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Abstract—In the current situation of rapid development of the 

power industry, DC distribution network topology planning and 

optimization are of vital importance. This research studies the 

shortcomings of existing methods in terms of computational 

efficiency and optimization effect. Based on the real data of a 

medium-sized DC distribution network in a large city with 200 

nodes and 350 lines, an innovative method combining mixed 

integer programming (MIP) and genetic algorithm (GA) is 

adopted. MIP is used to accurately describe physical constraints 

and optimization objectives, and GA efficiently searches for the 

best solution in the solution space with its global search 

capability. Experimental results show that the MIP-GA model 

has the lowest power transmission loss at different load levels. 

For example, at high load, it is 32% lower than the baseline, 16% 

lower than the MIP model, and 12.5% lower than the ACO 

model. It also performs best in terms of node voltage deviation, 

reliability, power quality and other indicators. Cost-benefit 

analysis shows that although the MIP-GA model has a relatively 

high investment cost for topology adjustment, it has the lowest 

annual power loss and maintenance cost, a reasonable total 

annual cost, a benefit-cost ratio of 1.5, and a payback period of 

only 3 years. Research has shown that this hybrid model has 

significant advantages in DC distribution network topology 

planning and optimization, and can effectively improve system 

performance and economic benefits. 
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I. INTRODUCTION 

In the current rapid development of the power industry, the 
planning and optimization of distribution networks has 
become an extremely critical and complex issue, especially in 
the field of DC distribution networks. According to 
incomplete statistics, more than 30% of power-related 
companies worldwide have been involved in DC distribution 
network-related businesses to varying degrees, and its market 
size is expected to increase at an annual rate of about 15% in 
the next five years [1]. However, in the actual operation and 
development of DC distribution networks, their topology 
planning and optimization have always been severely 
restricted by many factors. For example, in the power supply 
system of a large city, the DC distribution network has an 
unreasonable topology structure, resulting in a power 
transmission loss of about 20%. This not only causes huge 
energy waste, but also greatly reduces the stability of power 
supply. During peak power consumption periods, the 
probability of power outages caused by improper topology 

planning is about 35% higher than that of a reasonably 
planned distribution network [2]. In addition, in some 
emerging industrial parks, due to the lack of effective 
topology optimization strategies, the average electricity cost of 
enterprises has increased by about 25%, seriously affecting the 
economic benefits of enterprises and the overall development 
of the park. These phenomena fully demonstrate the 
importance and urgency of DC distribution network topology 
planning and optimization. It is no longer just a simple 
technical issue, but a major issue related to energy efficiency, 
power supply stability, and the economic development of 
many enterprises and regions. It urgently needs to be solved in 
a more in-depth and effective way [3]. 

In the current academic field, research on DC distribution 
network topology planning and optimization has achieved 
certain results. Many scholars have used various methods to 
conduct relevant explorations. Among them, a considerable 
number of studies focus on traditional mathematical 
programming methods, such as linear programming, and try to 
solve topology planning problems by establishing a series of 
mathematical models. For example, a well-known research 
team used linear programming methods to plan the topology 
of a small DC distribution network [4], which reduced the 
transmission loss by about 10% to a certain extent. However, 
this method is often limited by the complexity of the model 
and the efficiency of calculation, and is less applicable to 
large-scale DC distribution networks. At the same time, many 
studies have introduced intelligent algorithms, such as ant 
colony algorithms. Studies have shown that in certain specific 
DC distribution network scenarios, the use of ant colony 
algorithms can optimize the topology structure to a certain 
extent, thereby improving the reliability of the network by 
about 12%. However, this type of algorithm also has its own 
defects, such as being prone to falling into local optimal 
solutions, and the parameter settings in the calculation process 
are relatively complex and lack a unified standard [5]. It can 
be seen that although the current research has achieved results, 
it still has obvious shortcomings. Hot issues mainly focus on 
how to balance the contradiction between computational 
efficiency and planning optimization effect, and how to 
improve the versatility of algorithms in DC distribution 
networks of different scales and complexities. The 
controversial point is whether the improvement of traditional 
mathematical programming methods has more potential or the 
improvement of emerging intelligent algorithms can more 

*Corresponding Author. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

377 | P a g e  

www.ijacsa.thesai.org 

effectively solve the problem. The opinions of all parties are 
different and lack convincing evidence. 

This research aims to conduct an in-depth study on the 
topology planning and optimization of DC distribution 
networks based on mixed integer programming and genetic 
algorithms. The key lies in solving the problems of the 
existing methods in terms of imbalance in computational 
efficiency and optimization effect, as well as the lack of 
versatility. Its innovation lies in the integration of the 
advantages of the two algorithms, which is expected to greatly 
improve the effect of topology planning and optimization. It 
has a significant potential impact both in theoretically 
improving the relevant algorithm system and in practice 
improving the operating efficiency of DC distribution 
networks [6]. 

The remainder of the research is organized as follows:  
Section II reviews related works on traditional mathematical 
programming and intelligent algorithms in the context of DC 
distribution network topology planning and optimization.  
Section III introduces the research methodology, including the 
fundamentals of mixed integer programming, genetic 
algorithm adaptation, and the proposed hybrid model. It 
compares the proposed model with conventional methods and 
analyzes its advantages in terms of accuracy, stability, and 
computational efficiency. Section IV presents the 
experimental setup and results based on a real-world dataset, 
including performance evaluation under various conditions 
such as load variation, distributed generation, and fault 
scenarios.  The research concludes with a summary of key 
findings and insights into practical implications and future 
directions in the field of DC distribution network optimization 
in Section V. 

II. LITERATURE REVIEW 

A. Analysis of Traditional Methods Related to DC 

Distribution Network Topology Planning and Optimization 

Traditional mathematical programming methods have been 
widely used in DC distribution network topology planning and 
optimization, among which linear programming methods have 
attracted the attention of many researchers. Research data 
shows that in some small-scale DC distribution network 
scenarios, the power transmission loss can be reduced by 
about 10% after the linear programming method is applied. 
This achievement is remarkable. However, its disadvantages 
are also very obvious. The two problems of model complexity 
and computational efficiency have always restricted it. When 
facing a large-scale DC distribution network, its model 
construction will become extremely complex, the time 
required for calculation will increase significantly, and the 
efficiency will be seriously reduced, resulting in a significant 
reduction in its applicability. Moreover, the model established 
by the linear programming method is often based on some 
idealized assumptions [7], which is somewhat different from 
the complex situation in the actual operation of the DC 
distribution network, which makes its optimization effect 
greatly reduced in actual application and cannot meet the 
actual needs well. In addition to linear programming, other 
traditional mathematical programming methods such as 
integer programming also have similar problems. Although 

integer programming can more accurately describe the 
discrete characteristics of the DC distribution network 
topology in theory, in the actual calculation process, due to the 
large number of variables and constraints, the amount of 
calculation will increase exponentially, resulting in extremely 
low calculation efficiency and often unable to obtain an 
effective solution within an acceptable time. Although these 
traditional mathematical programming methods have made 
certain contributions to the DC distribution network topology 
planning and optimization, they are difficult to achieve 
breakthrough progress due to their own limitations and are 
gradually being impacted by some new methods in current 
research [8]. 

B. Application and Defects of Intelligent Algorithms in DC 

Distribution Network Topology Planning and Optimization 

Intelligent algorithms have gradually emerged and 
attracted attention in the field of DC distribution network 
topology planning and optimization. Taking the ant colony 
algorithm as an example, relevant experimental data shows 
that the application of the ant colony algorithm in a specific 
DC distribution network scenario can improve network 
reliability by about 12%, which shows its certain advantages 
in optimizing topology structures. However, the defects of the 
ant colony algorithm itself cannot be ignored. It is very easy to 
fall into the local optimal solution during the calculation 
process, and thus cannot obtain the global optimal topology 
structure. In addition, its parameter setting is relatively 
complex and lacks a unified standard. Different parameter 
settings will lead to large differences in optimization results, 
which makes it difficult to accurately grasp its optimal 
parameter combination in practical applications, thereby 
affecting the stability of its optimization effect [9]. Similarly, 
genetic algorithm, as another commonly used intelligent 
algorithm, has also been applied to DC distribution network 
topology planning and optimization. Genetic algorithm has 
certain advantages in dealing with complex nonlinear 
problems and can search for better topology structures to a 
certain extent. However, it also has problems such as high 
computational complexity and slow convergence speed. 
Especially in large-scale DC distribution networks, its 
calculation time may become very long, and its initial 
population setting will also have a great impact on the final 
result. If the initial population setting is unreasonable, it may 
cause the optimization result to deviate from the ideal state. Its 
versatility and stability still need to be improved [10]. 

C. Comprehensive Evaluation 

In general, both traditional mathematical programming 
methods and intelligent algorithms have their own advantages 
and disadvantages in DC distribution network topology 
planning and optimization. Although traditional methods have 
a theoretical basis, they are limited by computational 
efficiency and model limitations in practical applications; 
although intelligent algorithms have certain optimization 
capabilities, they have many defects such as easy to fall into 
local optimality and complex parameter settings. The current 
research status shows that a general method that can perfectly 
solve the DC distribution network topology planning and 
optimization problem has not yet been formed in this field. 
The future research direction should be to integrate the 
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advantages of multiple methods and make up for their 
respective shortcomings. For example, we can try to combine 
the precise modeling ability of traditional mathematical 
programming methods with the global search ability of 
intelligent algorithms to construct a more universal and 
efficient hybrid algorithm. At the same time, in the 
optimization process of the algorithm, the actual operating 
characteristics of the DC distribution network, such as the 
dynamic changes of loads and the access of distributed power 
sources, should be fully considered, so that the algorithm can 
be more in line with the actual situation, thereby improving its 
effectiveness and stability in practical applications. In 
addition, the algorithm evaluation system should be further 
improved. It should not be limited to single indicators such as 
transmission loss and network reliability, but should take into 
account multiple factors to more comprehensively evaluate the 
advantages and disadvantages of the algorithm and promote 
the further development of DC distribution network topology 
planning and optimization research [11, 12]. 

While existing approaches such as traditional 
mathematical programming and intelligent algorithms have 
achieved some progress in DC distribution network topology 
planning, they still face distinct limitations.  Traditional 
methods like linear and integer programming suffer from 
computational inefficiency and scalability issues when applied 
to large-scale networks.  On the other hand, intelligent 
algorithms such as ACO and GA are prone to local optima and 
unstable performance due to sensitive parameter settings.  
These drawbacks highlight a critical gap in achieving both 
accuracy and efficiency under real-world constraints.  The 
proposed hybrid approach integrates the modeling precision of 
mixed integer programming with the global search capability 
of genetic algorithms, thereby addressing this dual challenge.  
Unlike prior studies, the new method demonstrates 
significantly reduced power losses (e.g., 32% lower than 
baseline at high load) and faster convergence (average 600 
iterations versus 1000 in MIP), while maintaining robust 
adaptability to load and generation fluctuations. 

III. RESEARCH METHODS 

A. Mixed Integer Programming Basics 

In the complex and critical research field of DC 
distribution network topology planning and optimization, 
Mixed-Integer Programming (MIP) is undoubtedly an 
important cornerstone for building the core model framework. 
MIP's ability to handle optimization problems involving 
integer variables and continuous variables is highly consistent 
with the topological structure and operating characteristics of 
DC distribution networks. In a DC distribution network, the 
line connection state is typically discrete and can be accurately 
described by binary variables, while physical quantities such 
as power flow and voltage belong to the category of 
continuous variables. 

Assume that the DC distribution network consists of n
nodes and m lines. In order to accurately characterize the line 

connection status, a binary variable is defined ijx . When the 

line ij is connected, 1ijx  ; if the line ij is disconnected 

[13], then 0ijx  , where {1,2, , }, ni j . At the same 

time, a power flow variable is introduced ijP , which represents 

the value of power flowing from the node i to the node via j

the line ij . This variable has continuity. 

From the perspective of power balance, the DC 
distribution network must meet the following strict 
constraints, as shown in Eq. (1): 

:( , ) :( , )

load gen

ij ji i i

j i j j j i

P P P P i
 

     
L L

N   (1) 

The equation is derived in detail. The first term on the left 

side of the equation 
:( , )

ij

j i j

P



L

represents i the total power 

flowing out of the node. This is because in the set L , the i

sum of i the power transmitted by all ijP the lines starting 

from the node is ( , )i j the sum of the outflow power of the 

node. The second term 
:( , )

ji

j j i

P



L

represents i the total power 

flowing into the node, which is also the sum of L the power 

transmitted by jiP all i the lines flowing into the node in the 

set ( , )j i . The difference between the two is i the net power 

change of the node. The right side of the equation 
load gen

i iP P represents i the difference between the load 

power consumption and the power generation at the node. 
Under steady-state operation, the net power change of the 
node must be equal to the power difference between the load 
and the power generation, so as to maintain the power balance 

of the entire DC distribution network. Among them, L is the 

line set, N is the node set, 
load

iP is i the load power of the 

node, and 
gen

iP is the power generation power of the node i . 

The line itself has capacity limitations, and this feature can be 
accurately reflected by the following constraint equation, as 
shown in Eq. (2): 

( , )max max

ij ij ij ij ijP P x P i jx    L      (2) 

Here, 
max

ijP represents ij the maximum transmission 

power that the line can carry. When, means that the line is 

disconnected, the power transmission on the line 0ijx  ijP

must be 0 , which obviously satisfies the inequality; when , 

the line is in the on state, 1ijx  ijP the value range of is 

strictly limited to between 
max

ijP to 
max

ijP , so as to ensure 

that the line will not fail due to overload. Further considering 
the influence of line resistance on power transmission, the 

resistance parameter is introduced ijR , and the power loss 

during power transmission ijL can be expressed as, as shown 

in Eq. (3): 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

379 | P a g e  

www.ijacsa.thesai.org 

2

2

ij

ij ij

i

P
R

V
L     (3) 

where, iV is the voltage at the node i . The total power loss 

of the entire DC distribution network L is the sum of the 

power losses of each line, i.e., Eq. (4). 

2

2
( , ) ( , )
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ij ij

i j i j i
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L L

               (4) 

This equation provides a crucial basis for setting 
subsequent optimization goals. In the pursuit of efficient 
operation of DC distribution networks, minimizing total power 

loss L is often one of the core optimization goals. 

The MIP model constructed by the above series of strict 
constraints can more comprehensively and accurately 
characterize the intricate internal relationship between the 
topological structure and power flow of the DC distribution 
network. However, it cannot be ignored that when faced with 
a large-scale and extremely complex DC distribution network, 
the number of variables in the MIP model will explode and the 
constraints will become extremely complicated. For example, 
in a large DC distribution network with 500 nodes and 2,000 
lines, the number of variables may reach hundreds of 
thousands, and the number of constraints is even more 
difficult to count. This will inevitably lead to an exponential 
increase in the computational complexity of the model, and 
the time and computing resources required for solving will 
increase dramatically, which will greatly reduce its efficiency 
in practical applications and make it difficult to meet the 
urgent needs of rapid decision-making and real-time 
optimization [14, 15]. 

B. Introduction and Adaptation of Genetic Algorithm 

In view of the serious bottleneck problem of computational 
efficiency of the MIP model in large-scale scenarios, the 
Genetic Algorithm (GA) was cleverly introduced to seek a 
breakthrough. GA simulates the evolutionary process of 
organisms in nature and iteratively optimizes individuals in 
the population through a series of core operations such as 
selection, crossover, and mutation, so that it can efficiently 
search for approximate optimal solutions in complex solution 
spaces. 

In the specific scenario of DC distribution network 
topology planning, chromosomes are defined as the 
topological structure of the DC distribution network. 
Chromosomes are composed of a series of genes arranged in 
an orderly manner, and each gene corresponds to the 
connection status of a line, which is what was mentioned 

above ijx . For example, a chromosome can be represented as 

12 13, , , ][ nmxx x , this encoding form can intuitively and 

accurately reflect the on-off status of each line in the DC 
distribution network, laying the foundation for subsequent 
genetic operations. 

In the initial stage, the population needs to be initialized. A 
certain number of chromosomes are randomly generated, 

which represent different initial DC distribution network 

topologies. Assuming that the population size is set to N , the 

generated initial population can be expressed as 
1 2{ , , , }NX X X , where each kX ( 2 ,1, , Nk  ) is a 

chromosome. In actual operation, the process of randomly 
generating chromosomes can be implemented through the 
random number generation function in the programming 
language. For example, in Python, the random library can be 
used to determine whether the value of each gene ( ) is 0 or 

[16, 17] by setting an appropriate random number range ijx . 

In the selection operation, this research adopts the roulette 
selection method. The probability of an individual being 

selected is closely related kp to its fitness value kf . The 

specific calculation equation is shown in Eq. (5). 

1

k
k N

i

i

p
f

f





   (5) 

where, N is the population size. The design of the fitness 

function f is directly related to the optimization direction of 

the algorithm. In the DC distribution network topology 
planning, minimizing the power transmission loss is usually 

an important optimization goal. As mentioned above, L the 

calculation equation for power transmission loss is Eq. (6) 
[18]: 

2

2
( , )

ij

ij

i j i

L
P

R
V

 
L

      (6) 

Based on this, the fitness function can be defined as

1
f

L


ò
: here, a very small positive number is introduced 

ò  to prevent the denominator from being zero, ensuring that 
the fitness function is meaningful in any case. An in-depth 
analysis of the fitness function shows that when the power 

transmission loss L is smaller, f the value is larger, 

indicating that the topological structure represented by the 
chromosome is better and the probability of being selected is 
higher, which is completely in line with our optimization goal 
of pursuing a low-loss topological structure. 

The crossover operation adopts the Partially Matched 
Crossover (PMX) method. The specific operation process is as 
follows: first, two parent chromosomes are randomly selected, 

which may be set as aX and bX . A crossover region is 

determined s by randomly generating two integers s and t ( ), 

which is from the th 1 s t nm   gene to the th t gene. In 

the crossover region, the gene fragments of the two parent 
chromosomes are exchanged to obtain two preliminary 

daughter chromosomes aY and bY . However, since the 

exchange process may cause logical conflicts in the 
chromosomes, that is, the connection relationship of some 
nodes does not conform to the actual DC distribution network 
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topology rules, it is necessary to further handle the conflicts. 
For example, if a node in the daughter chromosome after the 
crossover is not connected by any line or forms an isolated 
loop, it needs to be adjusted through a specific repair 
algorithm. A common repair method is to traverse the 
generated daughter chromosomes based on the connectivity 
detection algorithm in graph theory. If a disconnected 
subgraph is found, it is connected by reconnecting the 
appropriate line to ensure that the finally generated daughter 
chromosome meets the logical requirements of the DC 
distribution network topology. In actual implementation, the 
connectivity detection algorithm can use the depth-first search 
(DFS) or breadth-first search (BFS) algorithm. Taking DFS as 
an example, starting from a certain node, recursively visit the 
adjacent nodes and mark the visited nodes. If there are 
unmarked nodes after the traversal, it means that the graph is 
not connected and needs to be repaired [19]. 

The mutation operation mp randomly changes the values 

of certain genes in the chromosome with a certain probability. 

mp  the value of the mutation probability is usually small, 

such as between 0.01 and 0.1. Suppose kX the gene ijx in the 

chromosome l mutates. If it was originally 0ijx  , it will 

become after mutation 1ijx  ; conversely, if it was originally 

1ijx  , it will become after mutation 0ijx  . The main 

function of the mutation operation is to maintain the diversity 
of the population and prevent the algorithm from falling into a 
local optimal solution too early. For example, when the 
algorithm gradually converges to a local optimal area during 
the search process, it is possible to generate new gene 
combinations through mutation operations, so that the 
population jumps out of the local optimal area and continues 
to explore a better solution space. When implementing the 
mutation operation in actual programming, each gene in the 

chromosome can be traversed mp and a random number can 

be generated according to the mutation probability. If the 

random number is less than mp , the gene is mutated [20]. 

C. Innovative Hybrid Model Construction 

In order to give full play to the unique advantages of MIP 
and GA, this research innovatively combines the two and 
constructs a new hybrid model. The core design idea of this 
hybrid model is to use the MIP model to accurately describe 
the physical constraints and optimization objectives of the DC 
distribution network, provide GA with accurate search 
directions and strict feasible solution space; at the same time, 
with the help of GA's powerful global search ability, the 
optimal solution can be efficiently searched in the solution 
space limited by the MIP model. 

The specific implementation process is as follows: first, 
GA generates a series of chromosomes representing different 
DC distribution network topologies, which are used as inputs 
to the MIP model. For each chromosome x (i.e., a topology) 
input, the MIP model calculates the power flow distribution 
and the objective function value under the topology according 
to the physical laws and constraints of the DC distribution 

network. The objective function value here is mainly key 
indicators such as power transmission loss. The calculated 
objective function value will be used as the fitness value of the 
corresponding individual (chromosome) in GA. For example, 
if x the power transmission loss calculated by the MIP model 

after the chromosome is input is xL , then the fitness value of 

the chromosome in GA is as shown in Eq. (7): 

1
x

x

f
L


ò

   (7) 

In the evolution process of GA, selection, crossover and 
mutation operations are not performed in isolation, but the 
information fed back by the MIP model is fully utilized. In the 
process of solving the problem, the MIP model will obtain 
some information related to the local optimal solution. For 
example, through the calculation and analysis of a large 
number of different topological structures, the MIP model 
may find that certain specific line connection modes can 
always bring relatively low power transmission loss. Feeding 
this information back to the GA, the GA can adjust the 
probability distribution of subsequent chromosome generation 
accordingly. Specifically, for those gene combinations related 
to excellent line connection modes, the probability of their 
appearance is increased when generating new chromosomes. 

Assuming that the MIP model finds that when 12 1x  and 

23 1x  , it can often obtain better optimization results, then in 

the crossover and mutation operations of the GA, for the 
combination involving these two genes, the probability of its 
retention or generation is appropriately increased, so that the 
population can be more inclined to approach these excellent 
modes during the evolution process. In actual implementation, 
this process can be achieved by establishing a probability 
adjustment matrix. The matrix records the relationship 
between different gene combinations and adjustment 
probabilities. Before the crossover and mutation operations of 
the GA, the matrix is updated according to the information fed 
back by the MIP model, and then the generation probability of 
the gene combination is adjusted according to the probability 
value in the matrix during the operation. 

Let ( )MIP x represent the objective function value 

calculated by the MIP model after ( )GA MIP inputting the 

topological structure (chromosome), x and represent the 
evolutionary operation of GA based on the fitness value 
provided by the MIP model. Then the iterative process of the 
hybrid model can be clearly expressed by the following Eq. 
(8): 

1 ( ( ))t tGA MIP xx                             (8) 

Among them, tx is t the topological structure 

(chromosome) of the generation. This iterative equation shows 
that in the evolution process of each generation, the 

topological structure of the previous generation is first tx
input into the MIP model to obtain the objective function 
value, and then determine the fitness value of the individual in 
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the GA; then the GA performs evolutionary operations such as 
selection, crossover and mutation based on these fitness values 

to generate a new generation of topological structure 1tx  . By 

repeating this iterative process, the hybrid model gradually 
approaches the optimal solution to the DC distribution 
network topology planning and optimization problem. 

In order to better understand the working mechanism of 
the hybrid model, a simple DC distribution network example 
is used for illustration. Assume that there is a DC distribution 
network with 5 nodes and 8 lines. In the initial stage, GA 
randomly generates a population, in which one chromosome 

1 [1,0,1,1,0,1,0,1]x  represents the line connection 

between node 1 and node 2, node 1 and node 3, node 3 and 
node 4, node 4 and node 5, and node 2 and node 5, and the rest 

of the lines are disconnected. The input 1x is given into the 

MIP model, and the MIP model calculates the power flow 
distribution and power transmission loss under the topology 
according to the power balance constraint, line capacity 

constraint and other conditions 1L . According to the fitness 

function 
1

f
L


ò

, the fitness value of the chromosome is 

obtained 1f . In the evolution process of GA, it is assumed that 

the chromosome 2x is cross-operated with another 

chromosome through the roulette wheel selection method to 
generate a daughter chromosome. The daughter chromosome 
is input into the MIP model again, and the above process is 
repeated to continuously optimize the topology until a certain 
convergence condition is met. When judging the convergence 

condition, a threshold can be set  .When the fitness value of 

the optimal individual in the population changes less than for 

several consecutive generations (such as 10 generations) , 

the algorithm is considered to converge. 

D. Comparison and Advantages: Analysis with Existing 

Models 

Compared with the traditional model based only on MIP, 
the hybrid model proposed in this research shows extremely 
significant superiority. When facing large-scale DC 
distribution networks, the number of variables and constraints 
of the traditional MIP model increases exponentially with the 
increase of network scale, resulting in a sharp increase in 
calculation time. For example, in a DC distribution network 
with 100 nodes and 500 lines, the traditional MIP model may 
take hours or even days of calculation time to get a solution. 
This is because the MIP model needs to conduct a 
comprehensive search of the entire solution space during the 
solution process. As the scale of the problem increases, the 
dimension of the solution space expands rapidly, and the 
calculation complexity is extremely high. GA is introduced 
into the hybrid model of this research. GA has a strong global 
search capability and can quickly locate potential better 
solution areas in a large solution space. Through the rapid 
screening and optimization of the initial topology structure by 
GA, the number of solutions that the MIP model needs to 
process is greatly reduced, thereby significantly reducing the 

calculation amount of the MIP model. In a DC distribution 
network of the same scale, the hybrid model may obtain a 
result close to the optimal solution within a few minutes, and 
the calculation efficiency has been greatly improved. From the 
perspective of computational complexity, we further analyze 
that the computational complexity of the traditional MIP 

model is )(2n mO  (where, n is the number of nodes and m

is the number of lines). Due to the preprocessing effect of GA, 
the scale of the solution space actually processed by the MIP 

model 1/ k in the hybrid model is greatly reduced. Assuming 

that it is reduced to the original, the computational complexity 
of the MIP part in the hybrid model can be approximated to 

)(2
n m

kO


, and the computational efficiency is significantly 

improved. 

Compared with models based solely on intelligent 
algorithms (such as ant colony algorithms), hybrid models 
have obvious advantages in terms of accuracy and stability. 
When the ant colony algorithm is applied to the topology 
planning of DC distribution networks, although it can 
optimize the topology structure to a certain extent in some 
cases, it is easy to fall into the local optimal solution. This is 
because during the search process of the ant colony algorithm, 
individual ants tend to follow the path with higher pheromone 
concentration. When the pheromone accumulates too much in 
a local area, the ants are easily trapped in the local area and 
cannot find the global optimal solution. In addition, the 
parameter settings of the ant colony algorithm are relatively 
complex, such as the pheromone volatility coefficient, 
heuristic factor, etc. Different parameter settings will lead to 
large differences in optimization results and lack of stability. 
The hybrid model in this research provides a clear direction 
for the search process through the precise constraints of the 
MIP model, avoiding blind search. The constraints of the MIP 
model ensure that the generated topology structure always 
meets the physical laws and actual operation requirements of 
the DC distribution network, thereby improving the accuracy 
of the optimization results. At the same time, the hybrid model 
reduces the dependence on complex parameter settings. 
Through the collaborative work of the MIP model and GA, a 
relatively stable optimization effect can be maintained in 
different DC distribution network scenarios. Taking the 
pheromone volatilization coefficient as an example, in the ant 
colony algorithm, if the coefficient is set too small, the 
pheromone will accumulate too quickly, which will easily lead 
to the algorithm converging to the local optimum too early; if 
it is set too large, the pheromone will update slowly and the 
algorithm search efficiency will be low. In the hybrid model, 
there is no need to pay too much attention to such complex 
parameters, and stable optimization can be achieved through 
the interaction of MIP and GA. 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Design 

This experiment aims to comprehensively and deeply 
evaluate the performance of the proposed hybrid model 
compared with existing models in DC distribution network 
topology planning and optimization. The experiment selected 
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a real data set from a medium-sized DC distribution network 
in a large city. The data set covers extremely detailed 
information, including 200 nodes, 350 lines, the load demand 
of each node, and the power generation capacity of distributed 
power sources. By analyzing and experimenting with such 
rich and real data, the effectiveness and applicability of the 
model can be verified more realistically. 

In the selection of evaluation indicators, the total power 
transmission loss is used as the baseline indicator. This is 
because the total power transmission loss is the core key 
indicator for measuring the efficiency of the DC distribution 
network. Lower power transmission loss directly reflects a 
more optimized network topology, which means less energy 
waste in the power transmission process and higher system 
operation efficiency. 

In terms of experimental grouping, the proposed hybrid 
model (MIP-GA) is set as the experimental group. The control 
group consists of two traditional models: one is the pure 
mixed integer programming (MIP) model described in the 
literature [21], which is a standard method for solving such 
problems and relies solely on mathematical programming 
techniques for topology optimization; the other is the ant 
colony optimization (ACO) model proposed in the literature 
[22], which is a well-known intelligent algorithm in the field 
of DC distribution network topology optimization. The 
experimental baseline is set as the initial unoptimized 
topology of the DC distribution network in the dataset, and all 
power transmission losses are calculated based on normal 
operating conditions. This is used as a comparison basis to 
clearly show the degree of improvement in the effect of each 
model after optimization. 

B. Experimental Results 

As shown in Fig. 1, the proposed MIP-GA model 
consistently achieves the lowest power transmission loss at 
different load levels. The baseline unoptimized topology 
results in the highest loss, which indicates that the 
unoptimized network wastes a lot of energy during power 
transmission. The MIP model reduces the loss to some extent, 
but its performance is still inferior to that of the MIP-GA 
model. The ACO model also achieves good results, but the 
MIP-GA model is still better. The superiority of the MIP-GA 
model lies in its ability to organically combine the 
optimization capabilities of MIP based on precise physical 
constraints with the global search capabilities of GA. GA 
helps to quickly explore different topologies in a large 
solution space, while MIP then fine-tunes these structures 
according to strict physical laws, ultimately forming a more 
optimized topology with lower losses. For example, under 
high load levels, the MIP-GA model searches for some 
potential efficient topologies through GA, and then uses MIP 
to accurately calculate and adjust according to physical 
constraints such as power balance and line capacity, reducing 
power transmission losses by 32% compared to the baseline, 
16% compared to the MIP model, and 12.5% compared to the 
ACO model, fully demonstrating its powerful optimization 
capabilities. 

 

Fig. 1. Comparison of power transmission losses at different load levels. 

 

Fig. 2. Node voltage deviation comparison. 

Fig. 2 shows the comparison of voltage deviations at 
selected nodes. Voltage deviation is a key factor affecting 
power supply quality, and lower deviation means more stable 
power supply. The MIP-GA model achieves the lowest 
voltage deviation at all nodes. The baseline has the largest 
deviation, highlighting the poor voltage stability of the 
unoptimized network. Although the MIP and ACO models 
also reduce voltage deviations, the effect is not as significant 
as the MIP-GA model. The MIP-GA model can successfully 
reduce voltage deviations thanks to its comprehensive 
optimization of the network topology. By designing a better 
topology to optimize power flow distribution and ensure that 
the voltage of each node is closer to the rated value, the 
voltage deviation is effectively reduced. Taking node 1 as an 
example, the baseline voltage deviation is 0.08 pu, the MIP 
model reduces it to 0.06 pu, the ACO model further reduces it 
to 0.05 pu, and the MIP-GA model successfully reduces it to 
0.04 pu, which greatly improves the power supply stability of 
the node and ensures that the power-consuming equipment 
connected to the node can operate more stably. 

In Fig. 3, the comparison of reliability indicators is shown. 
The MIP-GA model significantly improves the reliability of 
the DC distribution network. Its AIDI, SAIFI and SAIFI 
values are the lowest among all models, the mean time to 
recover from faults is the shortest, and the power supply 
availability is the highest. The reliability performance of the 
baseline is the worst. Although the MIP and ACO models also 
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enhance reliability, the effect of the MIP-GA model is more 
prominent. This is because the MIP-GA model can find a 
more robust topology. A well-designed topology can better 
cope with emergencies such as line faults, reduce the 
probability and duration of power outages, and thus improve 
the reliability of the entire network. For example, when facing 
the same number and type of line faults, the mean time to 
recover from faults of the MIP-GA model is 20 minutes 
shorter than the baseline, 10 minutes shorter than the MIP 
model, and 5 minutes shorter than the ACO model, which 
increases the power supply availability from 99.0% of the 
baseline to 99.6%, greatly improving the stability and 
reliability of power supply and reducing the losses caused to 
users by power outages. 

 

Fig. 3. Reliability index comparison. 

 

Fig. 4. Comparison of power quality indicators. 

Fig. 4 shows the comparison of power quality indicators. 
The MIP-GA model achieves the best power quality. Its THD, 
VUF, flicker value, voltage fluctuation, and three-phase 
voltage imbalance are the lowest. The baseline's indicator 
values are relatively high, indicating that its power quality is 
poor. Although the MIP and ACO models also improve power 
quality, the MIP-GA model has a better effect. The MIP-GA 
model's ability to optimize power flow and topology can 

reduce the occurrence of harmonic distortion and voltage 
imbalance. By ensuring a more balanced and stable power 
flow, the power quality of the DC distribution network is 
improved. Taking total harmonic distortion as an example, the 
baseline THD is 8%, the MIP model reduces it to 6%, the 
ACO model further reduces it to 5%, and the MIP-GA model 
successfully reduces it to 4%, effectively reducing the damage 
of harmonics to power grid equipment and improving the 
service life and operating efficiency of power equipment. 

 

Fig. 5. Cost-effectiveness analysis of different models. 

Fig. 5 presents the results of the cost-benefit analysis. 
Although the MIP-GA model has a relatively high investment 
cost for topology adjustment, its annual power loss cost and 
annual maintenance cost are the lowest. Overall, the total 
annual cost is reasonable, the benefit-cost ratio is the highest, 
and the investment payback period is the shortest. The 
baseline has no topology adjustment investment cost, but the 
annual power loss cost is high. The MIP and ACO models also 
have investment costs and power loss costs. The reason why 
the MIP-GA model has a high benefit-cost ratio is that it 
significantly reduces power loss, which is enough to offset the 
relatively high investment cost in the long run. For example, 
the annual power loss cost of the MIP-GA model is reduced 
by $0.6 million compared with the baseline, and the annual 
maintenance cost is reduced by $0.3 million, resulting in a 
total annual cost reduction of $0.9 million. The investment 
cost can be recovered within three years, while the MIP model 
needs five years and the ACO model needs four years, which 
fully demonstrates the economic feasibility and superiority of 
the MIP-GA model. 

Fig. 6 shows the sensitivity analysis of load changes on 
power loss. Compared with other models, the MIP-GA model 
is less sensitive to load changes. When the load changes, the 
power loss of the MIP-GA model changes the least. The 
baseline is the most sensitive, and the MIP and ACO models 
also change relatively large. The reason why the MIP-GA 
model is insensitive to load changes is that its optimized 
topology can better adapt to load changes. The joint 
optimization of MIP and GA can find a more flexible topology 
that can maintain a relatively stable power flow even when the 
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load changes, thereby reducing the impact of load changes on 
power loss. For example, when the load change rate is + 20%, 
the power loss change of the baseline is 100 kW, the MIP 
model is 75 kW, the ACO model is 65 kW, and the MIP-GA 
model is only 50 kW, which reflects its stability and 
adaptability under different load conditions. 

 

Fig. 6. Sensitivity analysis of load change to power loss. 

Table I shows the sensitivity analysis of power loss to 
changes in distributed generation capacity. The MIP-GA 
model also shows better adaptability to changes in distributed 
generation capacity. When the distributed generation capacity 
changes, the power loss of the MIP-GA model changes 
relatively little. The baseline is more sensitive, and the 
changes in the MIP and ACO models are also larger. The 
MIP-GA model can more effectively adjust the power flow 

distribution according to the changes in distributed generation 
capacity. MIP's optimization based on precise physical 
constraints and GA's global search capabilities help find a 
more suitable topology and reduce the impact of changes in 
distributed generation capacity on power loss. For example, 
when the distributed generation capacity change rate is -20%, 
the power loss change of the baseline is 80 kW, the MIP 
model is 65 kW, the ACO model is 55 kW, and the MIP-GA 
model is only 45 kW, indicating that it can better cope with 
the fluctuations in distributed generation capacity and 
maintain the efficient operation of the network. 

Table II shows the comparison of the number of 
convergence iterations of different models. In addition to the 
original MIP, ACO and MIP-GA models, the particle swarm 
optimization (PSO) model and differential evolution (DE) 
model are also added for comparison. The MIP-GA model 
converges faster than other models. It has the lowest average 
number of iterations, minimum number of iterations and 
median number of iterations, and the smallest standard 
deviation of the number of iterations. The reason why the 
MIP-GA model converges quickly is that GA can quickly 
search for potential optimal solutions in a huge solution space, 
while MIP can quickly converge to the optimal solution in a 
small solution space provided by GA. The combination of the 
two, greatly reduces the search time and speeds up the 
convergence speed. For example, the average number of 
iterations of the MIP-GA model is 600, while the MIP model 
is 1000, the ACO model is 800, the PSO model is 700, and the 
DE model is 750, which fully demonstrates its advantage in 
convergence efficiency and can find a topology optimization 
solution that meets the requirements more quickly. 

TABLE I SENSITIVITY ANALYSIS OF DISTRIBUTED GENERATION CAPACITY CHANGES TO POWER LOSS 

Distributed generation 

capacity change rate (%) 
Change in baseline losses (kW) MIP loss change (kW) ACO loss change (kW) MIP - GA loss change (kW) 

- 25 100 80 70 60 

- 20 80 65 55 45 

- 15 60 50 40 35 

- 10 40 35 30 25 

- 5 20 15 10 8 

+ 5 - 20 - 15 - 10 - 8 

+ 10 - 40 - 35 - 30 - 25 

+ 15 - 60 - 50 - 40 - 35 

+ 20 - 80 - 65 - 55 - 45 

+ 25 - 100 - 80 - 70 - 60 

TABLE II CONVERGENCE ITERATION NUMBER COMPARISON 

Model 
Average number 

of iterations 

Iteration number 

standard deviation 

Minimum number 

of iterations 

Maximum number 

of iterations 

Median number 

of iterations 

MIP 1000 200 800 1500 1050 

ACO 800 150 600 1200 850 

MIP-GA 600 100 500 800 650 

Particle Swarm Optimization (PSO) 
Model (Supplementary Comparison) 

700 120 550 1000 720 

Differential evolution (DE) model 

(supplementary comparison) 
750 130 600 1100 780 
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TABLE III COMPARISON OF NETWORK RESILIENCE UNDER LINE FAILURE 

Number of simulated 

line faults 

Baseline elasticity (recovery 

time, min) 

MIP elasticity (recovery 

time, min) 

ACO elasticity (recovery 

time, min) 

MIP - GA elasticity (recovery 

time, min) 

1 30 25 twenty two 20 

2 45 35 30 25 

3 60 45 40 30 

4 75 55 50 35 

5 90 65 60 40 

6 105 75 70 45 

7 120 85 80 50 

8 135 95 90 55 

9 150 105 100 60 

10 165 115 110 65 
 

As shown in Table III, as the number of simulated line 
faults gradually increases, the recovery time of the baseline 
network shows an obvious linear growth trend. This shows 
that when facing faults, the unoptimized DC distribution 
network topology lacks an effective response mechanism and 
has weak recovery capabilities. The MIP model can shorten 
the recovery time to a certain extent, which has certain 
advantages over the baseline, but its recovery time is still 
relatively long. The ACO model further improves the 
network's recovery capability in the event of a fault, and the 
recovery time is further shortened. The MIP-GA model 

always shows the strongest network resilience and the shortest 
recovery time under various fault numbers. This is because the 
topology optimized by the MIP-GA model has better 
redundancy and flexibility, and can quickly adjust the power 
flow path when some lines fail, reduce the impact of the fault 
on the network, and thus restore normal operation faster. For 
example, when 8 line faults occur, the baseline network takes 
135 minutes to recover, the MIP model takes 95 minutes, the 
ACO model takes 90 minutes, and the MIP-GA model only 
takes 55 minutes, highlighting its excellent performance in 
improving network resilience. 

TABLE IV COMPARISON OF CALCULATION TIME OF DIFFERENT MODELS 

Model 

Computation time (s) 

for a small-scale network 

(nodes = 50, lines = 100) 

Computation time (s) for 

a medium-sized network 

(nodes = 200, lines = 350) 

Computation time (s) for 

large-scale networks (nodes = 

500, lines = 1000) 

MIP 300 3600 28800 

ACO 200 2400 19200 

MIP-GA 100 1200 9600 

Taboo Search (TS) Model (Supplementary Comparison) 150 1800 14400 

Simulated annealing (SA) model (supplementary 

comparison) 
180 2100 16800 

 

As shown in Table IV, in the small-scale network scenario, 
the calculation time of the MIP model is relatively long, which 
is due to its complex model structure and solution process. 
The calculation time of the ACO model has been shortened, 
but it is still not as good as the MIP-GA model. The MIP-GA 
model shows high computational efficiency in small-scale 
networks with the global search capability of genetic 
algorithms and the precise solution capability of mixed integer 
programming, with a calculation time of only 100 seconds. As 
the network scale expands to a medium scale, the calculation 
time of the MIP model increases sharply to 3600 seconds, 
which highlights its limitations in dealing with large-scale 
problems. The calculation time of the ACO model also 
increases significantly, but the MIP-GA model still maintains 
its advantage with a calculation time of 1200 seconds. In a 
large-scale network environment, the calculation time of the 
MIP model is as long as 28,800 seconds, which is almost 
unacceptable in practical applications. The calculation time of 
the ACO model and other complementary comparisons of the 
taboo search (TS) model and the simulated annealing (SA) 
model also increased significantly. The calculation time of the 

MIP-GA model is 9600 seconds, which is significantly 
superior to other models in large-scale network calculation 
time. This fully proves that the MIP-GA model can complete 
the calculation in a relatively short time in the topology 
planning and optimization of DC distribution networks of 
different scales, providing strong support for practical 
engineering applications and meeting the needs of real-time 
decision-making and rapid optimization. 

V. CONCLUSION 

With the continuous transformation of the power industry, 
the importance of DC distribution network in improving 
energy utilization efficiency and ensuring the stability of 
power supply has become increasingly prominent. However, 
its topology planning and optimization are limited by 
traditional methods and face problems such as low 
computational efficiency and poor optimization effect. This 
study conducts in-depth research based on mixed integer 
programming and genetic algorithm, uses MIP to accurately 
construct a DC distribution network model, and uses GA's 
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powerful global search capability to perform iterative 
optimization. In the experiment of a real DC distribution 
network data set with 200 nodes and 350 lines, the advantages 
of the MIP-GA model are fully demonstrated. In terms of 
power transmission loss, it performs best at all load levels, and 
the loss at extremely high load is only 680kW, which is much 
lower than the baseline of 1000kW, MIP of 820kW and ACO 
of 780kW. In terms of node voltage deviation, taking node 1 
as an example, the baseline deviation is 0.08pu, MIP is 
reduced to 0.06pu, ACO is 0.05pu, and MIP-GA is 
successfully as low as 0.04pu. Among the reliability indicators, 
the average outage duration index (AIDI) dropped from the 
baseline of 120min/yr to 60min/yr, and the power supply 
availability (ASAI) increased from 99.0% to 99.6%. The 
power quality indicators are also leading, such as the total 
harmonic distortion (THD) dropped from the baseline of 8% 
to 4%. In terms of cost-effectiveness, although the topology 
adjustment investment cost of the MIP-GA model is 2.2 
million US dollars, which is higher than the 2 million US 
dollars of MIP and the 1.8 million US dollars of ACO, the 
annual power loss cost is only 900,000 US dollars, the annual 
maintenance cost is 500,000 US dollars, the total annual cost 
is 1.4 million US dollars, the benefit-cost ratio is 1.5, and the 
investment payback period is only three years. In summary, 
the MIP-GA hybrid model proposed in this paper significantly 
improves the topology planning and optimization effect of the 
DC distribution network, improves the algorithm system in 
theory, and improves the operation efficiency of the DC 
distribution network in practice, providing strong support for 
the development of this field, and has important practical 
significance and application value. 

While the hybrid MIP-GA model demonstrates clear 
advantages in accuracy, computational efficiency, and 
robustness, there remain certain limitations that warrant 
attention. First, although real-world data from a medium-sized 
DC distribution network with 200 nodes and 350 lines was 
used, the scalability of the model to ultra-large networks 
exceeding 1,000 nodes has not been fully tested under field 
conditions. Second, the GA component is still influenced by 
the quality of the initial population, which may affect 
convergence paths in rare cases. Additionally, while the model 
integrates MIP constraints effectively, solving large-scale MIP 
subproblems can remain computationally intensive in real-
time systems with highly dynamic load profiles. Lastly, the 
hybrid model currently optimizes static topologies; integrating 
dynamic reconfiguration mechanisms for fault recovery or 
demand response remains an open challenge. Recognizing 
these limitations not only clarifies the scope of the findings 
but also outlines valuable directions for future advancement, 
including adaptive hybridization and the integration of real-
time data streams. 

The interpretability and practical relevance of the findings 
by synthesizing experimental results in relation to broader 
system design implications and existing theoretical 
frameworks. This section critically evaluates why the 
proposed MIP-GA model outperforms other methods not only 

in numerical metrics—such as reducing power transmission 

loss by 32% compared to the baseline and achieving the 

lowest voltage deviation (e.g., 0.04 pu at Node 1)—but also in 

terms of its operational robustness across varying load and 
distributed generation conditions. These improvements are 
contextualized by examining how the hybrid architecture 
exploits MIP’s constraint modeling to maintain physical 
feasibility, while GA expedites convergence by effectively 
narrowing the search space. Furthermore, trade-offs such as 
higher initial investment are offset by long-term cost savings 
and faster payback periods. The research also reflects on the 
implications of computational time savings for real-time 
applications and explores how the adaptability of the hybrid 
method under fault conditions and load volatility positions it 
as a promising approach for future smart grid 
implementations. 
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