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Abstract—Speech Emotion Recognition (SER), a pivotal area 

in artificial intelligence, is dedicated to analyzing and 

interpreting emotional information in human speech. To address 

the challenges of capturing both local acoustic features and long-

range dependencies in emotional speech, this study proposes a 

novel parallel neural network architecture that integrates 

Convolutional Neural Networks (CNNs) and Transformer 

encoders. To integrate the distinct feature representations 

captured by the two branches, a cross-attention mechanism is 

employed for feature-level fusion, enabling deep-level semantic 

interaction and enhancing the model’s emotion discrimination 

capacity. To improve model generalization and robustness, a 

systematic preprocessing pipeline is constructed, including signal 

normalization, data segmentation, additive white Gaussian noise 

(AWGN) augmentation with varying SNR levels, and Mel 

spectrogram feature extraction. A grid search strategy is adopted 

to optimize key hyperparameters such as learning rate, dropout 

rate, and batch size. Extensive experiments conducted on the 

RAVDESS dataset, consisting of eight emotional categories, 

demonstrate that our model achieves an overall accuracy of 

80.00%, surpassing existing methods such as CNN-based 

(71.61%), multilingual CNN (77.60%), bimodal LSTM-attention 

(65.42%), and unsupervised feature learning (69.06%) models. 

Further analyses reveal its robustness across different gender 

groups and emotional intensities. Such outcomes highlight the 

architectural soundness of our model and underscore its 

potential to inform subsequent developments in affective speech 

processing. 
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I. INTRODUCTION 

As a vital subdomain of artificial intelligence, SER aims to 
bridge the gap between human affective expression and 
machine perception. By analyzing vocal cues such as tone, 
pitch, and speech rhythm, SER systems can identify emotional 
states, thereby enhancing human-computer interaction in 
applications ranging from virtual assistants to mental health 
monitoring [1]. This technology leverages machine learning 
algorithms to deeply analyze speech signals, extracting critical 
features like pitch, rhythm, tempo, and intensity to discern the 
underlying emotional states. The application prospects for this 
technology are wide-ranging, gradually transforming services 
and interactions across various industries. In customer service, 
emotion recognition enables more personalized and empathetic 
interactions [2]. In healthcare, it aids in remotely monitoring 
patients’ emotional changes and evaluating treatment 
effectiveness. Smart home systems adjust environmental 

settings based on user emotions, enhancing the overall living 
experience. Furthermore, it is utilized in human-computer 
interaction [3], assistive technologies [4], market research [5], 
and education [6], where the SER technology serves as a 
pivotal component. It assists individuals with language barriers 
in communication and helps analyze customer feedback to gain 
insights into needs. With ongoing advancements in technology, 
the precision and breadth of SER are anticipated to increase, 
allowing machines to more effectively comprehend and 
address the emotional requirements of humans. 

Despite significant progress in both theory and application, 
SER technology still faces a series of challenges. Firstly, 
emotional expression varies significantly across different 
cultures, contexts, and individuals, necessitating models with 
high generalization capabilities. Secondly, emotional cues in 
speech often accompany subtle variations in tone and rhythm 
[7], which automated systems may struggle to accurately 
capture. Additionally, noise interference [8], variations in 
recording devices, and natural variability [9] in speech can 
impact the accuracy of emotion recognition. Despite these 
challenges, advancements in technologies such as deep 
learning [10] and improvements in computational power offer 
prospects for continued expansion in the application scope of 
SER. The effectiveness of CNNs in identifying local structures 
has made them a popular choice in tasks involving both image 
and speech data. Meanwhile, the Transformer architecture has 
demonstrated outstanding performance in sequence modeling, 
effectively capturing long-term dependencies in speech. On 
this basis, a cross-modal attention mechanism is also 
introduced to fuse information from different network 
branches, thereby enhancing the model's representational 
capacity and emotion recognition capability. 

This study proposes a parallel architecture that integrates 
CNN and Transformer models, with deep feature-level fusion 
achieved through a Cross-Attention module. Based on the 
RAVDESS dataset, we designed a systematic experimental 
framework and employed grid search to automatically optimize 
key hyperparameters such as learning rate, dropout rate, and 
batch size. Comparative experiments were conducted against 
four classic SER models. The results demonstrate that the 
proposed model exhibits significant advantages in terms of 
overall accuracy, recognition performance across emotion 
categories, generalization to different emotion intensities, and 
gender robustness. The results confirm the practical utility of 
the developed model in SER and offer meaningful directions 
for subsequent studies. 

*Corresponding Author. 
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Structurally, the study begins by introducing the 
background, application scenarios, challenges, and 
opportunities of SER in Section I. We emphasize the 
significance and purpose of our study. In Section II, we 
comprehensively review existing research and methods in the 
emotion recognition domain, focusing on the applications and 
limitations of currently available models. Section III provides 
detailed descriptions of our research methodology, including 
data preprocessing, feature selection, and model construction. 
Subsequently, Section IV showcases the outcomes of our 
experiments, offering a comparative analysis of various 
models' performances. Section V concludes the study by 
presenting major insights and proposing future development 
paths. 

II. RELATED WORK 

Speech-based emotion classification typically involves 
extracting specific statistical parameters from speech signals 
and these parameters were then simplified, selected, and 
historically analyzed using classical machine learning 
techniques to detect emotional variations [11]. While this 
approach has yielded some progress in recognizing human 
emotions, accurately identifying emotions through speech 
remains challenging. During this process, researchers typically 
measure parameters such as fundamental frequency, short-term 
energy variations, resonance peak positions, and MFCCs, as 
these features are believed to be directly or indirectly related to 
emotional expression. 

Partila et al. [12] introduced a method designed to pinpoint 
the most effective techniques and feature pairings for stress 
detection. They evaluated various feature sets, including 
MFCCs, and eight fundamental prosodic features. These 
feature sets were used in three different machine learning 
classifiers for classification tasks related to stress detection. 
Shajini-Majuran et al. [13] introduced a hierarchical 
classification technique based on MFCCs for emotion 
recognition. Specifically, they focused on statistical metrics 
derived from MFCCs and developed optimal fitting models 
using one-versus-one SVM for each decision node. Their study 
utilized two benchmark speech datasets: Danish and Berlin 
languages. Chenchah et al. [14] investigated methods for 
recognizing human emotions through speech, with particular 
attention to feature selection and the impact of classifiers on 
recognition accuracy. The research examined four distinct 
emotional states by analyzing audio features from emotional 
speech through LFCC and MFCCs. Following this, Hidden 
Markov Models and SVMs were utilized to categorize these 
extracted features, enabling the automatic recognition of 
emotions. Nalini et al. [15] introduced a music emotion 
recognition approach that integrates MFCCs with Residual 
Phase (RP) features. The study focused on identifying 
emotional categories such as anger, fear, joy, neutral state, and 
sadness. RP features, which originate from the excitation 
source, were employed to capture distinct emotional 
characteristics from music signals. Research indicates that RP 
signals complement MFCCs by capturing emotion-specific 
information. Independent models were built for each emotion 
using MFCCs and RP features, and evidence from these 
models was integrated at the score level for emotion 
recognition. 

Deep learning methods are essential for SER. By 
constructing complex neural network models, these methods 
effectively extract features from speech signals and learn 
emotion-related patterns [16]. These models carry out feature 
learning autonomously, removing the requirement for manual 
feature extraction and, as a result, improving the precision and 
resilience of emotion recognition systems. Additionally, deep 
learning can handle large-scale datasets, further improving 
model generalization capabilities. 

Using deep learning technique, Satt et al. [17] proposed a 
method directly applied to speech spectrograms for efficient 
emotion recognition. By combining convolutional and 
recurrent networks, they achieved higher accuracy than 
previous studies. The method also reduced prediction latency 
and handled non-speech background signals effectively. 
Harmonic modeling improved accuracy even with unknown 
noise. In [18], a comparative analysis was performed, and the 
CNN+LSTM model outperformed single CNN by 7% and 
single LSTM by 9%, demonstrating LSTM’s effectiveness in 
SER. In [19], the authors used MFCCs, waveform, and 
spectrograms in parallel as inputs. Different CNN models were 
designed, and an attention mechanism improved classification 
results. The validation was conducted using the Berlin 
Emotional Database and the multimodal emotion dataset. In 
[20], the authors introduced a dialogue memory network based 
on emotional dynamics during conversation. Using GRUs, it 
processed prior utterances from both speakers, capturing 
context. Attention mechanisms selected relevant context for 
predicting current utterances, simulating dynamic emotional 
changes. This approach enhanced dialogue understanding and 
prediction. 

III. METHODOLOGY 

A. Datasets 

The RAVDESS dataset was created to offer high-quality 
emotional expression recordings, facilitating research across 
multiple disciplines including neuroscience, psychology, 
mental health, hearing science, and computer technology [21]. 
This multimodal database includes facial and vocal 
expressions, with twenty-four trained actors participating in the 
recordings, evenly split between twelve males and twelve 
females. They delivered lexically-aligned phrases using a 
standard North American accent. The dataset encompasses 
eight distinct emotion categories, conveyed through both 
speech and singing. Each emotion is presented with two 
degrees of intensity—normal and heightened—along with a 
neutral expression as an additional category. 

The RAVDESS provides audio data that is diverse, reliable, 
and valuable for studying emotional expression in sound. 
Researchers can utilize this resource for emotion recognition, 
sound processing, and human-computer interaction studies. In 
this context, we primarily focus on the audio portion of the 
database, which consists of 1440 English sentences. These 
sentences are constructed by having actors sequentially speak 
two lexically-matched phrases. The dataset demonstrates a 
relatively even distribution, containing approximately 190 
samples for each emotional category except for the “disgust” 
category. The distribution of various emotion types in the 
speech portion of the RAVDESS dataset is shown in Fig. 1. 
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Fig. 1. Data distribution in RAVDESS. 

B. Data Preprocessing 

To enhance the robustness and overall efficiency of the 
model training procedure, a structured pipeline for 
preprocessing and data augmentation was systematically 
applied to the raw speech inputs. This workflow includes four 
essential stages: signal normalization, dataset partitioning, data 
augmentation, and feature extraction. The data preprocessing 
workflow is depicted in Fig. 2. 

 

Fig. 2.  Data preprocessing process. 

1) Signal normalization: All original audio files were 

loaded using the Librosa library, with a unified sampling rate 

set to 48,000 Hz. A 3-second segment from the middle of each 

recording (starting from a 0.5-second offset) was extracted as 

the effective analysis region. To ensure uniform signal length 

in the time domain, all audio signals were padded to a fixed 

length L=3×48,000, with zeros added, where necessary. After 

this process, each speech sample was represented as a fixed-

length single-channel time-domain signal. 

2) Dataset splitting: To prevent model bias caused by 

class imbalance during dataset partitioning, the dataset is split 

on a per-emotion basis, assigning 80% of instances to training, 

10% to validation, and the remaining 10% to testing. The 

indices are randomly shuffled using np.random.permutation to 

ensure that the samples across different subsets are 

independent and follow a consistent distribution. 

3) Data augmentation: To improve generalization under 

noisy acoustic conditions, each training utterance is further 

expanded by synthesizing two noise-contaminated replicas. 

This augmentation process adds white Gaussian perturbations, 

where the Signal-to-Noise Ratio (SNR) is uniformly sampled 

from a range of 15 to 30 dB. Specifically, both the original 

signal and the noise are first normalized, after which a noise 

scaling factor is computed to achieve the target SNR. As a 

result, each clean utterance is transformed into a trio of 

instances—comprising one clean and two noise-augmented 

variants—thereby increasing the training set size by a factor of 

three. The validation and test partitions are kept intact 

throughout the process. 

4) Feature extraction: The preprocessed time-domain 

signals are further converted into Mel spectrograms to more 

effectively capture the frequency-domain characteristics of 

emotional speech. To extract Mel spectrograms, the 

configuration employs a 1024-point FFT, a frame length of 

512, a stride (hop size) of 256, and a total of 128 Mel filters. 

By transforming the power spectrogram into a log-scale 

spectrogram, the resulting 2D feature maps better align with 

human auditory perception. 

Mel spectrograms are individually extracted for all samples 
in the training, validation, and test sets, and subsequently 
stacked to form unified datasets. The final processed Mel 
spectrograms are stored as 3D tensors with the following 
shapes: 

 X_train: (sample count, 128, temporal length) 

 X_val: (sample count, 128, temporal length) 

 X_test: (sample count, 128, temporal length) 

Since all audio clips have the same duration and processing 
parameters, the time dimension (i.e., number of frames) 
remains consistent across all samples. 

This processing step provides a stable and structured 
feature foundation for the subsequent CNN and Transformer 
modules, enabling the model to accurately capture emotion-
related patterns in speech signals. 

C. Model Architecture 

This study proposes a hybrid parallel neural network model 
that integrates CNN, Transformer encoders, and a Cross-Modal 
Attention mechanism for effective SER. As illustrated in Fig. 
3, the overall architecture consists of four primary modules: a 
CNN branch, a Transformer branch, a fusion module based on 
cross-attention, and a final classification layer. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

319 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Overall model architecture. 

The advantages of the proposed model architecture are as 
follows: CNNs excel at capturing local spatial patterns, making 
them well-suited for extracting texture and frequency band 
features from Mel spectrograms. Transformers are effective in 
modeling long-range dependencies and temporal context, 
which benefits the recognition of dynamic emotional 
transitions. The Cross-Attention mechanism enhances the 
complementarity between the two modalities by introducing 
guided attention, thereby improving the model’s overall 
discriminative capability. 

1) CNN Branch: Local feature extraction: The input Mel 

spectrogram with shape (1, 128, T) is fed into a convolutional 

neural network composed of four Residual Blocks. Each 

Residual Block follows the structure [Eq. (1)]: 

𝐲 = ReLU(ℱ(x) + x)                               (1) 

where, 𝐹(𝑥) denotes a pair of convolution operations, each 
succeeded by a normalization layer and a ReLU function. To 
ensure dimensional consistency between the input and output, a 
downsampling shortcut is introduced: 

𝐹(𝑥) = 𝐵𝑁2(𝐶𝑜𝑛𝑣2 (𝑅𝑒𝐿𝑢 (𝐵𝑁1(𝐶𝑜𝑛𝑣1(𝑥)))))       (2) 

Eq. (2) defines the transformation function (𝑥) employed in 
a residual unit, which comprises two sequential convolution 
operations. After each convolution, batch normalization (BN) 
is applied, followed by a ReLU activation. Specifically, the 
input 𝑥 is first convolved using Conv1, normalized with BN1, 
and activated by ReLU. The result is then passed through a 
second convolutional layer Conv2, again followed by batch 

normalization BN2, but without an activation at the end. This 
design allows the residual block to learn complex feature 
transformations while maintaining training stability through 
batch normalization and promoting non-linearity via ReLU. 
The residual output (𝑥) is combined with the shortcut path to 
yield the block's final representation. Subsequently, a pooling 
operation and a dropout layer are applied. The resulting feature 
map is then flattened into a global representation vector 𝑓𝑐𝑛𝑛 ∈
ℝ𝐷. 

2) Transformer encoder: Temporal context modeling: In 

order to effectively model the temporal evolution of emotional 

speech signals, the architecture employs a four-layer 

Transformer encoder. The input to this encoder is the 

spectrogram tensor after a 2×4 pooling operation. 

Each layer in the Transformer encoder consists of the 
following components: 

 Multi-head Self-Attention Mechanism [Eq. (3)]: 

Attention(Q, K, V) = softmax((
𝐐𝐊⊤

√dk
) V               (3) 

 Feed-Forward Network [Eq. (4)]: 

FFN(x) = ReLU(x𝑊1 + 𝑏1)𝑊2 + 𝑏2                (4) 

Here, 𝑄,𝐾, 𝑉 ∈ ℝ𝑇×𝑑𝑘  correspond to the query, key, and 
value representations, where 𝑑𝑘 defines the size of each 
attention vector. The attention mechanism calculates pairwise 
similarities between queries and keys, normalizes the scores 
via softmax, and uses them to compute a weighted combination 
of values. Each encoder layer also includes a feed-forward 
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network (FFN), which is a position-wise multilayer perceptron 
that improve the model's ability to learn non-linear temporal 
patterns in the emotional speech signal. This module produces 
an output sequence 𝑓𝑡𝑟𝑎𝑛𝑠𝑓 ∈ ℝ𝑇×𝐶 , which is subsequently 

used for cross-modal fusion. 

3) Cross-modal attention fusion: To effectively integrate 

features extracted from the CNN and Transformer branches, a 

Cross-Attention module is introduced. In this mechanism, the 

output from the CNN is used as the Query, while the 

Transformer output serves as the Key and Value. The 

computations are as follows [Eq. (5), (6), (7), (8), (9)]: 

𝑄 = 𝑊𝑄 ⋅ 𝑓𝑐𝑛𝑛                  (5) 

𝐾 = 𝑊𝐾 ⋅ 𝑓transf                   (6) 

𝑉 = 𝑊𝑉 ⋅ 𝑓transf                   (7) 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊤

√𝑑
)                           (8) 

𝑓fused = 𝛼 ⋅ 𝑉                   (9) 

In this module, 𝑓𝑐𝑛𝑛 ∈ ℝ𝐷 denotes the global feature vector 

extracted from the CNN branch, and 𝑓𝑡𝑟𝑎𝑛𝑠𝑓 ∈ ℝ𝑇×𝐶 represents 

the temporal features obtained from the Transformer encoder. 
Through learnable projections 𝑊𝑄, 𝑊𝐾, 𝑊𝑉, the attention 
mechanism computes the similarity between CNN-guided 
queries and the Transformer-derived keys, generating adaptive 
weights 𝛼 for aggregating values. This facilitates effective 
cross-modal feature fusion by emphasizing complementary 
information between spatial and temporal representations. 

This mechanism enables adaptive weighted aggregation, 
enhancing semantic consistency across modalities. 

4) Classification output: Finally, the vectors 𝑓cnn and 𝑓fused 

are concatenated to form 𝑓all, which is fed into a dynamically 

initialized linear layer for classification [Eq. (10)]: 

ŷ = Softmax(W ∙ fall + b)                      (10) 

The cross-entropy loss function is adopted for training [Eq. 
(11)]: 

ℒ = −∑ yi
C
i=1 logŷi                          (11) 

The combined feature vector 𝑓all, derived from merging the 
CNN and attention-based outputs, is passed through a newly 
instantiated dense layer and subsequently processed by a 
softmax activation to yield classification scores. To train the 
model, the cross-entropy loss is utilized, which measures the 
divergence between predicted distributions ŷi and ground-truth 
labels 𝑦𝑖  across all 𝐶 emotion categories. 

IV. EXPERIMENTAL RESULTS AND ANALYSES 

A. Implementation Setup 

The emotion recognition system was implemented by using 
Python 3.8, PyTorch2.0 and Cuda 11.8. All experiments ran on 
hardware configured with an NVIDIA 4090D-24 GPU, which 
accelerated both training and inference. 

To achieve optimal performance, we conducted a grid 
search over critical hyperparameters, specifically the learning 
rate, dropout rate, and batch size. The final selected 
configuration, which yielded the best validation performance, 
is summarized in Table I. 

TABLE I.  SELECTED HYPERPARAMETERS AFTER GRID SEARCH 

Hyperparameter Value 

Optimizer SGD 

Learning Rate 0.001 

Momentum 0.8 

Weight Decay 1e-3 

Batch Size 16 

Dropout Rate 0.4 

Early Stopping 50 epochs 

Max Epochs 1000 

The model was trained using the SGD optimization 
algorithm, configured with a learning rate of 0.001, momentum 
coefficient of 0.8, and an L2 penalty term (weight decay) set to 
1e-3. Dropout layers with a dropout probability of 0.4 were 
added after each residual block to reduce overfitting. Inputs to 
the model were standardized using StandardScaler, fitted on 
the training set and applied consistently across validation and 
test sets. 

The checkpoint corresponding to the lowest validation loss 
was preserved and subsequently restored for final evaluation 
on the test partition. A dummy forward pass was performed to 
initialize the dynamically-sized fully connected layer before 
loading the pretrained weights. 

B. Performance Metric 

In this research, classification accuracy is employed as the 
core evaluation metric to assess the model's effectiveness in 
recognizing emotional speech. It measures how many test 
samples are accurately predicted out of the entire evaluation 
set. The metric is mathematically expressed as [Eq. (12)]: 

Accuracy =
1

𝑁
∑ 𝕀𝑁
𝑖=1 (�̂�𝑖 = 𝑦𝑖)                    (12) 

where, 𝑁 represents the total number of evaluation samples, 
�̂�𝑖 is the predicted class label, and 𝑦𝑖  is the true class label. The 
indicator function 𝕀(⋅) returns 1 when the condition is satisfied 
and 0 otherwise. 

The selection of accuracy as the principal evaluation metric 
is grounded in the balanced distribution of classes in the 
RAVDESS dataset. Since each emotional category contains 
approximately the same number of samples, accuracy 
effectively reflects the model’s performance across all 
categories without bias towards more frequent labels. This 
makes it a suitable and meaningful indicator in our 
experimental setting. 

C. Comparison Models 

1) Issa et al. [22] incorporated five distinct low-level 

descriptors such as cepstral and harmonic representations 

(e.g., MFCC, chroma), and these features were integrated as 
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input to a convolutional neural network for classifying eight 

emotional states in the RAVDESS dataset. 

2) Bhattacharya et al. [23] introduced a multilingual 

speech emotion classification approach utilizing a one-

dimensional CNN architecture. Their method focused on 

extracting time-dependent acoustic patterns from speech to 

identify emotion-related cues. 

3) Jin et al. [24] introduced a bimodal emotion 

recognition strategy that leverages both audio and facial 

expressions. Their architecture integrates convolutional layers 

for audio MFCC features and a dual-layer LSTM network for 

facial features, subsequently applying a multi-head attention 

module to enhance feature fusion. Although the method is 

inherently multimodal, this study only adopts the audio 

stream's performance on the RAVDESS dataset for 

comparison in the ablation analysis. 

4) Smietanka et al. [25] proposed an approach that 

enhances feature learning through the integration of 

unsupervised learning and hand-crafted prosodic descriptors 

for SER. Their model employs time-frequency 

representations, specifically Mel-spectrograms and CQT-

spectrograms, to capture spectral-temporal dynamics. Its 

performance on the RAVDESS dataset serves as a baseline in 

our comparative analysis. 

D. Results 

In this study, the proposed model—integrating 
Convolutional Neural Networks (CNN) with a Transformer 
architecture—was evaluated on the RAVDESS speech emotion 
dataset. Fig. 4 illustrates a comparison of classification 
accuracies between our model and several benchmark methods 
from the literature. As shown, our model achieved the highest 
accuracy of 80.00%, significantly outperforming the methods 
of Issa et al. (71.61%), Bhattacharya et al. (77.60%), Jin et al. 
(65.42%), and Smietanka et al. (69.06%). 

 
Fig. 4. Accuracy comparison. 

To further evaluate the model’s classification performance, 
Fig. 5 presents the corresponding confusion matrix. This 
visualization effectively reflects how the system performs 
across different emotional categories and offers deeper 
understanding into its capability to differentiate between 
various affective states. 

 

Fig. 5. Confusion matrix of emotion classification. 

The classification accuracy corresponding to each 
emotional class, as derived from the confusion matrix, is 
reported in Table II. The results indicate that the model 
performs notably well in identifying emotions like calm, 
happy, and surprise. However, certain categories such as sad, 
fear, and disgust still exhibit a degree of misclassification. 

TABLE II.  CLASSIFICATION ACCURACY STATISTICS 

Emotion 

Category 

Correct 

Predictions 
Total Samples Accuracy (%) 

surprise 16 20 80.00 

neutral 7 10 70.00 

calm 20 20 100.00 

happy 19 20 95.00 

sad 12 20 60.00 

angry 18 20 90.00 

fear 15 19 78.95 

disgust 13 18 72.22 

To investigate the effect of emotional intensity (normal 
versus strong) on recognition performance, the distribution of 
correctly and incorrectly predicted samples is visualized in Fig. 
6. 

 
Fig. 6. Confusion matrix of intensity classification. 
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In addition, to evaluate the model’s generalization 
capability across different genders, prediction outcomes for 
male and female speakers are separately analyzed and 
presented in Fig. 7. 

 
Fig. 7. Confusion matrix of gender classification. 

E. Analysis 

This section conducts a comprehensive examination of the 
model’s recognition effectiveness from three perspectives: 
emotion classification capability, robustness to emotion 
intensity, and generalization across gender, based on the 
confusion matrix and cross-tabulation plots of emotional 
attributes. 

1) Analysis of emotion classification capability: The 

confusion matrix shown in Fig. 5 clearly illustrates the 

model’s prediction distribution across the eight emotion 

categories. According to the accuracy statistics in Table II: 

 The model achieves the highest and most stable 
performance on calm, happy, and angry, with accuracy 
rates reaching or exceeding 90%; 

 Emotions like surprise and fear also show relatively 
high accuracy (80.00% and 78.95%, respectively); 

 However, performance drops for categories like sad and 
disgust, with lower accuracy (60.00% and 72.22%, 
respectively), and noticeable confusion—sad samples 
are frequently misclassified as calm or fear. 

These observations indicate that the model performs well 
for high-energy emotions (e.g., happy, angry), but struggles 
with subtler, low-arousal emotions like sad and disgust. Future 
work could explore fine-grained emotion modeling or multi-
scale feature extraction to improve discrimination for subtle 
emotional expressions. 

2) Impact of emotion intensity on recognition 

performance: Fig. 6 compares the model’s recognition 

accuracy across different emotion intensities (normal versus 

strong). 

 It is evident that the model achieves notably higher 
accuracy for strong emotion samples. 

 This may be attributed to stronger emotional speech 
containing more pronounced pitch variations and 

energy dynamics, making the Mel spectrogram features 
more distinctive and easier for the model to learn; 

 In contrast, normal emotion expressions are more 
subdued and harder to recognize. 

To enhance recognition of normal intensity emotions, 
future research could focus on better modeling techniques, 
such as emotion style transfer or sample reweighting strategies 
to boost sensitivity to subtle expressions. 

3) Analysis of gender generalization: Fig. 7 presents the 

model’s prediction results for male and female speakers. The 

analysis reveals: 

 The model achieves comparable recognition accuracy 
for both male and female voices, showing no significant 
gender bias; 

 This implies that the model effectively extracts gender-
independent emotional cues from Mel spectrograms, 
demonstrating strong generalizability across different 
genders. 

Overall, the proposed fusion model exhibits consistent and 
reliable performance across a wide range of speaker 
demographics, highlighting its potential for deployment in 
practical applications. 

F. Discussion 

The experimental findings clearly highlight the advantages 
of integrating CNN and Transformer architectures, particularly 
in capturing local acoustic features and modeling temporal 
dependencies, respectively. The cross-attention mechanism has 
effectively improved feature fusion, leading to higher emotion 
recognition accuracy compared to traditional and simpler 
architectures. However, challenges remain in accurately 
classifying subtle emotions, such as sadness and disgust, 
suggesting limitations in distinguishing nuanced emotional 
cues. Additionally, the significant performance gap observed 
between strong and normal emotional intensity indicates that 
the model is more sensitive to pronounced emotional 
expressions. Practical deployment scenarios such as healthcare 
and customer service could benefit significantly from this 
model, provided that further optimization is conducted to 
enhance its sensitivity to subtle emotional nuances. Future 
studies should explore finer-grained feature extraction and 
consider multi-modal data integration to address these 
challenges comprehensively. 

V. CONCLUSION AND FUTURE WORK 

This study introduces a parallel neural network framework 
that integrates CNN and Transformer encoders for SER. The 
architecture takes advantage of CNNs for extracting local 
acoustic features and leverages Transformers to model 
temporal dependencies in speech. A cross-attention mechanism 
is employed to enable deep-level fusion, allowing the network 
to dynamically integrate information from both branches. 

We utilized the RAVDESS dataset for training and 
evaluation, applying a standardized preprocessing pipeline 
involving normalization, noise augmentation, and Mel 
spectrogram generation. To enhance model performance, grid 
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search was applied for tuning key hyperparameters such as 
learning rate, dropout, and batch size. 

Extensive experimental comparisons against four 
benchmark models demonstrated that our method consistently 
achieves higher accuracy, better per-class emotion recognition, 
and stronger robustness across different emotional intensities 
and gender categories. These outcomes substantiate the 
effectiveness of the proposed cross-branch fusion strategy and 
affirm the model’s generalization potential on balanced 
datasets. 

Looking ahead, our future work will focus on expanding 
the evaluation to more complex and imbalanced real-world 
corpora, thereby examining the model’s adaptability and 
robustness. We also plan to investigate multi-modal strategies 
that combine speech with facial expressions, textual cues, or 
physiological indicators to further refine emotional inference. 
Additionally, we will explore lightweight variants optimized 
for real-time deployment on edge devices or mobile platforms. 
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