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Abstract—The rise of cyber threats in educational 

environments underscores the need for forensic-ready systems 

tailored to digital learning platforms like smart classrooms. This 

study proposes a proactive forensic-ready framework that 

integrates threat estimation, risk profiling, data identification, and 

collection management into a continuous readiness cycle. 

Blockchain technology ensures log immutability, while LMS APIs 

enable systematic evidence capture with minimal disruption to 

learning processes. Monte Carlo Simulation validates the 

framework’s performance across key metrics. Results show a log 

capture success rate of 77.27%, with high accuracy for structured 

attacks such as SQL Injection. The system maintains operational 

efficiency, adding only 15% average CPU overhead. Forensic logs 

are securely stored in JSON format on a blockchain ledger, 

ensuring both integrity and accessibility. However, reduced 

effectiveness for complex attacks like Remote Code Execution and 

occasional retrieval delays under heavy loads highlight areas for 

improvement. Future enhancements will focus on expanding 

threat coverage and optimizing log retrieval. By addressing 

vulnerabilities unique to smart classrooms, such as unauthorized 

access and data manipulation, this study introduces a scalable, 

domain-specific solution for enhancing forensic readiness and 

cybersecurity in educational ecosystems. 
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I. INTRODUCTION 

Digital forensics has become a cornerstone of modern 
cybersecurity and law enforcement, addressing the urgent need 
to locate, preserve, and analyze digital evidence in response to 
cybercrimes, data breaches, and security violations. With 
cyberattack-related damages reaching an estimated $10.3 billion 
in 2022, according to the FBI, the demand for robust and 
adaptive forensic systems is more pressing than ever. Over time, 
the field has evolved significantly, giving rise to various 
definitions and frameworks. The National Institute of Standards 
and Technology (NIST) defines digital forensics as the 
application of scientific and engineering methods to collect, 
preserve, analyze, and present digital evidence. Likewise, 
scholars such as [1] and [2] highlight data recovery, analysis, 
and preservation as core pillars of effective forensic practice. 
However, despite ongoing advancements, most current 
methodologies remain reactive—emphasizing post-incident 
investigation rather than proactive evidence acquisition—which 
limits their effectiveness against the scale and speed of today’s 
cyber threats. 

A major challenge confronting digital forensics today is the 
need to adapt to evolving data storage and processing 
technologies. Traditional evidence sources such as hard drives 

and RAM are increasingly being replaced by cloud-native 
infrastructures and decentralized systems like blockchain. While 
these technologies offer enhanced scalability and efficiency, 
they introduce complex forensic barriers. For example, cloud 
environments often lack a clear physical boundary, complicating 
evidence acquisition and chain of custody, whereas blockchain 
systems distribute data across global nodes, creating technical 
and jurisdictional hurdles. These emerging complexities 
underscore the inadequacy of traditional forensic approaches 
and call for new frameworks that are intrinsically designed to 
operate within modern digital ecosystems. 

In response to these technological disruptions, the concept of 
forensic-ready systems has gained attention as a proactive 
approach to digital evidence management. Unlike traditional 
post-incident forensic methods, forensic-ready systems aim to 
ensure that critical digital evidence is systematically captured, 
preserved, and made readily available without interrupting 
operational workflows. These systems are designed to integrate 
forensic capabilities directly into live environments, balancing 
investigative needs with system performance. However, current 
research in this area—such as that by [3] and [4]—often focuses 
on high-level architectural models or broad organizational 
policies, lacking domain-specific implementations that address 
the unique operational and technical requirements of contexts 
like digital education platforms. 

To address this gap, this study introduces a novel forensic-
ready system framework specifically tailored for smart 
classrooms—an environment increasingly dependent on 
interconnected digital learning platforms and therefore highly 
susceptible to cyber threats. The proposed framework 
incorporates threat assessment, risk profiling, and proactive data 
requirement analysis to ensure forensic evidence is continuously 
and efficiently captured. It also integrates blockchain 
technology to maintain data integrity, ensure transparency, and 
secure digital logs in a tamper-resistant format. By embedding 
forensic readiness into the operational fabric of smart 
classrooms, this framework not only supports proactive incident 
response but also minimizes disruption to the learning process, 
thereby addressing both the technical challenges outlined earlier 
and the limitations of current generalized approaches. 

Ultimately, this study advances both theoretical 
understanding and practical implementation of forensic-ready 
systems. By applying the proposed framework within smart 
classroom environments, it enhances cybersecurity resilience in 
digital education while offering a scalable model adaptable to 
other digital ecosystems. This work represents a critical step 
towards aligning forensic methodologies with contemporary 
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technological landscapes, contributing valuable insights and 
innovative solutions to the field of digital forensics. 

The remainder of the study is structured as follows: Section 
II reviews relevant literature, highlighting critical gaps in 
existing forensic-ready methodologies and their applications in 
educational contexts. Section III describes the proposed 
forensic-ready framework and its implementation methodology, 
including the integration of blockchain and proactive forensic 
mechanisms. Section IV presents simulation results using Monte 
Carlo Simulation (MCS), followed by detailed discussions 
comparing these findings with related studies. Section V 
concludes the study, summarizing key insights and suggesting 
directions for future research. 

II. RELATED WORK 

Digital forensics involves systematic collection, 
preservation, and analysis of digital evidence to ensure its 
integrity and legal admissibility. As a critical component of 
modern cybersecurity, digital forensics enables organizations to 
investigate security incidents, trace the origins of attacks, and 
support legal proceedings. Recent advancements have 
introduced artificial intelligence (AI) and machine learning 
algorithms, enabling automated anomaly detection, efficient 
analysis of large datasets, and predictive threat modeling[5]. 
Additionally, the proliferation of cloud computing and Internet 
of Things (IoT) devices has spurred the development of cloud 
forensic readiness frameworks and decentralized evidence 
storage techniques, reducing the time and cost associated with 
traditional investigations while improving scalability and 
responsiveness in distributed environments [6] [7]. 

Proactive forensics extends these capabilities by embedding 
forensic functions into the operational fabric of systems, 
allowing evidence to be collected preemptively—before a 
security breach escalates. This approach reduces the burden of 
post-incident investigations and improves overall cyber 
resilience [8][6]. Technological innovations are key to this 
paradigm shift. AI-powered behavioral analysis and anomaly 
detection help identify suspicious activity in real time[5], while 
blockchain technology ensures the immutability and traceability 
of forensic data[9]. Dynamic logging systems, particularly in 
cloud and IoT infrastructures, further enhance proactive 
forensics by enabling real-time evidence collection across 
distributed nodes. These developments are redefining proactive 
forensics as a foundational element in cybersecurity 
architecture. 

Closely related is the concept of forensic readiness, which 
emphasizes an organization’s ability to efficiently capture and 
preserve digital evidence with minimal disruption. Emerging 
forensic readiness models incorporate cloud-native 
architectures, centralized logging mechanisms, and edge 
computing to enhance real-time data collection at the point of 
origin [10][11][12]. Blockchain ensures the authenticity and 
permanence of logs [9], while AI automates artifact 
classification and prioritization, leading to faster and more 
accurate investigations. Together, these technologies create 
robust environments, where digital evidence is securely 
maintained and readily available, thereby improving both the 
quality of investigations and compliance with regulatory 
standards. 

Building upon these innovations, forensic-ready systems 
have evolved to integrate sophisticated monitoring tools and 
advanced evidence-preservation protocols. These systems 
leverage machine learning for automated detection of high-value 
forensic events and utilize blockchain to maintain tamper-proof 
logs [3][13][14][8][6]. Edge computing capabilities also enable 
decentralized logging and analysis, which proves particularly 
beneficial in latency-sensitive and distributed environments, 
such as IoT ecosystems[15]. As a result, forensic-ready systems 
are becoming highly adaptive solutions that can meet the 
complex demands of modern cybersecurity environments. 

Although significant advancements have been made in 
digital forensics, applying these technologies to smart 
classrooms using Learning Management Systems (LMS) 
presents unique challenges. The rapid digitalization of education 
has increased exposure to threats such as unauthorized access, 
data breaches, and malware attacks. LMS platforms must now 
incorporate robust cybersecurity mechanisms to protect 
sensitive student data and ensure system reliability. Issues like 
denial-of-service attacks, weak user authentication, and data 
manipulation have prompted the adoption of enhanced 
safeguards such as multi-factor authentication, dynamic access 
control, and real-time monitoring [16][17][18]. These security 
measures highlight the growing need for specialized frameworks 
that address the vulnerabilities inherent in LMS environments. 

To complement preventive security measures, digital 
forensics plays a crucial role in LMS-based smart classrooms by 
enabling the investigation of incidents that bypass security 
defenses. In this context, forensic processes include automated 
collection, preservation, and analysis of evidence related to user 
activity, system behavior, and potential breaches. Recent 
advances in forensic readiness have enabled real-time logging 
and incident tracking within LMS platforms, improving the 
traceability and integrity of digital evidence [16] [18][19]. These 
frameworks support rapid investigation and response, ensuring 
that educational institutions can identify vulnerabilities, enforce 
accountability, and enhance the overall resilience of smart 
learning environments. 

Effectively addressing the identified challenges necessitates 
a comprehensive cybersecurity strategy that integrates digital, 
proactive, and forensic-ready components specifically adapted 
to LMS-based smart classrooms. These integrated systems 
utilize real-time logging, AI-enabled anomaly detection[5], 
blockchain-secured data integrity[9], and centralized forensic 
dashboards to safeguard educational infrastructures. In addition 
to enhancing protection, such systems streamline forensic 
workflows and minimize response times, thereby reinforcing 
forensic readiness as a foundational element of secure and 
resilient educational technology environments. 

Monte Carlo Simulation (MCS) is a popular method for 
validating integrated forensic-ready systems. MCS simulates 
multiple cybersecurity threat scenarios using probabilistic 
modeling and random sampling to assess system performance in 
response time, log retrieval accuracy, and evidence integrity. 
MCS provides statistically meaningful insights into system 
behavior under uncertainty by repeating iterations, making it 
useful for testing forensic-ready frameworks before deployment. 
In digital forensics, [20] used MCS with the Analytic Hierarchy 
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Process (AHP) to support risk analysis in security management 
systems, and [21] used Monte Carlo Feature Selection to 
validate network-based forensic artifacts. These examples 
demonstrate MCS's capacity to verify forensic system 
dependability and preparation in complex, dynamic 
environments like LMS-based smart classrooms. 

Despite recent advancements, existing forensic-ready 
frameworks show key limitations when applied to smart 
classrooms. Many focus on high-level policies or enterprise 
systems and lack the domain-specific features needed for 
educational platforms with dynamic user interactions, multiple 
access levels, and real-time activity [18][22]. Most also lack 
real-time evidence capture, which is vital for responding to time-
sensitive academic incidents. Furthermore, the limited adoption 
of immutable logging mechanisms such as blockchain weakens 
log integrity and reduces the evidentiary value of collected data 
[9]. Recognizing these shortcomings, recent studies have 
explored the benefits of tailoring digital forensic readiness 
(DFR) frameworks to specific operational domains, such as 
Industrial IoT [23], e-Government [24], wireless medical 
systems [25], and software-defined networks [26], 
demonstrating that alignment with domain-specific 
architectures, workflows, and threat models significantly 
enhances forensic effectiveness. However, LMS-based smart 
classrooms remain largely underexplored in this regard, despite 
their increasing reliance on complex digital interactions and 
sensitive data flows. This study addresses that gap by 
introducing a proactive forensic-ready framework that integrates 
real-time threat-aware logging, blockchain-secured evidence 
preservation, and LMS-native API capture, thereby 
operationalizing forensic-by-design principles in an educational 
context and extending the scope of forensic readiness into a 
domain, where it is critically needed but insufficiently studied. 

III. PROPOSED METHODOLOGY 

The proposed forensic-ready framework addresses the 
unique security challenges in smart classrooms, where heavy 
reliance on digital learning platforms increases vulnerability to 
cyber threats. It was chosen for its key advantages: 1) a 
proactive, cyclic structure that ensures continuous forensic 
readiness; 2) integration of blockchain for immutable, tamper-
resistant log storage; 3) a modular design adaptable to existing 
LMS platforms; and 4) threat-based log prioritization that 
targets high-risk attacks like SQL Injection and XSS. These 
features enable efficient evidence handling-with minimal 
disruption, supporting both operational continuity and legal 
admissibility. 

A. Forensic-Ready System Framework 

A forensic-ready framework is a proactive approach that 
equips systems to collect, preserve, and utilize digital evidence 
effectively in the detection and analysis of cybersecurity 
incidents. Unlike traditional postmortem digital forensic 
processes, which commence only after an incident occurs, 
forensic-ready systems are designed to have all necessary data 
readily available at the time of an incident. This methodology 
minimizes response times and ensures the integrity and usability 
of evidence during investigations. 

A forensic-ready system incorporates several key features to 
ensure efficient and effective data management for forensic 
purposes. It ensures data integrity by maintaining the accuracy 
and reliability of stored logs while generating comprehensive 
logs for critical activities such as user logins, database access, 
system changes, and network activity. The system upholds a 
secure chain of custody for digital evidence, preserving its 
admissibility in legal or investigative contexts. Both volatile 
(transient) and non-volatile (permanent) data are collected and 
stored following forensic best practices. Access to forensic logs 
is restricted to authorized personnel, preventing unauthorized 
alterations or breaches. Additionally, the system adheres to 
relevant legal standards and requirements for digital forensics, 
ensuring its outputs are admissible and credible. These 
characteristics collectively prepare the system to handle 
incidents effectively while meeting legal and technical standards 
for forensic investigations. 

Developing a forensic-ready system requires a structured 
framework to guide its design and implementation. While 
general frameworks exist for system development, there are no 
established frameworks specifically tailored to forensic-ready 
systems. To address the lack of domain-specific models, this 
study proposes a forensic-ready framework tailored for 
blockchain-based smart classroom environments. The proposed 
framework aims to ensure the collection and preservation of 
critical data with minimal disruption to system operations. 

To effectively illustrate the conceptual foundation of a 
forensic-ready framework, the diagram highlights the cyclical 
process involved in ensuring preparedness for cyber incidents. 
The framework consists of four interconnected components: 
Threat Estimation, Cyber Risk Profile, Data Identification, and 
Data Collection Management, which collectively form a 
continuous loop. This structure enables systematic identification 
and estimation of potential threats, profiling associated cyber 
risks, and ensuring accurate data identification and collection to 
support forensic readiness. By showcasing this process, 
stakeholders gain a clearer understanding of how these elements 
work together to create a proactive and resilient system capable 
of addressing cyber risks and preserving digital evidence 
efficiently. 

 
Fig. 1. Forensic-ready system framework. 

The framework follows a cyclical structure comprising four 
interdependent components: Threat Estimation, Cyber Risk 
Profiling, Data Identification, and Data Collection Management. 
This cycle facilitates continuous assessment and refinement of 
forensic preparedness by integrating threat anticipation with 
real-time data strategies. Fig. 1 illustrates this architecture, 
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which supports resilient forensic-readiness in blockchain-
enabled smart classrooms. 

1) The first stage, Threat Estimation, identifies prospective 

threats and evaluates their likelihood and impact on the system. 

This stage methodically considers security issues such as 

hostile cyberattacks and system vulnerabilities. Accurate threat 

estimate helps the system allocate resources, minimize risks, 

and apply threat-specific preventative actions. 

2) In the second component, Cyber Risk Profile, detected 

threats are used to categorize and prioritize risks. It assesses the 

system's cyber risk and analyzes it. Stakeholders can prioritize 

urgent risks by analyzing risk severity and likelihood. 

Blockchain-based smart classroom security policies are also 

influenced by this component. 

3) The third component, Data Identification, identifies and 

catalogs all relevant data for forensic investigation. This 

contains system events, blockchain transactions, and user 

activity logs. By precisely identifying data sources, the 

framework streamlines evidence collecting while maintaining 

data integrity and authenticity. This phase is essential for legal 

and regulatory compliance and forensic data admissibility. 

4) Finally, Data Collection Management oversees data 

collection, storage, and organization. This stage stresses data 

preservation to assure integrity and dependability throughout 

legal or forensic processes. Blockchain's immutability lends 

data legitimacy, making it a solid investigative platform. 

Completed cycles contribute insights back into threat estimate, 

allowing the framework to be refined and improved. 

Overall, this cyclic process makes the framework dynamic 
and adaptive, ensuring it evolves in response to emerging threats 
and challenges. It provides a comprehensive approach to 
forensic readiness in blockchain-enabled smart learning 
environments, ensuring a secure, resilient, and evidence-ready 
system. 

B. Testing Methodology 

Given the absence of real-world deployment, the proposed 
forensic-ready framework is evaluated through simulation-
based validation. Monte Carlo Simulation (MCS) is employed 
to examine key forensic performance metrics—log capture 
rates, detection accuracy, system performance impact, and log 
retrieval times. By simulating 10,000 forensic events, this 
method enables evaluation across diverse scenarios, identifying 
potential risks, bottlenecks, and areas for optimization. While 
not a substitute for real-world testing, MCS provides valuable 
insights for refining the framework prior to deployment. 

Monte Carlo Simulation as a Supporting Validation Method 
to ensure the forensic-ready system (FRS) framework enhances 
forensic investigation efficiency without negatively impacting 
system performance. Monte Carlo Simulation (MCS) is used as 
a supporting validation method. Since a full real-world 
deployment is not yet available, MCS provides a probabilistic 
approach to estimating forensic performance under different 
conditions, allowing for preliminary evaluation before 
implementation. 

The simulation focuses on two critical forensic system 
performance factors: 

1) Attack logging probability – Measures whether the 

system successfully captures logs during various simulated 

attack scenarios. 

2) System performance impact (%) – Evaluating how the 

forensic logging process affects LMS performance when 

forensic logs are continuously retrieved through a web service. 

3) Log retrieval time (seconds) – Assessing whether 

forensic logs can be retrieved efficiently before and after 

implementing the forensic-ready system and determining how 

the new forensic logging process optimizes forensic 

investigations. 

This integrated methodology (combining a domain-specific 
forensic-ready framework with probabilistic validation) offers a 
structured approach to developing resilient, evidence-capable 
LMS environments. The use of MCS enables early-stage 
evaluation and continuous improvement, ensuring that the 
proposed system can adapt to evolving cyber threats and meet 
forensic and legal requirements. 

IV. RESULT 

A. Threat Estimation 

The first step in developing a forensic-ready system 
framework is to conduct a comprehensive assessment of 
potential cyberattacks on smart classrooms. Identifying these 
potential threats requires the use of appropriate methods to 
ensure accuracy and relevance. Understanding the types of cyber 
threats likely to target smart classrooms is crucial for designing 
an effective security system, as such systems must be built upon 
clearly identified threat models. Therefore, predicting cyber 
threats becomes a fundamental step in creating a defense 
mechanism capable of mitigating possible attacks. 

Several methods have been explored in research for 
predicting threats. For instance, expert judgment has been 
employed to estimate threats [27], while others have used 
artificial intelligence (AI) for this purpose [28]. In this 
framework, Cyber Threat Intelligence (CTI) is adopted for threat 
estimation. CTI involves collecting, processing, and analyzing 
data to determine the motives, intents, and capabilities of 
potential attackers. The goal of CTI is to focus on emerging 
events and trends to enhance cybersecurity defense capabilities 
[29]. 

CTI has been applied in various contexts, including  
Heterogeneous Information Networks (HIN) [30], where nodes 
that utilized CTI demonstrated superior performance compared 
to those that did not. Similarly, CTI has been used to predict 
threats and enhance the security of cyber supply chains [31] and 
to detect robust botnet Domain Generation Algorithms (DGA) 
using AI and machine learning techniques [32]. These 
applications demonstrate the versatility of CTI in addressing 
diverse cyber threats. 

One of the critical steps in implementing CTI for threat 
estimation is data collection, especially when designing a new 
system. In the case of smart classrooms, data is collected from 
external sources, such as information obtained from web 
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resources. For example, a table of identified potential threats 
includes SQL Injection, Cross-Site Scripting (XSS), Session 
Hijacking, and Remote Code Execution (RCE) (see Table I). 
These attacks represent realistic vulnerabilities that could 
compromise the security of blockchain-based smart classrooms, 
highlighting the importance of precise threat modeling. 

TABLE I.  ATTACKS ON LEARNING MANAGEMENT SYSTEM 

NO CODE ATTACK 

1 ET01 SQL Injection 

2 ET02 Cross-Site Scripting(XSS) 

3 ET03 Session Hijacking and Remote Code Execution (RCE) 

4 ET04 Remote Code Execution via PHP Object Injection 

Each of these threats poses unique challenges. For instance, 
SQL Injection could allow attackers to manipulate database 
queries, exposing sensitive data or taking control of servers. 
XSS enables attackers to inject malicious scripts into web pages, 
potentially stealing user sessions or sensitive data. Similarly, 
Session Hijacking and RCE exploit vulnerabilities to gain 
unauthorized access or execute arbitrary code on the system. 
Recognizing these threats underscores the importance of 
integrating CTI into the forensic-ready framework to effectively 
predict, detect, and prevent these attacks in the context of smart 
classrooms. 

B. Risk Profile 

The risk profile for a forensic-ready system is ideally 
developed using established standards such as ISO 27005 or risk 
profiling frameworks from organizations like NIST. These 
standards provide structured methodologies for identifying, 
assessing, and prioritizing risks to enhance system security. 
However, in cases where comprehensive data is unavailable, 
alternative approaches such as Monte Carlo Simulations can be 
employed to estimate risks and develop a risk profile based on 
existing or partial data. 

In this context, the data on web-based attacks, as illustrated 
in Fig. 2, highlights key vulnerabilities in the system. Based on 
the analysis, SQL Injection ranks as the highest threat, followed 
closely by Cross-Site Scripting (XSS). This prioritization of 
vulnerabilities is critical, as it guides the focus areas for 
designing the forensic-ready system. SQL Injection is 
particularly dangerous due to its potential to manipulate 
database queries, exposing sensitive data or compromising 
server integrity. Similarly, XSS exploits enable attackers to 
inject malicious scripts into webpages, posing significant risks 
to user data and system functionality. 

Given the data from Fig. 2, the development of the forensic-
ready system will primarily target these two high-priority 
threats—SQL Injection and XSS. By focusing on these 
vulnerabilities, the system can effectively address the most 
pressing risks, ensuring that the core threats are mitigated. This 
prioritization not only enhances the security posture of the smart 
classroom system but also ensures efficient allocation of 
resources for building forensic readiness. 

 
Fig. 2. Web application vulnerability. 

Additionally, the integration of threat-specific mechanisms 
into the forensic-ready framework is essential. For SQL 
Injection, measures such as parameterized queries, input 
validation, and database monitoring will be emphasized. For 
XSS, robust input sanitization and output encoding will be 
incorporated to mitigate the risk of script injection. By 
addressing these risks proactively, the forensic-ready system 
will be equipped to detect, respond to, and preserve evidence of 
these attacks, ensuring system resilience and forensic 
preparedness. 

In conclusion, the risk profile provides a clear roadmap for 
focusing efforts on SQL Injection and XSS vulnerabilities. 
Leveraging industry standards and targeted security measures 
ensures that the forensic-ready system not only mitigates these 
critical risks but also establishes a strong foundation for 
handling emerging threats in smart classrooms. 

C. Data Identification 

Identifying data requirements is a fundamental step in 
developing a forensic-ready system, as digital evidence forms 
the foundation for investigation and analysis. The system must 
capture data that is relevant, complete, and reliable to support 
the detection and examination of cybersecurity incidents. These 
data types include user activity logs, network traffic, file 
metadata, and system-generated records from hardware and 
software within the smart classroom environment. Each type 
must be defined based on its relevance to specific threats, such 
as unauthorized access, data manipulation, or abnormal 
behavior, while ensuring that the data structure supports 
efficient collection, storage, and analysis. 

This process begins with analyzing threat scenarios and 
associated cyber risk profiles while considering forensic 
standards and legal compliance requirements. All collected data 
must maintain integrity, accuracy, and traceability to ensure its 
admissibility as legal evidence. In addition, sustainability 
considerations, such as long-term storage and efficient handling 
of high-volume data, must be integrated into the design. Within 
smart classrooms, primary data sources include logs from 
Learning Management Systems (LMS), smart devices, 
academic platforms, and user interaction points. 
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The process involves identifying log data relevant to specific 
threats, determining, where this data originates, and mapping it 
accordingly. For instance, SQL Injection attacks may require 
data from database query logs and error logs, while Cross-Site 
Scripting (XSS) may rely on HTTP request payloads and input 
sanitization events. Mapping threat types to specific log sources 
ensures comprehensive coverage and facilitates effective 
evidence collection. This mapping must then be validated to 
confirm whether the required logs are already available or if 
adjustments are needed in the system’s logging configurations. 

The result is a clear alignment between known threats and 
the data required to investigate them, ensuring that the forensic-
ready system can reliably detect and record incidents as they 
occur. By proactively addressing these data needs, the system is 
better positioned to support efficient forensic analysis and 
maintain compliance with investigative standards. These 
identified data elements ultimately form the backbone of the 
forensic-ready architecture and enable smart classrooms to 
respond effectively to current and emerging cyber threats. 

D. Data Collection Management System Design 

Education has become dynamic, interactive, and data-driven 
due to the increased use of technology in smart classrooms. 
Technology presents several obstacles, notably in cybersecurity 
and digital forensics. Cyberattacks on smart classrooms' 
networked gadgets, learning management systems, and cloud 
platforms can compromise sensitive data, disrupt operations, 
and damage confidence. A strong forensic-ready system design 
is needed to mitigate these hazards. This technology improves 
security and preserves digital evidence for post-incident 
investigations. This section addresses the forensic-ready system 
architecture's design concepts, components, and integration with 
the smart classroom ecosystem to solve cybersecurity issues and 
assist forensic processes. 

 
Fig. 3. Forensic-ready system on smart classroom architecture. 

The forensic-ready system architecture illustrated in Fig. 3 
integrates key components to ensure seamless data collection 
and evidence preservation within a smart classroom 
environment. It consists of an Academic Information System 
and a Learning Management System (LMS), each connected to 
its respective database. The Academic Information System API 
and LMS Web API serve as interfaces to collect relevant data 
from these systems, which is then processed and stored as digital 
artifacts within the forensic ready system. This centralized 
system ensures that artifacts, such as user activity logs or system 
events, are securely collected and maintained for forensic 
analysis. The architecture supports a proactive approach to 

managing cyber threats by enabling systematic extraction, 
storage, and preservation of data from critical educational 
platforms. 

To further understand the functionality and interactions 
within the forensic-ready system, the next section presents a use 
case diagram. This diagram illustrates the various actors, their 
roles, and how they interact with the core components of the 
system. By visualizing these relationships, stakeholders can 
better comprehend the system's operational workflow, including 
how data is collected, processed, and preserved for forensic 
purposes. Use case diagram provides a clear representation of 
the system's capabilities and highlights key processes necessary 
to achieve forensic readiness in smart classroom environments. 

 

Fig. 4. Use case diagram of forensic-ready system. 

Fig. 4 illustrates the core interactions within the forensic-
ready system through two primary use cases: Submit Log and 
Retrieve Log, involving two actors—Time Trigger and DF 
Investigator. The Time Trigger represents an automated process 
that periodically submits system logs, enabling continuous data 
capture without manual input. The DF Investigator accesses the 
system to retrieve stored logs for forensic analysis. This use case 
highlights the system’s ability to automate evidence collection 
while ensuring secure and timely access for investigative 
purposes, reinforcing its role in supporting forensic readiness. 

The next section delves into the class diagram, which 
provides a detailed structural view of the forensic-ready system. 
The class diagram illustrates the system's core components, their 
attributes, and the relationships between them. By examining the 
class diagram, stakeholders can better understand how the 
system is designed, including the organization of data, 
interactions between objects, and the foundational architecture 
that supports its forensic capabilities. This structural perspective 
complements the previously discussed use case diagram by 
offering a deeper insight into the system's internal design and 
implementation. 

The class diagram Fig. 5 represents the structural design of 
a forensic-ready system, highlighting its key components and 
their relationships. The system consists of four main classes: 
APIDatasource, Datasource, BlockchainDatasource, and 
ForensicReadySystem. Each class has specific attributes and 
methods that define its functionality. 
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Fig. 5. Class diagram of forensic-ready system. 

The class diagram models the core components of the 
forensic-ready framework. Datasource serves as the abstract 
base class for handling data connections, with shared methods 
like connect(), fetchData(), and disconnect(). Two subclasses 
extend its functionality: APIDatasource, which manages API 
interactions using attributes such as endpoint and authToken, 
and methods like sendRequest() and parseRespond(); and 
BlockchainDatasource, which supports blockchain data 
handling through writeData() and parseResult(). The 
ForensicReadySystem class integrates these data sources and 
performs core forensic functions such as collectData(), 
analyzeDatap(), and storeArtifact(), coordinating the 
acquisition, processing, and storage of forensic artifacts. 

The relationships depicted in the diagram show that both 
APIDatasource and BlockchainDatasource are derived from the 
Datasource class, while the ForensicReadySystem depends on 
these data sources to perform its operations. This structure 
ensures modularity and scalability, making the forensic-ready 
system adaptable to various data collection needs. 

The next section focuses on the sequence diagram, which 
provides a dynamic perspective of the system by illustrating the 
flow of interactions between objects over time. This diagram 
highlights how the components of the forensic-ready system 
work together to execute key processes, such as data collection, 
analysis, and artifact storage. By detailing the sequence of 
events and interactions between classes, the sequence diagram 
offers a clearer understanding of the system's behavior and 
operational workflow, complementing the structural view 
provided by the class diagram. 

The sequence diagram in Fig. 6 illustrates the dynamic 
interactions between components of the forensic-ready system, 
showing the flow of data and processes involved in collecting 
and storing forensic artifacts. The key components in this 
diagram include the ForensicReadySystem, Datasource, 
APIDatasource, BlockchainDatasource, and two external actors: 
External Blockchain API and External LMS API. 

The sequence begins with the ForensicReadySystem 
initiating a connection to the Datasource via connect(), followed 
by a data retrieval request through fetch(). This triggers the 
APIDatasource to communicate with the external LMS API 
using sendRequest() and format the response using 
parseRespond(). In parallel, the BlockchainDatasource accesses 
blockchain records via getData() and logs new entries using 

writeData(). After gathering data from both sources, the 
ForensicReadySystem processes and evaluates the inputs using 
analyzeDatagap() to ensure their integrity and forensic 
relevance. 

 
Fig. 6. Sequence diagram of forensic-ready system. 

The diagram effectively demonstrates the seamless 
interaction between internal components and external systems, 
highlighting how the forensic-ready system integrates data from 
multiple sources to maintain forensic integrity. This flow of 
operations ensures efficient data collection, validation, and 
storage to support forensic readiness. 

E. Monte Carlo Simulation Results – Evaluating Forensic-

Ready System Performance 

To evaluate the performance of the proposed forensic-ready 
system framework, Monte Carlo Simulation (MCS) was 
conducted to simulate and assess its effectiveness in three key 
areas: attack log capture success, system performance overhead, 
and forensic log retrieval efficiency. The simulation compares 
system behavior before and after the implementation of the 
forensic-ready system (FRS), providing a probabilistic analysis 
across 10,000 simulated cyberattack scenarios. 

1) Attack logging probability 

a) Determine probability of occurrence and logging 

success rates: The mapping of LMS attack types to real-world 

web application vulnerabilities was performed by aligning each 

threat with statistical occurrence data, ensuring realistic 

probability estimates for simulation. SQL Injection (ET01), 

Cross-Site Scripting (ET02), Remote Code Execution (ET03), 

and Executable Code Injection (ET04) were assigned 

probabilities of 33%, 26.7%, 8.1%, and 2.1%, respectively, 

based on established vulnerability data (see Table II). This 

evidence-based alignment supports accurate probabilistic 

modeling in the Monte Carlo Simulation, forming the 

foundation for evaluating the framework’s forensic readiness. 

TABLE II.  ATTACK PROBABILITY 

NO Attack Code Attack Type Percentage (%) 

1 ET01 SQL Injection (ET01) 33% 

2 ET02 Cross-Site Scripting (ET02) 26,7% 

3 ET03 
Remote Code Execution 
(RCE)(ET03) 

8,1% 

4 ET04 
Executable Code Injection 

(ET04) 
2,1% 

The normalization process involves adjusting the original 
attack probabilities to ensure they collectively sum exactly to 
100%, enabling accurate probabilistic analyses and simulations. 
The resulting normalized probabilities are: SQL Injection 
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(ET01) at 47.2%, Cross-Site Scripting (ET02) at 38.2%, Remote 
Code Execution (ET03) at 11.6%, and Executable Code 
Injection (ET04) at 3% (see Table III). This refined distribution 
accurately reflects each attack type's relative frequency, 
providing a solid basis for subsequent Monte Carlo Simulations 
or forensic-readiness evaluations in LMS environments. 

TABLE III.  NORMALIZED ATTACK PROBABILITY 

NO Attack Code Attack Type Percentage (%) 

1 ET01 SQL Injection (ET01) 47,2% 

2 ET02 
Cross-Site Scripting 

(ET02) 
38,2% 

3 ET03 
Remote Code Execution 
(RCE)(ET03) 

11,6% 

4 ET04 
Executable Code Injection 

(ET04) 
3% 

Logging success likelihood was estimated based on the 
system’s architecture, supported by assumptions from expert 
judgment, historical data, and industry best practices.  An 
estimate is usually based on system design assumptions, past 
logging data, expert knowledge, or industry best practices.  The 
frequency and method of logging, attack type complexity, and 
data picked for recording affect this assessment.  Due to 
effective monitoring measures, attacks with organized and 
predictable patterns, such as SQL Injection, are likely to succeed 
using selective logging, which records only critical information 
via a web service at regular intervals.  Complex, subtle, or 
ephemeral attacks like Remote Code Execution or Executable 
Code Injection are harder to detect and may have lower success 
rates.  These probabilities must be accurately defined for reliable 
forensic investigation and event response. 

TABLE IV.  ATTACK AND LOGGING SUCCESS PROBABILITY 

NO 
Attack 

Code 
Attack Type 

Probability 

of 

Occurrence 

(%) 

Logging 

Success 

Probability 

(%) 

1 ET01 SQL Injection (ET01) 47,2% 85% 

2 ET02 
Cross-Site Scripting 

(ET02) 
38,2% 75% 

3 ET03 
Remote Code 
Execution 

(RCE)(ET03) 

11,6% 65% 

4 ET04 
Executable Code 

Injection (ET04) 
3% 55% 

b) Generate random attack scenarios using probability 

distribution: In the second step of the Monte Carlo Simulation, 

10,000 random attack scenarios were generated based on the 

previously assigned probabilities for each attack type: SQL 

Injection, Cross-Site Scripting (XSS), Remote Code Execution 

(RCE), and Executable Code Injection. This probabilistic 

modeling reflects the expected real-world distribution of threats 

within LMS environments, with high-probability attacks like 

SQL Injection and XSS occurring more frequently, while less 

common threats such as Executable Code Injection appeared 

rarely. These simulated distributions provide a realistic basis 

for evaluating the forensic-ready system’s ability to detect and 

log varied threats, enabling data-driven insights into its 

effectiveness and informing more resilient incident response 

strategies. 

c) Simulate logging success using another random 

probability check: In the third step, each of the 10,000 

simulated attack scenarios was evaluated for logging success by 

comparing a random value against the predefined logging 

probability assigned to each attack type. This process reflects 

realistic operational conditions influenced by attack complexity 

and system monitoring capabilities. As expected, structured 

attacks like SQL Injection and Cross-Site Scripting (XSS) 

demonstrated higher log-capture success rates, while more 

complex threats such as Remote Code Execution and 

Executable Code Injection exhibited increased failure rates (see 

Table IV). These results reveal both the strengths and 

limitations of the current logging framework, highlighting areas 

that require improved monitoring and log enrichment to 

enhance overall forensic readiness. 

d) Analyze how often attacks are logged and where logs 

fail: Here's the detailed analysis sorted by the highest logging 

failure rates, clearly highlighting where the forensic-ready 

system most frequently succeeded or failed (see Table V): 

TABLE V.  ATTACK LOGGING PROBABILITY SIMULATION 

Simulated Attack 

Scenario 

Success
ful 

Logs 

Faile
d 

Logs 

Total 
Scenari

os 

Success 
Rate 

(%) 

Failure 
Rate 

(%) 

SQL Injection 
(ET01) 

3943 744 4687 84.13% 15.87% 

Cross-Site 

Scripting (ET02) 
2909 1005 3914 74.32% 25.68% 

Remote Code 
Execution (RCE) 

(ET03) 

719 398 1117 64.37% 35.63% 

Executable Code 

Injection (ET04) 
156 126 282 55.32% 44.68% 

These results confirm that the system performs effectively in 
capturing logs for structured and high-frequency attacks such as 
SQL Injection and XSS. However, logging success decreases for 
less frequent and more sophisticated attack types, indicating 
areas, where logging granularity and detection mechanisms may 
require enhancement. The overall average logging success rate 
across all attacks was 77.27%. 

2) System performance impact (%): One of the concerns 

when deploying a forensic-ready system is ensuring that 

additional logging operations do not significantly degrade LMS 

performance. Before implementing the FRS, the LMS handles 

only normal logging operations, while forensic investigators 

must retrieve logs from multiple LMS tables, leading to high 

system query load. However, once the FRS is deployed, an 

additional forensic log generation process is introduced, 

consolidating forensic-relevant logs into a dedicated forensic 

log table. This helps forensic investigators retrieve logs more 

efficiently but adds an extra processing step to LMS operations. 

Monte Carlo Simulation Results for System Performance 

Impact: 
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The Monte Carlo Simulation was conducted with 10,000 
simulated forensic logging events to estimate CPU and memory 
utilization across both scenarios (see Table VI): 

TABLE VI.  SYSTEM PERFORMANCE IMPACT SIMULATION 

Scenario 
Average CPU 

Utilization (%) 

Memory Usage 

(MB) 

Before Forensic-Ready 

System 
12-18% 200-250 MB 

After Forensic-Ready 

System 
15-22% 250-300  

Key Findings: The forensic-ready system adds slight CPU 
and memory overhead. 

3) Log retrieval time (seconds): Efficient forensic log 

retrieval is critical for incident response and investigations. 

Without an FRS, forensic analysts must search multiple LMS 

logs manually, increasing retrieval time. The forensic-ready 

system introduces a structured forensic log table, allowing 

investigators to access logs directly from a centralized source, 

significantly reducing forensic log processing time. 

Monte Carlo Simulation Results for Log Retrieval 
Efficiency: The Monte Carlo Simulation analyzed 10,000 
simulated log retrieval requests, measuring retrieval speed 
before and after implementing the FRS (see Table VII). 

TABLE VII.  LOG RETRIEVAL TIME SIMULATION 

Scenario 
Average Retrieval 

Time (Seconds) 

Max Retrieval 

Time 

(Seconds) 

Before Forensic-Ready System 8.5 - 12 sec 18 sec 

After Forensic-Ready System 1.5 - 3 sec 5 sec 

Key Findings: 

a) Log retrieval is 4x to 6x faster after implementing the 

forensic-ready system. 

b) Forensic analysts spend significantly less time 

retrieving logs, improving incident response. 

c) Peak retrieval delays are minimized, reducing forensic 

processing bottlenecks. 

F. Discussion and Comparative Analysis 

The results of the Monte Carlo Simulation confirm that the 
proposed forensic-ready framework effectively supports 
proactive evidence capture, minimal performance disruption, 
and efficient log retrieval in smart classroom environments. 
With an average logging success rate of 77.27%—and 
particularly strong results for structured attacks like SQL 
Injection (84.13%) and XSS (74.32%)—the framework meets 
its core design goals. These outcomes align with prior findings 
by Grispos et al. [12] and Alrajeh et al. [13], who highlight the 
value of embedding forensic readiness into operational 
workflows. 

However, lower logging success for more complex threats 
such as Remote Code Execution (64.37%) and Executable Code 
Injection (55.32%) reflects a known challenge in digital 
forensics, consistent with observations in [14] and [19]. These 
results indicate the need for enhanced monitoring strategies, 

possibly through AI-based anomaly detection or deeper packet 
inspection, to better capture subtle and low-frequency attacks in 
LMS environments. 

In comparison to earlier frameworks, the proposed system 
introduces several improvements: it is domain-specific, 
modular, and integrates blockchain for tamper-proof log 
storage—addressing traceability concerns often overlooked in 
past models. Moreover, performance impact remains minimal, 
with CPU usage increasing to only 15 to 22%, and log retrieval 
times improving by over 4×. These findings demonstrate that the 
framework is not only theoretically sound but also practically 
viable for deployment in digital education platforms, while 
offering a scalable foundation for future enhancements. 

While the Monte Carlo Simulation provides valuable insight 
into the statistical performance of the framework under varying 
attack conditions, its deployment in real-world LMS 
environments remains essential to fully validate its operational 
readiness. Building on successful domain-specific 
implementations in areas such as IIoT, SDN, and healthcare 
systems, future work will focus on integrating the framework 
into platforms like Moodle or Open edX. Such a deployment 
would allow for empirical evaluation of logging reliability, 
evidence integrity, and administrator usability under authentic 
classroom scenarios. It would also support analysis of 
integration complexity and scalability, further reinforcing the 
framework’s applicability to dynamic educational 
infrastructures. 

V. CONCLUSION 

This study proposes a forensic-ready system framework 
tailored for smart learning environments, integrating proactive 
evidence collection and secure log storage to ensure the 
integrity, availability, and admissibility of digital forensic 
artifacts. Monte Carlo Simulation (MCS) was employed as a 
validation method to assess the framework’s performance across 
critical forensic metrics, including log capture success rates, 
threat detection accuracy, system performance impact, and log 
retrieval time under diverse operational scenarios. 

Simulation results show that the framework achieves a log 
capture success rate of 77.27%, with particularly high 
effectiveness against structured threats such as SQL Injection 
(84.13%) and Cross-Site Scripting (74.32%). The system incurs 
minimal performance overhead, with only a 15% average 
increase in CPU utilization, confirming its operational 
feasibility. However, the reduced detection success for more 
complex attacks—such as Remote Code Execution and 
Executable Code Injection—and the risk of retrieval delays 
under heavy loads highlight opportunities for improvement in 
log enrichment, adaptive monitoring, and backend data 
handling. 

Overall, the proposed framework is well-structured, 
modular, and scalable, capable of enhancing forensic readiness 
while preserving the functional continuity of LMS-based smart 
classrooms. While MCS provides strong preliminary validation, 
future work will focus on real-world deployment in widely used 
LMS platforms such as Moodle or Open edX. This will allow 
empirical assessment of integration complexity, usability for 
educational administrators, and performance under live 
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academic workloads. Additional enhancements will target 
improved AI-assisted threat detection, storage efficiency, and 
log retrieval optimization to support evolving forensic and 
regulatory requirements in education technology environments. 

These findings demonstrate that simulation-validated 
forensic-ready systems can significantly enhance proactive 
incident response and forensic preparedness in digital learning 
ecosystems, providing a foundational model for securing next-
generation educational platforms. 
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