
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

403 | P a g e

www.ijacsa.thesai.org

FPGA-Based Implementation of Enhanced DGHV

Homomorphic Encryption: A Power-Efficient

Approach to Secure Computing

Gurdeep Singh1, Sonam Mittal2, Hani Moaiteq Aljahdali3, Ahmed Hamza Osman4, Ala Eldin A Awouda5,

Ashraf Osman Ibrahim6*, Salil Bharany7*

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India1, 2, 7

Department of Information Systems-Faculty of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz

University, Jeddah 21911, Saudi Arabia3, 4

Bisha University, College of Engineering, Bisha, KSA5

Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia6

Abstract—One new area of secure computing and privacy is

homomorphic encryption (HE). An FPGA-based implementation

of the HE algorithm, Enhanced DGHV, which helps real-time

computation on encrypted text without disclosing the original

data, is developed in this study. This research aims to focus on

implementing the Enhanced DGHV Fully HE algorithm on FPGA

hardware to achieve a more efficient scheme in terms of

performance and security. The Xilinx Vivado tool implements the

design on a Genesys 2 Kintex 7 FPGA board. While software

simulation with 3.2% I/O usage, the simulation confirms a total

power consumption of 3.12W (watts), highlighting successful

synthesis with little resources. At 9.105W, the hardware

implementation is comparable. Furthermore, an effective FPGA-

based implementation confirms a method for achieving a balance

between power consumption and performance while

implementing the DGHV algorithm. The results show that the

overall computational complexity can be reduced, and the

hardware and software integration help to achieve an increased

data security level for homomorphic encryption algorithms with

improved efficiency.

Keywords—Homomorphic encryption; cybersecurity;

cryptography; DGHV; FPGA; Xilinx Vivado tool; Genesys Kintex

I. INTRODUCTION

 Cybersecurity is a fundamental attribute of the modern
world, which protects systems, networks, and data from cyber
threats. This field possesses diverse strategies, including
encryption, authentication, and network security mechanisms
to achieve assured secrecy, integrity, and availability of
information [1]. Cryptography is the most basic foundation in
cybersecurity, which conveys plaintext into unrecognizable
ciphertext through mathematical transformation. Cryptography
secures information from being accessed by unauthorized
individuals. All cryptographic methods developed so far remain
performance improvements for security, such as symmetric and
asymmetric encryption techniques [2].

Advanced Encryption Standard (AES) and Data Encryption
Standard (DES) are among the most popular symmetric key
algorithms. Performance evaluations of these algorithms show
brilliantly that AES outperforms the two in speed and security
and is widely regarded as the contemporary solution for

encryption [3]. Rivest Shamir Adleman (RSA) algorithms are
asymmetric, and prime factorization is done to achieve
acceptability; however, the cryptography process is extensive
due to its nature. Unlike symmetric ones, which use a single
key, RSA employs a pair of public and private keys for
encryption and decryption. RSA provides security features such
as secure communication or digital signatures; however, it does
not perform well because of its computational complexity.
Notwithstanding the praises for such cryptographic techniques,
several challenges are looming. RSA becomes less efficient
when large prime numbers are used for encryption and
decryption. As for Fully Homomorphic Encryption (FHE), the
computational overheads are too high, denying even further
acceptance into mainstream applications. Hence, these
challenges must be addressed for enhanced HE (Homomorphic
encryption) or cryptographic solutions for real-life applications
[4]. Variations have thus been suggested to improve the
efficiency of RSA without losing its security features [5]. HE is
a remarkable advance in cryptographic techniques that
facilitates computations on encrypted data without decrypting
it. FHE would allow secure data processing in cloud
environments without compromising privacy during
computation. Since the theoretical foundations and practical
implementations of HE have received a great deal of attention,
possible applications include secure multiparty computations
and encrypted search queries [6].

A. Prospects of Hardware Implementation

Data security, while developing with different
cryptographic algorithms, is always a main concern for
researchers. These cryptographic algorithms can be attacked in
various ways and leave the data in a vulnerable state. Side-
channel attacks can be used against AES and DES to break
them. On the other hand, their implementations lean on the
information leakage from hardware implementations against
which protection measures may be adopted. RSA security relies
on the principle that factoring is a hard problem, but progress
in quantum computing could weaken such security claims.
Another issue is that, while Fully HE is theoretically proven
secure, it is computationally expensive and is thus prone to
resource-exhaustion attacks [7]. To some extent, more recently,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

404 | P a g e

www.ijacsa.thesai.org

importance was placed on the hardware realization of the
cryptographic algorithm. Cryptographic solutions implemented
in hardware improve performance, security, and energy
efficiency over software-based ones. Field Programmable Gate
Arrays (FPGAs) provide a suitable platform for cryptographic
implementations because of flexibility, parallelism, and
embedded security features. FPGAs have indeed been used for
the acceleration of cryptographic computations, as the
software-based encryption methods are more vulnerable to
attacks [8].

Hardware security is important for minimizing many
vulnerabilities originating from software-based cryptography
implementations. Hardware secure design principles, like
resistance against side-channel attacks or using a secure key
store, are important to improve the credibility of cryptography.
Fastening hardware security features to cryptographic
installations ensures that such installations are resilient against
both logical and physical attacks, thereby complementing the
security in digital systems [9]. However, the growing evolution
of FPGA architectures makes hardware implementations of
cryptographic structures much more realizable. Modern
architectures of FPGAs integrate features like Physically
Unclonable Functions and hardware root-of-trust mechanisms,
which essentially improve the resilience of cryptographic
systems against various attacks. In advance, it has opened up
high-performance-low-energy-strength cryptographic systems
based on real applications [10].

The FHE scheme constructed in hardware poses challenges
related to its computational complexity as well as constraints
faced in terms of resources. The designs of HE architecture and
their optimization have been considered in previous studies,
which explore further contributions of hardware-based
acceleration in boosting performance and efficiency [11]. The
particular study presents an implementation for a scheme,
called the Dijk Gentry Halevi Vaikutanathan (DGHV)
algorithm, on hardware acceleration. The DGHV scheme is the
FHE scheme based on integer arithmetic and is entirely
attributed to its authors. The proposed implementation makes
use of FPGA-based acceleration to optimize the
implementation of the DGHV scheme from the viewpoint of its
computational overheads while improving practical
applicability by using a shorter secret key. State-of-the-art
results in FPGA-based cryptography implementations indeed
revolve around the possibility of FHE algorithm acceleration
via dedicated hardware. Furthermore, the use of FPGA clusters
for the calculations of HE boosts efficiency, making FHE a
choice to penetrate applications while preserving user privacy
[12].

This study is arranged as follows: Section II discuss about
the homomorphic encryption; Section III elaborates on FPGAs
from an encryption standpoint; Section IV discuss about the
Literature work; Section V describes the proposed approach;
Section VI shows the implementation results; Section VII
compares software and hardware performances; and Section
VIII gives the conclusions and future work.

II. HOMOMORPHIC ENCRYPTION

HE is one of the advanced forms of cryptography that
enables the computation of data in an encrypted form without

ever decrypting it. This property gives HE a unique utility in
real-time applications, where data privacy and security are
crucial, such as in cloud computing, privacy-concerned
machine learning, and secure multi-party computations.
Another important theory states that traditional cryptographic
encryption and security schemes always require data to be
decrypted before processing. However, with HE, the actual
processing is done on encrypted data, keeping the sensitive
information technically safe and sound through all
computations, as shown in Fig. 1 [13].

Fig. 1. Block diagram of Homomorphic encryption.

HE is categorized according to the operation types
performed on encrypted data. So, the three major categories of
HE are Somewhat Homomorphic Encryption (SHE), Partially
Homomorphic Encryption (PHE), and Fully Homomorphic
Encryption (FHE). Different types give different functionalities
and complexities, and are, therefore, used for different
applications, which are discussed below:

A. Somewhat Homomorphic Encryption (SHE)

Somewhat HE is an encryption scheme that permits a
limited number of operations of any type on encrypted data.
SHW allows only a few numbers of additions or multiplications
before the ciphertext gets too noisy to decipher. The real
drawback of SHE comes about from the accumulation of noise
in the encrypted data, which eventually makes decryption
impossible without specialized refreshing operations such as
bootstrapping. However, SHE has important applications even
if it does not permit many homomorphic operations; these are a
few but sufficient cases, like the simple aggregation of data or
secure voting mechanisms. SHE usually proves to be a better
option than FHE, considering the lower computational
overhead as far as speed and efficiency are concerned [14].

B. Partially Homomorphic Encryption (PHE)

Partially HE allows free operation of either addition or
multiplication. However, both cannot be realized at the same
time. Well-known examples of PHE include the RSA
cryptosystem, which provides an example of a multiplicatively
homomorphic cryptosystem, and the Paillier cryptosystem,
which is a purely additive homomorphic scheme. It is applied
in many areas, such as secure electronic voting and
watermarking, wherein either additive or multiplicative
homomorphic properties provide enough homomorphism for
the application to find a solution. It is much faster and more
practical with a wide range of applications [15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

405 | P a g e

www.ijacsa.thesai.org

C. Fully Homomorphic Encryption (FHE)

FHE is an improved version of SHE and PHE that allows
any number of additions or multiplications of encrypted
information. Therefore, arbitrary functions can be computed on
encrypted data without decrypting it. This concept was
developed for FHE by Craig Gentry in 2009, and since then,
many advancements aimed at improving its efficiency and
practicality have followed [16]. The scope is immense for FHE
as it has wide applications in privacy concerning cloud
computing, secure machine learning, and database queries. The
major drawback of FHE is its immense computational expense
since any execution of fully homomorphic operations on
encrypted data needs lots of processing power and memory.
Over the years, several optimizations have been proposed to
render FHE amenable to real-world applications, such as
batching techniques and improvements to bootstrapping.

III. FPGA – A HARDWARE APPROACH

The proper hardware implementation of HE is
indispensable because the operations involving HE are very
computationally intensive. Conventional software installations
fail to meet the high processing requirements of HE, even to the
extent that researchers then explore possible hardware-
accelerating techniques. One of the best options for this
approach is integrating FPGAs with cryptographic algorithms,
thereby optimizing performance.

A. Integration of FPGA and Cryptographic Algorithms

FPGAs present a reconfigurable and parallel-processing
platform, suitable for the acceleration of cryptographic
computations. Unlike general-purpose CPUs that execute
instructions sequentially, FPGAs can perform multiple
encryption and decryption operations in parallel, thus
drastically increasing speed. In implementing HE schemes on
the FPGA platform, researchers can greatly improve
performance, energy efficiency, and flexibility [17].

B. Why Use an FPGA?

The reasons have been that FPGAs are superior to any other
hardware accelerators, such as graphics processing units
(GPUs) and application-specific integrated circuits (ASICs).
Some of these include: Parallel Processing Capabilities: FPGAs
allow the possibility to execute cryptographic functions in
parallel and are, therefore, highly useful for those
computationally intensive processes. Energy Efficiency:
Concerning the power needed even to achieve high throughput,
FPGAs perform better than GPUs, thus making them the best
choice for energy-critical applications. Convenience and
Flexibility: Unlike ASICs, which are fixed-function chips,
FPGAs can be reprogrammed to accommodate different
encryption schemes and optimizations as required by the
changing security requirements. Security Enhancements:
FPGAs provide hardware-level security features that mitigate
threats such as side-channel attacks to ensure secure
cryptographic implementations [18].

C. Implementation of HE Using FPGA

The HE schemes on FPGA aim to multiply the encryption,
decryption, and bootstrapping processes into an FPGA. The
most significant challenge here is to perform those arithmetic

operations in modular arithmetic without letting the overhead
for computations increase. Large ciphertexts and complicated
arithmetic operations that characterize DGHV require special
optimizations to address performance issues.

The following several avenues have been researched for the
FPGA-based implementation of the HE schemes:

Optimized Modular Arithmetic Units: The design of
efficient modular addition, multiplication, and division units to
efficiently compute large integers.

Pipeline Architectures: FPGA-pipelined design allows
parallel processing of encryption operations, thus increasing
throughput immediately.

Noise Management Mechanisms: Techniques such as
ciphertext compression and optimization of bootstrapping help
control the noise growth and facilitate accurate decryption.

The studies showed that the FPGA implementations for HE
can generate enormous speed-ups compared to software
implementations that promote their applications in privacy-
preserving cloud computing, secure data analytics, and
encrypted Artificial Intelligence (AI) processing [19].

IV. LITERATURE REVIEW

This section contains the literature survey of HE and its
evaluation. Various HE schemes have different improvements
over time and have also been shown above. Along with this, the
integration of HE and hardware using FPGA is also studied and
explained. The complete study is presented as follows:

FHE was introduced by Gentry et al. (2009) in their study
[15], which would expand its bounds in terms of encrypted
computations without decryption. One main issue arises when
the decryption depth of the circuit extends the evaluation
capacity, just explains why it is almost bootstrappable. The
author gave an insight into bootstrapping, structured in part for
the decryption process, reconciling circuit depths, therefore,
making the scheme entirely bootstrappable. The security
parameter was refined by balancing γ against (n), ensuring that
breaking the encryption required exponential time complexity.
An implementation of optimizations was carried out to allow
for reducing the secret key size and facilitate direct processing
of the ciphertext bits.

Dijk et al. (2010) proposed an FHE scheme in their study
[20] based on slightly different foundations from Gentry's
lattice-based approach. The problem was one of creating a HE
scheme that allowed bootstrapping solely with additions and
integer multiplications. The author introduced the so-called
approximate GCD problem to estimate an unknown integer
from the near-multiples.

Brakerski et al. (2014) proposed an FHE scheme in their
study [21], which requires the ideal-lattice assumption for
transactions. The critical boundary was thus that of decryption
complexity concerning security. The author thus applied some
re-linearization and gave a way for SHE to exist without
dependencies on a ring-based hardness assumption. The
dimension-modulus reduction technique allows compression of
the ciphertext and improves decryption. From there, one can
now design an LWE-based single-server Private Information

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

406 | P a g e

www.ijacsa.thesai.org

Retrieval (PIR) protocol with reduced communication
overhead. They also gained significantly improved ciphertext
efficiency under worst-case lattice hardness.

Yu et al. (2014) analyzed quantum HE and discussed its
limitations in their research study [22] when it came to
obtaining perfect security. The problem was to achieve perfect
security in a deterministic HE that was fully homomorphic and
which incurred an exponential cost. The author used an
information localization argument to show that the universal
quantum computation could not be done deterministically
without this cost.

The work [23] of Abozaid et al. (2015) is towards
embedding FHE into embedded systems, so that power and
performance requirements, amidst all forms of attacks, can be
circumvented. The author has proposed hardware and software
co-designed with certain multiplication units for increased
efficiency compared to the former, while still maintaining
software flexibility. FPGA implementation demonstrated that
large multiplications can be handled quite well within the given
power limits.

In [24], Karabat et al. (2015) developed the THRIVE
biometric system, partly because of the authentication security
issue. Biometrics or standard biometric systems generally
safeguard the very crucial user's data. The author proposed this
threshold HE biometric system in which the user and verifier
jointly provided the secure key.

Sun et al (2016) developed the leveled FHE scheme. For the
Ring Learning with Error (RLWE) based FHE scheme to
further enhance efficiency-based encryptions. In their study
[25], the main net has to have very strong security guarantees
along with practical computational efficiency. An approximate
eigenvector was proposed by the author for use with a single
public key, which was then extended to a multi-key setting.

Further in 2016 Fun et al. highlighted the security
challenges in their study [26] that comes with outsourcing big
data storage as well as computation to third-party cloud service
providers, since the traditional approaches to security seem to
have failed, probably due to the sheer amount of data to be
modified and its diversity. Several schemes have been explored
in this study for FHE, with performance ratings based on
encryption-based technology.

Roy and Associates in the year 2017 introduced a recryptor
box model in their study [27], which improves the depth of
homomorphic evaluation and efficiency. The only limitation
with SHE schemes is that they do not allow more than a limited
action because at some point this starts to seriously accumulate
noise. The inclusive author introduced a refreshment for
ciphertext with its use to reduce the noise while avoiding very
large-sized parameters.

Cousins et al. (2017) in their study [28] explain that they
developed an FPGA-based HE Processing Unit (HEPU) that
would accelerate encrypted computation. The main
neuromuscular perturbation caused by the lack of
computational efficiency was finally addressed by the primitive
encryption of the lattice. Chinese Remainder Theorem (CRT)
and inverse CRT were optimized in key mathematical
operations. Implementation of FPGA using Xilinx Virtex-7

demonstrated the mitigation of computational bottlenecks in
performing ring arithmetic operations.

The author of the study [29] Ding et al., in the year 2018
developed an attribute-based encryption scheme with
ciphertexts. This addressed the privacy issues in a cloud
environment. Enabling computations on the encrypted data
with confidentiality maintained therein was the challenge set.
They were working on the integration of the HE with attribute-
based encryption so that one could perform fine-grained access
control without having to repeatedly update keys.

In study [30] given by Catalano et al. in the year 2018
introduced homomorphic message authenticators (HMA)
authentication methods for message verification in computing
over encrypted data. In this case, the main difficulty consists of
establishing the integrity of authenticated data without
revealing underlying information. The author presented two
types of HMA: the first one supports arbitrary composition,
while the second uses short authentication tags.

Jiang et al. (2019) introduced [31] a secure comparison
protocol for cloud environments using HE. The primary
challenge was enabling encrypted magnitude comparisons
without exposing plaintext values. The author proposed
incomplete re-encryption, which preserved ordering while
transforming ciphertexts.

In federated deep learning-based work [32], Liu et al.
(2020) set about optimizing privacy on the grounds of security
and accuracy. The challenge was that existing privacy-
preserving techniques either caused a drop in model accuracy
or needed excessive computational resources. The author
introduced an adaptive privacy-preserving framework using
layer-wise relevance propagation to optimize the trade-off
concerning privacy.

Farokhi et al. (2020) proposed a scheme for privacy in
encrypted transport services, trying to run encrypted queries on
ride-sharing without exposing user data. The authors in their
research [33] applied Paillier encryption, which supports some
algebraic operations on ciphertext while remaining efficient. In
this way, their users could submit queries without revealing
their locations or routes.

A lightweight HE scheme was designed by Moghadam et
al. (2021) to support cloud storage applications in their article
[34]. This includes high computational and storage costs that
make traditional encryption techniques impractical. The author
proposed the secret-splitting secure method, which efficiently
splits encrypted data.

There is also a systematic review [35] conducted by Mittal
et al. (2021) that discussed the research concerning FHE within
cloud computing. The challenge lies in understanding different
trade-offs that may exist between models of encryption and
their computational efficiency.

Delgado et al. (2022) designed a HE scheme in their study
[36] for the secure transmission of sensor data. The challenge
stemmed from the need to preserve confidentiality while
enabling real-time statistical analysis of encrypted data. The
author used the Paillier cryptosystem to allow for statistical
computations on the encrypted data without decrypting it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

407 | P a g e

www.ijacsa.thesai.org

Wang et al. in the year 2022 proposed an integrated HE with
identity-based signatures to secure Industrial Internet of Things
(IIoT) transactions in their research work [37]. The challenge
was protecting private trading data in blockchain-based energy
markets. The author employed Paillier encryption for
transaction confidentiality while using identity-based
signatures for authentication.

Xu and colleagues (2023) proposed an NTRU-type in a
research article [38]. Threshold HE schemes for securing
multiparty computations. Their challenge lies in avoiding
cumbersome extensions of ciphertexts during multi-key HE.
Within their development of a new encryption model into a
model that achieved improvements in computational efficiency
without linearization, the authors introduced wide key
distribution to withstand attacks from the subfield lattice and
secured it under the RLWE assumption.

Pan et al. brought forward in the year 2023 their study [39],
a cover for security holes that existed in the networked control
systems by an FHE-encrypted controller. The main challenge
was to maintain the real-time behavior while preventing the
exposure of controller parameters to eavesdropping.

In the year 2024, the study [40] written by Ali and
colleagues (2024) devised a dual-layer encryption method that
combines HE with secret-sharing techniques. Securing cloud-
based data storage while allowing computations on encrypted
data poses a challenge. The author suggested distributing

encrypted data among several servers to ensure no single point
of failure. Performance evaluations have shown an optimal
trade-off between security and computational efficiency.

A privacy-preserving network-slicing framework in the
study [41] for secure communication was introduced by Wang
et al. (2024). The challenge was protecting sensitive data within
the network slicing while assuring efficiency in transmission.
The author merged attribute-based encryption (ABE) with HE
to maximize security at minimal computational cost.

Pingping et al. (2024) presented in their work [42] that gene
information linkage and its accuracy binding on cloud
computing are a real hustle; thus, it evolved as a privacy hazard
and sluggish payback while processing gene material. To
mitigate this circumstance or likeness, the author laid out a HE-
based match secret protocol, which allows for the comparison
of genetic sequence data without the data being decrypted.
Compare gene sequence data with location.

In study [43] given by the author Ferrara et al. in the year
2025, explored Torus FHE and its use in secure computing. The
author optimized bootstrapping to increase efficiencies in
computing with ciphertext. Their study verified TFHE
implementations for Boolean and arithmetic circuit evaluation.
Their findings witness FHE for privacy-preserving computing.

Table I shows the chronological study of literature which
highlights the different techniques and their results over time.

TABLE I. LITERATURE SURVEY COMPARATIVE ANALYSIS

Ref. No./Year Technique Summary and Result

[15]/2009 FHE
Proposed FHE with bootstrapping to balance security parameters. Optimized key size but faced

practical challenges, leading to improved FHE efficiency.

[20]/2010 Approximate GCD-based FHE
Developed integer multiplication-based FHE without lattice dependence. Achieved bootstrapping

but remained inefficient.

[21]/2014 LWE-based FHE
Introduced re-linearization and dimension-modulus reduction, improving ciphertext efficiency and
enabling the PIR protocol.

[22]/2014 Homomorphic Encryption
Explored QHE limitations, confirming trade-offs between security and efficiency due to high

computation costs.

[23]/2015 Hardware-accelerated FHE
Designed FPGA-based FHE optimizations with low-power multipliers, reducing computational
overhead.

[24]/2015 Threshold HE for Biometrics
Developed an encrypted biometric authentication system, ensuring secure authentication with

minimal verification time.

[25]/2016 RLWE-based Leveled FHE
Proposed an eigenvector-based multi-key FHE integrated with IBE, enhancing security and
efficiency.

[26]/2016 Hybrid HE
Addressed big data encryption constraints, proposing hybrid models for improved speed, storage,

and bandwidth.

[27]/2017 Recryptor Box Model for SHE
Enhanced SHE by reducing noise with ciphertext refresh methods, achieving a 20 times speed-up
in FPGA tests.

[28]/2017 FPGA-based HEPU
Proposed FPGA-based unit for accelerating encrypted computations, optimizing CRT & inverse

CRT.

[29]/2018 Attribute-Based HE Enabled fine-grained access control in cloud storage, ensuring immunity to collusion attacks.

[30]/2018
Homomorphic Message

Authentication
Proposed authentication methods ensure data integrity without revealing information.

[31]/2019 Secure Comparison Protocol Developed encrypted magnitude comparison, ensuring confidentiality in cloud computations.

[32]/2020
Federated Learning with Adaptive

Privacy

Introduced privacy-preserving encryption for deep learning, balancing security and model

accuracy.

[33]/2020 HE for Transport Services Applied Paillier encryption for secure ride-sharing queries, preserving user privacy.

[34]/2021 Secret-Splitting Secure Method
Designed lightweight encryption for cloud storage, improving storage efficiency and processing

speed.

[35]/2021 Systematic Review of FHE Analyzed FHE scalability and efficiency, identifying computational overhead challenges.

[36]/2022 HE for Sensor Data Used Paillier encryption for encrypted sensor data analysis, enabling real-time anomaly detection.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

408 | P a g e

www.ijacsa.thesai.org

[37]/2022 HE for IIoT Integrated FHE with identity-based signatures for blockchain transactions, improving efficiency.

[38]/2023 NTRU-Type Threshold HE Optimized multiparty encryption without linearization, securing against subfield lattice attacks.

[39]/2023 FHE Encrypted Controller Integrated FHE in control systems, maintaining real-time performance and security.

[40]/2024 Dual-Layer HE Combined FHE with secret sharing for cloud security, balancing computational efficiency.

[41]/2024 Privacy-Preserving Network Slicing Merged ABE with FHE, enhancing security and efficiency in network slicing.

[42]/2024 HE for Gene Matching Enabled secure genomic data processing, reducing encryption time and improving accuracy.

[43]/2025 Torus FHE Optimization
Optimized TFHE bootstrapping for efficient computation with ciphertext, verifying

implementations for Boolean and arithmetic circuits.

HE provides privacy and security since computations are
done on encrypted data, so one does not have to decrypt it. If
key sizes increase, then computational complexity increases
with reduced speed. Focus is on the enhancement of HE
techniques through efficient hardware implementations on
FPGAs for fast, low-power, and secure processing. About this,
the main objective is to bridge the gap between real-time
performance and security in privacy-preserving systems. This
research's primary goal is to examine and evaluate the current
homomorphic encryption algorithms and their hardware
implementations, create and construct an improved version on
an FPGA, and validate the results through in-depth analysis.

V. PROPOSED METHODOLOGY

The DGHV algorithm is implemented using a shorter secret
key with reduced computational complexity. The Enhanced
DGHV is implemented over the Genesys 2 Kintex 7 board to
show the performance analysis. The proposed methodology is
shown in Fig. 2.

Fig. 2. Proposed methodology.

The research shows the detailed study for the
implementation which is given as follows:

A. Enhanced DGHV Algorithm

Dijk Gentry, Halevi Vaikutanathan (DGHV) introduced the
first FHE scheme, based on integers using only modular
arithmetic. The researchers proposed a symmetric HE scheme
for limited circuit depth. To design the asymmetric FHE
scheme, the bootstrapping technique can be applied, which also
helps to increase the circuit depth for the symmetric DGHV
scheme. DGHV used Regev’s scheme, the first encryption
scheme, and used the same formula, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚, 𝑝) = 𝑚 +
2𝑟 + 𝑝𝑞 but integers are used instead of an integral fraction of

the domain size. The DGHV scheme can also be understood as
a conceptually simpler version of Gentry’s FHE scheme, based
on integers instead of lattices, while focusing on providing
conceptual simplicity by performing all operations using
integers instead of ideal lattices and reducing the computational
complexity. To improve the DGHV FHE scheme and create a
more efficient version of the DGHV scheme, the proposed
algorithm uses a shorter key size 𝑝 which decreases the overall
computation complexity. In addition, hardware and software
integration enhances the scheme's security and efficiency
because if the key size is larger, then the ciphertext also
becomes larger, and it will take more computation time. To
resolve this issue, a shorter key size is used.

Different parameters are used to make the scheme fully
homomorphic. The scheme is based on a set of three public
integers 𝑝, 𝑞, 𝑟, where 𝑝,𝑞 these are two random prime numbers
because if we multiply two prime numbers, it becomes difficult
to break the algorithm and 𝑟 is a random error which is required
to be added to the plaintext to generate the integral ciphertext,
improving the security of the scheme. It is an important security
key factor that helps to mask data and keep it safe from
attackers. The generated ciphertext would be a list of integers,
each representing an encrypted plaintext bit. These bits can be
decrypted and recombined to retrieve the original plaintext
message. If no error is added, then a pattern generated while
performing encryption of plaintext bits may provide a clue to
an adversary, and a secret key can easily be guessed. The
scheme's security is based on the hardness of solving the
Approximate Greatest Common Divisor Problem (AGCD).
Here, the homomorphic operations (addition and
multiplication) can be accomplished by homomorphic addition
(XOR of bits) and multiplication (AND of bits) over the
ciphertext. The size of λ directly affects the scheme’s security.
The larger the value of λ the more secure the scheme will be.
The randomness in noise 𝑟 ensures semantic security and
prevents the scheme from ciphertext analysis attacks. Noise
obfuscates the secret key, making the recovery more difficult.
The DGHV uses the parameter, λ a security parameter for
generating keys. It helps to specify the security of the key. The
algorithm is as follows:

1) Key Generation (𝐾𝑒𝑦𝐺𝑒𝑛). Generate a λ2- bit, random

odd integer, p , as a secret key. Select another two random

numbers q and r, where r must be small such that r <
p

2
 and

of λ- bits and q must be chosen randomly in the specified range

[−
p

2
,

p

2
] and of λ5 bits.

2) Encryption (𝐸𝑛𝑐𝑟𝑦𝑝𝑡) . Encrypt each bit of plaintext

𝑚 ∈ {0, 1}. The algorithm encrypts the message m to obtain

the ciphertext, 𝑐. in the following way.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

409 | P a g e

www.ijacsa.thesai.org

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝, 𝑞, 𝑚) = 𝑚 + 2 ∗ 𝑟 + 𝑝 ∗ 𝑞 (1)

Encrypted ciphertext, 𝑐 must be an integer whose residue
mod 𝑝 has the same parity as the plaintext.

3) Decryption (𝐷𝑒𝑐𝑟𝑦𝑝𝑡): The formula for decryption is

as follows:

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑝, 𝑐): 𝑚′ ← (𝑐 𝑚𝑜𝑑 𝑝)𝑚𝑜𝑑 2 (2)

The DGHV scheme is somewhat homomorphic, and it can
perform computations up to a limited depth. So, the author
introduced a new bootstrapping technique to obtain the FHE
scheme and introduced an asymmetric fully homomorphic
version of the DGHV scheme.This algorithm limitation is that,
because of the multiplication property, the ciphertext's size will
likewise increase if the plaintext or security parameters are
increased. Then, because of hardware constraints, it became a
limitation for hardware implementations, and the complexity of
operations also increases. When all of these factors are
combined, the algorithm may fail.

B. Software Implementation

The Enhanced DGHV algorithm software implementation
was translated into hardware description using Verilog. The
next step involves the selection of a specific FPGA board to
satisfy the requirements of computation and resources of the
design. Upon selection, synthesis of Register Transfer Level
(RTL) code is achieved from the high-level hardware
description into a gate-level representation for execution in an
FPGA. Following this is the algorithmic execution testing in the
simulation environment to ensure correctness before actual
deployment. Performance metrics such as utilization of
resources and power consumption estimates are analyzed to
achieve optimal efficiency before the hardware stage.

C. Hardware Implementation

After verification of the software implementation, the
design is taken to the stage of board integration, which entails
uploading constraint files and mapping I/O pins to specify how
signals will interact with the physical FPGA. The bitstream file
is generated, which takes the synthesized design into a format
that would be understood by the FPGA hardware. This
bitstream is then used for FPGA configuration before running
it on the hardware board. During the observation of real-time
resource utilization and power consumption, the RTL
schematic is also observed as a visualization to evaluate
whether the implemented design is correct or not. Finally, this
whole process ends with the execution results being followed
up with the performance analysis, thereby validating that the
FPGA implementation is adequate in terms of function and
efficiency.

1) System specification. The Dell EMC PowerEdge R640

is powered by an Intel Xeon 6246R 3.4GHz 16-core processor

that improves the performance and speed of the system. The

rest of the specifications of the systems are mentioned in Table

II.

2) Vivado specification. The Xilinx simulation tool Vivado

2019.1 (64-bit) is used to implement the HE on the hardware

board. The Xilinx Vivado Design Suite 2019.1 has made itself

a complete FPGA and System on Chip (SoC) development

environment with a strong complement of tools that facilitate

the designing, synthesizing, implementation, and debugging of

complex digital systems. Other specifications are given in

Table III.

3) FPGA Board specification. For the hardware

implementation, the Genesys 2 Kintex 7 FPGA board

(XC7K325T-2FFG900C) is used. Genesys 2 is an FPGA

development kit that lends its high-performance nature mainly

to data and video applications shown in Table IV. The board

features a rather rich set of peripheral resources alongside

potent data-processing capabilities, making it a splendid choice

for many applications.

TABLE II. SYSTEM SPECIFICATION

Feature Category Details

Processor Intel Xeon Gold 6246R

Number of Cores 16

Number of Threads 32

Cache 35.75MB

Base Clock Speed 3.4GHz

Enhanced SpeedStep

Technology
Balances performance with power environments

Thermal Management
Yes, with temperature & thermal monitoring for

protection

Memory Capacity 16GB

Storage Configuration 3.6TB

TABLE III. VIVADO TOOL SPECIFICATION

Feature

Category
Description

Version Used
Vivado 2019.1 (64-bit) for homomorphic encryption

implementation

FPGA & SoC

Development

Provides a complete environment for designing,
synthesizing, implementing, and debugging complex

digital systems

Supported FPGA
Devices

Kintex-7, Virtex-7, Zynq-7000, UltraScale+ series

High-Level

Synthesis (HLS)

Converts C, C++, and SystemC-based code into

hardware description language (HDL)

Simulation &
Debugging

Vivado Logic Analyzer & Hardware Debugger
provide hardware-level debugging and simulation

Floor Planning &

Optimization

Tools for floor planning, power analysis, and timing

optimization to maximize resource efficiency

TABLE IV. FPGA BOARD SPECIFICATION

Feature Category Details

FPGA Chip Xilinx Kintex-7™ (XC7K325T-2FFG900C)

Logic Resources
50,950 logic slices, each with four 6-input LUTs

& 8 flip-flops

Memory
1 GB DDR3 RAM (1800 MT/s, 32-bit data
width)

Block RAM 16 Mbit fast block RAM

Clocking
Internal clock speeds exceeding 450 MHz, 10

clock management tiles with PLLs

DSP Processing
840 DSP slices for high-performance signal
processing

Analog-to-Digital

Conversion
On-chip XADC (Analog-to-Digital Converter)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

410 | P a g e

www.ijacsa.thesai.org

VI. IMPLEMENTATION RESULTS

In this section, a description of the results of the
implementation and analysis of software and hardware
deployment of the DGHV HE schemes onto a Genesys 2 Kintex
7 FPGA board. Evaluation will include and put into perspective
performance and resource utilization, compared through
FPGA-based execution against software and hardware
implementations. In terms of parameters such as power
consumption, hardware utilization, and temperature, the
analysis assesses the viability of FPGA acceleration for DGHV.
Understandable trade-offs between hardware and software
implementations will open up the findings for optimization,
enhancing practicality in real-world applications of
homomorphic technology.

A. Software Simulation Analysis

After the implementation of DGHV homomorphic
encryption using the Xilinx Vivado 2019.1 suite, an analysis of
the resource utilization on the Genesys 2 Kintex-7 was
performed, and the results are as follows:

The important metrics are Look Up Tables (LUTs). They
are the basic logic blocks inside an FPGA that implement
combinational circuits, whereas I/O utilization measures the
number of I/O pins that are in use for external communication
which as shown in Fig. 3. From the results, it consumed 4 LUTs
out of 203,800, which is extremely low in logic resources
consumed, thereby the design is lightweight and does not
impose significant computational overhead on the FPGA. The
I/O utilization of 16 out of 500 (3.2%) is fairly high.

Fig. 3. Hardware utilization readings during software simulation.

The output graph in Fig. 4 has three parts; in the first column,

which is the title (Name), the port names are listed; the second

column (Value) shows the input values, while the third column

holds the output results in hexadecimal format; the inputs are

called m1 and m2. In this graph of this block, the plaintext

values in the state values 𝑚1 = 0 and 𝑚2 = 1. This law of

encryption provides different cryptographic keys p, 𝑞, 𝑟1, 𝑟2

upon which homomorphic encryption computations are

performed. The module input operates on plain-text values

represented by 𝑚1, 𝑚2, in this case, 0 and 1, respectively.

These inputs have been used with encryption keys 𝑝, 𝑞, 𝑟1, 𝑟2

for HE computation. The resulting outputs from the encryption

module are presented here as hexadecimal values: 𝑐1, 𝑐2. The

encryption process results are: 𝑐1 = 9 and 𝑐2 = 𝐴.
The total power consumption report on power in Fig. 5

shows a total on-chip power of 3.12W (Watts): dynamic power
accounts for 2.943W (94%) while device static power is given
at 0.177W (6%). This means that most of the power will be
consumed by active switching operations within FPGAs, as
only a small portion is used to keep the device in an idle state.

Power distribution states that I/O operations account for
2.857W (97%), meaning that a big portion of power is utilized
for external data communications. Signals consume 0.066W
(2%) while logic elements require just 0.020W, thus indicating
that the computational load within the FPGA is minimal. The
junction temperature is located at 30.5°C, which is a safe
operational limit.

Fig. 4. Output in software simulation.

Fig. 5. Simulation power readings.

1) Secret key vs power consumption analysis. The changes

showed an overall power consumption across the Genesys 2

Kintex-7 FPGA as employed among secret key values of

homomorphic encryption in Table V. While the consumption

power varies between each secret selected key, it shows a very

slight difference and therefore stands to say something

including that the more the complexity of the key, the greater

the inefficiency in power use. For secret keys of sizes 5 and 13,

the consumed power is 6.739 W and 6.836 W, respectively.

With the increasing size of keys, variations in power are seen,

the highest being recorded at 6.980W (key 47) and the lowest

at 6.687W (key 181). The variations can be interpreted to point

out that some key values yielded power savings while others

incurred slightly higher computation overhead on the FPGA,

and the graph in Fig. 6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

411 | P a g e

www.ijacsa.thesai.org

TABLE V. SECRET KEY VS. POWER CONSUMPTION COMPARISON

Secret Key Size Power Consumption

5 6.739

13 6.836

29 6.718

47 6.980

83 6.818

101 6.904

149 6.873

181 6.687

199 6.919

211 6.818

Fig. 6. Secret key vs. power consumption comparison graph during software

simulation.

B. Hardware Analysis

The hardware analysis is the actual consumption of
resources that occurs on the Genesys 2 Kintex-7 FPGA board
after the successful implementation and burning of the DGHV
HE algorithm onto the device.

The total on-chip power consumed in Fig. 7 is 9.105 watts,
with dynamic power being 8.872 watts (97%), and therefore,
the high active power consumption. The device's static power
for the FPGA was 0.232 watts (3%), acting as the FPGA's
baseline power consumption. I/O dominates the power at 8.677
watts (97%), and it seems data transfer happens quite frequently
when processing ciphertext and sending encryption keys. Only
a minimal amount of power, <1%, was consumed through logic,
thanks to an efficiently deployed resource. The die junction
temperature was measured at 41.2 degrees Celsius, thus leaving
a thermal margin of 43.8 degrees Celsius, which should make
operations smooth. In conclusion, the entire encryption process
is power-consuming, but should safely remain below the
thermal threshold.

RTL layout was identified to map the hardware structure of
the DGHV homomorphic encryption on the Genesys 2 FPGA,
depicting how input signals are processed in Fig. 8.

Inputs "𝑚1[3: 0]" 𝑎𝑛𝑑 "𝑚2[3: 0]" are passed through input
buffers and processed within the LUTs-Unit that applies the

encryption transformations. The encrypted outputs
"𝑐1[3: 0]" 𝑎𝑛𝑑 "𝑐2[3: 0]" are then passed through output
buffers to external interfaces. This well-designed approach
caters to minimum resource utilization while securely
maintaining an encrypted data primitive through the processing
stream.

Upon confirming the generation of the bitstream, the
success of which implies the FPGA design as a correctly
synthesized, implemented unit, ready to be programmed onto
the Genesys 2 Kintex-7 FPGA shown in Fig. 9. The Hardware
Manager verifies and recognizes the FPGA device so that it can
be directly programmed.

It proposes various options in a pop-up dialog for viewing
data reports or generating memory configuration, while the
latter is meant to specify a bit sequence for programming into
the device. Having the bitstream is the final step of the build
process that needs to be completed before programming an
FPGA to implement the DGHV homomorphic encryption
algorithm into real hardware.

Fig. 7. Hardware power readings.

Fig. 8. Internal RTL layout.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

412 | P a g e

www.ijacsa.thesai.org

Fig. 9. Successfully bit stream generation.

The FPGA board is programmed as shown in Fig. 10. The
board is now up and running. The LEDs represent the binary
digits to be encrypted in the ciphertext; a further demonstration
of this test is seen following. While the glow LEDs signify a
"1" for the digit "1", an OFF LED points to "0" as the encrypted
information is displayed in real-time. This test indicates that the
FPGA has received the expected input values and computed the
expected encrypted operation to produce the output. The
correctness of the RTL implementation, when the program runs
correctly on hardware, is validated by ensuring that encrypted
data is processed securely within the FPGA environment.

Fig. 10. Code burned on the FPGA kit.

VII. SOFTWARE VERSUS HARDWARE ANALYSIS

This section compares various parameters for software and
hardware implementation of the DGHV HE algorithm with the
FPGA kit.

Table VI represents the total power consumption reading
between the FPGA board in software simulation and hardware
implementation. The total power consumed in software

simulation using Genesys 2 Kintex-7 FPGA amounts to 3.12W,
while when implemented in hardware, the power consumption
amounts to 9.105W on account of real-world execution
overhead.

The static power, which accounts for leakage and idle power
consumption, shows a comparatively lower value in both cases;
that is, 0.177W in software and 0.232W in hardware. Mainly
accounts for the increase of power in hardware due to dynamic
switching activity and actual FPGA resource usage during the
execution, and the graph is shown in Fig. 11.

TABLE VI. TOTAL POWER CONSUMPTION

Results Board

Static

Power (W)

(1)

Dynamic

Power (W)

(2)

Total

Power (W)

(1+2)

Software Genesys 2
Kintex 7

0.177 2.943 3.12

Hardware 0.232 8.872 9.105

Fig. 11. Comparison of the total power usage graph.

The dynamic power distribution of the Genesys 2 Kintex-7
FPGA in software simulation and hardware implementation is
specified in Table VII. The I/O power consumption in
simulation is 2.857W, while the consumption in hardware
increases in magnitude to 8.677W, signifying that real-world
transfer of data and communication exerts higher power
demands. On the other hand, logic essentially stays the same,
with powers of 0.02W in software and 0.019W in hardware,
thereby indicating an approximately similar logic resource
utilization in both software and hardware.

TABLE VII. DYNAMIC POWER CONSUMPTION

Results Board
Dynamic Power (W)

IO Power Logic Power Signal Power

Software Genesys 2
Kintex 7

2.857 0.02 0.066

Hardware 8.677 0.019 0.177

The power consumed due to signal switching across the
FPGA tracks is much higher in hardware than in software, from
0.066W in software to 0.177W, confirming increased switching
activity with real-time processing overheads. The results,
therefore, reveal that actual hardware implementations lead to
dynamic power dissipation on an entirely different scale,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

413 | P a g e

www.ijacsa.thesai.org

especially in I/O, whereas logic power remains fairly flat and
signal power progresses upwards moderately. These
implications greatly affirm the weight of power optimization
strategies as designs are transferred from the simulation to real
working FPGA systems, and the graph is shown in Fig. 12.

Fig. 12. Comparative analysis of dynamic power comparison.

The thermal performance analysis of the Genesys 2 Kintex-
7 FPGA is shown in Table VIII, encompassing software
simulation and hardware implementation. With software
simulations, the junction temperature is 30.5°C, which means
there is minimal heat generated since no actual hardware is
working. During hardware implementations, however, the
junction temperature reaches 41.2°C, indicating an increase in
power dissipation due to actual processing loads that contribute
to heat dissipation.

The thermal margin temperature difference between the
maximum operating temperature of the FPGA and the current
temperature is 54.5°C in the software and drops to 43.8°C in
the hardware. This suggests that the FPGA runs much closer to
its thermal limits in real-world execution, hence the necessity
for adequate cooling and thermal management. From these
observations, it is concluded that with hardware
implementations, more thermal stress is introduced than in
simulations; this calls for effective heat dissipation techniques
to guarantee stable FPGA performance, and the graph is shown
in Fig. 13. Several recent studies emphasize the need for secure
and energy-efficient computing. Bharany and Sharma [49]
explore blockchain and machine learning integration in IoT,
aligning with secure hardware design goals [50-51]. Talwar et
al. [50] and Badotra et al. [52] focus on fault tolerance and
network vulnerabilities, highlighting the relevance of resilient
architectures like FPGA-based encryption. Shamshad et al. [51]
and Kumar et al. [53] stress model efficiency and privacy,
supporting homomorphic encryption for secure data
processing.

A comparison table of FPGA-based homomorphic
encryption implementations is shown in Table IX. Different
FPGA platforms that were used for the implementation of
homomorphic encryption techniques are shown in the table.

TABLE VIII. TEMPERATURE ANALYSIS

Results Board
Junction

Temperature (°C)

Thermal

Margin (°C)

Software Genesys 2

Kintex 7

30.5 54.5

Hardware 41.2 43.8

Fig. 13. Comparison of temperature readings.

TABLE IX. COMPARATIVE ANALYSIS OF PROPOSED ALGORITHM WITH

EXISTING FPGA-BASED APPROACHES

Ref. No /

Year

Technique

Used
Board Used LUT FF DSP

[27]/ 2017
Fan-Vercauteren

SHE

Xilinx Virtex

6
3379 - 4

[44]/ 2019 Integer based
Nexys 4

DDR
5766 - 36

[45]/2021
Fast FHE over

Torus FHE

Zynq-7000

ARM

3637

3
- -

[46]/2022
Brakerski,Vaiku

ntanathan FHE

Intel Agilex

FPGA
720 - 3

[47]/2022 Torus FHE
Virtex
UltraScale+

VU13P

925

K

729

K

6240

K

[48]/2024
Cheon Kim Kim

Song HE

Intel Agilex

7

8791

2
- 960

Proposed

work

Integer-based

DGHV

Genesys 2

K7
4 - -

VIII. CONCLUSION

This research demonstrated that it is practicable to run the
homomorphic encryption algorithm on FPGA platforms for
facilitating privacy-preserving computations with enhanced
performance. The integration of the Enhanced DGHV
homomorphic encryption algorithm into the Genesys 2 Kintex-
7 FPGA illustrates the possibility of real-time encrypted
computation with reasonable on-chip resource requirements.
The simulation results show a total power consumption of
3.12W and a negligible utilization of the resource I/O: 3.2%
compared to the results of implementation, which shows a
much higher power consumption of 9.105W, and slightly less
resource utilization I/O: 3.2%. Finally, the junction temperature
from this thermal margin analysis rises from a software 30.5°C
to 41.2°C with hardware, and hence the importance of thermal
management is thrown to the fore in FPGA computations. The
study here discovers the possibilities in FPGA technology for
privacy-preserving applications and calls for more optimization
towards the significant reduction in power consumption with
optimized performance. In this quest, attention has to be put on
using sophisticated FPGA architectures, combined with
innovative energy efficiency methodologies, and this will
certainly enhance the computational effectiveness of huge-scale
encrypted operations. Future work will involve working on
other HE schemes and integrating them with hardware in a way
to improve performance, efficiency, and power consumption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

414 | P a g e

www.ijacsa.thesai.org

FUNDING

This project was funded by the Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah, Saudi
Arabia, under grant no. (GPIP: 1913- 830-2024).

ACKNOWLEDGMENT

The authors, acknowledge with thanks DSR for technical
and financial support.

REFERENCES

[1] K. Kim, “Cryptography: A new open access journal,” Cryptography, vol.
1, no. 1, pp. 1–4, 2017, doi: 10.3390/cryptography1010001.

[2] K. Cabaj, Z. Kotulski, B. Księżopolski, and W. Mazurczyk,
“Cybersecurity: trends, issues, and challenges,” Eurasip J. Inf. Secur., vol.
2018, no. 1, pp. 10–12, 2018, doi: 10.1186/s13635-018-0080-0.

[3] A. K. Mandal, C. Parakash, and A. Tiwari, “Performance evaluation of
cryptographic algorithms: Des and AES,” 2012 IEEE Students’ Conf.
Electr. Electron. Comput. Sci. Innov. Humanit. SCEECS 2012, pp. 1–5,
2012, doi: 10.1109/SCEECS.2012.6184991.

[4] S. M. Khatarkar Tech Scholar and R. Kamble Asst Professor, “A Survey
and Performance Analysis of Various RSA based Encryption Techniques,”
Int. J. Comput. Appl., vol. 114, no. 7, pp. 975–8887, 2015.

[5] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Comput. Surv., vol. 51, no. 4, 2018, doi: 10.1145/3214303.

[6] Martins, L. Sousa, and A. Mariano, “A survey on fully homomorphic
encryption: An engineering perspective,” ACM Comput. Surv., vol. 50,
no. 6, 2017, doi: 10.1145/3124441.

[7] Q.-Y. Zhang and Y.-G. Jia, “A Speech Fully Homomorphic Encryption
Scheme for DGHV Based on Multithreading in Cloud Storage,” Int. J.
Netw. Secur., vol. 24, no. 6, pp. 1042–1055, 2022, doi:
10.6633/IJNS.202211.

[8] S. M. Trimberger and J. J. Moore, “FPGA security: Motivations, features,
and applications,” Proc. IEEE, vol. 102, no. 8, pp. 1248–1265, 2014, doi:
10.1109/JPROC.2014.2331672.

[9] Y. Jin, “Introduction to hardware security,” Electron. , vol. 4, no. 4, pp.
763–784, 2015, doi: 10.3390/electronics4040763.

[10] A. Boutros and V. Betz, “FPGA Architecture: Principles and Progression,”
IEEE Circuits Syst. Mag., vol. 21, no. 2, pp. 4–29, 2021, doi:
10.1109/MCAS.2021.3071607.

[11] A. C. Mert, E. Ozturk, and E. Savas, “Design and Implementation of
Encryption/Decryption Architectures for BFV Homomorphic Encryption
Scheme,” IEEE Trans. Very Large Scale Integr. Syst., vol. 28, no. 2, pp.
353–362, 2020, doi: 10.1109/TVLSI.2019.2943127.

[12] H. Liao et al., “TurboHE: Accelerating Fully Homomorphic Encryption
Using FPGA Clusters,” Proc. - 2023 IEEE Int. Parallel Distrib. Process.
Symp. IPDPS 2023, pp. 788–797, 2023, doi:
10.1109/IPDPS54959.2023.00084.

[13] M. Ogburn, C. Turner, and P. Dahal, “Homomorphic encryption,”
Procedia Comput. Sci., vol. 20, pp. 502–509, 2013, doi:
10.1016/j.procs.2013.09.310.

[14] W. Yang, S. Wang, H. Cui, Z. Tang, and Y. Li, “A Review of
Homomorphic Encryption for Privacy-Preserving Biometrics,” Sensors,
vol. 23, no. 7, pp. 1–23, 2023, doi: 10.3390/s23073566.

[15] C. Gentry, “Fully homomorphic encryption using ideal lattice,” in In
Proceedings of the forty-first annual ACM symposium on Theory of
computing, 2009, pp. 169–178. doi: 10.1109/TIFS.2013.2287732.

[16] J. H. Cheon, “Batch Fully Homomorphic Encryption,” pp. 315–335.

[17] W. Hu, C. H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li, “An
Overview of Hardware Security and Trust: Threats, Countermeasures,
and Design Tools,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol.
40, no. 6, pp. 1010–1038, 2021, doi: 10.1109/TCAD.2020.3047976.

[18] J. Serrano, “Introduction to FPGA design,” CAS 2007 - Cern Accel. Sch.
Digit. Signal Process. Proc., pp. 231–247, 2008.

[19] M. Vanitha and R. Mangayarkarasi, “Comparative study of different
cryptographic algorithms,” Int. J. Pharm. Technol., vol. 8, no. 4, pp.
26433–26438, 2016, doi: 10.4236/jis.2020.113009.

[20] J. H. Cheon et al., “Batch fully homomorphic encryption over the integers,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 7881 LNCS, pp. 315–335, 2010, doi:
10.1007/978-3-642-38348-9_20.

[21] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, no. 3, 2014, doi: 10.1145/2633600.

[22] L. Yu, C. A. Pérez-Delgado, and J. F. Fitzsimons, “Limitations on
information-theoretically-secure quantum homomorphic encryption,”
Phys. Rev. A - At. Mol. Opt. Phys., vol. 90, no. 5, pp. 1–5, 2014, doi:
10.1103/PhysRevA.90.050303.

[23] G. Abozaid, A. Tisserand, A. El-Mahdy, and Y. Wada, “Towards FHE in
Embedded Systems: A Preliminary Codesign Space Exploration of a
HW/SW Very Large Multiplier,” IEEE Embed. Syst. Lett., vol. 7, no. 3,
pp. 77–80, 2015, doi: 10.1109/LES.2015.2436372.

[24] C. Karabat, M. S. Kiraz, H. Erdogan, and E. Savas, “THRIVE: threshold
homomorphic encryption based secure and privacy preserving biometric
verification system,” EURASIP J. Adv. Signal Process., vol. 2015, no. 1,
pp. 1–18, 2015, doi: 10.1186/s13634-015-0255-5.

[25] X. Sun, J. Yu, T. Wang, Z. Sun, and P. Zhang, “Efficient identity-based
leveled fully homomorphic encryption from RLWE,” Secur. Commun.
Networks, vol. 9, no. 18, pp. 5155–5165, 2016, doi: 10.1002/sec.1685.

[26] T. S. Fun and A. Samsudin, “A survey of homomorphic encryption for
outsourced big data computation,” KSII Trans. Internet Inf. Syst., vol. 10,
no. 8, pp. 3826–3851, 2016, doi: 10.3837/tiis.2016.08.022.

[27] S. S. Roy, F. Vercauteren, J. Vliegen, and I. Verbauwhede, “Hardware
Assisted Fully Homomorphic Function Evaluation and Encrypted Search,”
IEEE Trans. Comput., vol. 66, no. 9, pp. 1562–1572, 2017, doi:
10.1109/TC.2017.2686385.

[28] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an FPGA-
accelerated homomorphic encryption co-processor,” IEEE Trans. Emerg.
Top. Comput., vol. 5, no. 2, pp. 193–206, 2017, doi:
10.1109/TETC.2016.2619669.

[29] Y. Ding, B. Han, H. Wang, and X. Li, “Ciphertext retrieval via attribute-
based FHE in cloud computing,” Soft Comput., vol. 22, no. 23, pp. 7753–
7761, 2018, doi: 10.1007/s00500-018-3404-6.

[30] D. Catalano and D. Fiore, “Practical Homomorphic Message
Authenticators for Arithmetic Circuits,” J. Cryptol., vol. 31, no. 1, pp. 23–
59, 2018, doi: 10.1007/s00145-016-9249-1.

[31] L. Jiang, Y. Cao, C. Yuan, X. Sun, and X. Zhu, “An effective comparison
protocol over encrypted data in cloud computing,” J. Inf. Secur. Appl.,
vol. 48, 2019, doi: 10.1016/j.jisa.2019.102367.

[32] X. Liu, H. Li, G. Xu, R. Lu, and M. He, “Adaptive privacy-preserving
federated learning,” Peer-to-Peer Netw. Appl., vol. 13, no. 6, pp. 2356–
2366, 2020, doi: 10.1007/s12083-019-00869-2.

[33] F. Farokhi, I. Shames, and K. H. Johansson, “Private routing and ride-
sharing using homomorphic encryption,” IET Cyber-Physical Syst.
Theory Appl., vol. 5, no. 4, pp. 311–320, 2020, doi: 10.1049/iet-
cps.2019.0042.

[34] S. Sobati-Moghadam, “Efficient information-theoretically secure
schemes for cloud data outsourcing,” Cluster Comput., vol. 24, no. 4, pp.
3591–3606, 2021, doi: 10.1007/s10586-021-03344-x.

[35] S. Mittal and K. R. Ramkumar, “Research perspectives on fully
homomorphic encryption models for cloud sector,” J. Comput. Secur., vol.
29, no. 2, pp. 135–160, 2021, doi: 10.3233/JCS-200071.

[36] J. L. López Delgado, J. A. Álvarez Bermejo, and J. A. López Ramos,
“Homomorphic Asymmetric Encryption Applied to the Analysis of IoT
Communications,” Sensors, vol. 22, no. 20, 2022, doi:
10.3390/s22208022.

[37] H. Wang, Y. Xiao, Y. Feng, Q. Qian, Y. Li, and X. Fu, “Cloud-Assisted
Privacy Protection Energy Trading Based on IBS and Homomorphic
Encryption in IIoT,” Appl. Sci., vol. 12, no. 19, 2022, doi:
10.3390/app12199509.

[38] K. Xu, B. Hong Meng Tan, L. P. Wang, K. Mi Mi Aung, and H. Wang,
“Threshold Homomorphic Encryption From Provably Secure NTRU,”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

415 | P a g e

www.ijacsa.thesai.org

Comput. J., vol. 66, no. 12, pp. 2861–2873, 2023, doi:
10.1093/comjnl/bxac126.

[39] J. Pan et al., “Secure Control of Linear Controllers Using Fully
Homomorphic Encryption,” Appl. Sci., vol. 13, no. 24, 2023, doi:
10.3390/app132413071.

[40] S. Ali, S. A. Wadho, A. Yichiet, M. L. Gan, and C. K. Lee, “Advancing
cloud security: Unveiling the protective potential of homomorphic secret
sharing in secure cloud computing,” Egypt. Informatics J., vol. 27, no.
July, p. 100519, 2024, doi: 10.1016/j.eij.2024.100519.

[41] W. Wang, R. Liu, and S. Cheng, “Privacy protection of communication
networks using fully homomorphic encryption based on network slicing
and attributes,” Sci. Rep., vol. 14, no. 1, pp. 1–18, 2024, doi:
10.1038/s41598-024-69501-5.

[42] P. Li and F. Zhang, “Cloud-based Full Homomorphic Encryption
Algorithm by Gene Matching,” J. Inf. Process. Syst., vol. 20, no. 4, pp.
432–441, 2024, doi: 10.3745/JIPS.03.0199.

[43] M. Ferrara, A. Tortora, and M. Tota, “an Overview of Torus Fully
Homomorphic Encryption,” Int. J. Gr. Theory, vol. 14, no. 2, pp. 59–73,
2025, doi: 10.22108/ijgt.2023.139030.1869.

[44] Z. H. Mahmood and M. K. Ibrahem, “HARDWARE
IMPLEMENTATION OF AN ENCRYPTION FOR ENHANCEMENT
DGHV,” Iraqi Journal of Information & Communications Technology,
vol. 2, no. 2, pp. 44–57, Nov. 2019, doi:
https://doi.org/10.31987/ijict.2.2.69.

[45] S. Gener, P. Newton, D. Tan, S. Richelson, G. Lemieux, and P. Brisk, “An
FPGA-based Programmable Vector Engine for Fast Fully Homomorphic
Encryption over the Torus,” in SPSL: Secure and Private Systems for
Machine Learning (ISCA Workshop), [Online]. Available:
https://par.nsf.gov/biblio/10282639. Accessed: May 19, 2025

[46] S. Behera and J. R. Prathuri, "Design of Novel Hardware Architecture for
Fully Homomorphic Encryption Algorithms in FPGA for Real-Time Data

in Cloud Computing," in IEEE Access, vol. 10, pp. 131406-131418, 2022,
doi: 10.1109/ACCESS.2022.3229892

[47] T. Ye, R. Kannan and V. K. Prasanna, "FPGA Acceleration of Fully
Homomorphic Encryption over the Torus," 2022 IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, USA, 2022, pp.
1-7, doi: 10.1109/HPEC55821.2022.9926381.

[48] S. Behera and J. R. Prathuri, “FPGA-Based Acceleration of K-Nearest
Neighbor Algorithm on Fully Homomorphic Encrypted Data,”
Cryptography, vol. 8, no. 1, p. 8, Mar. 2024, doi:
https://doi.org/10.3390/cryptography8010008.

[49] S. Bharany and S. Sharma, “Intelligent green internet of things: An
investigation,” in Machine Learning, Blockchain, and Cyber Security in
Smart Environments. Chapman and Hall/CRC, 2022, pp. 1–15.

[50] B. Talwar, A. Arora and S. Bharany, "An Energy Efficient Agent Aware
Proactive Fault Tolerance for Preventing Deterioration of Virtual
Machines Within Cloud Environment," 2021 9th International
Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO), Noida, India, 2021, pp. 1-7, doi:
10.1109/ICRITO51393.2021.9596453.

[51] N. Shamshad et al., "Enhancing Brain Tumor Classification by a
Comprehensive Study on Transfer Learning Techniques and Model
Efficiency Using MRI Datasets," in IEEE Access, vol. 12, pp. 100407-
100418, 2024, doi: 10.1109/ACCESS.2024.3430109.

[52] S. Badotra et al., “A DDoS Vulnerability Analysis System against
Distributed SDN Controllers in a Cloud Computing Environment,”
Electronics, vol. 11, no. 19, p. 3120, Sep. 2022, doi:
10.3390/electronics11193120.

[53] S. Kumar et al., “Exploitation of Machine Learning Algorithms for
Detecting Financial Crimes Based on Customers’ Behavior,”
Sustainability, vol. 14, no. 21, p. 13875, Oct. 2022, doi:
10.3390/su142113875.

