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Abstract—Mobile robots are often tasked with environmental
surveys and disaster response operations. Accurately estimating
the energy consumption of these robots during such tasks is essen-
tial. Among the various components, the drive system consumes
the most energy and exhibits the greatest fluctuations. Since these
energy fluctuations stem from variations in current consumption,
it is crucial to estimate the drive system’s current consumption
with high accuracy. However, existing research faces challenges
in accurately estimating current consumption, particularly when
the ground geology changes or when internal states cannot be
measured. Moreover, there is no clearly defined methodology
for estimating the current consumption of a mobile robot’s
drive system under unknown geological conditions or internal
states. To address this gap, the present study aims to develop
an end-to-end method for estimating the current consumption
of a mobile robot’s drive system, taking ground geology into
consideration. To achieve this, we propose a novel approach for
collecting interaction data and generating a current consumption
model. For data collection, we introduce a method that effectively
captures the internal and external factors influencing the drive
system’s current consumption, as well as their interactions. This
is accomplished by treating the physical phenomena resulting
from the interaction between the driving mechanism and the
ground as vibrations. Additionally, we propose a method for
generating a current consumption model using a neural network,
accounting for measurement errors, outliers, noise, and global
current fluctuations. The effectiveness of the proposed method is
demonstrated through experiments conducted on three different
ground types using a skid-steering mobile robot.
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I. INTRODUCTION

Mobile robots are increasingly being deployed to perform
diverse missions, including social infrastructure maintenance,
i-Construction, agriculture, forestry, fisheries, nursing care
and welfare, disaster response, and investigations in extreme
environments [1]–[4]. Among these missions, environmental
surveys and disaster responses require wheeled or crawler-type
mobile robots to perform tasks in terms of robustness, maneu-
verability, and drivability [5]–[8]. Long-term, long-distance,
and continuous operation of mobile robots is essential for task
execution in environmental surveys and disaster responses.

Therefore, estimating the energy consumption is necessary
to determine the amount of energy that the mobile robot
will consume for efficient task execution. Based on the so-
cial background described above, various studies have been
conducted on estimating the energy consumption of mobile
robots [9], [10]. In particular, optimizations based on energy
consumption have been conducted in research fields such as
path planning, motion planning, and task management for
mobile robots. Because the accuracy of energy consumption
estimation significantly affects the results in these research
fields, methodologies for energy consumption estimation have
been discussed, and methods such as mathematical model
approaches and data-driven approaches have been proposed.

This section reviews previous studies on energy con-
sumption estimation. First, we discuss studies that employed
mathematical modeling approaches, assuming a solid, non-
deformable ground and considering its geometric shape. Gan-
ganath et al. proposed a path planning method that considers
the energy consumption of mobile robots in uneven terrain
environments where flat and sloped terrains coexist [11], [12].
In Ganganath et al.’s method, the terrain (ground elevation
and slope) traversed by a mobile robot is used to plan a path
that optimizes the energy consumption and distance between
two points. The path is determined by integrating the energy
and distance costs, thereby calculating an optimal solution
that satisfies both the energy and distance constraints. In
this process, a mathematical model that considers the terrain
was employed to estimate the energy consumption of the
mobile robot. However, the method of Ganganath et al. is
limited because it does not consider the characteristics of a
mobile robot. Mobile robots such as differential two-wheeled,
steering-type, skid-steer-type, and crawler-type mobile robots
have different energy consumption levels and variability char-
acteristics depending on their mobility type; therefore, it is
necessary to consider the mobility type.

In response to the work of Ganganath et al., Mei et al.
proposed a motion planning method that considers energy
efficiency for omnidirectional mobile robots operating on flat
terrain [13]. Mei et al.’s method plans energy-efficient paths
and speeds for task execution using a three-wheeled omnidi-
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rectional mobile robot. In this approach, a mathematical model
that considers the kinematic characteristics of omnidirectional
mobile robots, such as their geometric shapes, is used to
estimate the energy consumption. Additionally, Zhang et al.
proposed a path planning method that takes energy efficiency
into account for steering-type mobile robots operating on
flat terrain [14]. Zhang et al.’s method plans energy-efficient
paths for task execution using a four-wheeled steering-type
mobile robot. In this case, a mathematical modeling approach
considering the geometric shape of the steering-type mobile
robot and other kinematic characteristics was used to estimate
the energy consumption. Furthermore, Jaramillo-Morales et
al. proposed an energy consumption estimation model for a
differential two-wheeled mobile robot, taking into account
payload and acceleration on flat terrain [15]. Their method
estimates the energy consumption by identifying dynamically
changing motor parameters from real data based on a math-
ematical model. The studies by Mei et al., Zhang et al.,
and Jaramillo-Morales et al. considered terrain and mobile
robot characteristics, but did not consider ground geology.
The energy consumption of mobile robots traveling on the
ground is affected by terrain features, such as elevation and
slope, as well as by the geology of the ground in contact
with the mobile robot. Therefore, it is necessary to consider
the geology. Geology affects energy consumption through a
combination of materials such as soil, concrete, grass, and
snow, as well as dryness and moisture. For example, in mobile
robot navigation, energy consumption and its variability can
differ significantly between dry concrete surfaces and muddy,
moisture-laden ground. In the next section, we discuss previous
studies that estimated energy consumption by considering
geology using a mathematical modeling approach.

In a study considering the geology of the ground on
which mobile robots operate, Saad et al. first proposed a
path planning method that takes into account both terrain
and ground surface to reduce the energy consumption of
mobile robots on uneven terrains [16], [17]. Saad et al. used a
mathematical model approach based on terramechanics (the
mutual mechanical relationship between mobile robots and
soil) to estimate wheel sinking effects, terrain slopes, and soil
deformation characteristics to estimate energy consumption.
Terrain-related parameters in the mathematical model were
obtained from digital elevation models (DEMs), while surface-
related parameters were derived from the Unified Soil Classi-
fication System (USCS). The method was evaluated through
simulation. Second, Mohamadi et al. proposed a method for es-
timating the energy consumption of a differential two-wheeled
mobile robot with an unknown payload on flat terrain [18]. In
their approach, model parameters were identified through both
offline and online estimation using actual motion data, enabling
accurate estimation of the robot’s energy consumption. Third,
Morales et al. proposed a method for estimating the energy
consumption of a crawler-type mobile robot operating on flat
terrain [19]. Their method analyzed the effects of slippage
and friction between a crawler-type mobile robot and the
ground. They proposed a mathematical model that considered
kinematics and kinetic friction. A crawler-type mobile robot
changes direction depending on the speed difference between
the left and right crawlers; therefore, slippage occurs while
moving, which affects the energy consumption. Morales et al.’s
method estimated the energy consumption based on parameters

such as the robot’s velocity, acceleration, turning radius, and
kinetic friction coefficient, and its effectiveness was verified
through experiments with an actual machine. Parameters such
as the kinetic friction coefficient included in the mathematical
model were derived from experimental tests. Fourth, Ínal et al.
proposed a path-planning algorithm that considered dynamics
to reduce the energy consumption of a crawler-type mobile
robot on rough terrain [20]. Many conventional path planning
algorithms focus on optimizing distance and time, Ínal et
al. proposed an energy-efficient path-planning method that
improves the A* algorithm. They evaluated their proposed
method using an actual off-road terrain model. The dynamics
include parameters such as rolling resistance and acceleration
force, and consider the terrain and ground surface. In this study,
the dynamic parameters were obtained from two experiments.
The parameters included in the mathematical model were
derived from experiments conducted using an actual vehicle.

Fifth, Dogru et al. proposed a mathematical model-based
energy-consumption estimation method that considers friction
using a skid-steering mobile robot [21]. In their method, Dogru
et al. proposed a mathematical model that considers rolling
friction when the wheels rotate and skid friction when the
robot skids while turning. Experiments were conducted using
an actual skid-steering mobile robot. Energy consumption was
measured under varying speeds, turning conditions, and centers
of mass, and the results were compared with the predicted
values from the mathematical model. The model matched the
actual measured values with high accuracy, demonstrating its
usefulness in estimating energy consumption. Mathematical
model-based studies before Dogru et al. had issues such as
being limited to linear movements, ignoring changes in friction
due to speed and curvature radius, and not considering slopes.
Dogru et al. proposed a general-purpose energy consumption
model that covered the entire operating range of skid-steering
mobile robots and quantified the effect of friction. Sixth,
Otsu et al. proposed a method for estimating the energy
consumption of an Ackerman-type mobile robot on uneven
terrain [22]. Otsu et al. used the actual driving data of a
mobile robot. The energy consumption of the Ackermann-type
mobile robot was estimated using a mathematical model based
on geological classifications and topographical information.
In this case, features were extracted using the mobile robot’s
acceleration data as training data, and the geological conditions
were classified into three types: dense sand, fine gravel, and
coarse gravel, from the camera images using a Support Vector
Machine (SVM). Saad et al., Mohamadi et al., Morales et al.,
Ínal et al., Dogru et al., and Otsu et al. were based on mathe-
matical models. The parameters included in the mathematical
model were identified from actual driving data using numerical
analysis, optimization, and machine learning, and the power
consumption was estimated. However, the geology combines
soil, concrete, grass, and snowy conditions, such as dryness
and moisture. There are infinite combinations of materials,
conditions, and them, so estimating energy consumption based
on a mathematical model for various geologies has a limit.

In contrast to the studies described above that estimate
energy consumption using mathematical models, Sakayori et
al. proposed a path planning method that considers energy ef-
ficiency for Ackermann-type mobile robots operating in rough
terrain environments [23]. Sakayori et al.’s method evaluated
the energy consumption and power generation and planned
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a path considering the mobile robot’s dynamics and terrain
mechanics. In this case, an energy consumption model was
constructed using a neural network. The inputs were speed,
slope angle, and azimuth angle, and the outputs were energy
consumption and longitudinal slip. Góra et al. proposed a
method to estimate the energy consumption of a differential
two-wheel mobile robot and a skid-steering mobile robot on
indoor rigid ground [24]. Góra et al. used a mobile robot’s
actual driving data and estimated its energy consumption using
a neural network. In this case, parameters such as the actual
velocity of the mobile robot, actual angular velocity, weight,
and friction were inputted into the neural network, and the
consumed energy was the output. Friction parameters were
identified using a mathematical model based on the travel
data of a mobile robot. However, although Sakayori et al.’s
method takes into account dynamics and terramechanics in
path planning, geology is not taken into account in the energy
consumption model, and the accuracy of the estimation of
energy consumption decreases when the geology is unknown
or changes. Additionally, Góra et al.’s method targets rigid
indoor ground, and the geology is expressed as friction, which
is calculated using a mathematical model based on actual
travel data. Therefore, the accuracy of energy consumption
estimation is problematic when the geology causes the wheels
to sink, when the terrain is difficult to model mathematically,
or when the parameters included in the mathematical model
are unknown.

In response to the previous research described thus far, the
author proposed a method for derive the current consumption
using vibration data [25]. However, this method uses instan-
taneous vibration data. Therefore, although it is possible to
calculate current consumption in real time, this method is not
suitable for estimating current consumption. To summarize
the previous studies described thus far, there is no trans-
parent methodology for estimating the energy consumption
of a mobile robot using an end-to-end data-driven approach,
considering the mobile robot’s characteristics, the geology of
the ground on which it runs, and changes in the geology.
Additionally, the energy consumption of a mobile robot’s
drive system is the most significant and variable component
of its overall energy consumption. Generally, a rated voltage
is applied to the drive system, and energy fluctuations occur
owing to changes in current consumption. Therefore, it is
important to estimate the current consumption of the drive
system accurately when estimating the energy consumption of
a mobile robot. The purpose of this study was to develop an
end-to-end estimation method for the current consumption of
a mobile robot drive system that considers geology.

The remainder of this paper is organized as follows: Section
II describes the interaction data collection and current con-
sumption model generation methods proposed in this study for
estimating the current consumption of a mobile robot’s drive
system. Section III describes the effectiveness of the proposed
method in changing environments through experiments using a
real machine in a real environment. Experimental results and
a discussion are also presented. Finally, Section IV presents
conclusions and future work.

II. PROPOSED METHOD

A. Outline

This study targets the operation of a mobile robot in the
flow shown in Fig. 1. It is assumed that the ground topography
is known and the ground geology is unknown. First, the
robot was given a task, such as conducting an environmental
survey or moving to a destination. Next, the mobile robot
autonomously adjusts its velocity and angular velocity on
the task-performing ground, and interaction data, such as
vibrations and current consumption, are collected. Next, the
interaction data are trained to generate the current consumption
model. Next, the path planning and time-series behaviors of
the commanded velocity and angular velocity of the mobile
robot were planned. Next, the required energy was estimated
using the current consumption model. Next, the mobile robot
begins the task and moves. When a task is assumed to be
performed over a long period and distance, the internal and
external factors are expected to change. Therefore, if the error
exceeds a threshold value, the consumption current model is
updated by comparing the actual current consumption with the
estimated value. To update the model, the mobile robot adjusts
its velocity and angular velocity in the ground area where
the error surpasses the threshold, and interaction data, such
as vibration and current consumption, are collected again. The
current consumption model was updated by retraining using
the collected real data. Subsequently, the errors are compared,
and if they exceed a threshold, the data are re-collected and
re-trained repeatedly to complete the task.

Previous studies have discussed task, path, and action
planning (Fig. 1). In addition, previous studies have discussed
energy consumption estimations that consider topography, such
as slopes. In this study, we focus on geological changes
on flat terrain as a fundamental step toward estimating the
current consumption of end-to-end mobile robot drive systems,
considering geological features. We propose a novel method
for collecting interaction data and generating a current con-
sumption model, as highlighted in the red-boxed section of
the flow in Fig. 1. Prior to the task, we explain the validity
of setting up a problem in which the topography is known
and the geology is unknown. The topography (geometry) of
the ground on which the mobile robot moves can be measured
with high precision in advance using noncontact sensors, such
as satellites and UAVs. Although real-time measurements may
be difficult with topography data measured by satellites and
UAVs, the topography is unlikely to change shape over time.
In contrast, satellite and UAVs’ non-contact sensors can only
measure the surface of the ground on which the mobile robot
is moving. Therefore, the measurement accuracy is low when
the geological conditions differ between the surface and the
interior of the ground. Additionally, because the conditions of
geological materials change with rain and snow, it is highly
probable that the conditions of geological materials change
over time. For these reasons, this study sets up a problem
in which the topography on which the mobile robot moves
is known in advance, and the geology is unknown but will
become known through actual driving.

B. Collecting Methods of the Interaction Data

When controlling a mobile robot, velocity and angular ve-
locity are generally input as command values. Based on these
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Fig. 1. Task execution of mobile robots and the position of this study.

command values, the target angular velocity of each actuator
is calculated using kinematics. Based on the target angular
velocity of the actuator, the wheels and crawlers (hereinafter
collectively referred to as the driving mechanism) are operated
by controlling the actuators to move the mobile robot. As
explained in Section I, most previous studies represented the
interaction in a mathematical model and estimated the energy
consumption by identifying limited parameters such as geology
and friction in the mathematical model. However, using a
mathematical model-based approach to estimate energy con-
sumption considering various geological conditions, geological
changes, and surface and interior conditions is challenging. In
addition, noncontact sensors that can be mounted on mobile
robots, such as RGB cameras and LiDAR, are unsuitable
for geological estimation because they can only measure the
ground surface and not the internal conditions. To estimate the
geology, considering both the surface and internal conditions
of the ground, specialized sensors such as spectrum cameras
and electromagnetic radar, not typically installed on mobile
robots, are required. However, this is unrealistic in terms of
sensor cost (sensor price, measurement time, data volume, and
data processing time). In addition, the accurate identification
of geological features and their parameters is not essential for
energy consumption estimation.

For the reasons explained above, this study proposes a
novel method to estimate the end-to-end current consumption
of the drive system from the physical phenomena caused by
interaction. The interaction between the ground and driving
mechanism caused by the movement of a mobile robot depends
on the geology of the ground. For example, the interaction
differs between a flat surface, like a gymnasium floor, where
the surface remains undisturbed by movement, and a sandy
beach, where the surface is slightly uneven and ruts are formed
as the robot travels. In addition, the interactions differed
depending on the grain size and water content of the soil,
even if the soil had the same geology. The physical phenomena
caused by the interaction between the ground and the driving
mechanism, owing to differences in the geology of the ground,
are expressed in the mobile robot’s vibration. Therefore, we
propose a method for estimating end-to-end current consump-
tion from the vibration caused by the interaction.

The current consumption of a mobile robot drive system
varies depending on the internal (robot velocity, angular ve-
locity, weight, driving mechanism, etc.) and external (terrain,
geology, temperature, etc.) factors, making it necessary to
consider these factors and their interactions. However, it is
difficult to represent all these factors in a mathematical model.
Therefore, this study attempts to estimate the current consump-
tion by clarifying the relationship (current consumption model)
between the vibration and output (current consumption of the
drive system) when the inputs (velocity and angular velocity)
are provided. By capturing the physical phenomena caused by
the interaction between the ground and driving mechanism as
vibrations, a model was constructed to consider the internal
and external factors that affect the current consumption of
the drive system and their interaction. Specifically, a current
consumption model is generated from the commanded velocity,
commanded angular velocity, vibration (acceleration in the
robot’s vertical direction), and current consumption of the drive
system, which can be measured during the actual movement
of the mobile robot.

In the data collection for the current consumption model
generation, the mobile robot collects interaction data au-
tonomously in a real environment where it performs its task.
Four types of interaction data were measured in the time
series: the commanded velocity, commanded angular velocity,
vertical acceleration of the robot, and currents in the drive
system, which were the inputs to the robot. The actions that a
mobile robot can perform are velocity, angular velocity, or a
combination of both. Therefore, the robot collects interaction
data by moving through a portion of the real environment
where it will perform a task, using the velocity, angular
velocity, or a combination of both that it can achieve. Once a
certain amount of interaction data has been collected, a current
consumption model for the environment is generated based on
the interaction data, the current consumption is estimated, and
the task is performed.

C. Generation Method of the Current Consumption Model

This section describes the current consumption estimation.
The current consumption of a mobile robot’s drive system
varies depending on internal and external factors and their
interactions. Therefore, it is difficult to mathematically model
all these factors and their interactions. In addition, the drive
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Fig. 2. Dataset and network structure of the proposed method.

system’s current consumption varies with the mobile robot’s
velocity, angular velocity, acceleration, and driving load mech-
anisms, resulting in nonlinear data with noise. For the reasons
explained above, this paper proposes a data-driven end-to-end
current consumption estimation method for the drive system
using neural networks, a type of machine learning, as a
fundamental study.

This section describes the method for estimating the current
consumption of a drive system using a neural network. A
typical mobile robot inputs command velocity and angular
velocity. It causes the actuators of the driving mechanism
to move, causing the current consumption of the driving
system to fluctuate. Internal and external factors and their
interactions must be considered to clarify the relationships
among command velocity, command angular velocity, and
current consumption in task-performing environments. In this
method, vibration (acceleration in the vertical direction of
the robot) is utilized, and the neural network is configured
to take the robot’s commanded velocity, commanded angular
velocity, and vibration as inputs, with the output being the
drive system’s current consumption. The current consumption
of the drive system fluctuates globally due to changes in
velocity, angular velocity, and acceleration. Additionally, even
with filtering, noise processing, and sensor calibration, mea-
surement errors and outliers are expected to occur momentarily
during the current measurement. Local fluctuations due to
noise can also be expected to occur in relation to global
current volatility. Due to the reasons mentioned above, the
consumption current estimation for a single step at a given
moment is expected to have significant measurement errors,
outliers, noise, and other inconsistencies. Therefore, the input-
output in this method is based on time-series data, separated
by an arbitrary interval tinterval. Even if the geology is the
same, the vibration data may differ, depending on the velocity
and angular velocity of the mobile robot. Therefore, we move

in the actual environment at velocities, angular velocities, or
combinations of both that the mobile robot can achieve. The
vibrations obtained from this movement are converted into
frequency components and input into the neural network. In
other words, the frequency component input to the neural
network represents the interaction between all the possible
actions of a particular mobile robot in a specific environment.

Fig. 2 shows the neural network structure and the dataset
used in this method. A neural network consists of input,
intermediate, and output layers. The inputs were the velocity,
angular velocity, and vibration frequency data, and the outputs
were the current consumption of the drive system. The dataset
was created by shaping four types of data (velocity, angular ve-
locity, vibration frequency in the vertical direction of the robot,
and current consumption) in the line and column directions
using the interaction data described in the previous section.
The velocity, angular velocity, and current consumption of the
dataset are time-series data separated by an arbitrary interval
tinterval, as shown in Fig. 2. Vibrations are frequency data
obtained by Fast Fourier Transform (FFT) processing of all
the acceleration data during data acquisition. The reason for
using all acceleration data was to account for the interaction
of all possible actions of a unique mobile robot in a unique
environment. At this time, since the velocity, angular velocity,
current consumption, and frequency data have different units
and scales, each physical quantity is normalized to the range
of 0 to 1.

III. EXPERIMENT

A. Experiment Outline

The following is an overview of the experiment. The pur-
pose of this experiment is to evaluate the effectiveness of the
proposed method in changing environments. To achieve this,
we conducted evaluations in various environments, collecting
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(a) Coated wood Ground A
Coated wood ground

(b) Snow-covered Ground B (c) Internal condition of
snow-covered Ground B

(d) Snow-covered Ground C (e) Internal condition of
snow-covered Ground C

Fig. 3. Experimental environment.

Fig. 4. Skid-steer type mobile robot used in the experiment.

Fig. 5. Control input for current estimation.

data using a mobile robot, training a neural network, and
comparing the estimated and measured current consumption
values. Three types of geologies were used: Ground A, coated
wood surface; Ground B, with a snow-covered surface and
stone tiles inside; and Ground C, with a snow-covered surface
and concrete inside, as shown in Fig. 3. A mobile robot was

used in the experiments, as shown in Fig. 4. JACKAL is a 17
kg skid-steer mobile robot measuring 508 mm in length, 430
mm in width, and 250 mm in height. The driving mechanism
was a four-wheeled skid-steer type, with one motor driving
two wheels on each side using a belt, for a total of two
motors driving the four wheels. Two runs were conducted
in each environment to obtain experimental data. Data from
the first run were used for learning, model generation, and
estimating the driving current consumption in the second run.
The control inputs are shown in Fig. 5. The control input
shown in Fig. 5 was provided to the mobile robot, and the
second-run data were acquired. Evaluation was performed by
comparing the estimated current consumption after the first
run with the actual current consumption in the second run.
The control input comprised a commanded velocity between
0 and 0.4 m/s and a commanded angular velocity between
0 and 1.05 rad/s. The running data were acquired using the
combinations shown in Fig. 5.

The measurement method is as follows: The drive system’s
current consumption was measured by connecting an INA226
current sensor from Texas Instruments, with a measurement
range of ± 20 A, to the motor cable. Vibrations were measured
using an IMU sensor module from RT, which incorporates an
MPU9250 with an acceleration range of ± 16 G and an angular
velocity range of ± 2,000 deg/s. The control and measurement
system of the mobile robot used Robot Operating System
1 (ROS 1) to acquire the control input synchronously, drive
current consumption, and collect vibration data at a sampling
rate of 100 Hz.

The structure of the dataset is as follows: The arbitrary
interval tinterval was set to 0.1 s, and the dataset consisted
of 10 samples each for velocity and angular velocity. The
vibration (frequency) data comprised 8,000 samples from 0
to 50 Hz per set. The current consumption of the left and
right drive systems consisted of ten samples for each dataset.
Therefore, the neural network consists of 8,020 inputs in the
input layer and 20 outputs in the output layer. The neural
network consisted of one input layer, three intermediate layers,
and one output layer, with 100 neurons in each intermediate
layer. ReLU (Rectified Linear Unit) was used as the activation
function for the intermediate and output layers. The data were
normalized to a range of 0 to 1, with command velocity
ranging from 0.0 to 1.0 m/s, command angular velocity from
0.0 to 1.0 rad/s, and current values from 0 to 10,000 mA to
estimate the neural network’s learning and the drive system’s
current consumption. The absolute values were used for the
velocity, angular velocity, and current consumption of the
left and right drive systems. For the training data, we used
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(a) Right motor current at Ground A (b) Right motor current at Ground B (c) Right motor current at Ground C

(d) Left motor current at Ground A (e) Left motor current at Ground B (f) Left motor current at Ground C

Fig. 6. Actual and estimated current consumption of the left and right motors.

data obtained by changing the velocity and angular velocity
and running for approximately 160 s. The test data were
acquired at different times from the training data and run
for approximately 160 s, changing the velocity and angular
velocity in the same manner as the training data.

B. Results and Discussion

The experimental results are shown in Fig. 6. Fig. 6 (a)
and (d) show the current consumption of the mobile robot’s
right and left drive systems on Ground A, respectively. The
horizontal axis represents the time (s), and the vertical axis
represents the current (mA). The light-blue line represents
the measured current consumption of the drive system (actual
value). The dark blue line represents the moving average of the
measured value, and the red line represents the moving average
of the estimated current consumption of the drive system. The
moving averages for the dark blue and red lines were calculated
using a median moving average of 100 samples. The remaining
figures follow a similar approach, as shown in Fig. 6 (b) and
(e), which display the current consumption of the drive system
at Ground B, and Fig. 6 (c) and (f), which show the current
consumption at Ground C.

The evaluation method is as follows: The experiment was
evaluated in the global and local sections of each graph
(Fig. 6). The quantitative evaluation involved calculating and

comparing the current amount (mAh) in the global and local
sections. Specifically, for the global interval, the total amount
of current (mAh) was calculated from the beginning (0 s)
to the end (158 s) of the graph, and the error rate (%) was
determined by comparing the measured value (true value) with
the estimated value. To evaluate the local intervals, the amount
of current (mAh) was calculated for the interval highlighted
in light red (8 s) on the graph, and the error rate (%) for the
total amount of current was calculated from the error between
the measured (true) and estimated values. Local sections were
evaluated for eight sections from Sections 1 to 8, which are
highlighted in light red in the graphs. Table I lists the measured
(true) and estimated values and error rates for each graph’s
global and local sections.

First, the results in Fig. 6 show that the estimated current
consumption fluctuates in response to changes in the mobile
robot’s velocity and angular velocity, mirroring the fluctuations
in the drive system’s current consumption in both environ-
ments. Next, the evaluation of the global interval in Table I
confirmed that current consumption could be estimated with
an error of 3.15 % for the right drive system and 2.18 %
for the left drive system in Ground A. We also confirmed
that in a snowy environment, the amount of current could be
estimated with an error of 15 % or less, even for Grounds
B and C. We estimated the current with an error of 15 % or
less for all grounds because, using vibrations, we generated a
current consumption model that corresponded to the geology,
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TABLE I. COMPARISON OF MEASURED AND ESTIMATED CURRENT AMOUNT FOR THE LEFT AND RIGHT DRIVE

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7 Sec. 8 Sec. all
Ground A (Coated wood ) Measured current amount of the right drive [mAh] 13.67 13.86 4.95 12.29 13.46 12.44 13 7.4 227.2

Estimated current amount of the right drive [mAh] 12.82 13.27 5.63 10.94 13.52 12.27 12.79 7.3 220.04
Error rate of the right drive [%] 0.37 0.26 0.3 0.59 0.03 0.08 0.09 0.04 3.15

Measured current amount of the left drive [mAh] 13.51 13.64 0.38 4.74 13.12 4.36 4.93 3.30 146.36
Estimated current amount of the left drive [mAh] 12.01 13.48 0.80 5.38 12.24 4.33 5.06 3.96 143.16

Error rate of the left drive [%] 1.02 0.11 0.29 0.44 0.6 0.02 0.09 0.45 2.18
Ground B (Snow / Stone tile) Measured current amount of the right drive [mAh] 7.41 7.36 4.35 8.40 8.30 8.49 8.72 6.09 145.30

Estimated current amount of the right drive [mAh] 9.24 8.60 4.98 7.38 8.99 8.89 8.77 5.41 154.34
Error rate of the right drive [%] 1.26 0.86 0.44 0.7 0.48 0.27 0.04 0.46 6.22

Measured current amount of the left drive [mAh] 7.35 7.09 1.49 1.48 7.57 1.02 1.29 0.00 70.51
Estimated current amount of the left drive [mAh] 8.44 8.74 1.16 2.05 7.68 1.33 1.64 1.32 81.36

Error rate of the left drive [%] 1.54 2.34 0.47 0.81 0.16 0.45 0.49 1.87 15.4
Ground (Snow / Concrete) Measured current amount of the right drive [mAh] 7.31 7.45 5.11 8.29 8.41 8.33 8.74 6.42 148.61

Estimated current amount of the right drive [mAh] 7.93 8.26 5.40 8.07 9.00 8.90 9.53 5.96 155.80
Error rate of the right drive [%] 0.42 0.55 0.2 0.15 0.4 0.38 0.53 0.31 4.84

Measured current amount of the left drive [mAh] 6.86 7.51 2.15 1.50 6.75 0.86 1.30 0.01 68.64
Estimated current amount of the left drive [mAh] 7.77 8.81 2.03 2.02 6.71 1.17 1.73 1.31 79.26

Error rate of the left drive [%] 1.33 1.89 0.17 0.76 0.05 0.47 0.64 1.9 15.47

(a) Ground A Frequency (0 - 50 Hz) (b) Ground B Frequency (0 - 50 Hz) (c) Ground C Frequency (0 - 50 Hz)

(d) Ground A Frequency (0 - 25 Hz) (e) Ground B Frequency (0 - 25 Hz) (f) Ground C Frequency (0 - 25 Hz)

Fig. 7. Frequency analysis for each ground.

making it possible to estimate the current consumption with
high accuracy. This discussion is explained as follows: Fig. 7
shows the frequency analysis of the vibration (acceleration)
measured on each ground surface. Fig. 7 (a) and (d) show the
frequency analysis results on Ground A. The horizontal and
vertical axes represent frequency and amplitude, respectively.
The graph in Fig. 7 (d) is a zoomed-in view of the yellow-
highlighted section in Fig. 7 (a). The green line represents

the raw amplitude data, and the magenta line represents the
moving average of the amplitude. The magenta line represents
vibration data from the first run, and the black line represents
vibration data from the second run. The same was true for
the other graphs. Fig. 7 (b) and (e) show the results of the
frequency analysis for Ground B, and Fig. 7 (c) and (f) show
the results of the frequency analysis for Ground C.

The results in Fig. 7 confirmed that the frequency char-
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acteristics and amplitude magnitude differed depending on
the ground type. Specifically, it was confirmed that Ground
A has a relatively small amplitude and fluctuation compared
to Ground B and Ground C. In addition, we confirmed that
local peaks appeared for Ground A in the frequency bands
of 7 Hz, 15 Hz, and 20 Hz. The amplitude of ground B was
moderate compared to those of Ground A and C, and local
peaks appeared in the frequency bands of 9 Hz and 16 Hz.
The amplitude at Ground C was relatively higher than that at
Ground A and B, with local peaks appearing in the frequency
bands of 9 Hz and 16 Hz. While local peaks were observed
in similar frequency bands for Ground B and Ground C, the
characteristics of these peaks differed. The 9 Hz local peak was
gentle in both rounds B and C. When comparing Grounds B
and C, it was concluded that Ground C had a larger amplitude.
In addition, it was confirmed that the 16 Hz local peak had
a sharp peak for Ground B and a gentle peak for Ground C.
In addition to the features described above, a neural network
can capture other features necessary for estimating the current
consumption of the drive system. We believe that we were able
to generate a current-consumption model corresponding to the
geological environment using vibrations. As a result, highly
accurate consumption current estimation is possible.

IV. CONCLUSIONS

This study aims to develop an end-to-end method for
estimating the current consumption of a mobile robot drive
system that considers geological conditions. We proposed
new methods for collecting interaction data and generating
current consumption models. In the interaction data collection
method, we proposed an approach that effectively considers
both internal and external factors affecting the drive system’s
current consumption and interactions by capturing physical
phenomena, such as vibrations, generated by the interaction
between the driving mechanism and the ground. In the current
consumption model generation method, we introduced a neural
network-based approach for generating a current consumption
model using interaction data, accounting for measurement
errors, outliers, noise, and global current fluctuations. Through
experiments in a real environment, we confirmed that the
current can be estimated with an error of 15 % or less.
Specifically, on Ground A, which was coated with wood, the
error rate was 3.15 % for the right drive system and 2.18 %
for the left drive system. On Ground B, which had a snow-
covered surface and a stone tile interior, the error rates were
6.22 % for the right drive system and 15.40 % for the left drive
system. On Ground C, which had a snow-covered surface and a
concrete interior, the error rate was 4.84 % for the right drive
system and 15.47 % for the left drive system. Additionally,
we confirmed that the frequency characteristics and amplitude
sizes differ depending on the ground type, and that a neural
network can capture the features necessary for estimating the
current consumption of the drive system. Furthermore, we
confirmed that vibrations can generate a current consumption
model adapted to geological conditions. The experimental
results demonstrate the effectiveness of the newly proposed
interaction data collection and current consumption model
generation methods. Therefore, we established an end-to-end
method to estimate the current consumption of a mobile robot
drive system that considers geological conditions.

We will now explain our future work. This study verified

the method using three types of ground and one type of mobile
robot. In future work, we plan to confirm the method with
different types of ground and mobile robots. Additionally, the
operating time in this study was limited to about three minutes;
we will conduct verification over a longer period to assess the
method’s applicability.
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