structure into ResNet50, enabling the network to 
better extract local feature information of targets with different 
scales and shapes, thereby enhancing model performance. 
Second, we replace FPN with the PAFPN feature fusion method 
to strengthen feature information fusion. PAFPN adds a bottom-
up path to transmit feature spatial information, enhancing 
information interaction between features and allowing the model 
to locate targets more accurately. The model is trained and tested 
on the public datasets COCO and CVPPP to verify the 
effectiveness of the improved model. After the improvement, 
the mask average accuracy on the COCO dataset increases by 
1.3%, and the mask average accuracy on the CVPPP dataset 
increases by 1.5%. The improved model is applied to the self-
annotated insulator dataset to segment the umbrella skirt part of 
the insulators. The experimental results show that a more 
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accurate segmentation of the umbrella skirt of insulators is 
achieved. 

Although the improved model has enhanced the accuracy of 
instance segmentation on three datasets, its edge segmentation 
for insulators remains relatively rough. In the future, it is 
possible to explore how to achieve smoother edge segmentation 
by preprocessing methods such as image sharpening and 
contrast enhancement to highlight target edges. Additionally, to 
further enhance the model's generalization ability, more 
insulator images of different types and environments should be 
collected and annotated in the future to enrich the insulator 
segmentation dataset. Given the high time cost of image 
annotation, subsequent research can also focus on weakly 
supervised instance segmentation methods. 
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