
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

Quantized Object Detection for Real-Time Inference
on Embedded GPU Architectures

Fatima Zahra Guerrouj1 , Sergio Rodrı́guez Flórez2 , Abdelhafid El Ouardi3 ,
Mohamed Abouzahir4 , Mustapha Ramzi5

∗Université Paris-Saclay, ENS Paris-Saclay, CNRS, SATIE, 91190, Gif-sur-Yvette, France1,2,3

Systems Analysis-Information Processing and Industrial Management Laboratory-
Higher School of Technology of Sale, Mohamed V University, Rabat, Morocco1,4,5

Abstract—Deploying deep learning-based object detection
models like YOLOv4 on resource-constrained embedded ar-
chitectures presents several challenges, particularly regarding
computing performance, memory usage, and energy consumption.
This study examines the quantization of the YOLOv4 model
to facilitate real-time inference on lightweight edge devices,
focusing on NVIDIA’s Jetson Nano and AGX. We utilize post-
training quantization techniques to reduce both model size
and computational complexity, all while striving to maintain
acceptable detection accuracy. Experimental results indicate that
an 8-bit quantized YOLOv4 model can achieve near real-time
performance with minimal accuracy loss. This makes it well-
suited for embedded applications such as autonomous navigation.
Additionally, this research highlights the trade-offs between
model compression and detection performance, proposing an
optimization method tailored to the hardware constraints of
embedded architectures.

Keywords—Object detection model; quantization; embedded
architectures; real-time

I. INTRODUCTION

The rapid advancement of artificial intelligence technolo-
gies has led to significant growth in object detection mod-
els based on deep learning, especially CNN (Convolutional
Neural Network), transforming various industries, including
autonomous driving, video surveillance, mobile robotics, and
intelligent embedded systems [1]. These algorithms facilitate a
precise, real-time understanding of environments by detecting
and locating objects of interest within video streams. Among
these models, the YOLO (You Only Look Once) family, partic-
ularly the YOLOv4 version, has emerged as a benchmark due
to its remarkable ability to balance high precision, surpassing
many of its predecessors on standard evaluation metrics.

While this level of performance is impressive, it also comes
with a significant drawback: high computational complexity.
Implementing such models requires substantial computing
resources, typically provided by high-end GPUs. This poses
a considerable challenge when deploying these models on
resource-constrained embedded architectures based on CPU-
GPUs, like the NVIDIA Jetson Nano that is fitted with a
128-core NVIDIA Maxwell GPU, a 4-core ARM Cortex-
A57 MPCore operating at 1.43 GHz, and 4 GB of memory,
and are praised for their affordability, compactness, and low
power consumption. These devices often lack the hardware
capabilities to support demanding models such as YOLOv4
while maintaining mission-sensitive embedded systems’ criti-
cal latency and power consumption requirements.

In autonomous navigation, the rapid and reliable detection
of objects, including vehicles, pedestrians, and cyclists, is es-
sential. The system must make real-time decisions to avoid ob-
stacles or adjust its trajectory, necessitating quick processing,
often within 33 ms per image (or more than 30 FPS). To meet
these rigorous requirements, various optimization techniques
are being explored to reduce the size and complexity of models
without significantly sacrificing performance [2].

One key strategy is pruning [3], which systematically re-
moves neural connections or weights that contribute minimally
to model outcomes. For example, weights close to zero in
dense or convolutional layers are eliminated post-training. This
reduction in weight connectivity enhances computational effi-
ciency and substantially decreases the number of calculations
required during inference.

Another technique is knowledge distillation [4], which
involves transferring knowledge from a high-capacity teacher
model to a smaller, more efficient model, the student. This
process aims to maintain accuracy while minimizing inference
time and computational costs, which is vital for deploying
object detection models on embedded systems with limited
resources.

Additionally, network architectures can be redesigned to
include lighter modules or compact models like MobileNet or
Tiny-YOLO [5]. Importantly, quantization involves converting
the weights and activations of a floating-point precision array
(32 bits) into more compact formats, such as INT8. This
conversion reduces the model’s memory footprint, accelerates
matrix operations, and conserves power consumption. This
technique is particularly effective on compatible hardware
architectures, enabling swift execution even on architectures
like the Jetson Nano. However, this compression may slightly
reduce accuracy, necessitating fine-tuning and calibration steps
such as quantization-aware training or post-training quantiza-
tion to achieve an acceptable balance between computational
efficiency and detection accuracy [6].

This study investigates, assesses, and enhances the in-
tegration of quantized YOLOv4 on a resource-constrained
embedded architecture, focusing on critical object detection for
autonomous navigation. The objective is to advance the design
of intelligent embedded systems that can make reliable, swift,
and safe decisions, even within constrained environments.

The paper is organized as follows: Section II reviews
the literature on object detection in resource-constrained en-
vironments, focusing on quantization and edge deployment.

www.ijacsa.thesai.org 20 | P a g e

https://orcid.org/0009-0004-1714-5027
https://orcid.org/0000-0003-3029-7020
https://orcid.org/0000-0003-3665-2185
https://orcid.org/0000-0003-1652-5904


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

Section III outlines the evaluation methodology, including the
dataset, metrics, and experimental setup. Section IV details
the YOLOv4 model optimization process, including conversion
and quantization for efficient inference on the Jetson Nano.
Section V analyzes results, comparing precision levels and
hardware architectures, while Section VI concludes with key
findings and future work directions.

II. RELATED WORK

Real-time object detection on ressouce-constrained archi-
tectures has emerged as a significant area of research within
the broader realm of embedded artificial intelligence. This
growing interest stems from the demand for deploying effi-
cient, accurate, scalable vision systems in resource-constrained
environments. Recent advancements in deep learning, quan-
tization, and hardware-specific optimizations have facilitated
the practical implementation of object detection models on
architectures such as NVIDIA Jetson devices, Raspberry Pi
boards, and FPGA-based systems. Numerous studies have
tackled these challenges using various strategies, including
model compression, unsupervised learning, and comparative
analyses across different hardware architectures.

The work presented by [7] offers a practical and timely
contribution to advanced AI by demonstrating how quantized
deep learning models can facilitate efficient, real-time object
detection on resource-constrained architectures when paired
with hardware acceleration. The study compares a quantized
YOLOv3-tiny model on an FPGA-based Zedboard and an
FP16-optimized YOLOv7-tiny model on the GPU-powered
Jetson Nano. It underscores the trade-offs between power
consumption, inference speed, and detection accuracy. Al-
though the Zedboard exhibits very low power consumption,
its high inference latency renders it unsuitable for real-time
applications, emphasizing further FPGA optimizations. In con-
trast, the Jetson Nano strikes a commendable balance with 38
FPS and a mean Average Precision (mAP) of 46.3% at just
5.1 W, validating the effectiveness of quantization and GPU
acceleration for edge deployment.

Similarly, the study achieved by [8] presents a practical
approach to implementing real-time object detection in edge
video surveillance systems. The authors tackle the challenges
associated with the limited computing power and energy effi-
ciency of edge devices, which are crucial for enabling real-time
processing capabilities. The study achieves a notable enhance-
ment in object detection performance for resource-constrained
edge devices by utilizing quantized transfer learning with
MobileNet V2 SSDs and applying 8-bit quantization. Test
results indicate that the Raspberry Pi 5 and the Nvidia Jetson
Orin Nano exceed the performance of other devices, with
total latencies of 5 ms and 85 ms, respectively, highlighting
their effectiveness for real-time applications. The quantized
int8 model reaches an accuracy of 80.65% while significantly
reducing both memory consumption and latency compared to
the unoptimized int32 model.

Further, the research completed by [9] centers on imple-
menting efficient object detection and recognition techniques
tailored for resource-constrained embedded systems, utilizing
open-source tools such as OpenCV. The authors investigate
lightweight deep learning models, including MobileNet-SSD,

to achieve real-time performance on devices with limited com-
putational capabilities. By leveraging pre-trained models and
optimizing them through quantization techniques, the study il-
lustrates the viability of deploying object detection applications
in environments characterized by restricted processing power
and resources. Another significant contribution comes from
[10], which presents a thorough investigation into deploying
a People Search System (PSS) on the Nvidia Jetson Orin
AGX architecture, emphasizing model compression techniques
to enhance performance on resource-constrained embedded
architectures. They implement quantization and pruning tech-
niques alongside L1 regularization to decrease the model
size and computational requirements, enabling the real-time
processing capabilities crucial for monitoring applications. By
executing and assessing the PSS on both GPU and Jetson
Orin AGX architectures, the study offers valuable insights
into the trade-offs between model accuracy, inference speed,
and resource utilization. Additionally, the use of open-source
libraries and frameworks highlights the practical applicability
of the proposed system.

Additionally, the study by [11] presents a well-executed
study focused on optimizing and deploying the YOLOv7
deep learning model for object detection on the NVIDIA
Jetson Nano, a cutting-edge low-power AI architecture. The
authors successfully refined the YOLOv7 model using Ten-
sorRT and quantization techniques to enhance inference speed
without compromising detection accuracy. The model achieves
an impressive average accuracy of 92.35% and an average
processing time of 117.8 ms, underscoring the feasibility of
implementing advanced object detection systems on resource-
constrained devices. The paper examines the potential and
limitations of executing real-time AI workloads on edge archi-
tectures by assessing key performance metrics such as speed,
accuracy, and resource utilization across various experimental
classes and conditions.

Further, the work of [12] presents a robust and well-
designed framework for unsupervised object detection in
video, specifically targeting real-time performance on low-
power embedded systems. It effectively addresses the key
challenges of traditional pipelines, including the reliance on
extensive labeled datasets and significant computational de-
mands, by utilizing optical flow for motion-based detection
and implementing unsupervised clustering to eliminate the
necessity for manual annotation. By harnessing the computa-
tional power of the NVIDIA Jetson AGX Xavier, the authors
adopt a hardware-aware optimization strategy that leverages
its heterogeneous processing units (CPU, GPU, and DLA)
and incorporates mixed-precision computing (FP32, FP16,
INT8). Consequently, the proposed system achieves a remark-
able 32.3× speed increase and 23.6× improvement in energy
efficiency compared to an unoptimized reference, all while
maintaining a competitive mean Average Precision (mAP) of
59.44. These results underscore the framework’s suitability for
edge computing applications that require stringent performance
and energy efficiency.

Lastly, the work of [13] offers a comprehensive, prac-
tical comparative analysis of several state-of-the-art neural
network models for real-time object detection on low-power
edge devices. It provides valuable insights into the trade-
offs between accuracy, inference speed, and computational

www.ijacsa.thesai.org 21 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

efficiency. By evaluating models such as MobileNetV2 SSD
[14], CenterNet [15], EfficientDet, and various iterations of
YOLO (including YOLOv7 Tiny and YOLOv8) [16] on de-
vices like the Raspberry Pi and NVIDIA Jetson Nano, the
authors deliver a well-rounded comparison that is relevant to
real-world deployment scenarios. Incorporating post-training
quantization (PTQ) and quantization-aware training (QAT),
along with fine-tuning on a customized dataset, underscores
the study’s applicability and technical rigor. The recommenda-
tions based on specific frames per second (FPS) requirements
are beneficial for guiding practitioners in choosing the most
suitable model-device combinations to address the various
constraints of their applications.

The literature reviewed emphasizes notable advancements
in deploying object detection models on edge devices through
various optimization techniques, including quantization, prun-
ing, model compression, and architecture refinement. Prior
studies have demonstrated that integrating lightweight models
with post-training quantization and specific hardware accel-
eration, especially using architectures like Jetson Nano, Jet-
son Orin, and Raspberry Pi, can result in efficient real-time
inference while maintaining acceptable accuracy trade-offs.
Nonetheless, challenges persist in achieving an optimal balance
between detection accuracy, inference speed, and memory
efficiency, particularly under tight resource constraints.

Building on this foundation, our work focuses on deploying
a complete YOLOv4 model recognized for its superior detec-
tion quality on the Jetson AGX and Nano utilizing TensorRT-
based FP16 and INT8 quantization. This approach expands
existing research by illustrating the performance of a more
sophisticated model under practical edge conditions, supported
by quantitative benchmarks and qualitative validation. The
primary contributions of this work are outlined as follows:

1) YOLOv4 on embedded architecture: We demonstrate
executing the YOLOv4 object detection model on the resource-
constrained Jetson AGX and Nano, addressing real-time per-
formance challenges in embedded environments.

2) Post-training quantization with TensorRT: We compare
YOLOv4 quantized in FP32, FP16, and INT8 formats using
TensorRT, showing significant improvements in model size and
inference speed with minimal accuracy loss

3) Real-world validation: Qualitative analysis in urban
settings confirms that the INT8-quantized YOLOv4 model
reliably detects cars, cyclists, and pedestrians on a low cost
CPU-GPU architecture (Jetson Nano) and Jetson AGX.

4) Guidance for deploying embedded AI: This study offers
a reference for deploying deep learning models on embedded
systems, highlighting an efficient optimization pipeline and
trade-offs in accuracy, speed, and memory usage.

III. EVALUATION METHODOLOGY

The evaluation of object detection algorithms is crucial for
developing and validating computer vision systems, especially
in high-stakes applications like autonomous driving. In this
section, we outline the methodology used to assess the per-
formance of the YOLOv4 object detection model, detailing
the experimental workflow, dataset, evaluation metrics, and
hardware architectures employed. We describe the YOLOv4

inference pipeline tailored for deployment in both edge and
server environments. To ensure a thorough evaluation under
realistic conditions, we utilize the KITTI dataset [18], which is
widely recognized as a benchmark for autonomous driving and
object detection tasks. Model performance is evaluated using
standard metrics, including mean Average Precision (mAP),
average Precision (AP) per class, and frames per second
(FPS) [19], allowing us to assess both accuracy and real-time
processing capabilities. Finally, we present the experimental
infrastructure, which consists of a high-performance server
for baseline comparisons, and the NVIDIA Jetson Nano, a
resource-constrained edge device, to evaluate the feasibility
and effectiveness of the model in embedded environments.

A. Detection Model

YOLOv4 (You Only Look Once version 4) is a one-stage
object detection model designed to strike an optimal balance
between accuracy and real-time performance [20]. Building
upon the strengths of its predecessors, YOLOv4 integrates a
variety of architectural innovations and training techniques that
significantly enhance detection speed and accuracy, making
it particularly well-suited for edge deployment and real-time
applications.

The software architecture of YOLOv4 consists of several
key functional components that contribute to its impressive
performance. At the core of the network lies the Backbone,
CSPDarknet53, which is tasked with extracting features from
input images. The Neck module SPP and PANet enable
multi-scale feature fusion and improve the receptive field
[21]. Finally, the head includes detection layers for predicting
bounding boxes and class probabilities.

The choice of YOLOv4 for this study is based on its
demonstrated efficacy in prior research. As mentioned in the
work of [22], YOLOv4 outperforms many contemporary mod-
els in terms of both accuracy and processing speed, making
it an ideal candidate for deployment on high-end, resource-
constrained architectures. Its robustness, modularity, and com-
patibility with optimization techniques such as quantization
and pruning further enhance its suitability for edge computing
applications. Fig. 1 presents the complete YOLOv4 architec-
ture, detailing the key components, including CBM, CBL,
SPP, PANet, and detector heads, providing a comprehensive
overview of the model’s internal structure.

B. Dataset

Selecting an appropriate dataset is crucial for developing
and evaluating object detection algorithms for autonomous
vehicles, as it ensures robustness and real-world applicability.
Datasets must accurately reflect driving environment complexi-
ties, including weather, lighting, and diverse object classes like
vehicles and pedestrians. High-resolution images and precise
annotations, including bounding boxes and object class labels,
are essential.

In this study, we focus on the KITTI dataset, a key resource
for autonomous driving evaluation, which includes a variety of
real-world scenarios near Karlsruhe, Germany [18]. It features
7,481 images with detailed ground truth labels across different
environments, such as freeways and urban streets, and we
divided it into a training set (70%, 5,237 images) and a test

www.ijacsa.thesai.org 22 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

Fig. 1. YOLOv4 architecture [17].

set (30%, 2,244 images). We focus on three key object classes:
cars, pedestrians, and bicycles. KITTI also offers established
evaluation metrics, allowing for the objective comparison of
model performance. Its diverse sensor data and high-quality
annotations make it fundamental for advancing object detection
algorithms in autonomous driving.

C. Specification of Hardware Architectures

This study utilized a high-performance workstation along-
side the embedded architectures to assess and optimize our
object detection models. The workstation is equipped with an
Nvidia Quadro RTX 6000 GPU that features 24 GB of memory
and 4608 CUDA cores, paired with an Intel® Xeon® W-2265
CPU operating at a frequency of 3.50 GHz. It runs on Pop! OS
20.04 LTS and utilizes version 11.7 of the CUDA compiler
tools, creating a robust environment for training and testing
deep learning models. Additionally, we employed the Jetson
AGX Xavier, which is equipped with a 512-core Volta GPU,
an 8-core ARM Carmel CPU running at 2.26 GHz, and 16 GB
of memory. On the other hand, we employed the Nvidia Jetson
Nano, which is fitted with a 128-core NVIDIA Maxwell GPU,
a 4-core ARM Cortex-A57 MPCore operating at 1.43 GHz,
and 4 GB of memory. The architectures allow for deploying
complex object detection models in resource-constrained en-
vironments, particularly suited for real-time applications such
as autonomous driving.

D. Evaluation Metrics

Assessing the performance of object detection models
necessitates using standardized metrics that quantify both the
precision and reliability with which the system identifies and
locates objects within an image. Standard evaluation metrics
for object detection encompass precision, recall, average pre-
cision (AP), mean average precision (mAP), and processing
speed [19].

1) Mean average precision: In object detection-based Con-
volutional Neural Networks (CNNs), mean Average Preci-
sion (mAP) is a crucial evaluation metric for assessing the
performance of models like YOLOv4. mAP quantifies how
effectively the model is able to locate and classify objects
within an image accurately. This is especially vital in au-
tonomous vehicle applications, where safety and reliability
are paramount. A higher mAP indicates that the model can
reliably detect essential objects, such as pedestrians, vehicles,
and bicycles, in various scenarios and lighting conditions.

To evaluate the model’s precision performance, metrics
such as Average Precision, mean Average Precision, Precision,
and Recall are employed [23]. These metrics are calculated as
follows:

Precision (P): Measures the quality of the model in terms of
its ability to detect true positives among all positive predictions
[24]. It is defined as follows:

P = TP + /(TP + FP ) (1)

The value ranges from 0 to 1. TP stands for True Posi-
tive, and FP for False Positive. Recall (R): Is a quantitative
measure of the model’s ability to find true positives among all
predictions [24]. It is defined as follows:

R = TP + /(TP + FN) (2)

As with precision, the recall value is also between 0 and
1. FN stands for False Negative.

Average Precision (AP): This measure is commonly used
to evaluate the balance between precision and recall in object
detection tasks. It measures the model’s ability to detect and
locate objects in each class accurately [25]. The simplified
formula for AP is as follows:

www.ijacsa.thesai.org 23 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

AP =
∑

(Recall(i)−Recall(i− 1)) ∗ Precision(i) (3)

Where i iterates over all points where Recall changes, Re-
call (i) represents Recall at point i, and Precision (i) represents
Precision at point i.

A higher AP value indicates better overall detection perfor-
mance for an object class. An AP of 1 means perfect detection,
i.e. the model identifies all objects in this class without any
false positives.

Mean Average Precision (mAP): Provides a complete eval-
uation, considering the average accuracy for all object classes
in the dataset. It represents the average performance of the
model for all classes. The mAP is calculated by averaging the
accuracy values obtained for each object class. The simplified
mAP formula is as follows:

mAP = (AP (class1)+AP (class2)+ ...+AP (classN))/N
(4)

Where N is the total number of object classes, and
AP(classi) is the average accuracy for class i.

A high mAP value indicates that the model performs on
average for all object classes. This measure is often used to
compare the performance of different object detection models.

2) Frame rate: Frames per second (FPS) is a critical metric
for assessing the performance of real-time systems, especially
in computer vision and video processing applications. FPS
quantifies the number of frames that a system can process
within one second, directly impacting the system’s perceived
fluidity and responsiveness. High FPS values indicate effective
processing capabilities essential for object detection, tracking,
and recognition tasks in dynamic environments. Maintaining
a high FPS while ensuring accuracy presents a significant
challenge when deploying deep learning models on resource-
constrained architectures. This necessitates careful optimiza-
tion of the model and hardware to balance computational load
and processing speed. Evaluating FPS alongside metrics, such
as mAP, offers a comprehensive view of system performance,
confirming that it meets practical applications’ real-time re-
quirements [26].

In our work, achieving high detection accuracy ensures
safety and reliability in real-world scenarios. For object de-
tection tasks in advanced driver assistance systems (ADAS),
such as identifying cars, pedestrians, and bicycles, the mini-
mum acceptable mean average precision must exceed 70-75%
to guarantee dependable performance. Furthermore, real-time
performance should be maintained, typically around 30 FPS,
to meet the processing demands of ADAS applications [27].
This requirement requires thoroughly optimizing the YOLOv4
model and the underlying hardware, such as the Jetson Nano,
to manage the computational load while preserving high de-
tection accuracy effectively.

IV. MODEL OPTIMIZATION

YOLOv4 has garnered significant recognition for its high
performance in object detection, showcasing an impressive

ability to generalize across diverse datasets. However, the
inherent computational complexity of the model poses a sub-
stantial challenge when it comes to deploying it in real-time on
low-power embedded devices, particularly in edge computing
scenarios.

In our research, we trained the YOLOv4 model using
the Darknet framework on a high-performance workstation
equipped with a robust GPU to manage the extensive com-
putations necessary for training. We focused on a targeted
subset of the KITTI dataset, which is well-known for repre-
senting real-world driving scenarios. The training emphasized
three relevant object classes: Cars, Pedestrians, and Cyclists,
enhancing the model’s proficiency in detecting these critical
elements within urban environments. To optimize the model
for real-time applications, all input images used during training
were systematically resized to a standardized resolution of
416×416 pixels. This resolution was thoughtfully chosen as
it effectively balances robust detection accuracy and efficient
processing speed, making it well-suited for applications that
require timely responses.

To assess the performance of the trained model, we con-
ducted inference on two architectures: the workstation utilized
for training and NVIDIA’s Jetson Nano, a low-power embed-
ded architecture. This cross-evaluation allowed us to compare
the model’s performance in an unconstrained environment (the
workstation) with that in a resource-constrained setting (the
Jetson Nano). We aimed to analyze the model’s fundamental
performance before any optimization efforts. The inference
results indicate that although the model demonstrates robust
accuracy and speed on the workstation, the Jetson Nano
experiences a significantly lower inference frequency due to its
constrained hardware resources, including GPU and memory.
A detailed comparison of YOLOv4 performance across both
architectures is summarized in Table I.

TABLE I. YOLOV4 PERFORMANCE COMPARISON

Metric Workstation Jetson AGX Jetson Nano

mAP (%) 92.86 89.16 84.25

FPS 91.7 11 < 1

The results show that YOLOv4 achieves a detection accu-
racy of 92.86% mAP on a workstation but drops to 89.16%,
84.25% mAP on the Jetson AGX and Nano, respectively, due
to their lower memory bandwidth and GPU power. Regarding
inference speed, the workstation processes images at 91.7 FPS,
enabling real-time detection, while the Jetson Nano and AGX
perform significantly slower, below the threshold for real-
time applications. This highlights that although YOLOv4 is
accurate, it demands high computational resources, making it
less suitable for low-power embedded devices without further
optimization. In this regard, quantization presents itself as a
viable solution to reduce latency and resource consumption
while still preserving acceptable levels of accuracy. This ap-
proach will be elaborated upon in the following subsection.

A. Quantization

Quantization is a model compression technique that con-
verts floating-point numbers (FP32) to lower-bit representa-

www.ijacsa.thesai.org 24 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

tions (such as FP16 or INT8), reducing memory usage, increas-
ing inference speed, and minimizing power consumption for
deployment on edge devices. It can be achieved through post-
training quantization (PTQ) and quantization-aware training
(QAT).

1) Post-Training Quantization (PTQ): is implemented after
the training phase and is designed to enhance a neural network
model’s memory and computational efficiency without signifi-
cantly diminishing accuracy [28]. This technique is particularly
beneficial for well-trained models that require adaptation for
deployment in environments with limited resources.

2) Quantization-Aware Training (QAT): in contrast, in-
tegrates the quantization process directly into the training
phase of the model. This methodology enables the model
to acclimate to the effects of quantization throughout the
training period, leading to enhanced performance and accuracy
when functioning with reduced precision, as opposed to Post-
Training Quantization (PTQ) [29].

Post-training quantization is frequently favored for edge
deployment scenarios because of its simplicity and efficiency,
as it eliminates the need for model retraining. In this work, we
utilized the PTQ approach to quantize our YOLOv4 model,
which allows for reduced accuracy during inference while
enhancing runtime performance without modifying the original
learning process.

B. Conversion Pipeline

The YOLOv4 model was initially trained using the Darknet
framework, necessitating its conversion into a format com-
patible with NVIDIA TensorRT. This optimized inference en-
gine facilitates hardware acceleration and precision reduction,
which is crucial for efficient deployment on embedded devices.
To achieve this, we developed a three-stage conversion and
optimization pipeline that transforms the native model into a
highly optimized inference engine.

The steps of the pipeline are as follows:

1) Export to ONNX: The first step involved exporting the
trained YOLOv4 model in ONNX (Open Neural Network
Exchange) format [30]. This intermediate format ensures in-
teroperability among various deep learning frameworks and
facilitates subsequent optimization using NVIDIA tools.

2) Model verification and optimization: The exported
ONNX model was verified to confirm its structural and func-
tional compatibility with TensorRT. This verification process
included validating the network layers, identifying unsupported
operations, and making necessary adjustments.

3) Quantization and engine generation with TensorRT:
After the ONNX model was validated, we employed TensorRT
to perform post-training quantization (PTQ) and generate two
optimized versions of the model: one in FP16 (half-precision)
and the other in INT8 (8-bit integers). The FP16 model signifi-
cantly reduces memory consumption and accelerates inference,
while the INT8 model drastically minimizes computational
requirements. For INT8 quantization, a calibration dataset was
utilized to estimate the scaling factors and zero points essential
for converting weights and activations while preserving model
accuracy.

The conversion and quantization process is illustrated in
Fig. 2.

Fig. 2. YOLOV4 quantization and deployment pipeline.

This dual quantization approach allowed us to develop two
optimized inference engines tailored for on-board deployment
on the Jetson Nano. The models quantized in FP16 and INT8
demonstrated substantial enhancements in inference speed and
memory efficiency. A comprehensive performance analysis,
encompassing both quantitative and qualitative results, is pro-
vided in the following section.

V. RESULTS AND DISCUSSION

In this section, we present and analyze the experimental
results obtained from evaluating the YOLOv4 model before
and after quantization across two hardware architectures: a
high-performance workstation, NVIDIA Jetson AGX Xavier,
and Jetson Nano. Our analysis focuses on the trade-offs
between speed, model size, and precision across the FP32,
FP16, and INT8 precision modes.

A. Quantitative Performance

1) Precision and speed analysis: The FP32 version of
the YOLOv4 model was evaluated on a high-performance
workstation, Jetson AGX, and Nano to establish a baseline
for accuracy and inference speed. As indicated in Table II, the
model achieved an average mean Average Precision (mAP) of
72.39% on the workstation, displaying commendable perfor-
mance across various classes: 71.43% for pedestrians, 77.42%
for cyclists, and 68.31% for cars. On the Jetson AGX, the
FP32 model achieved a mean Average Precision (mAP) of
71.36%, only marginally below the workstation. The per-class
AP was also consistent, recording values of 83.24% for cars,
74.56% for pedestrians, and 56.3% for cyclists. These results
affirm that the AGX platform, despite being an embedded
system, delivers inference performance that closely rivals that
of a desktop workstation regarding detection accuracy. This re-
markable performance can be attributed to AGX’s robust GPU
architecture and deep integration with NVIDIA’s TensorRT
engine, enabling efficient processing of high-precision models
while striking a balance between computational throughput
and accuracy. Similarly, on Jetson Nano, the overall mAP
experienced a slight decline to 68.5%. Notably, the Car class
exhibited an improved mAP of 80%, likely due to enhanced de-
tection stability for larger objects on the embedded hardware,
possibly due to simplified scene complexity or advantageous
scaling of the input image.

www.ijacsa.thesai.org 25 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

The distinction between these architectures was particularly
evident in their inference speeds. The model achieved an
impressive 140.9 FPS on the workstation, while the Jetson
AGX yielded a lower yet commendable 16 FPS. This outcome
demonstrates the AGX’s superior computing capabilities com-
pared to the Nano but also highlights the challenges of running
full-precision models on embedded architectures. In contrast,
the Jetson Nano struggled to surpass 1 FPS, emphasizing the
significant impact that resource limitations have on inference
performance. These results indicate that the original YOLOv4
architecture in its FP32 form is unsuitable for real-time deploy-
ment on edge devices like the Nano and, to a lesser degree, the
AGX without implementing additional optimization strategies
such as quantization or model compression.

After implementing TensorRT-based quantization to FP16,
the model recorded an mAP of 48.07% on the workstation,
reflecting a significant decrease in detection accuracy com-
pared to the original FP32 version. The average precision
(AP) results for each class were 46.60% for cars, 57.78%
for cyclists, and 39.84% for pedestrians. This decline in
performance can be linked to the sensitivity of quantization
in particular layers, especially those associated with smaller
object classes like pedestrians.

Despite the reduced accuracy observed on the workstation,
deploying the FP16 model on the Jetson AGX and Jetson Nano
yielded promising results. On the Jetson AGX, the mean Aver-
age Precision (mAP) reached 68.33%, with Average Precision
(AP) scores of 80.23% for cars, 71.32% for pedestrians, and
53.45% for cyclists. In addition to its accuracy, the Jetson
AGX achieved an inference speed of 47.6 FPS, showcasing
its ability to leverage hardware-accelerated FP16 operations
effectively. The Jetson Nano also performed admirably, main-
taining an mAP of approximately 68.62%, nearly identical to
the unoptimized FP32 model, while significantly improving its
inference speed to 3 FPS. These results indicate that TensorRT
managed quantization-induced errors well across both embed-
ded architectures. Consequently, the FP16 variant emerges as a
strong candidate for applications requiring a balanced approach
between accuracy and computational efficiency.

To further enhance inference efficiency and reduce resource
consumption, additional quantization to INT8 precision was
implemented. On the workstation, the INT8 model achieved an
mAP of 38.96%, with AP scores of 36.63% for cars, 40.82%
for cyclists, and 39.42% for pedestrians. As expected, the
performance degradation was more pronounced than with the
FP16 model due to the greater quantization error associated
with lower bit precision. Nonetheless, the INT8 model demon-
strated exceptional runtime performance on both embedded
architectures. On the Jetson AGX, the model maintained a
respectable mAP of 56.69% with an inference speed of 62.5
FPS, outperforming the Jetson Nano in terms of throughput.
Similarly, on the Jetson Nano, the mAP remained stable at
68.5%, while inference speed reached 5 FPS, marking the
highest observed among all tested variants. This consistency
across the quantized models on the Nano suggests that the
quantization process was effectively calibrated and further
highlights the robustness of the YOLOv4 architecture when
utilized on edge platforms employing lower-precision compu-
tation.

2) Model Size Analysis: The graph below Fig. 3 illustrates
the storage sizes of the YOLOv4 model across three precision
formats (FP32, FP16, INT8) on the Jeson AGX, Jetson Nano
and Workstation. The findings indicate that quantization sig-
nificantly reduces model size, with the INT8 version being
the most compact, followed by FP16, while FP32 remains
the largest. On the Jetson Nano, the model size decreases
from 586.5 MB in FP32 to 201.6 MB in INT8, representing a
decline of nearly 66%. Similarly, on the workstation, the size is
reduced from 400.3 MB to 69.1 MB, an impressive reduction
of over 82%. On the Jetson AGX, the model size decreases
from 592.7 MB in FP32 to 77.8 MB in INT8, resulting in
a significant relative reduction of approximately 86.9% the
most substantial among all three platforms. This indicates that
the quantization pipeline on the Jetson AGX may be more
effectively optimized or better integrated with the TensorRT
engine, leading to more efficient memory utilization. This
substantial decrease is significant for edge deployment, where
constraints on memory and loading times can directly impact
real-time performance. Additionally, smaller models consume
less power and provide faster start-up and inference times,
making the INT8 format a compelling choice for resource-
constrained environments.

Fig. 3. Model size comparison.

Despite employing identical model architectures and quan-
tization techniques, the model size on the workstation con-
sistently remains smaller than that on the Jetson Nano, irre-
spective of the accuracy level achieved. This disparity pri-
marily arises from how TensorRT compiles models within
architecture-specific inference engines.

The performance improvements achieved through quan-
tization are primarily due to decreased computational costs
and better hardware utilization. By transforming FP32 op-
erations into FP16 and INT8 formats, the model takes ad-
vantage of faster arithmetic and lower memory usage, which
is particularly beneficial for embedded GPUs. Furthermore,
the TensorRT produces an optimized binary encompassing
model weight alongside device-specific execution plans, kernel
selections, memory layouts, and fallback mechanisms. The
binary for the Jetson Nano typically includes more metadata
and execution pathways to ensure compatibility across various
components (such as the GPU, DLA, and CPU), contributing to
a larger binary size. In contrast, the workstation engine benefits
from a robust and stable GPU environment, allowing TensorRT

www.ijacsa.thesai.org 26 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

TABLE II. SUMMARY OF YOLOV4 PERFORMANCE BEFORE AND AFTER QUANTIZATION

Model Architecture mAP (%) APCar APPedestrian APCyclist FPS

Workstation 85.68 91.30 87.50 78.22 140.93

FP32 Jetson AGX 71.36 83.24 74.56 56.3 16

Jetson Nano 68.68 80.22 71.50 54.30 < 2

Workstation 48.07 46.60 57.78 39.84 297.56

FP16 Jetson AGX 68.33 80.23 71.32 53.45 47.6

Jetson Nano 68.62 80.18 71.50 54.18 3

Workstation 38.96 36.63 40.82 39.42 372.97

INT8 Jetson AGX 56.69 72.28 53.64 45.03 62.5

Jetson Nano 68.5 80 71.5 54.1 5

to optimize the model more aggressively and eliminate certain
fallback functions.

Although post-training quantization significantly enhances
inference efficiency, our findings indicate that achieving real-
time performance on the Jetson Nano remains elusive, even
with INT8 quantization. While a five-fold speedup has been
realized, Nano’s limited computational resources constrain
its ability to fully leverage the advantages of low-precision
inference, culminating in a maximum performance of only 5
FPS, which does not meet real-time requirements. In contrast,
the Jetson AGX Xavier, equipped with a more powerful GPU
and dedicated inference accelerators, successfully achieves
real-time processing at 48 FPS using FP16 quantization. This
disparity underscores that as hardware resources diminish, the
capacity to attain real-time object detection declines, irrespec-
tive of software-level optimization.

Furthermore, the relatively stable accuracy observed on the
Nano across FP32, FP16, and INT8 quantization levels can be
attributed to its inability to fully quantify all model compo-
nents due to hardware limitations and calibration challenges.
Consequently, some layers may revert to higher-precision com-
putation (e.g. FP16), which helps maintain detection accuracy
but restricts the performance improvements typically expected
from INT8 execution. These findings emphasize the need to
align quantization strategies with the capabilities of the target
hardware in order to strike a balance between efficiency and
precision.

Compared to the work by [11], which attained high accu-
racy using YOLOv7 on the Jetson Nano, our study investigates
the deployment of YOLOv4 on both the Jetson Nano and
AGX Xavier through multi-level quantization. While [11] con-
centrated on optimizing accuracy, our findings underscore the
balance between speed and precision, revealing that only the
AGX with FP16 quantization achieves real-time performance.
This underscores the significance of aligning quantization
strategies with hardware capabilities for effective embedded
deployment.

B. Qualitative Performance

To complement the quantitative evaluation, a qualitative
analysis was conducted to visually assess the detection perfor-
mance of the YOLOv4 model when deployed on the Jetson
Nano using the quantified INT8 version. This subsection
presents sample outputs that illustrate the model’s capability to

identify and classify objects in real-world scenarios. Selected
images demonstrate how the INT8 model operates under
resource constraints, particularly regarding bounding box ac-
curacy and consistency of class labels. These visual results
offer practical insights into the model’s effectiveness following
quantization and underscore any noticeable degradation in
detection quality resulting from the compression process.

Fig. 4. Car detection.

Fig. 5. Pedestrian detection.

Fig. 6. Cyclist detection.

The visual results in Fig. 4 to 6 showcase the YOLOv4
model’s performance using INT8 on the Jetson Nano in various
urban traffic scenarios. Despite resource constraints, the model
delivers reliable detection for cars, pedestrians, and cyclists.
In Fig. 4, the model accurately identifies several vehicles
and in a moderately congested area, with confidence scores
between 0.78 and 1.00. It effectively distinguishes vehicles,
highlighting its ability to handle overlapping classes. Fig. 5
focuses on detection in a semi-congested alleyway, recognizing
six pedestrians and one cyclist, all with confidence scores

www.ijacsa.thesai.org 27 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

above 0.81. The model excels even with partial occlusions,
reaffirming high average pedestrian precision from previous
evaluations. In Fig. 6, the model excels in an open road
scenario, confidently detecting a nearby cyclist (1.00) and a
distant vehicle (0.99).

Overall, these qualitative results demonstrate the effective-
ness of INT8 quantization, confirming that YOLOv4 with
TensorRT is well-suited for embedded vision applications,
maintaining strong localization and accurate classifications.

VI. CONCLUSION

In this study, we examined the deployment and optimiza-
tion of the YOLOv4 object detection model on embedded
platforms, specifically focusing on the NVIDIA Jetson Nano
and Jetson AGX Xavier. We began with an FP32 model trained
in Darknet and subsequently applied TensorRT-based post-
training quantization (FP16 and INT8) to enhance operational
efficiency.

The quantization process significantly accelerated inference
speed and reduced the model size with minimal impact on
accuracy. On the Jetson Nano, the INT8 model achieved a
five-fold increase in speed and a 65% reduction in size while
maintaining a consistent mean Average Precision (mAP). On
the Jetson AGX, the FP16 and INT8 models reached speeds
of up to 48 and 62 FPS, respectively, demonstrating nearly
real-time performance with high accuracy retention.

Future work will integrate quantization-aware training
(QAT) to reduce accuracy loss when using INT8 precision.
Furthermore, deploying mixed-precision and runtime-adaptive
quantization strategies, along with an extension to FPGA hard-
ware and incorporating more diverse datasets, will strengthen
the robustness and generalizability of the optimized models for
real-world embedded applications.

ACKNOWLEDGMENT

This work was partially funded by the Ministry of Europe
and Foreign Affairs, (Eiffel grant number: 116724T), and by
the National Center for Scientific and Technical Research of
Morocco (Grant number: 30UM5R2021).

REFERENCES

[1] P. Jha, D. Dembla, and W. Dubey, “Implementation of machine learning
classification algorithm based on ensemble learning for detection of
vegetable crops disease.” International Journal of Advanced Computer
Science & Applications, vol. 15, no. 1, 2024.

[2] X. Jihong, Z. Xiang et al., “Edge computing for real-time decision
making in autonomous driving: Review of challenges, solutions, and
future trends.” International Journal of Advanced Computer Science &
Applications, vol. 15, no. 7, 2024.

[3] H. Sun, S. Zhang, X. Tian, and Y. Zou, “Pruning detr: Efficient end-
to-end object detection with sparse structured pruning,” Signal, Image
and Video Processing, vol. 18, no. 1, pp. 129–135, 2024.

[4] K. Acharya, A. Velasquez, and H. H. Song, “A survey on symbolic
knowledge distillation of large language models,” IEEE Transactions
on Artificial Intelligence, 2024.

[5] D. Zhang and Y. Chen, “Lightweight fire detection algorithm based on
improved yolov5.” International Journal of Advanced Computer Science
& Applications, vol. 15, no. 6, 2024.

[6] Q. Li and S. Duan, “Road surface crack detection based on improved
yolov9 image processing.” International Journal of Advanced Computer
Science & Applications, vol. 15, no. 11, 2024.

[7] H. M. Chiam, Y. C. Wong, R. S. S. Singh, and T. J. S. Anand, “En-
ergy optimized yolo: Quantized inference for real-time edge ai object
detection,” Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 17, no. 1, pp. 19–28, 2025.

[8] H. Lokhande and S. R. Ganorkar, “Object detection in video surveil-
lance using mobilenetv2 on resource-constrained low-power edge de-
vices,” Bulletin of Electrical Engineering and Informatics, vol. 14, no. 1,
pp. 357–365, 2025.

[9] K. Abdulhaq and A. A. Ahmed, “Real-time object detection and
recognition in embedded systems using open-source computer vision
frameworks,” Int. J. Electr. Eng. and Sustain., pp. 103–118, 2025.

[10] J. N. Chaudhari, H. Galiyawala, P. Sharma, P. Shukla, and M. S. Raval,
“Onboard person retrieval system with model compression: A case study
on nvidia jetson orin agx,” IEEE Access, 2025.

[11] S. Shekhar, T. Sathwik, M. Pritwani, R. Kumar, K. Sreelakshmi et al.,
“Advancing deep learning on edge devices: Fine-tuning and deployment
of yolov7 model for efficient object detection in ai based computer
vision applications,” in 2025 3rd International Conference on Intelligent
Data Communication Technologies and Internet of Things (IDCIoT).
IEEE, 2025, pp. 1912–1918.

[12] P. Ruiz-Barroso, F. M. Castro, and N. Guil, “Real-time unsupervised
video object detection on the edge,” Future Generation Computer
Systems, p. 107737, 2025.

[13] A. Zagitov, E. Chebotareva, A. Toschev, and E. Magid, “Comparative
analysis of neural network models performance on low-power devices
for a real-time object detection task,” Computer Optics, vol. 48, no. 2,
pp. 242–252, 2024.

[14] C. Cheng, “Real-time mask detection based on ssd-mobilenetv2,” in
2022 IEEE 5th International Conference on Automation, Electronics
and Electrical Engineering (AUTEEE). IEEE, 2022, pp. 761–767.

[15] K. Zhao and W. Q. Yan, “Fruit detection from digital images using
centernet,” in Geometry and Vision: First International Symposium,
ISGV 2021, Auckland, New Zealand, January 28-29, 2021, Revised
Selected Papers 1. Springer, 2021, pp. 313–326.

[16] L. Ma, L. Zhao, Z. Wang, J. Zhang, and G. Chen, “Detection and
counting of small target apples under complicated environments by
using improved yolov7-tiny,” Agronomy, vol. 13, no. 5, p. 1419, 2023.

[17] S. Ali, A. Siddique, H. Ates, and B. Gunturk, “Improved yolov4 for
aerial object detection,” in Signal Processing and Communications
Applications Conference, 2021.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 2012, pp. 3354–3361.

[19] W. Chen, J. Luo, F. Zhang, and Z. Tian, “A review of object detection:
Datasets, performance evaluation, architecture, applications and current
trends,” Multimedia Tools and Applications, vol. 83, no. 24, pp. 65 603–
65 661, 2024.

[20] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[21] Y. Cui, S. Lu, and S. Liu, “Real-time detection of wood defects based
on spp-improved yolo algorithm,” Multimedia Tools and Applications,
vol. 82, no. 14, pp. 21 031–21 044, 2023.

[22] F. Z. Guerrouj, S. Rodrı́guez Flórez, M. Abouzahir, A. El Ouardi, and
M. Ramzi, “Efficient gemm implementation for vision-based object
detection in autonomous driving applications,” Journal of Low Power
Electronics and Applications, vol. 13, no. 2, p. 40, 2023.

[23] L. Shen, H. Tao, Y. Ni, Y. Wang, and V. Stojanovic, “Improved yolov3
model with feature map cropping for multi-scale road object detection,”
Measurement Science and Technology, vol. 34, no. 4, p. 045406, 2023.

[24] P. Fränti and R. Mariescu-Istodor, “Soft precision and recall,” Pattern
Recognition Letters, 2023.

[25] O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical
tests for machine learning,” Scientific Reports, vol. 14, no. 1, p. 6086,
2024.

[26] Y. Lin, “Lightweight ca-yolov7-based badminton stroke recognition: A
real-time and accurate behavior analysis method.” International Journal
of Advanced Computer Science & Applications, vol. 16, no. 2, 2025.

www.ijacsa.thesai.org 28 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

[27] A. H. Khan, S. T. R. Rizvi, and A. Dengel, “Real-time traffic object
detection for autonomous driving,” arXiv preprint arXiv:2402.00128,
2024.

[28] Y. Shang, Z. Yuan, B. Xie, B. Wu, and Y. Yan, “Post-training quantiza-
tion on diffusion models,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2023, pp. 1972–1981.

[29] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-quant:
Quantization-aware training for graph neural networks,” arXiv preprint
arXiv:2008.05000, 2020.

[30] D. Chang, J. Lee, and J. Heo, “Lightweight of onnx using quantization-
based model compression,” The Journal of The Institute of Internet,
Broadcasting and Communication, vol. 21, no. 1, pp. 93–98, 2021.

www.ijacsa.thesai.org 29 | P a g e


	Introduction
	Related Work
	YOLOv4 on embedded architecture
	Post-training quantization with TensorRT
	Real-world validation
	Guidance for deploying embedded AI


	Evaluation Methodology
	Detection Model
	Dataset
	Specification of Hardware Architectures
	Evaluation Metrics
	Mean average precision
	Frame rate


	Model Optimization
	Quantization
	Post-Training Quantization (PTQ)
	Quantization-Aware Training (QAT)

	Conversion Pipeline
	Export to ONNX
	Model verification and optimization
	Quantization and engine generation with TensorRT


	Results and Discussion
	Quantitative Performance
	Precision and speed analysis
	Model Size Analysis

	Qualitative Performance

	Conclusion
	References

