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Abstract—One new area of secure computing and privacy is 

homomorphic encryption (HE). An FPGA-based implementation 

of the HE algorithm, Enhanced DGHV, which helps real-time 

computation on encrypted text without disclosing the original 

data, is developed in this study. This research aims to focus on 

implementing the Enhanced DGHV Fully HE algorithm on FPGA 

hardware to achieve a more efficient scheme in terms of 

performance and security. The Xilinx Vivado tool implements the 

design on a Genesys 2 Kintex 7 FPGA board. While software 

simulation with 3.2% I/O usage, the simulation confirms a total 

power consumption of 3.12W (watts), highlighting successful 

synthesis with little resources. At 9.105W, the hardware 

implementation is comparable. Furthermore, an effective FPGA-

based implementation confirms a method for achieving a balance 

between power consumption and performance while 

implementing the DGHV algorithm. The results show that the 

overall computational complexity can be reduced, and the 

hardware and software integration help to achieve an increased 

data security level for homomorphic encryption algorithms with 

improved efficiency. 
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I. INTRODUCTION 

 Cybersecurity is a fundamental attribute of the modern 
world, which protects systems, networks, and data from cyber 
threats. This field possesses diverse strategies, including 
encryption, authentication, and network security mechanisms 
to achieve assured secrecy, integrity, and availability of 
information [1]. Cryptography is the most basic foundation in 
cybersecurity, which conveys plaintext into unrecognizable 
ciphertext through mathematical transformation. Cryptography 
secures information from being accessed by unauthorized 
individuals. All cryptographic methods developed so far remain 
performance improvements for security, such as symmetric and 
asymmetric encryption techniques [2]. 

Advanced Encryption Standard (AES) and Data Encryption 
Standard (DES) are among the most popular symmetric key 
algorithms. Performance evaluations of these algorithms show 
brilliantly that AES outperforms the two in speed and security 
and is widely regarded as the contemporary solution for 

encryption [3]. Rivest Shamir Adleman (RSA) algorithms are 
asymmetric, and prime factorization is done to achieve 
acceptability; however, the cryptography process is extensive 
due to its nature. Unlike symmetric ones, which use a single 
key, RSA employs a pair of public and private keys for 
encryption and decryption. RSA provides security features such 
as secure communication or digital signatures; however, it does 
not perform well because of its computational complexity. 
Notwithstanding the praises for such cryptographic techniques, 
several challenges are looming. RSA becomes less efficient 
when large prime numbers are used for encryption and 
decryption. As for Fully Homomorphic Encryption (FHE), the 
computational overheads are too high, denying even further 
acceptance into mainstream applications. Hence, these 
challenges must be addressed for enhanced HE (Homomorphic 
encryption) or cryptographic solutions for real-life applications 
[4]. Variations have thus been suggested to improve the 
efficiency of RSA without losing its security features [5]. HE is 
a remarkable advance in cryptographic techniques that 
facilitates computations on encrypted data without decrypting 
it. FHE would allow secure data processing in cloud 
environments without compromising privacy during 
computation. Since the theoretical foundations and practical 
implementations of HE have received a great deal of attention, 
possible applications include secure multiparty computations 
and encrypted search queries [6]. 

A. Prospects of Hardware Implementation 

Data security, while developing with different 
cryptographic algorithms, is always a main concern for 
researchers. These cryptographic algorithms can be attacked in 
various ways and leave the data in a vulnerable state. Side-
channel attacks can be used against AES and DES to break 
them. On the other hand, their implementations lean on the 
information leakage from hardware implementations against 
which protection measures may be adopted. RSA security relies 
on the principle that factoring is a hard problem, but progress 
in quantum computing could weaken such security claims. 
Another issue is that, while Fully HE is theoretically proven 
secure, it is computationally expensive and is thus prone to 
resource-exhaustion attacks [7]. To some extent, more recently, 
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importance was placed on the hardware realization of the 
cryptographic algorithm. Cryptographic solutions implemented 
in hardware improve performance, security, and energy 
efficiency over software-based ones. Field Programmable Gate 
Arrays (FPGAs) provide a suitable platform for cryptographic 
implementations because of flexibility, parallelism, and 
embedded security features. FPGAs have indeed been used for 
the acceleration of cryptographic computations, as the 
software-based encryption methods are more vulnerable to 
attacks [8]. 

Hardware security is important for minimizing many 
vulnerabilities originating from software-based cryptography 
implementations. Hardware secure design principles, like 
resistance against side-channel attacks or using a secure key 
store, are important to improve the credibility of cryptography. 
Fastening hardware security features to cryptographic 
installations ensures that such installations are resilient against 
both logical and physical attacks, thereby complementing the 
security in digital systems [9]. However, the growing evolution 
of FPGA architectures makes hardware implementations of 
cryptographic structures much more realizable. Modern 
architectures of FPGAs integrate features like Physically 
Unclonable Functions and hardware root-of-trust mechanisms, 
which essentially improve the resilience of cryptographic 
systems against various attacks. In advance, it has opened up 
high-performance-low-energy-strength cryptographic systems 
based on real applications [10]. 

The FHE scheme constructed in hardware poses challenges 
related to its computational complexity as well as constraints 
faced in terms of resources. The designs of HE architecture and 
their optimization have been considered in previous studies, 
which explore further contributions of hardware-based 
acceleration in boosting performance and efficiency [11]. The 
particular study presents an implementation for a scheme, 
called the Dijk Gentry Halevi Vaikutanathan (DGHV) 
algorithm, on hardware acceleration. The DGHV scheme is the 
FHE scheme based on integer arithmetic and is entirely 
attributed to its authors. The proposed implementation makes 
use of FPGA-based acceleration to optimize the 
implementation of the DGHV scheme from the viewpoint of its 
computational overheads while improving practical 
applicability by using a shorter secret key. State-of-the-art 
results in FPGA-based cryptography implementations indeed 
revolve around the possibility of FHE algorithm acceleration 
via dedicated hardware. Furthermore, the use of FPGA clusters 
for the calculations of HE boosts efficiency, making FHE a 
choice to penetrate applications while preserving user privacy 
[12]. 

This study is arranged as follows: Section II discuss about 
the homomorphic encryption; Section III elaborates on FPGAs 
from an encryption standpoint; Section IV discuss about the 
Literature work; Section V describes the proposed approach; 
Section VI shows the implementation results; Section VII 
compares software and hardware performances; and Section 
VIII gives the conclusions and future work. 

II. HOMOMORPHIC ENCRYPTION 

HE is one of the advanced forms of cryptography that 
enables the computation of data in an encrypted form without 

ever decrypting it. This property gives HE a unique utility in 
real-time applications, where data privacy and security are 
crucial, such as in cloud computing, privacy-concerned 
machine learning, and secure multi-party computations. 
Another important theory states that traditional cryptographic 
encryption and security schemes always require data to be 
decrypted before processing. However, with HE, the actual 
processing is done on encrypted data, keeping the sensitive 
information technically safe and sound through all 
computations, as shown in Fig. 1 [13]. 

 

Fig. 1. Block diagram of Homomorphic encryption. 

HE is categorized according to the operation types 
performed on encrypted data. So, the three major categories of 
HE are Somewhat Homomorphic Encryption (SHE), Partially 
Homomorphic Encryption (PHE), and Fully Homomorphic 
Encryption (FHE). Different types give different functionalities 
and complexities, and are, therefore, used for different 
applications, which are discussed below: 

A. Somewhat Homomorphic Encryption (SHE) 

Somewhat HE is an encryption scheme that permits a 
limited number of operations of any type on encrypted data. 
SHW allows only a few numbers of additions or multiplications 
before the ciphertext gets too noisy to decipher. The real 
drawback of SHE comes about from the accumulation of noise 
in the encrypted data, which eventually makes decryption 
impossible without specialized refreshing operations such as 
bootstrapping. However, SHE has important applications even 
if it does not permit many homomorphic operations; these are a 
few but sufficient cases, like the simple aggregation of data or 
secure voting mechanisms. SHE usually proves to be a better 
option than FHE, considering the lower computational 
overhead as far as speed and efficiency are concerned [14]. 

B. Partially Homomorphic Encryption (PHE) 

Partially HE allows free operation of either addition or 
multiplication. However, both cannot be realized at the same 
time. Well-known examples of PHE include the RSA 
cryptosystem, which provides an example of a multiplicatively 
homomorphic cryptosystem, and the Paillier cryptosystem, 
which is a purely additive homomorphic scheme. It is applied 
in many areas, such as secure electronic voting and 
watermarking, wherein either additive or multiplicative 
homomorphic properties provide enough homomorphism for 
the application to find a solution. It is much faster and more 
practical with a wide range of applications [15]. 
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C. Fully Homomorphic Encryption (FHE) 

FHE is an improved version of SHE and PHE that allows 
any number of additions or multiplications of encrypted 
information. Therefore, arbitrary functions can be computed on 
encrypted data without decrypting it. This concept was 
developed for FHE by Craig Gentry in 2009, and since then, 
many advancements aimed at improving its efficiency and 
practicality have followed [16]. The scope is immense for FHE 
as it has wide applications in privacy concerning cloud 
computing, secure machine learning, and database queries. The 
major drawback of FHE is its immense computational expense 
since any execution of fully homomorphic operations on 
encrypted data needs lots of processing power and memory. 
Over the years, several optimizations have been proposed to 
render FHE amenable to real-world applications, such as 
batching techniques and improvements to bootstrapping. 

III. FPGA – A HARDWARE APPROACH 

The proper hardware implementation of HE is 
indispensable because the operations involving HE are very 
computationally intensive. Conventional software installations 
fail to meet the high processing requirements of HE, even to the 
extent that researchers then explore possible hardware-
accelerating techniques. One of the best options for this 
approach is integrating FPGAs with cryptographic algorithms, 
thereby optimizing performance. 

A. Integration of FPGA and Cryptographic Algorithms 

FPGAs present a reconfigurable and parallel-processing 
platform, suitable for the acceleration of cryptographic 
computations. Unlike general-purpose CPUs that execute 
instructions sequentially, FPGAs can perform multiple 
encryption and decryption operations in parallel, thus 
drastically increasing speed. In implementing HE schemes on 
the FPGA platform, researchers can greatly improve 
performance, energy efficiency, and flexibility [17]. 

B. Why Use an FPGA? 

The reasons have been that FPGAs are superior to any other 
hardware accelerators, such as graphics processing units 
(GPUs) and application-specific integrated circuits (ASICs). 
Some of these include: Parallel Processing Capabilities: FPGAs 
allow the possibility to execute cryptographic functions in 
parallel and are, therefore, highly useful for those 
computationally intensive processes. Energy Efficiency: 
Concerning the power needed even to achieve high throughput, 
FPGAs perform better than GPUs, thus making them the best 
choice for energy-critical applications. Convenience and 
Flexibility: Unlike ASICs, which are fixed-function chips, 
FPGAs can be reprogrammed to accommodate different 
encryption schemes and optimizations as required by the 
changing security requirements. Security Enhancements: 
FPGAs provide hardware-level security features that mitigate 
threats such as side-channel attacks to ensure secure 
cryptographic implementations [18]. 

C. Implementation of HE Using FPGA 

The HE schemes on FPGA aim to multiply the encryption, 
decryption, and bootstrapping processes into an FPGA. The 
most significant challenge here is to perform those arithmetic 

operations in modular arithmetic without letting the overhead 
for computations increase. Large ciphertexts and complicated 
arithmetic operations that characterize DGHV require special 
optimizations to address performance issues. 

The following several avenues have been researched for the 
FPGA-based implementation of the HE schemes: 

Optimized Modular Arithmetic Units: The design of 
efficient modular addition, multiplication, and division units to 
efficiently compute large integers. 

Pipeline Architectures: FPGA-pipelined design allows 
parallel processing of encryption operations, thus increasing 
throughput immediately. 

Noise Management Mechanisms: Techniques such as 
ciphertext compression and optimization of bootstrapping help 
control the noise growth and facilitate accurate decryption. 

The studies showed that the FPGA implementations for HE 
can generate enormous speed-ups compared to software 
implementations that promote their applications in privacy-
preserving cloud computing, secure data analytics, and 
encrypted Artificial Intelligence (AI) processing [19]. 

IV.  LITERATURE REVIEW 

This section contains the literature survey of HE and its 
evaluation. Various HE schemes have different improvements 
over time and have also been shown above. Along with this, the 
integration of HE and hardware using FPGA is also studied and 
explained. The complete study is presented as follows: 

FHE was introduced by Gentry et al. (2009) in their study 
[15], which would expand its bounds in terms of encrypted 
computations without decryption. One main issue arises when 
the decryption depth of the circuit extends the evaluation 
capacity, just explains why it is almost bootstrappable. The 
author gave an insight into bootstrapping, structured in part for 
the decryption process, reconciling circuit depths, therefore, 
making the scheme entirely bootstrappable. The security 
parameter was refined by balancing γ against (n), ensuring that 
breaking the encryption required exponential time complexity. 
An implementation of optimizations was carried out to allow 
for reducing the secret key size and facilitate direct processing 
of the ciphertext bits. 

Dijk et al. (2010) proposed an FHE scheme in their study 
[20] based on slightly different foundations from Gentry's 
lattice-based approach. The problem was one of creating a HE 
scheme that allowed bootstrapping solely with additions and 
integer multiplications. The author introduced the so-called 
approximate GCD problem to estimate an unknown integer 
from the near-multiples. 

Brakerski et al. (2014) proposed an FHE scheme in their 
study [21], which requires the ideal-lattice assumption for 
transactions. The critical boundary was thus that of decryption 
complexity concerning security. The author thus applied some 
re-linearization and gave a way for SHE to exist without 
dependencies on a ring-based hardness assumption. The 
dimension-modulus reduction technique allows compression of 
the ciphertext and improves decryption. From there, one can 
now design an LWE-based single-server Private Information 
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Retrieval (PIR) protocol with reduced communication 
overhead. They also gained significantly improved ciphertext 
efficiency under worst-case lattice hardness. 

Yu et al. (2014) analyzed quantum HE and discussed its 
limitations in their research study [22] when it came to 
obtaining perfect security. The problem was to achieve perfect 
security in a deterministic HE that was fully homomorphic and 
which incurred an exponential cost. The author used an 
information localization argument to show that the universal 
quantum computation could not be done deterministically 
without this cost. 

The work [23] of Abozaid et al. (2015) is towards 
embedding FHE into embedded systems, so that power and 
performance requirements, amidst all forms of attacks, can be 
circumvented. The author has proposed hardware and software 
co-designed with certain multiplication units for increased 
efficiency compared to the former, while still maintaining 
software flexibility. FPGA implementation demonstrated that 
large multiplications can be handled quite well within the given 
power limits. 

In [24], Karabat et al. (2015) developed the THRIVE 
biometric system, partly because of the authentication security 
issue. Biometrics or standard biometric systems generally 
safeguard the very crucial user's data. The author proposed this 
threshold HE biometric system in which the user and verifier 
jointly provided the secure key. 

Sun et al (2016) developed the leveled FHE scheme. For the 
Ring Learning with Error (RLWE) based FHE scheme to 
further enhance efficiency-based encryptions. In their study 
[25], the main net has to have very strong security guarantees 
along with practical computational efficiency. An approximate 
eigenvector was proposed by the author for use with a single 
public key, which was then extended to a multi-key setting. 

Further in 2016 Fun et al. highlighted the security 
challenges in their study [26] that comes with outsourcing big 
data storage as well as computation to third-party cloud service 
providers, since the traditional approaches to security seem to 
have failed, probably due to the sheer amount of data to be 
modified and its diversity. Several schemes have been explored 
in this study for FHE, with performance ratings based on 
encryption-based technology. 

Roy and Associates in the year 2017 introduced a recryptor 
box model in their study [27], which improves the depth of 
homomorphic evaluation and efficiency. The only limitation 
with SHE schemes is that they do not allow more than a limited 
action because at some point this starts to seriously accumulate 
noise. The inclusive author introduced a refreshment for 
ciphertext with its use to reduce the noise while avoiding very 
large-sized parameters. 

Cousins et al. (2017) in their study [28] explain that they 
developed an FPGA-based HE Processing Unit (HEPU) that 
would accelerate encrypted computation. The main 
neuromuscular perturbation caused by the lack of 
computational efficiency was finally addressed by the primitive 
encryption of the lattice. Chinese Remainder Theorem (CRT) 
and inverse CRT were optimized in key mathematical 
operations. Implementation of FPGA using Xilinx Virtex-7 

demonstrated the mitigation of computational bottlenecks in 
performing ring arithmetic operations. 

The author of the study [29] Ding et al., in the year 2018   
developed an attribute-based encryption scheme with 
ciphertexts. This addressed the privacy issues in a cloud 
environment. Enabling computations on the encrypted data 
with confidentiality maintained therein was the challenge set. 
They were working on the integration of the HE with attribute-
based encryption so that one could perform fine-grained access 
control without having to repeatedly update keys. 

In study [30] given by Catalano et al. in the year 2018 
introduced homomorphic message authenticators (HMA) 
authentication methods for message verification in computing 
over encrypted data. In this case, the main difficulty consists of 
establishing the integrity of authenticated data without 
revealing underlying information. The author presented two 
types of HMA: the first one supports arbitrary composition, 
while the second uses short authentication tags. 

Jiang et al. (2019) introduced [31] a secure comparison 
protocol for cloud environments using HE. The primary 
challenge was enabling encrypted magnitude comparisons 
without exposing plaintext values. The author proposed 
incomplete re-encryption, which preserved ordering while 
transforming ciphertexts. 

In federated deep learning-based work [32], Liu et al. 
(2020) set about optimizing privacy on the grounds of security 
and accuracy. The challenge was that existing privacy-
preserving techniques either caused a drop in model accuracy 
or needed excessive computational resources. The author 
introduced an adaptive privacy-preserving framework using 
layer-wise relevance propagation to optimize the trade-off 
concerning privacy. 

Farokhi et al. (2020) proposed a scheme for privacy in 
encrypted transport services, trying to run encrypted queries on 
ride-sharing without exposing user data. The authors in their 
research [33] applied Paillier encryption, which supports some 
algebraic operations on ciphertext while remaining efficient. In 
this way, their users could submit queries without revealing 
their locations or routes. 

A lightweight HE scheme was designed by Moghadam et 
al. (2021) to support cloud storage applications in their article 
[34]. This includes high computational and storage costs that 
make traditional encryption techniques impractical. The author 
proposed the secret-splitting secure method, which efficiently 
splits encrypted data. 

There is also a systematic review [35] conducted by Mittal 
et al. (2021) that discussed the research concerning FHE within 
cloud computing. The challenge lies in understanding different 
trade-offs that may exist between models of encryption and 
their computational efficiency. 

Delgado et al. (2022) designed a HE scheme in their study 
[36] for the secure transmission of sensor data. The challenge 
stemmed from the need to preserve confidentiality while 
enabling real-time statistical analysis of encrypted data. The 
author used the Paillier cryptosystem to allow for statistical 
computations on the encrypted data without decrypting it. 
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Wang et al. in the year 2022 proposed an integrated HE with 
identity-based signatures to secure Industrial Internet of Things 
(IIoT) transactions in their research work [37]. The challenge 
was protecting private trading data in blockchain-based energy 
markets. The author employed Paillier encryption for 
transaction confidentiality while using identity-based 
signatures for authentication. 

Xu and colleagues (2023) proposed an NTRU-type in a 
research article [38]. Threshold HE schemes for securing 
multiparty computations. Their challenge lies in avoiding 
cumbersome extensions of ciphertexts during multi-key HE. 
Within their development of a new encryption model into a 
model that achieved improvements in computational efficiency 
without linearization, the authors introduced wide key 
distribution to withstand attacks from the subfield lattice and 
secured it under the RLWE assumption. 

Pan et al. brought forward in the year 2023 their study [39], 
a cover for security holes that existed in the networked control 
systems by an FHE-encrypted controller. The main challenge 
was to maintain the real-time behavior while preventing the 
exposure of controller parameters to eavesdropping. 

In the year 2024, the study [40] written by Ali and 
colleagues (2024) devised a dual-layer encryption method that 
combines HE with secret-sharing techniques. Securing cloud-
based data storage while allowing computations on encrypted 
data poses a challenge. The author suggested distributing 

encrypted data among several servers to ensure no single point 
of failure. Performance evaluations have shown an optimal 
trade-off between security and computational efficiency. 

A privacy-preserving network-slicing framework in the 
study [41] for secure communication was introduced by Wang 
et al. (2024). The challenge was protecting sensitive data within 
the network slicing while assuring efficiency in transmission. 
The author merged attribute-based encryption (ABE) with HE 
to maximize security at minimal computational cost. 

Pingping et al. (2024) presented in their work [42] that gene 
information linkage and its accuracy binding on cloud 
computing are a real hustle; thus, it evolved as a privacy hazard 
and sluggish payback while processing gene material. To 
mitigate this circumstance or likeness, the author laid out a HE-
based match secret protocol, which allows for the comparison 
of genetic sequence data without the data being decrypted. 
Compare gene sequence data with location. 

In study [43] given by the author Ferrara et al. in the year 
2025, explored Torus FHE and its use in secure computing. The 
author optimized bootstrapping to increase efficiencies in 
computing with ciphertext. Their study verified TFHE 
implementations for Boolean and arithmetic circuit evaluation. 
Their findings witness FHE for privacy-preserving computing. 

Table I shows the chronological study of literature which 
highlights the different techniques and their results over time. 

TABLE I. LITERATURE SURVEY COMPARATIVE ANALYSIS 

Ref. No./Year Technique Summary and Result 

[15]/2009 FHE 
Proposed FHE with bootstrapping to balance security parameters. Optimized key size but faced 

practical challenges, leading to improved FHE efficiency. 

[20]/2010 Approximate GCD-based FHE 
Developed integer multiplication-based FHE without lattice dependence. Achieved bootstrapping 

but remained inefficient. 

[21]/2014 LWE-based FHE 
Introduced re-linearization and dimension-modulus reduction, improving ciphertext efficiency and 
enabling the PIR protocol. 

[22]/2014 Homomorphic Encryption 
Explored QHE limitations, confirming trade-offs between security and efficiency due to high 

computation costs. 

[23]/2015 Hardware-accelerated FHE 
Designed FPGA-based FHE optimizations with low-power multipliers, reducing computational 
overhead. 

[24]/2015 Threshold HE for Biometrics 
Developed an encrypted biometric authentication system, ensuring secure authentication with 

minimal verification time. 

[25]/2016 RLWE-based Leveled FHE 
Proposed an eigenvector-based multi-key FHE integrated with IBE, enhancing security and 
efficiency. 

[26]/2016 Hybrid HE 
Addressed big data encryption constraints, proposing hybrid models for improved speed, storage, 

and bandwidth. 

[27]/2017 Recryptor Box Model for SHE 
Enhanced SHE by reducing noise with ciphertext refresh methods, achieving a 20 times speed-up 
in FPGA tests. 

[28]/2017 FPGA-based HEPU 
Proposed FPGA-based unit for accelerating encrypted computations, optimizing CRT & inverse 

CRT. 

[29]/2018 Attribute-Based HE Enabled fine-grained access control in cloud storage, ensuring immunity to collusion attacks. 

[30]/2018 
Homomorphic Message 

Authentication 
Proposed authentication methods ensure data integrity without revealing information. 

[31]/2019 Secure Comparison Protocol Developed encrypted magnitude comparison, ensuring confidentiality in cloud computations. 

[32]/2020 
Federated Learning with Adaptive 

Privacy 

Introduced privacy-preserving encryption for deep learning, balancing security and model 

accuracy. 

[33]/2020 HE for Transport Services Applied Paillier encryption for secure ride-sharing queries, preserving user privacy. 

[34]/2021 Secret-Splitting Secure Method 
Designed lightweight encryption for cloud storage, improving storage efficiency and processing 

speed. 

[35]/2021 Systematic Review of FHE Analyzed FHE scalability and efficiency, identifying computational overhead challenges. 

[36]/2022 HE for Sensor Data Used Paillier encryption for encrypted sensor data analysis, enabling real-time anomaly detection. 
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[37]/2022 HE for IIoT Integrated FHE with identity-based signatures for blockchain transactions, improving efficiency. 

[38]/2023 NTRU-Type Threshold HE Optimized multiparty encryption without linearization, securing against subfield lattice attacks. 

[39]/2023 FHE Encrypted Controller Integrated FHE in control systems, maintaining real-time performance and security. 

[40]/2024 Dual-Layer HE Combined FHE with secret sharing for cloud security, balancing computational efficiency. 

[41]/2024 Privacy-Preserving Network Slicing Merged ABE with FHE, enhancing security and efficiency in network slicing. 

[42]/2024 HE for Gene Matching Enabled secure genomic data processing, reducing encryption time and improving accuracy. 

[43]/2025 Torus FHE Optimization 
Optimized TFHE bootstrapping for efficient computation with ciphertext, verifying 

implementations for Boolean and arithmetic circuits. 
 

HE provides privacy and security since computations are 
done on encrypted data, so one does not have to decrypt it. If 
key sizes increase, then computational complexity increases 
with reduced speed. Focus is on the enhancement of HE 
techniques through efficient hardware implementations on 
FPGAs for fast, low-power, and secure processing. About this, 
the main objective is to bridge the gap between real-time 
performance and security in privacy-preserving systems. This 
research's primary goal is to examine and evaluate the current 
homomorphic encryption algorithms and their hardware 
implementations, create and construct an improved version on 
an FPGA, and validate the results through in-depth analysis. 

V. PROPOSED METHODOLOGY 

The DGHV algorithm is implemented using a shorter secret 
key with reduced computational complexity. The Enhanced 
DGHV is implemented over the Genesys 2 Kintex 7 board to 
show the performance analysis. The proposed methodology is 
shown in Fig. 2. 

 
Fig. 2. Proposed methodology. 

The research shows the detailed study for the 
implementation which is given as follows: 

A. Enhanced DGHV Algorithm 

Dijk Gentry, Halevi Vaikutanathan (DGHV) introduced the 
first FHE scheme, based on integers using only modular 
arithmetic. The researchers proposed a symmetric HE scheme 
for limited circuit depth. To design the asymmetric FHE 
scheme, the bootstrapping technique can be applied, which also 
helps to increase the circuit depth for the symmetric DGHV 
scheme. DGHV used Regev’s scheme, the first encryption 
scheme, and used the same formula, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚, 𝑝) = 𝑚 +
2𝑟 + 𝑝𝑞 but integers are used instead of an integral fraction of 

the domain size. The DGHV scheme can also be understood as 
a conceptually simpler version of Gentry’s FHE scheme, based 
on integers instead of lattices, while focusing on providing 
conceptual simplicity by performing all operations using 
integers instead of ideal lattices and reducing the computational 
complexity. To improve the DGHV FHE scheme and create a 
more efficient version of the DGHV scheme, the proposed 
algorithm uses a shorter key size 𝑝 which decreases the overall 
computation complexity. In addition, hardware and software 
integration enhances the scheme's security and efficiency 
because if the key size is larger, then the ciphertext also 
becomes larger, and it will take more computation time. To 
resolve this issue, a shorter key size is used. 

Different parameters are used to make the scheme fully 
homomorphic. The scheme is based on a set of three public 
integers 𝑝, 𝑞, 𝑟, where 𝑝,𝑞 these are two random prime numbers 
because if we multiply two prime numbers, it becomes difficult 
to break the algorithm and 𝑟 is a random error which is required 
to be added to the plaintext to generate the integral ciphertext, 
improving the security of the scheme. It is an important security 
key factor that helps to mask data and keep it safe from 
attackers. The generated ciphertext would be a list of integers, 
each representing an encrypted plaintext bit. These bits can be 
decrypted and recombined to retrieve the original plaintext 
message. If no error is added, then a pattern generated while 
performing encryption of plaintext bits may provide a clue to 
an adversary, and a secret key can easily be guessed. The 
scheme's security is based on the hardness of solving the 
Approximate Greatest Common Divisor Problem (AGCD). 
Here, the homomorphic operations (addition and 
multiplication) can be accomplished by homomorphic addition 
(XOR of bits) and multiplication (AND of bits) over the 
ciphertext. The size of λ directly affects the scheme’s security. 
The larger the value of λ the more secure the scheme will be. 
The randomness in noise 𝑟  ensures semantic security and 
prevents the scheme from ciphertext analysis attacks. Noise 
obfuscates the secret key, making the recovery more difficult. 
The DGHV uses the parameter, λ  a security parameter for 
generating keys. It helps to specify the security of the key. The 
algorithm is as follows: 

1) Key Generation (𝐾𝑒𝑦𝐺𝑒𝑛). Generate a λ2- bit, random 

odd integer, p , as a secret key. Select another two random 

numbers q and r, where r must be small such that  r <
p

2
 and 

of λ- bits and q must be chosen randomly in the specified range 

[−
p

2
,

p

2
] and of λ5 bits. 

2) Encryption (𝐸𝑛𝑐𝑟𝑦𝑝𝑡) . Encrypt each bit of plaintext 

𝑚 ∈  {0, 1}. The algorithm encrypts the message m to obtain 

the ciphertext, 𝑐. in the following way. 
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𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝, 𝑞, 𝑚) = 𝑚 + 2 ∗ 𝑟 + 𝑝 ∗ 𝑞            (1) 

Encrypted ciphertext, 𝑐 must be an integer whose residue 
mod 𝑝 has the same parity as the plaintext. 

3) Decryption (𝐷𝑒𝑐𝑟𝑦𝑝𝑡): The formula for decryption is 

as follows: 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑝, 𝑐): 𝑚′ ← (𝑐 𝑚𝑜𝑑 𝑝)𝑚𝑜𝑑 2          (2) 

The DGHV scheme is somewhat homomorphic, and it can 
perform computations up to a limited depth. So, the author 
introduced a new bootstrapping technique to obtain the FHE 
scheme and introduced an asymmetric fully homomorphic 
version of the DGHV scheme.This algorithm limitation is that, 
because of the multiplication property, the ciphertext's size will 
likewise increase if the plaintext or security parameters are 
increased. Then, because of hardware constraints, it became a 
limitation for hardware implementations, and the complexity of 
operations also increases. When all of these factors are 
combined, the algorithm may fail. 

B. Software Implementation 

The Enhanced DGHV algorithm software implementation 
was translated into hardware description using Verilog. The 
next step involves the selection of a specific FPGA board to 
satisfy the requirements of computation and resources of the 
design. Upon selection, synthesis of Register Transfer Level 
(RTL) code is achieved from the high-level hardware 
description into a gate-level representation for execution in an 
FPGA. Following this is the algorithmic execution testing in the 
simulation environment to ensure correctness before actual 
deployment. Performance metrics such as utilization of 
resources and power consumption estimates are analyzed to 
achieve optimal efficiency before the hardware stage. 

C. Hardware Implementation 

After verification of the software implementation, the 
design is taken to the stage of board integration, which entails 
uploading constraint files and mapping I/O pins to specify how 
signals will interact with the physical FPGA. The bitstream file 
is generated, which takes the synthesized design into a format 
that would be understood by the FPGA hardware. This 
bitstream is then used for FPGA configuration before running 
it on the hardware board. During the observation of real-time 
resource utilization and power consumption, the RTL 
schematic is also observed as a visualization to evaluate 
whether the implemented design is correct or not. Finally, this 
whole process ends with the execution results being followed 
up with the performance analysis, thereby validating that the 
FPGA implementation is adequate in terms of function and 
efficiency. 

1) System specification. The Dell EMC PowerEdge R640 

is powered by an Intel Xeon 6246R 3.4GHz 16-core processor 

that improves the performance and speed of the system. The 

rest of the specifications of the systems are mentioned in Table 

II. 

2) Vivado specification. The Xilinx simulation tool Vivado 

2019.1 (64-bit) is used to implement the HE on the hardware 

board. The Xilinx Vivado Design Suite 2019.1 has made itself 

a complete FPGA and System on Chip (SoC) development 

environment with a strong complement of tools that facilitate 

the designing, synthesizing, implementation, and debugging of 

complex digital systems. Other specifications are given in 

Table III. 

3) FPGA Board specification. For the hardware 

implementation, the Genesys 2 Kintex 7 FPGA board 

(XC7K325T-2FFG900C) is used. Genesys 2 is an FPGA 

development kit that lends its high-performance nature mainly 

to data and video applications shown in Table IV. The board 

features a rather rich set of peripheral resources alongside 

potent data-processing capabilities, making it a splendid choice 

for many applications. 

TABLE II. SYSTEM SPECIFICATION 

Feature Category Details 

Processor Intel Xeon Gold 6246R 

Number of Cores 16 

Number of Threads 32 

Cache 35.75MB 

Base Clock Speed 3.4GHz 

Enhanced SpeedStep 

Technology 
Balances performance with power environments 

Thermal Management 
Yes, with temperature & thermal monitoring for 

protection 

Memory Capacity 16GB 

Storage Configuration 3.6TB 

TABLE III. VIVADO TOOL SPECIFICATION 

Feature 

Category 
Description 

Version Used 
Vivado 2019.1 (64-bit) for homomorphic encryption 

implementation 

FPGA & SoC 

Development 

Provides a complete environment for designing, 
synthesizing, implementing, and debugging complex 

digital systems 

Supported FPGA 
Devices 

Kintex-7, Virtex-7, Zynq-7000, UltraScale+ series 

High-Level 

Synthesis (HLS) 

Converts C, C++, and SystemC-based code into 

hardware description language (HDL) 

Simulation & 
Debugging 

Vivado Logic Analyzer & Hardware Debugger 
provide hardware-level debugging and simulation 

Floor Planning & 

Optimization 

Tools for floor planning, power analysis, and timing 

optimization to maximize resource efficiency 

TABLE IV. FPGA BOARD SPECIFICATION 

Feature Category Details 

FPGA Chip Xilinx Kintex-7™ (XC7K325T-2FFG900C) 

Logic Resources 
50,950 logic slices, each with four 6-input LUTs 

& 8 flip-flops 

Memory 
1 GB DDR3 RAM (1800 MT/s, 32-bit data 
width) 

Block RAM 16 Mbit fast block RAM 

Clocking 
Internal clock speeds exceeding 450 MHz, 10 

clock management tiles with PLLs 

DSP Processing 
840 DSP slices for high-performance signal 
processing 

Analog-to-Digital 

Conversion 
On-chip XADC (Analog-to-Digital Converter) 
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VI. IMPLEMENTATION RESULTS 

In this section, a description of the results of the 
implementation and analysis of software and hardware 
deployment of the DGHV HE schemes onto a Genesys 2 Kintex 
7 FPGA board. Evaluation will include and put into perspective 
performance and resource utilization, compared through 
FPGA-based execution against software and hardware 
implementations. In terms of parameters such as power 
consumption, hardware utilization, and temperature, the 
analysis assesses the viability of FPGA acceleration for DGHV. 
Understandable trade-offs between hardware and software 
implementations will open up the findings for optimization, 
enhancing practicality in real-world applications of 
homomorphic technology. 

A. Software Simulation Analysis 

After the implementation of DGHV homomorphic 
encryption using the Xilinx Vivado 2019.1 suite, an analysis of 
the resource utilization on the Genesys 2 Kintex-7 was 
performed, and the results are as follows: 

The important metrics are Look Up Tables (LUTs). They 
are the basic logic blocks inside an FPGA that implement 
combinational circuits, whereas I/O utilization measures the 
number of I/O pins that are in use for external communication 
which as shown in Fig. 3. From the results, it consumed 4 LUTs 
out of 203,800, which is extremely low in logic resources 
consumed, thereby the design is lightweight and does not 
impose significant computational overhead on the FPGA. The 
I/O utilization of 16 out of 500 (3.2%) is fairly high. 

 
Fig. 3. Hardware utilization readings during software simulation. 

The output graph in Fig. 4 has three parts; in the first column, 

which is the title (Name), the port names are listed; the second 

column (Value) shows the input values, while the third column 

holds the output results in hexadecimal format; the inputs are 

called m1 and m2. In this graph of this block, the plaintext 

values in the state values 𝑚1 =  0 and 𝑚2 =  1. This law of 

encryption provides different cryptographic keys p, 𝑞, 𝑟1, 𝑟2 

upon which homomorphic encryption computations are 

performed. The module input operates on plain-text values 

represented by 𝑚1, 𝑚2,  in this case, 0 and 1, respectively. 

These inputs have been used with encryption keys 𝑝, 𝑞, 𝑟1, 𝑟2 

for HE computation. The resulting outputs from the encryption 

module are presented here as hexadecimal values: 𝑐1, 𝑐2. The 

encryption process results are: 𝑐1 =  9 and 𝑐2 =  𝐴. 
The total power consumption report on power in Fig. 5 

shows a total on-chip power of 3.12W (Watts): dynamic power 
accounts for 2.943W (94%) while device static power is given 
at 0.177W (6%). This means that most of the power will be 
consumed by active switching operations within FPGAs, as 
only a small portion is used to keep the device in an idle state. 

Power distribution states that I/O operations account for 
2.857W (97%), meaning that a big portion of power is utilized 
for external data communications. Signals consume 0.066W 
(2%) while logic elements require just 0.020W, thus indicating 
that the computational load within the FPGA is minimal. The 
junction temperature is located at 30.5°C, which is a safe 
operational limit. 

 
Fig. 4. Output in software simulation. 

 

 
Fig. 5. Simulation power readings. 

1) Secret key vs power consumption analysis. The changes 

showed an overall power consumption across the Genesys 2 

Kintex-7 FPGA as employed among secret key values of 

homomorphic encryption in Table V. While the consumption 

power varies between each secret selected key, it shows a very 

slight difference and therefore stands to say something 

including that the more the complexity of the key, the greater 

the inefficiency in power use. For secret keys of sizes 5 and 13, 

the consumed power is 6.739 W and 6.836 W, respectively. 

With the increasing size of keys, variations in power are seen, 

the highest being recorded at 6.980W (key 47) and the lowest 

at 6.687W (key 181). The variations can be interpreted to point 

out that some key values yielded power savings while others 

incurred slightly higher computation overhead on the FPGA, 

and the graph in Fig. 6. 
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TABLE V. SECRET KEY VS. POWER CONSUMPTION COMPARISON 

Secret Key Size Power Consumption 

5 6.739 

13 6.836 

29 6.718 

47 6.980 

83 6.818 

101 6.904 

149 6.873 

181 6.687 

199 6.919 

211 6.818 

 
Fig. 6. Secret key vs. power consumption comparison graph during software 

simulation. 

B. Hardware Analysis 

The hardware analysis is the actual consumption of 
resources that occurs on the Genesys 2 Kintex-7 FPGA board 
after the successful implementation and burning of the DGHV 
HE algorithm onto the device. 

The total on-chip power consumed in Fig. 7 is 9.105 watts, 
with dynamic power being 8.872 watts (97%), and therefore, 
the high active power consumption. The device's static power 
for the FPGA was 0.232 watts (3%), acting as the FPGA's 
baseline power consumption. I/O dominates the power at 8.677 
watts (97%), and it seems data transfer happens quite frequently 
when processing ciphertext and sending encryption keys. Only 
a minimal amount of power, <1%, was consumed through logic, 
thanks to an efficiently deployed resource. The die junction 
temperature was measured at 41.2 degrees Celsius, thus leaving 
a thermal margin of 43.8 degrees Celsius, which should make 
operations smooth. In conclusion, the entire encryption process 
is power-consuming, but should safely remain below the 
thermal threshold. 

RTL layout was identified to map the hardware structure of 
the DGHV homomorphic encryption on the Genesys 2 FPGA, 
depicting how input signals are processed in Fig. 8. 

Inputs "𝑚1[3: 0]" 𝑎𝑛𝑑 "𝑚2[3: 0]" are passed through input 
buffers and processed within the LUTs-Unit that applies the 

encryption transformations. The encrypted outputs 
"𝑐1[3: 0]" 𝑎𝑛𝑑 "𝑐2[3: 0]" are then passed through output 
buffers to external interfaces. This well-designed approach 
caters to minimum resource utilization while securely 
maintaining an encrypted data primitive through the processing 
stream. 

Upon confirming the generation of the bitstream, the 
success of which implies the FPGA design as a correctly 
synthesized, implemented unit, ready to be programmed onto 
the Genesys 2 Kintex-7 FPGA shown in Fig. 9. The Hardware 
Manager verifies and recognizes the FPGA device so that it can 
be directly programmed. 

It proposes various options in a pop-up dialog for viewing 
data reports or generating memory configuration, while the 
latter is meant to specify a bit sequence for programming into 
the device. Having the bitstream is the final step of the build 
process that needs to be completed before programming an 
FPGA to implement the DGHV homomorphic encryption 
algorithm into real hardware. 

 

 
Fig. 7. Hardware power readings. 

 
Fig. 8. Internal RTL layout. 
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Fig. 9. Successfully bit stream generation. 

The FPGA board is programmed as shown in Fig. 10. The 
board is now up and running. The LEDs represent the binary 
digits to be encrypted in the ciphertext; a further demonstration 
of this test is seen following. While the glow LEDs signify a 
"1" for the digit "1", an OFF LED points to "0" as the encrypted 
information is displayed in real-time. This test indicates that the 
FPGA has received the expected input values and computed the 
expected encrypted operation to produce the output. The 
correctness of the RTL implementation, when the program runs 
correctly on hardware, is validated by ensuring that encrypted 
data is processed securely within the FPGA environment. 

 
Fig. 10. Code burned on the FPGA kit. 

VII. SOFTWARE VERSUS HARDWARE ANALYSIS  

This section compares various parameters for software and 
hardware implementation of the DGHV HE algorithm with the 
FPGA kit. 

Table VI represents the total power consumption reading 
between the FPGA board in software simulation and hardware 
implementation. The total power consumed in software 

simulation using Genesys 2 Kintex-7 FPGA amounts to 3.12W, 
while when implemented in hardware, the power consumption 
amounts to 9.105W on account of real-world execution 
overhead. 

The static power, which accounts for leakage and idle power 
consumption, shows a comparatively lower value in both cases; 
that is, 0.177W in software and 0.232W in hardware. Mainly 
accounts for the increase of power in hardware due to dynamic 
switching activity and actual FPGA resource usage during the 
execution, and the graph is shown in Fig. 11. 

TABLE VI. TOTAL POWER CONSUMPTION 

Results Board 

Static 

Power (W) 

(1) 

Dynamic 

Power (W) 

(2) 

Total 

Power (W) 

(1+2) 

Software Genesys 2 
Kintex 7 

0.177 2.943 3.12 

Hardware 0.232 8.872 9.105 

 
Fig. 11. Comparison of the total power usage graph. 

The dynamic power distribution of the Genesys 2 Kintex-7 
FPGA in software simulation and hardware implementation is 
specified in Table VII. The I/O power consumption in 
simulation is 2.857W, while the consumption in hardware 
increases in magnitude to 8.677W, signifying that real-world 
transfer of data and communication exerts higher power 
demands. On the other hand, logic essentially stays the same, 
with powers of 0.02W in software and 0.019W in hardware, 
thereby indicating an approximately similar logic resource 
utilization in both software and hardware. 

TABLE VII. DYNAMIC POWER CONSUMPTION 

Results Board 
Dynamic Power (W) 

IO Power Logic Power Signal Power 

Software Genesys 2 
Kintex 7 

2.857 0.02 0.066 

Hardware 8.677 0.019 0.177 

The power consumed due to signal switching across the 
FPGA tracks is much higher in hardware than in software, from 
0.066W in software to 0.177W, confirming increased switching 
activity with real-time processing overheads. The results, 
therefore, reveal that actual hardware implementations lead to 
dynamic power dissipation on an entirely different scale, 
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especially in I/O, whereas logic power remains fairly flat and 
signal power progresses upwards moderately. These 
implications greatly affirm the weight of power optimization 
strategies as designs are transferred from the simulation to real 
working FPGA systems, and the graph is shown in Fig. 12. 

 
Fig. 12. Comparative analysis of dynamic power comparison. 

The thermal performance analysis of the Genesys 2 Kintex-
7 FPGA is shown in Table VIII, encompassing software 
simulation and hardware implementation. With software 
simulations, the junction temperature is 30.5°C, which means 
there is minimal heat generated since no actual hardware is 
working. During hardware implementations, however, the 
junction temperature reaches 41.2°C, indicating an increase in 
power dissipation due to actual processing loads that contribute 
to heat dissipation. 

The thermal margin temperature difference between the 
maximum operating temperature of the FPGA and the current 
temperature is 54.5°C in the software and drops to 43.8°C in 
the hardware. This suggests that the FPGA runs much closer to 
its thermal limits in real-world execution, hence the necessity 
for adequate cooling and thermal management. From these 
observations, it is concluded that with hardware 
implementations, more thermal stress is introduced than in 
simulations; this calls for effective heat dissipation techniques 
to guarantee stable FPGA performance, and the graph is shown 
in Fig. 13. Several recent studies emphasize the need for secure 
and energy-efficient computing. Bharany and Sharma [49] 
explore blockchain and machine learning integration in IoT, 
aligning with secure hardware design goals [50-51]. Talwar et 
al. [50] and Badotra et al. [52] focus on fault tolerance and 
network vulnerabilities, highlighting the relevance of resilient 
architectures like FPGA-based encryption. Shamshad et al. [51] 
and Kumar et al. [53] stress model efficiency and privacy, 
supporting homomorphic encryption for secure data 
processing. 

A comparison table of FPGA-based homomorphic 
encryption implementations is shown in Table IX. Different 
FPGA platforms that were used for the implementation of 
homomorphic encryption techniques are shown in the table. 

TABLE VIII. TEMPERATURE ANALYSIS 

Results Board 
Junction 

Temperature (°C) 

Thermal 

Margin (°C) 

Software Genesys 2 

Kintex 7 

30.5 54.5 

Hardware 41.2 43.8 

 
Fig. 13. Comparison of temperature readings. 

TABLE IX. COMPARATIVE ANALYSIS OF PROPOSED ALGORITHM WITH 

EXISTING FPGA-BASED APPROACHES  

Ref. No / 

Year 

Technique 

Used 
Board Used LUT FF DSP 

[27]/ 2017 
Fan-Vercauteren 

SHE 

Xilinx Virtex 

6 
3379 - 4 

[44]/ 2019 Integer based 
Nexys 4 

DDR 
5766 - 36 

[45]/2021 
Fast FHE over 

Torus FHE 

Zynq-7000 

ARM 

3637

3 
- - 

[46]/2022 
Brakerski,Vaiku

ntanathan FHE 

Intel Agilex 

FPGA 
720 - 3 

[47]/2022 Torus FHE 
Virtex 
UltraScale+ 

VU13P 

925

K 

729

K 

6240

K 

[48]/2024 
Cheon Kim Kim 

Song HE 

Intel Agilex 

7 

8791

2 
- 960 

Proposed 

work 

Integer-based 

DGHV 

Genesys 2 

K7 
4 - - 

VIII. CONCLUSION 

This research demonstrated that it is practicable to run the 
homomorphic encryption algorithm on FPGA platforms for 
facilitating privacy-preserving computations with enhanced 
performance. The integration of the Enhanced DGHV 
homomorphic encryption algorithm into the Genesys 2 Kintex-
7 FPGA illustrates the possibility of real-time encrypted 
computation with reasonable on-chip resource requirements. 
The simulation results show a total power consumption of 
3.12W and a negligible utilization of the resource I/O: 3.2% 
compared to the results of implementation, which shows a 
much higher power consumption of 9.105W, and slightly less 
resource utilization I/O: 3.2%. Finally, the junction temperature 
from this thermal margin analysis rises from a software 30.5°C 
to 41.2°C with hardware, and hence the importance of thermal 
management is thrown to the fore in FPGA computations. The 
study here discovers the possibilities in FPGA technology for 
privacy-preserving applications and calls for more optimization 
towards the significant reduction in power consumption with 
optimized performance. In this quest, attention has to be put on 
using sophisticated FPGA architectures, combined with 
innovative energy efficiency methodologies, and this will 
certainly enhance the computational effectiveness of huge-scale 
encrypted operations. Future work will involve working on 
other HE schemes and integrating them with hardware in a way 
to improve performance, efficiency, and power consumption. 
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