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Abstract—Heart failure is still one of the prominent causes of 

morbidity and mortality globally, and thus, determining the 

principal factors influencing survival in patients becomes crucial. 

Being able to predict survival is critical for optimizing patient 

treatment and management. Heart failure, with its multifactorial 

and involvement of numerous clinical variables, complicates 

prediction of survival rates in patients. This study utilizes the 

"Heart Failure Clinical Records" dataset to analyze and predict 

patient survival based on two separate approaches: survival 

analysis and machine learning (ML) classification. Specifically, 

we employ the Cox Proportional Hazards Model to assess the 

influence of clinical variables like “age”, “serum creatinine”, and 

“ejection fraction” on survival durations. Additionally, machine 

learning classification models like K-Nearest Neighbors (KNN), 

Decision Trees (DT), and Random Forests (RF) are implemented 

to predict the binary response variable of survival 

(DEATH_EVENT). Data preprocessing is carried out using 

methods like feature scaling, imputation of missing values, and 

balancing the classes for the improvement of model performance. 

Among the evaluated models, the Random Forest classifier, when 

integrated with feature selection derived from the Cox model, 

reached the best performance with 96.2% accuracy and an AUC 

ROC of 0.987, outperforming all other approaches. The results 

indicate that integrating survival analysis with machine-learning 

techniques is effective in heart failure prediction outcomes, 

providing valuable support for patient management and clinical 

decision-making. 
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I. INTRODUCTION 

The heart is considered to be among the most vital 
components within the human body, which is responsible for 
the essential task of circulating blood throughout the entire 
system. Heart disease (HD) is a medical condition that 
adversely impacts the heart's proper functioning. It 
encompasses various forms, like heart failure and coronary 
artery disease (CAD), which is a prevalent type of heart 
ailment. The primary culprit behind CAD is the constriction or 
obstruction of the coronary blood vessels [1]. In recent years, 
cardiovascular or heart disease has consistently held the 
dubious distinction of being the main cause of mortality 
globally. As per approximations from the World Health 
Organization (WHO), there could be around 17.9 million 
fatalities related to heart issues yearly, with CAD and cerebral 
strokes jointly contributing to 80% of these deaths [2]. HD can 
result from an array of risk factors, including genetic 
predispositions, personal and professional behaviors, and 

lifestyle choices. Therefore, an early, accurate medical 
assessment for heart disease is crucial in implementing 
preventive measures to reduce mortality rates [3]. 

Early detection or diagnosis of heart disease is necessary 
because it may be a significant problem. Different methods are 
used to diagnose heart disease. Angiography is a method that is 
becoming more popular among doctors. However, there were 
some drawbacks to the angiography method, such as the 
expensive process that was used and the requirements that 
doctors needs, to examine multiple factors in order to diagnose 
a disease. As a result, this procedure can be extremely hard on 
doctors, and these drawbacks have prompted researchers to 
develop non-invasive methods to predict heart problems. The 
medical reports of patients can be handled by conservative 
medical approaches. These cautious approaches are carried out 
by humans, which could make them time-consuming and lead 
to inaccurate results [4]. 

In today's digital age, the fast evolution in the areas of 
science and technology results in the production of huge 
volumes of healthcare data utilizing diverse technologies such 
as embedded systems, intelligent health devices, and 
computers, which have become more popular due to the rapid 
development in these fields. Machine learning algorithms are 
progressively being envisioned as effective agents within the 
healthcare industry, where they can effectively be utilized to 
diagnose and forecast diseases in advance according to 
recognizing significant patterns in the data [5]. 

This study contributes to the field of heart failure survival 
prediction through the application of a two-framework 
approach that combines survival analysis and machine learning 
techniques. It compares a number of ML techniques to 
determine the best approach for prediction of patient’s 
outcome. Furthermore, real-world applications of these 
predictive models are emphasized, illustrating their potential 
utility in the clinic to improve treatment decision-making and 
patient outcomes. In this study, three models were employed, 
and the RF model achieved the highest accuracy of 96.21%, 
also outperforming all related works in terms of predictive 
performance. 

This study seeks to answer the central research question: 
Can the integration of survival analysis and machine learning 
techniques enhance the prediction of survival outcomes in 
heart failure patients compared to existing methods? This 
question frames the comparative analysis and drives the 
evaluation of clinical relevance and model performance. 
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In the following sections, Section II presents related work 
in survival prediction using machine learning. Section III 
presents the suggested approach to combining survival analysis 
and machine learning. Section IV illustrates the results, the 
model performance, and explains the findings and their clinical 
applicability. In Section V, a conclusion for the study and 
future work suggestions are presented. 

II. RELATED WORK 

A number of research studies have been conducted on 
using statistical models and ML in survival prediction in 
patients with heart failure. Various techniques such as 
SMOTE, Random Forests, and Cox Proportional Hazards have 
been employed in order to achieve higher accuracy predictions 
and mitigate the issues of class imbalance. Such models have 
indicated great potential for optimizing clinical decision-
making and patient care by discovering risk factors as well as 
optimization of survival prediction. 

For instance, Ishaq et al. utilized the Synthetic Minority 
Oversampling Technique (SMOTE) along with other data 
mining techniques to optimize survival rates' predictive 
accuracy among heart failure patients. Their comparative study 
of nine machine learning models revealed that the Extra Tree 
Classifier (ETC), when paired with SMOTE, achieved the 
highest accuracy of 92.62%, underscoring the value of 

handling imbalanced data [6]. Rahayu et al. wanted to decrease 
heart failure mortality rates by using ML classifiers on the 
"Heart Failure Clinical Records" dataset. They experimented 
with different models like RF, DT, KNN, SVM, ANN, and 
NB. The RF model with resampling yielded the best accuracy 
of 94.31% that was a bit better than Ishaq et al. This suggests 
that ensemble techniques could be immensely helpful in 
clinical prediction [7]. Furthermore, Oladimeji et al. enhanced 
prediction accuracy by incorporating feature selection and class 
balancing into their machine learning. Their findings 
determined that “age”, “smoking status”, “serum creatinine”, 
and “ejection fraction” are critical variables for predicting 
survival, which demonstrates how crucial it is to include the 
pertinent clinical features in the input to the model [8]. In 
addition, Lee et al. combined Kaplan-Meier survival curves 
alongside Cox regression modeling on the same data. "Age", 
"serum creatinine", and "ejection fraction" were found to be 
important predictors of mortality in their study, demonstrating 
the strength of merging statistical and machine learning 
methodologies in biomedical informatics [9]. Using these 
findings, Mamun et al. employed models like Logistic 
Regression, XGBoost, and LightGBM to predict survival from 
heart failure. LightGBM surpassed other models with 85% 
accuracy and a 93% AUC score, yet again establishing the 
feasibility of ML in predicting high-risk patients [10]. The key 
information for each related work is summarized in Table I. 

TABLE I.  SUMMARY OF RELATED WORK 

Writer Paper Year Models Dataset Results 

Ishaq et al. [6] 

“Improving the Prediction of Heart 

Failure Patients Survival Using SMOTE 

and Effective Data Mining Techniques” 

2021 
DT, AB, LR, SGD, RF, 
GBM, ETC, GNB, SVM 

UCI 299-patient HF 
clinical records 

Extra Tree Classifier + 

SMOTE achieved 92.62% 

accuracy. 

Rahayu et al. [7] 
“Prediction Of Survival Of Heart Failure 
Patients Using Random Forest” 

 

2020 
RF, DT, KNN, SVM, 

ANN, NB 

UCI 299-patient HF 

clinical records 

Random Forest + Resampling 

achieved 94.31% accuracy. 

Resampling outperformed 
SMOTE (85.82%). 

Oladimeji et al. 
[8] 

“Predicting Survival of Heart Failure 

Patients Using Classification 

Algorithms” 

2020 KNN, SVM, NB, RF 
UCI 299-patient HF 
clinical records 

Random Forest achieved 
83.17% accuracy. 

Lee et al. [9] 

“Machine Learning-Enhanced Survival 

Analysis: Identifying Significant 

Predictors of Mortality in Heart Failure” 

2024 CoxPH, KM 
UCI 299-patient HF 
clinical records 

C-index = 0.77. 

Mamun et al. [10] 

“Heart failure survival prediction using 

machine learning algorithm: am I safe 

from heart failure?” 

2022 
LR, DT, SVM, XGB, 
LGBM, RF, KNN, BAG 

UCI 299-patient HF 
clinical records 

LightGBM yielded 85 % 
accuracy, AUC 93 %  

 

Earlier studies have advanced heart-failure survival 
modelling, but each leaves critical gaps that our work will 
bridge. Ishaq et al. emphasised class-imbalance handling and 
tried nine classifiers, yet they depended on a single 
oversampling method and a coarse Random-Forest ranking that 
can blur clinically meaningful variables [6]. Rahayu et al. 
explored resampling but limited themselves to the original 299-
patient cohort and ignored any time-to-event analysis, making 
their findings hard to translate into bedside risk estimates [7]. 
Oladimeji et al. improved Weka-based models with heuristic 
feature rankings, though their single hybrid sampler and scant 
justification for the chosen variables weaken the model’s 
clinical defensibility [8]. Our study will couple Cox-based 
hazard significance with multiple balancing strategies and 
scaling pipelines, producing a compact, interpretable feature 
core and a classifier that remains stable across richer, more 
realistic data landscapes. 

More recent work revisits the same UCI cohort with 
modern tools but still stops short of an integrated survival-ML 
framework. Lee et al. rely solely on Cox regression, leaving 
unexplored how ensemble learners might amplify 
discrimination or how larger cohorts shift variable importance, 
while Mamun et al. benchmark eight off-the-shelf classifiers 
and highlight LightGBM without survival-specific metrics or 
built-in explainability [9] [10]. Our study will extend classical 
survival statistics into an ensemble pipeline, embed 
explainability through hazard-filtered features and calibrated 
probability curves, and validate performance on an expanded, 
balanced dataset. By unifying statistical survival analysis with 
machine-learning robustness and interpretability, our work will 
deliver insights that are both clinically actionable and 
generalisable—advancing the field beyond retrospective 
accuracy contests towards real-world decision support. 
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III. METHODOLOGY 

In this study, an overall approach was provided to model 
and examine heart failure survival data using a well-defined 
multi-stage process. First the data from Kaggle was imported, 
and the dataset contains clinical records of heart failure 
patients. The initial step in the preprocessing stage was to 
handle duplicate records in such a way that all records in the 
data are single case records to ensure the integrity of the 
analysis. Having preprocessed the data, the Cox Proportional 
Hazard Model was utilized in performing the survival analysis. 
This enabled us to model how various clinical features are 
associated with the patients' survival time. Through this, the 
key traits that govern the survival of a patient are revealed. The 
output of the feature analysis of the Cox model was then used 
to perform feature selection, retaining only the variables that 
were found to have a great impact on survival. This step 
streamlined the dataset and ensured that only relevant features 
were used in subsequent modeling, which improves both 
accuracy and interpretability. 

 
Fig. 1. The proposed methodology. 

Fig. 1 illustrates the proposed methodology for analyzing 
and predicting patient survival in heart failure. The process of 
the proposed framework is as follows: 

 Dataset Acquisition: Obtain Heart Failure Clinical 
Records dataset. 

 Data Preprocessing: Clean the dataset through 
eliminating duplicates and handling missing values. 

 Survival Analysis: Apply Cox Proportional Hazards 
Model to identify significant clinical features. 

 Feature Selection: Select key predictors based on Cox 
model significance. 

 Machine Learning Modeling: Apply classification 
algorithms (DT, KNN, RF). 

 Model Training and Evaluation: Train models and 
evaluate using Accuracy, F1-score, AUC-ROC, 
Precision, and Recall. 

 Results Comparison: Identify the best-performing 
predictive model. 

Compared to prior frameworks, our approach offers several 
advantages: 1) it combines time-to-event modeling with 
ensemble learning for a more nuanced prediction of survival; 
2) it uses clinically interpretable feature selection through Cox 
regression, improving transparency; and 3) it systematically 
integrates multiple class balancing techniques and feature 
scaling methods to enhance robustness. These design choices 
make the framework more adaptable to real-world clinical data 
than models that use only classification algorithms or only 
statistical survival analysis. 

A. Survival Analysis Using COX 

The Cox proportional hazards model (also called Cox 
regression, CoxPH, or Cox's model) has been the most 
commonly employed method for examining the association 
between a patient's survival and potential risk factors which is 
known as survival analysis [11]. The hi value depends on the 
predictor variables (x) and baseline hazard function h0. A 
convenient feature of this modelling method is that the baseline 
hazard function h0 does not need to be explicitly modelled or 
estimated, and the modelling task involves only estimating the 
β parameters for the effects of predictor x. In simpler terms, the 
baseline hazard function doesn't rely on any specific 
assumptions, and the predictors x multiply the hazard 
proportionally through an exponential function (for instance, 
the below Eq. (1) provides an example using two predictors): 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒
𝛽1∗𝑥1+𝛽2∗𝑥2  (1)

The Cox model, which assumes constant hazard ratios over 
time, was used on the data to predict mortality. In this study, 
the lifelines library was used to fit the CoxPH model to the 
“Heart Failure Clinical Records” dataset, with “time” as the 
duration column (survival time) and “DEATH_EVENT” as the 
event indicator (death occurrence). The model was fitted using 
the Breslow method for estimating the baseline hazard since 
this works best when survival times are tied. The model 
included eleven clinical variables as predictors: "age", 
"anemia", "creatinine phosphokinase", "diabetes", "ejection 
fraction", "high blood pressure", "platelets", "serum 
creatinine", "serum sodium", "sex", and "smoking status”. 
Analysis proved that “age”, “ejection fraction”, “serum 
creatinine”, and “high blood pressure” were statistically 
significant predictors for survival (p < 0.005), meaning that 
they were highly correlated with mortality risk. The model 
achieved a concordance index (C-index) of 0.76, which 
indicates that it is highly capable of discriminating between 
surviving patients and non-survivors. The log-likelihood ratio 
test yielded a statistically significant result (χ² = 347.20, p < 
0.005), further confirming the model’s explanatory power. 

In order to visualize how each binary clinical feature affects 
survival, a number of survival curves were drawn for six of the 
most significant covariates found through analysis: sex, high 
blood pressure, anemia, smoking, diabetes, and serum 
creatinine. Each plot compares the survival probabilities 
between patients with (marked in blue) and without (marked in 
orange) the condition over time. Fig. 2 below provides a 
clearer interpretation of how each factor contributes to overall 
mortality risk in heart failure patients. 
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Fig. 2. Comparative survival curves highlighting the impact of clinical 

variables on heart failure patient outcomes. 

Observations from the plots are: 

 High Blood Pressure: Patients with high blood pressure 
(value=1) exhibit notably lower survival probabilities 
compared to those without it, indicating a significant 
negative impact on survival. 

 Anemia: Presence of anemia slightly decreases patient 
survival probabilities, suggesting it moderately affects 
mortality risk. 

 Smoking: Smoking status shows minimal differences 
between groups, implying a smaller impact than 
anticipated. 

 Diabetes: Survival curves for patients with and without 
diabetes are similar, suggesting that diabetes has a 
limited effect on survival probability. 

 Sex: There is minimal difference in survival 
probabilities based on sex, suggesting that gender alone 
has limited predictive power. 

 Serum Creatinine: Higher serum creatinine levels 
(value=1) are clearly related with reduced survival 
probabilities, underscoring its importance as a predictor 
of mortality risk. 

Fig. 3 presents the baseline hazard function, which provides 
critical context for interpreting the results of the Cox model. It 
represents the time-dependent risk of death for a hypothetical 
patient with average or baseline values for all covariates. 
Visualizing this function helps reveal how the risk of death 
evolves over the follow-up period, independent of individual 
patient characteristics. 

The baseline survival function serves as a counterpart to the 
baseline hazard function, depicting the likelihood of survival 
over time for a reference patient—defined as an individual 
whose covariates are all set to their baseline or standard values. 
Fig. 4 represents the estimated baseline survival function over 
time from the CoxPH model. 

 
Fig. 3. Estimated baseline hazard function over time from the CoxPH model. 

 

Fig. 4. Estimated baseline survival function over time from the CoxPH 
model. 

B. Feature Selection Using COX 

In this study, the Cox Model was not only used to analyze 
survival times but also employed as a feature selection tool. 
After fitting the Cox model, the statistical significance of each 
covariate was evaluated using the p-value associated with its 
coefficient. Covariates with p-values less than 0.005 were 
considered statistically significant as shown in Table II and 
were selected for downstream machine learning classification 
tasks. The Cox library in Python defaults to a significance level 
of 0.005. Notably, no variables were found with P-values 
between 0.005 and 0.05, indicating that the excluded variables 
had P-values greater than 0.05. The seven selected features 
include: “age”, “anemia”, “creatinine phosphokinase”, 
“ejection fraction”, “high blood pressure”, “serum creatinine”, 
“serum sodium”. These variables demonstrated strong 
associations with patient survival, indicating their clinical 
relevance to predict death risk in heart failure patients. By 
limiting the ML inputs to these statistically significant features, 
the classification models could focus on the most informative 
predictors, reducing noise from irrelevant variables and 
improving both predictive accuracy and model interpretability.  

Table II summarizes the results of Cox model for dataset 
features. 
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TABLE II.  SUMMARY OF COXPH MODEL RESULTS FOR DATASET FEATURES 

Feature Coef exp(Coef) SE(Coef) 
Coef 95% CI 

(Lower) 

Coef 95% 

CI (Upper) 

exp(Coef) 95% 

CI (Lower) 

exp(Coef) 95% 

CI (Upper) 
Z-score p-value -log2(p) 

Age 0.04 1.04 0.00 0.03 0.05 1.03 1.05 8.60 <0.005 56.85 

Anemia 0.36 1.43 0.10 0.15 0.56 1.16 1.75 3.42 <0.005 10.63 

Creatinine 

Phosphokinase 
0.00 1.00 0.00 0.00 0.00 1.00 1.00 4.16 <0.005 14.96 

Diabetes 0.12 1.12 0.11 -0.09 0.33 0.91 1.39 1.09 0.27 1.86 

Ejection 

Fraction 
-0.05 0.95 0.01 -0.06 -0.04 0.94 0.96 -9.30 <0.005 65.93 

High Blood 

Pressure 
0.62 1.85 0.10 0.41 0.82 1.51 2.27 5.92 <0.005 28.23 

Platelets -0.00 1.00 0.00 -0.00 0.00 1.00 1.00 -1.01 0.31 1.67 

Serum 

Creatinine 
0.29 1.33 0.04 0.22 0.36 1.24 1.43 8.06 <0.005 50.26 

Serum Sodium -0.05 0.95 0.01 -0.08 -0.03 0.93 0.97 -5.00 <0.005 20.74 

Sex -0.16 0.85 0.12 -0.40 0.08 0.67 1.08 -1.30 0.19 2.38 

Smoking 0.16 1.17 0.12 -0.08 0.40 0.93 1.49 1.32 0.19 2.43 
 

C. Data Balancing Techniques 

1) Random Over-Sampling. Random Over-Sampling bal-

ances binary classification datasets by replicating original 

samples, thereby increasing the dataset size without creating 

new types of samples. It handles both continuous and categor-

ical data but doesn't introduce new variations [12]. 

2) SMOTE. SMOTE addresses class imbalance by creating 

synthetic minority-class instances based on nearest neighbors 

using Euclidean distance. Although effective, it can introduce 

extra noise, particularly in high-dimensional data [13]. 

3) Random Under-Sampling. Random Under-Sampling 

balances class distribution by randomly removing examples 

from the majority class, simplifying dataset size and address-

ing imbalance effectively [14]. 

D. Machine Learning Models 

1) Decision tree. A DT is a tree-model, where every node 

is a split of the data based on some features, the branches are 

the results of the splits, and the leaves are the final classifica-

tions. Prior to the construction of a DT, the most discrimina-

tive feature for accurate classification must be found. This 

supervised learning approach works by recursively dividing 

the data into smaller-sized subsets, based on input variable 

values, until certain stopping conditions are fulfilled [15]. 

Therefore, it is important to set a feature assessment criterion. 

In a DT, the “setting” criterion defines how the tree nodes are 

to be divided and the “log_loss” criterion is aimed at log loss 

minimization, i.e., a measure of misclassification errors. Mod-

el complexity is defined in parallel by the "max_depth" pa-

rameter, which regulates how deeply the tree can grow [15]. In 

this study, Grid Search was used to enhance the hyperparame-

ters of the DT, including “max_depth” (values: 3, 5, 10, 15, 

20) and “min_samples_split” (values: 2, 5, 10), to achieve the 

optimum performance. 

2) Random forest. The Random Forest (RF) technique is 

widely used to solve classification and regression issues. It 

predicts by integrating a series of hierarchical, tree-like deci-

sion models. The method is very suitable for generating con-

sistent outcomes, even when a lot of the data has missing val-

ues [16]. The Decision Tree samples can be utilized as addi-

tional data. RF is an ensemble learning method which com-

bines many DTs with the aim of getting a more precise solu-

tion to prediction issues.  It is supervised learning with en-

hanced general performance by putting Decision Tree con-

cepts into practice [16]. Two steps involve the application of 

the RF approach. In step one, a DT is constructed. In step two, 

prediction is made by a first-stage tree classifier. Complexity 

is affected under the control of the individual tree depths 

through the "max_depth" parameter. The “min_samples_split” 

prevents overfitting by determining the number of samples for 

splitting a node, as DT does. The "n_estimators" parameter 

specifies the number of DTs to use [16].  In this research 

study, Grid Search was employed in optimizing the Random 

Forest parameters, i.e., "max_depth" (values: 10, 20, 30, 40, 

50), "min_samples_split" (values: 2, 5, 10), and 

"n_estimators" (values: 50, 100, 150, 200), to enhance the 

prediction accuracy of the model. 

3) KNN. The KNN is an extremely critical grading tool 

that utilizes available data set information in order to catego-

rize new instances of data [17].  It is unique in that it prioritiz-

es keeping the entire dataset rather than adding previously 

learnt information. In order to classify new points, the KNN 

uses the feature space's nearest neighbor's class labels [17].  It 

uses the Euclidean distance approach in order to establish the 

closeness of points with respect to the newly encountered 

point.  The distance between points in the training dataset and 

the new point is utilized in order to give scores, with a unity 

score given to the k-point in the smallest gap. The number of 

closest neighbors computed, referred to by the term K, is a 

hyperparameter that must be adjusted according to the type of 

data and the specific context in focus. The kNN approach can 

be described as: Choosing a parameter k among the nearby 

points is step one. Finding the Euclidean distance among the k 

nearest neighbors chosen is step two. Calculating the KNN 

using Euclidean distance is step three. Counting the points in 
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each class among the k nearest neighbors is step four. In the 

fifth, new points are assigned to the most surrounding neigh-

boring categories. It is the model construction completion pro-

cess. Choosing the value of k in the KNN algorithm effective-

ly controls how the model trades off between the bias and var-

iance [17]. With a very small k, like 1 or 3, there will be too 

much variance, i.e., the model will overfit the training set by 

learning the noise and won't generalize well to new data. A 

large k, however, is likely to yield a model with too much 

bias, which will do badly by not fitting the training set very 

well. The 'algorithm' parameter defines which algorithm is 

used by the KNN model, and "ball tree" is a fast and effective 

option. The "leaf_size" parameter sets the number of data 

points stored in each leaf node of the tree, and the "metric" 

option specifies the way that the distance is calculated. The 

"weights" option influences the weighting of predictions based 

on the neighbors' contribution [17]. Grid Search was utilized 

for the optimization of the hyperparameters of the KNN model 

such as "n_neighbors" (values: 3, 5, 7, 9, 11, 15, 21, 25) and 

"leaf_size" (values: 10, 20, 30, 40, 50) in this study for best-

in-class classification. 

4) Evaluation metrics. The model performances were 

evaluated against certain key metrics: confusion matrix, preci-

sion, recall, accuracy, and F1-score. A confusion matrix is a 

table representation of the format in which predicted results 

are compared with actual values split into four parts [18]. 

In classification tasks: 

 True Positive (TP): the model correctly identifies an 
instance that is actually positive. 

 True Negative (TN): the model correctly identifies an 
instance that is actually negative. 

 False Positive (FP): the model incorrectly labels a 
negative instance as positive. 

 False Negative (FN): the model incorrectly labels a 
positive instance as negative. 

These components help in understanding the classification 
performance in more detail. The structure of the confusion 
matrix is illustrated in Fig. 5. 

 Accuracy: Accuracy represents the proportion of correct 
predictions made by the model out of all predictions 
performed, where it shows us, in a straightforward way, 
how often the model gets things right [18] [see Eq. (2)]. 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (2) 

 Precision: Precision (often called “positive predictive 
value”) measures how reliable the model’s positive 
predictions are. In other words, it tells us what fraction 
of the cases the model flags as positive are truly 
positive. [18] [see Eq. (3)]. 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (3) 

 
Fig. 5. Confusion matrix. 

 Recall: Recall measures the capacity of model to 
capture all the true positive cases, such that, it’s the 
ratio of properly detected positive instances out of all 
actual positive instances [18] [see Eq. (4)]. 

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   (4) 

 F1-Score: The F1-score blends precision and recall into 
one metric, yielding a single value that captures both 
aspects [18] [see Eq. (5)]. 

𝐹1 −  score =
2× Recall × Precision 

 Recall + Precision 
             (5) 

IV. RESULTS 

This section provides an in-depth analysis of the results 
obtained through the application of feature selection using the 
Cox proportional hazards model, combined with various 
preprocessing. In this study, the performance of three 
classifiers, KNN, DT, and RF, was evaluated on our dataset. 
Our analysis begins with define dataset, and moves to 
classifiers' performance on data without feature selection, 
without features scaling, and progresses to results incorporating 
Cox-selected features and different data balancing methods. 

A. Dataset 

In this study, the “Heart Failure Clinical Records Dataset” 
available on Kaggle was utilized [19]. This dataset is an 
extended version of the original dataset from the “UCI 
Machine Learning Repository” [20], which contained medical 
records of 299 patients with heart failure. The Kaggle version 
expands the dataset to include 5000 patient records, each with 
thirteen clinical features obtained during the follow-up period. 
The original dataset was used in the reference [21], where it 
demonstrated the potential of ML in predicting patient survival 
based on key clinical features like “ejection fraction” and 
“serum creatinine”. 

The dataset includes the below columns as shown in Table 
III. 
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TABLE III.  DATASET FEATURES 

Column Name Description Unit 

Age Patient's age Years 

Anemia 
Presence of reduced red blood 

cells or hemoglobin 
Boolean 

Creatinine 
Phosphokinase (CPK) 

CPK enzyme level in blood mcg/L 

Diabetes Whether the patient has diabetes Boolean 

Ejection Fraction 
Blood percentage pumped out of 

the heart each time it contracts 
Percentage 

High Blood Pressure 
Whether the patient has high 
blood pressure 

Boolean 

Platelets Platelet count in blood kiloplatelets/mL 

Sex Male or Female Binary 

Serum Creatinine Creatinine level in blood mg/dL 

Serum Sodium Sodium level in blood mEq/L 

Smoking Whether the patient smokes Boolean 

Time Duration of follow-up Days 

DEATH_EVENT 
Whether the patient passed away 
during the follow-up 

Boolean 

B. Dataset Preprocessing 

The initial step in preprocessing was to check the dataset 
for missing values and ensure that there were no null values.  
Duplicate rows were present in the dataset, nevertheless, and 
were eliminated to preserve data quality and prevent biased 
learning.  Following cleaning, a number of scaling techniques 
were used to compare them. Specifically, the following 
methods were applied: 

1) Standard scaler: This technique standardizes the data 

by transforming it to have a mean of zero and a standard devi-

ation of one.  This helps all features contribute proportionally, 

particularly when they do not have all the same units. The 

equation is Eq. (6): 

𝑠𝑐𝑎𝑙𝑒𝑑𝑥 
𝑥−𝜇

𝜎
 

Such that 𝑥 represents the original value, 𝜇 represents the 
mean, and σ stands for the standard deviation. 

2) Min-max scaler: It rescales each feature to a fixed 

range, generally [0, 1], but preserves the shape of the distribu-

tion while altering the scale. The equation is Eq. (7): 

𝑠𝑐𝑎𝑙𝑒𝑑𝑥 =
𝑥−𝑀𝑖𝑛𝑋

𝑀𝑎𝑥𝑋−𝑀𝑖𝑛𝑋


where, 𝑥 is the value, 𝑚𝑖𝑛𝑥 is the minimum, and 𝑚𝑎𝑥𝑥 is 
the maximum. 

3) MaxAbs scaler: This technique divides each value by 

the feature's maximum absolute value, scaling to the range 

[1,1-]. The equation is Eq. (8): 

𝑠𝑐𝑎𝑙𝑒𝑑𝑥 =
𝑥

𝑚𝑎𝑥𝑋∨
 

Fig. 6 represents a horizontal bar plot to show class 
distribution after dropping all duplicated rows. It demonstrates 
a noticeable class imbalance, where the number of patients 
who survived (class 0) significantly exceeds the number of 

patients who experienced a death event (class 1). This 
imbalance necessitates the use of specialized data balancing 
techniques to ensure unbiased and reliable predictions by 
machine learning models. 

 
Fig. 6. Class distribution in dataset. 

C. Model Optimization and Scaling Analysis 

To maximize model performance, hyperparameters were 
tuned using Grid Search and evaluated three scaling 
methods: StandardScaler, MinMaxScaler, and MaxAbsScaler. 
Table IV summarizes the optimal hyperparameters after grid 
search. 

TABLE IV.  OPTIMAL HYPERPARAMETERS AFTER GRID SEARCH 

Model Hyperparameter 
Optimal 

Value 
Explanation 

DT 

max_depth 10 

Restricts the depth of the tree to 

prevent overfitting, while still 

capturing meaningful patterns 
in the data. 

min_samples_split 2 

Ensures nodes split even with 

minimal samples, improving 

granularity. 

KNN 

n_neighbors 5 
Balances sensitivity (smaller k) 

and noise resistance (larger k). 

leaf_size 10 

Optimizes query speed vs. 

accuracy in nearest neighbor 

searches. 

RF 

max_depth 10 

Controls individual tree 

complexity for better 

generalization. 

min_samples_split 2 
Similar to DT, ensures finer 

splits for imbalanced data. 

n_estimators 1000 

More trees increase robustness 

at the cost of computational 

expense. 

Table V represents a comparison of the scaling methods for 
DT, KNN, and RF. 

Decision Trees and Random Forests, both tree-based 
models, are naturally unaffected by feature scaling since they 
split data based on thresholds rather than distances. In contrast, 
K-Nearest Neighbors (KNN) depends on distance calculations, 
and its performance improved noticeably with StandardScaler, 
reaching an accuracy of 0.837. Although scaling had little 
impact on the tree-based models, StandardScaler was applied 
to all algorithms to maintain a consistent preprocessing 
approach and enhance KNN's performance. 
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TABLE V.  SCALING METHOD COMPARISON 

Algorithm Accuracy Precision Recall F1-score AUC-ROC 

DT      

StandardScaler 0.905303 0.846154 0.835443 0.840764 0.889497 

MinMaxScaler 0.905303 0.846154 0.835443 0.840764 0.889497 

MaxAbsScaler 0.905303 0.846154 0.835443 0.840764 0.889497 

KNN      

StandardScaler 0.837121 0.772727 0.645570 0.703448 0.879405 

MinMaxScaler 0.787879 0.676923 0.556962 0.611111 0.827095 

MaxAbsScaler 0.814394 0.734375 0.594937 0.657343 0.858194 

RF      

StandardScaler 0.935606 0.955882 0.822785 0.884354 0.981594 

MinMaxScaler 0.935606 0.955882 0.822785 0.884354 0.981594 

MaxAbsScaler 0.935606 0.955882 0.822785 0.884354 0.982005 

D. Results after Applying Feature Selection Using Cox 

The DT classifier, using feature selection with the Cox 
model, achieved strong performance with high accuracy, AUC-
ROC, and recall, indicating effective identification of death 
events. The balanced precision and F1-score reflect reliable 
performance, though nine false negatives suggesting the need 
for data balancing to further improve recall and reduce missed 
critical events. Choosing a refined feature set strengthened the 
model’s ability to cope with class imbalance and raised its 
predictive accuracy. Fig. 7 shows the decision-tree classifier’s 
confusion matrix after features were selected using the Cox 
proportional hazards method. 

 
Fig. 7. Confusion matrix for the DT classifier after feature selection using 

the CoxPH model. 

Fig. 8 represents the AUC-ROC curve for the DT classifier 
after feature selection using the CoxPH model. 

The KNN classifier, using feature selection with the Cox 
model, demonstrated moderate predictive performance. While 
the model shows reasonable capability in distinguishing 
between classes, its limited recall highlights challenges with 
imbalanced data. The trade-off between FP and FN 
underscores the need for improved sensitivity to the minority 
class. These findings suggest that data balancing techniques 

could further enhance the model's ability to capture critical 
events effectively. Fig. 9 represents the confusion matrix for 
KNN classifier after feature selection using the CoxPH model. 

 
Fig. 8. AUC-ROC curve for the DT classifier after feature selection using the 

CoxPH model. 

 
Fig. 9. Confusion matrix for the KNN classifier after feature selection using 

the CoxPH model. 
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Fig. 10 represents the AUC-ROC curve for the KNN 
classifier after feature selection using the CoxPH model. 

 
Fig. 10. AUC-ROC curve for the KNN classifier after feature selection using 

the CoxPH model. 

The RF classifier, using feature selection with the Cox 
model, demonstrated moderate predictive performance. With 
highly accurate, near-perfect AUC-ROC, and precisely 
balanced precision and recall, the model is working effectively 
in both correctly predicting death occurrences and non-
occurrences and in having low FP and FN rates. These findings 
are a proof of the robustness of Random Forest in the context 
of handling imbalanced data, yet data balancing would enhance 
sensitivity to critical events even more. Model reliability and 
performance were greatly enhanced by feature selection. Fig. 
11 represents the confusion matrix for RF classifier after 
feature selection using the CoxPH model. 

 
Fig. 11. Confusion matrix for the RF classifier after feature selection using the 

CoxPH model. 

Fig. 12 represents the AUC-ROC curve for the RF 
classifier after feature selection using the CoxPH model. 

 
Fig. 12. AUC-ROC curve for the RF classifier after feature selection using the 

CoxPH model. 

CoxPH feature selection greatly improved the classifier's 
performance by focusing on the leading features like age, 
anemia, and creatinine. Random Forest was also the best-
performing model at the same time. 

V. DISCUSSION 

The research examined the performance of three classifiers 
(DT, KNN, and RF) as shown in Table VI. It employed feature 
selection using the Cox proportional hazards model and 
various data balancing methods (Random Over-Sampling, 
SMOTE, and Random Under-Sampling). The findings show 
that the application of feature selection achieves better 
predictions in healthcare datasets. 

The comparative analysis of three ML classifiers (DT, 
KNN, and RF) - for heart failure survival prediction revealed 
significant insights into model performance and feature 
selection effectiveness as presented in Table VII. The Random 
Forest classifier demonstrated superior predictive capability 
across all evaluation metrics when using the original 
unbalanced dataset, achieving 96.2% accuracy, 92.9% F1-
score, and 0.987 AUC-ROC values. This exceptional 
performance shows that the ensemble nature of RF, with its 
inherent feature randomness and bootstrap aggregation, 
provides robust predictive power even without explicit class 
balancing techniques. The application of the CoxPH model for 
feature selection proved particularly valuable, as it enhanced 
Random Forest's performance by identifying and retaining only 
the most clinically relevant predictors. The selected features - 
including “age”, “ejection fraction”, “serum creatinine”, and 
“high blood pressure” - represent well-established risk factors 
in cardiovascular medicine, which likely contributed to the 
model's strong discriminative ability. This feature selection 
process not only improved model accuracy but also increased 
clinical interpretability by focusing on medically meaningful 
variables. While data balancing methods like SMOTE and 
random under-sampling showed some capacity to improve 
recall metrics, they generally came at the cost of reduced 
precision in the RF model. The minimal performance 
improvement from balancing suggests that Random Forest's 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

374 | P a g e  

www.ijacsa.thesai.org 

inherent mechanisms for handling class imbalance may be 
sufficient for this particular dataset. The Decision Tree 
classifier showed respectable performance but consistently 
underperformed compared to Random Forest, likely due to its 
simpler structure and greater susceptibility to overfitting. The 
KNN algorithm demonstrated the weakest performance among 
the three classifiers, a finding that aligns with expectations 
given its known sensitivity to high-dimensional data and class 
imbalance. The superior performance of tree-based methods in 
this medical prediction task reinforces their established utility 
in healthcare analytics, where they often provide an effective 
balance between predictive accuracy and model 
interpretability. The study titled "Prediction of Survival of 
Heart Failure Patients Using Random Forest" by Sri Rahayu et 
al. evaluates RF, DT, KNN, SVM, ANN, and Naïve Bayes 

using resample and SMOTE techniques, achieving its best 
accuracy of 94.31% with RF and resampling [7]. However, it 
lacks explicit feature selection and detailed metrics evaluation 
beyond accuracy. The study titled "Improving the Prediction of 
Heart Failure Patients’ Survival Using SMOTE and Effective 
Data Mining Techniques" by Abid Ishaq et al. employs nine 
classifiers, including DT, AdaBoost, RF, and ETC, with 
SMOTE for data balancing and Random Forest for feature 
selection [6]. It achieves its best accuracy of 92.62% with ETC 
but does not explore multiple balancing techniques. In contrast, 
our study stands out by combining the CoxPH Model for 
feature selection with a comprehensive evaluation of three ML 
models. RF model achieves a higher performance than other 
studies. 

TABLE VI.  SUMMARY OF PERFORMANCE METRICS FOR THE DT, KNN AND RF CLASSIFIERS USING FEATURE SELECTION WITH THE COXPH MODEL AND 

VARIOUS DATA BALANCING TECHNIQUES 

Classifier Balancing Method Accuracy Precision Recall F1-score AUC-ROC 

Decision Tree 

Without sampling 0.93 0.86 0.87 0.87 0.92 

Random Over-Sampling 0.90 0.78 0.91 0.84 0.90 

SMOTE 0.90 0.84 0.85 0.84 0.91 

Random Under-Sampling 0.89 0.78 0.87 0.83 0.90 

KNN 

Without sampling 0.85 0.75 0.64 0.69 0.87 

Random Over-Sampling 0.84 0.70 0.80 0.75 0.88 

SMOTE 0.83 0.70 0.80 0.74 0.87 

Random Under-Sampling 0.80 0.63 0.84 0.72 0.89 

Random Forest 

Without sampling 0.962 0.93 0.93 0.93 0.987 

Random Over-Sampling 0.939 0.90 0.89 0.90 0.98 

SMOTE 0.943 0.93 0.87 0.90 0.98 

Random Under-Sampling 0.92 0.82 0.92 0.87 0.975 

TABLE VII.  COMPARATIVE PERFORMANCE ANALYSIS OF HEART FAILURE PREDICTION MODELS 

Study and Model Accuracy Precision Recall F1-Score AUC-ROC Key Methodology 

Rahayu et al. (2020) [7]      Resample + SMOTE and No feature selection 

Random Forest (RF) 94.31% - 0.943 - 0.976  

Decision Tree (DT) 87.29% - 0.873 - 0.872  

KNN 86.95% - 0.870 - 0.816  

Ishaq et al. [6]      SMOTE + RF Feature Selection 

Extra Trees (ETC) 92.62% 0.93 0.93 0.93 -  

Random Forest (RF) 91.80% 0.92 0.92 0.92 -  

Our Study      CoxPH 

Random Forest (RF) 96.2% 0.93 0.93 0.93 0.987 Cox feature selection 
 

The comparative analysis highlights the performance of 
various heart failure prediction models across multiple studies. 
Rahayu et al. achieved their highest accuracy of 94.31% using 
a Random Forest model with SMOTE and resampling 
techniques, though their approach did not involve explicit 
feature selection [7]. Ishaq et al. implemented both SMOTE 
and RF-based feature selection, with the Extra Trees Classifier 
achieving 92.62% accuracy and balanced precision, recall, and 
F1-score values of 0.93 [6]. In contrast, our study 

outperformed prior work by leveraging the CoxPH model for 
feature selection, enabling the RF classifier to achieve 96.2% 
accuracy, which is higher than that of Rahayu et al. by more 
than 1.5% and that of Ishaq et al. by more than 3% and the 
highest AUC-ROC value of 0.987. These results underscore 
the value of integrating clinically meaningful feature selection 
with robust ensemble models to enhance predictive 
performance in heart failure prognosis. 
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It is also noteworthy that prior works did not incorporate 
survival analysis in their classification frameworks (with the 
exception of Lee et al., who focused on Cox regression alone). 
Our approach demonstrates that using survival analysis not 
only contributes to understanding which features are important 
over time but also improves the selection of features for 
classification models, thus carrying the strengths of both 
statistical survival methods and machine learning. 

VI. CONCLUSION 

This study showed the effectiveness of integrating survival 
analysis and machine-learning methods in predicting survival 
outcomes for heart-failure patients. By applying the CoxPH 
model, we identified the most important clinical features and 
used them to train and evaluate DT, KNN and RF classifiers. 
Among these, the RF model outperformed the others, 
achieving notable accuracy and discriminative power (AUC-
ROC = 0.987). The combination of clinically relevant feature 
selection, careful preprocessing and systematic hyper-
parameter tuning produced models that balance accuracy with 
interpretability, underscoring the promise of hybrid predictive 
frameworks for early diagnosis and data-driven decision-
making in heart-failure care. 

Despite the strong performance, this study has limitations. 
It is based on a single dataset, which may limit generalizability 
to other populations or clinical settings. The current models do 
not incorporate temporal or longitudinal patient data beyond 
the static features available in the dataset. Additionally, model 
interpretability—while improved through feature selection—
still lacks integration with clinician-friendly interfaces or 
visualization tools. Addressing these limitations in future 
studies (such as validating on external cohorts, including time-
series data, and developing clinician-facing explainable AI 
dashboards) will help strengthen the applicability and trust in 
such predictive tools. 

While this study presents promising results, it is important 
to note that some aspects, such as the use of data balancing 
techniques and the scope of model evaluation, could be further 
enhanced in future work. Expanding the dataset and exploring 
more advanced architectures may lead to even better 
performance and broader applicability. Future studies are 
encouraged to test deep-learning architectures, replicate 
findings on external cohorts for greater generalizability, and 
integrate explainable-AI dashboards that clinicians can use at 
the point of care to visualise individual risk trajectories in real 
time. 
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