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Abstract—In modern cities, urban traffic congestion remains a 

persistent issue that causes longer journey times, excessive fuel 

consumption, and environmental pollution. Traditional traffic 

management systems often employ static models that are 

insensitive to dynamic changes in urban mobility patterns in real 

time, which results in inefficient congestion relief. This study 

proposes a predictive analytics system based on digital twins to 

enhance smart city infrastructure management and optimize 

traffic flow to transcend these limitations. A Convolutional Neural 

Network–Gated Recurrent Unit (CNN-GRU) model is embedded 

at the core of the proposed system to effectively capture and learn 

spatial and temporal traffic patterns efficiently to enhance 

prediction accuracy and real-time decision-making. The 

scalability and robustness of the model are trained on actual urban 

traffic data. The system is developed and verified with Python, 

TensorFlow, and simulation-based digital twin platforms. The 

prediction capability of traffic conditions and congestion relief of 

the model is evidenced from the experimental results, which 

present a high prediction accuracy of 94.5%. Enhanced route 

planning, anticipatory congestion avoidance, and smart traffic 

signal control are some of the primary benefits. The outcome is 

that urban mobility has been enhanced and congestion in traffic 

has reduced substantially. This research contributes to the 

evolution of intelligent transportation systems by being the first to 

integrate deep learning-based predictive analytics with digital 

twin technology. Ultimately, the proposed framework encourages 

the emergence of future-oriented smart city infrastructure and the 

aim of sustainable city transport. 

Keywords—Digital twin technology; traffic flow optimization; 

predictive analytics; smart city infrastructure; GRU-CNN hybrid 

model 

I. INTRODUCTION 

Urban growth and the unchecked growth of cities have 
created record levels of traffic, which causes extreme 
congestion, longer travel times, and environmental issues [1]. 
Urban agglomerations globally are experiencing ineffective 

traffic control, which is contributing to economic costs, poor air 
quality, and commuter stress [2]. The conventional traffic 
management systems, which rely on fixed traffic lights, historic-
based decision-making, and human intervention, can no longer 
control the dynamism of contemporary urban traffic [3]. Such 
computational methods based on real-time data and forecasting 
analytics that maximize traffic flow. Novel advances in AI, IoT, 
and digital twin technology have brought forth novel chances to 
maximize city mobility [4]. A digital twin refers to a 
computerized replica of physical assets allowing real-time 
tracking, simulation, and optimization of city infrastructure. 
Coupled with predictive analytics and machine learning models, 
digital twins have the ability to revolutionize traffic flow 
management with data-driven decisions and dynamic traffic 
control. But such technical leaps, existing implementations 
remain piecemeal and not properly integrated, yielding 
suboptimal performance on real urban environments. Most 
current systems still do not process copious amounts of mixed 
traffic data, react to continuous changes in traffic, and provide 
actionable, real-time predictive information [5]. The most 
significant challenge is to maximize traffic flow that are unable 
to handle the stochastic nature of traffic in cities. Conventional 
traffic management solutions, i.e., static rule-based systems [6] 
and preprogrammed signal controllers, are reactive rather than 
proactive [7]. They do not foresee congestion until it occurs and 
are not adaptive enough to counter dynamic traffic streams [8]. 
Further, conventional machine learning models [9] used for 
traffic forecasting are sometimes discovered to be of limited 
capacity in terms of capturing the complex temporal 
relationships and spatial patterns that are common in traffic [10]. 

Due to these limitations, the current study introduces a new 
solution featuring a digital twin concept coupled with a hybrid 
GRU-CNN framework to achieve enhanced predictive 
modeling and traffic stream optimization in managing smart city 
infrastructures. This research is inspired by the urgent need to 
establish smart, adaptive, and scalable traffic management 
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systems that can sustainably manage urban environments with 
high density. Traditional traffic modeling methods rely 
primarily on historic records, which fails to capture 
instantaneous variations due to unforeseen events such as road 
accidents, weather conditions, and sudden surges in vehicle 
number. Moreover, existing AI-driven traffic management 
models have a tendency to use either temporal feature analysis 
(RNN, LSTM, GRU) or spatial feature extraction (CNN) and 
hence cannot unlock their true potential with maximum 
prediction accuracy [11] [12]. 

This study attempts to overcome this limitation using GRU 
and CNN in a digital twin environment. The relevance of this 
work is to change urban mobility and infrastructure planning. 
Optimal traffic flow has far-reaching implications on 
sustainability, economic development, and the quality of life. By 
reducing congestion, optimizing traffic lights, and supporting 
adaptive routing, the methodology introduced in this study 
minimize fuel consumption in sustainable cities. Furthermore, 
better traffic efficiency have an effective tool at their disposal to 
model, experiment, and optimize traffic scenarios before actual 
implementation, minimizing trial-and-error methods and 
reducing infrastructural expenses. 

The new methodology surpasses the conventional models by 
overcoming their main shortcomings. In contrast to the 
conventional rule-based systems, the hybrid model is capable of 
adapting dynamically to evolve traffic patterns from real-time 
data. The GRU component extracts long-term temporal 
dependencies, and it is well-suited to deal with sequential traffic 
data and forecast future congestion trends. Concurrently, the 
CNN component learns significant spatial features from traffic 
images and sensor data to support improved pattern 
identification and anomaly detection. Through the dual-layer 
approach, the predictive model is both accurate and significantly 
robust to variability in urban traffic patterns. In addition, the use 
of digital twin technology improves the system's overall 
performance for traffic management. The digital twin is always 
updated by taking live traffic updates from IoT sensors so that 
predictions stay real-time and actionable. This ability enables 
traffic management agencies to identify the effect of proposed 
interventions and adopt best control strategies proactively 
instead of reactively. Conventional traffic models are not so 
flexible and visionary that impose inefficiencies and slow 
responses to traffic anomalies. 

The second significant benefit of the approach is scalable 
and generalizable to any city. In contrast to most current models 
extreme manual calibration and tuning to the city is needed since 
it is within the framework and can generalize to other traffic 
networks. With the use of transfer learning and federated 
learning techniques, the model can be trained on the traffic data 
of one city and directly applied to another with little need for 
retraining. This is especially important in fast-growing 
metropolitan cities and in the creation of smart cities that 
improves decision-making capacity for policymakers and urban 
planners. Conventional traffic management decisions results in 
inefficient planning of infrastructure and relief measures for 
congestion. The digital twin methodology provides an 
interactive decision-support tool for possible interventions. By 
combining machine learning forecasts with real-time 
visualizations and scenario simulations, data-driven decisions 

can be made by decision-makers. By doing so, it reduces the 
expensive infrastructure investments that might be ineffective in 
the long term and optimizes solutions to urban mobility based 
on real traffic conditions. 

Additionally, the system proposed is also aligned with the 
emerging smart cities to enhance the quality of city life. The 
ability of digital twin-based traffic management to be integrated 
with other smart city elements that serves to enhance its effect. 
For example, during an accident, the system could automatically 
reroute traffic by minimizing response time and impact on 
traffic. This type of integration is not possible for legacy traffic 
models since they lack a cross-domain compatibility. In 
addition, the system suggested supports for increasing trend 
towards developing smart cities, where several systems are 
networked to operate in conjunction with each other in a 
collaborative effort to enhance the urban lifestyle. The presence 
of digital twin-based traffic management can be integrated with 
other smart city elements only to contribute its effects. For 
instance, in case of an accident, such integration is impossible 
using traditional traffic models, which operate in a standalone 
mode without offering cross-domain interoperability. 

Globally, the study showcases a paradigm change in the 
hybrid machine learning. With its overcoming of limitations, the 
method it introduced, brings forward an in-depth, responsive, 
and flexible solution to present-day smart cities. Its ability to 
promote sustainability positions it as a seminal innovation in 
intelligent transportation systems. As cities continue to grow, 
traffic management solutions will increase, setting this study at 
the cutting edge of smart city development. 

The major key contribution are as follows: 

 Develops a real-time digital twin platform for city traffic 
flow analysis and management. 

 Utilizes machine learning and artificial intelligence 
models to predict traffic congestion as well as optimal 
urban mobility. 

 Carries real-time IoT sensor data to enhance predictive 
accuracy and performance. 

 Enhances road safety, decreases congestion, and 
increases the effectiveness of public transport systems. 

 Offers a scalable smart city planning solution that can be 
easily deployed in different urban settings. 

The rest of the section is structured as: Section II contains 
the related work and problem statement in Section III. The 
suggested methodology framework is presented in Section IV. 
The results are shown in Section V. Lastly, Section VI includes 
conclusions and future works. 

II. RELATED WORKS 

Ji et al. [13] details how urban traffic accidents cause serious 
repercussions, such as property loss, environmental 
contamination, casualties, and congestion. Estimation of 
congestion caused by accidents in spatial as well as temporal 
contexts is of vital importance in order to preclude these 
phenomena and provide interventions at the appropriate time. 
Forecasting congestion tendencies without using conventional 
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traffic models is the subject of this research that are usually time-
consuming and demanding with respect to traffic dynamics data. 
Rather, a digital twin model of the road network is created for 
monitoring traffic movement at a macro level. The method 
employs a Conv-LSTM network such that several layers of 
Conv-LSTM are concatenated in an encoding-decoding 
arrangement to learn spatial and temporal correlations. The 
experiments show that this technique performs better than 
traditional traffic models and general LSTM networks for 
prediction accuracy. By using macroscopic road network 
images, it offers a scalable and adaptable solution for urban 
traffic congestion forecasting. Nevertheless, there are 
limitations in model generalizability to different traffic 
conditions, as well as possible high-quality input data 
dependencies for accurate forecasting. Also, although the 
approach circumvents the necessity for accurate traffic 
modeling, it can still need to be optimized to support real-time 
applications effectively and respond to sudden, unexpected 
interruptions in urban road networks. 

Puri et al. [14] shows that one of the biggest issues facing 
modern cities is urban traffic congestion, which results in longer 
commutes, wasteful fuel use, environmental damage, and a 
lower standard of living. Conventional traffic control systems 
are typically unable to adjust to the dynamic and complex nature 
of transportation networks as cities' populations continue to rise. 
In order to improve urban traffic, this study presents a novel 
approach that combines digital twin technology and machine 
learning (ML) algorithms. The approach aims to accomplish 
data-driven decision-making by utilizing four machine learning 
models for traffic pattern analysis and congestion prediction. 
The accuracy and dependability of the forecasts are assessed 
using two statistical metrics: the coefficient of determination 
(R2) and mean squared error (MSE). The results shows that such 
integration provides improved traffic flow prediction than 
conventional approaches and provides a more flexible and 
effective system for urban traffic management. However, certain 
constraints exist, e.g., potential dependency on reliable real-time 
traffic data, computational cost, and limited ability to adjust 
models to rapidly evolving traffic dynamics. The accuracy of 
this approach may also vary across different city environments, 
and more research is necessary to improve scalability and 
robustness across a variety of city structures. 

Aloupogianni et al. [15] details that traffic jam remains a 
crucial problem for metropolises, requiring intelligent data-
driven approaches to be dealt with effectively. A digital twin 
(DT) architecture is presented here specifically designed for 
urban traffic management, keeping Singapore's cutting-edge 
infrastructure in view. With the integration of live weather data 
and in-road surveillance videos, the system provides constant 
monitoring of traffic conditions, which allows for real-time 
adaptive decision-making. The strategy leverages a modular 
design together with sophisticated artificial intelligence (AI) 
algorithms to optimize traffic, minimize the likelihood of 
accidents, and provide stable travel experiences irrespective of 
conditions. The performance of each component has robust 
predictive capability, mirroring the potential of the system to 
enhance urban mobility. The test results show promising levels 
of accuracy, and effectiveness will be a function of availability 
of good quality real-time data and high rates of active user 

engagement. There are some limitations to its use, such as 
inability to scale up to bigger and more complicated urban areas, 
possible computational load, and further development in user-
centric design. Moreover, the long-term effect of the system 
should be explored further to determine its long-term 
performance in the future. Future studies will emphasize 
improving adaptability and greater integration with more smart 
city infrastructures to build a more extensive and robust traffic 
management system. 

Kamal et al. [16] studies that vehicle emissions in urban 
areas greatly contribute to air pollution because the majority of 
vehicles continue to use fossil fuel despite the existence of 
hybrid and electric vehicles. Although artificial intelligence (AI) 
and automation have been considered in adaptive traffic signal 
control to lower travel time, not much work has been devoted to 
optimizing traffic signals to save CO₂ emissions and fuel. This 
research investigates the performance of an adaptive traffic 
signal control system using a digital twin (DT)-based framework 
simulating urban traffic networks and employing deep 
reinforcement learning (DRL). The multiagent deep 
deterministic policy gradient (MADDPG) algorithm is utilized 
for optimizing signal timing for minimized emissions and fuel 
usage. The system simulates multiple traffic conditions and 
control policies to enable real-time signal adaptation. A 
quantitative experiment is performed with artificial and real 
traffic data from an Amman, Jordan multi-intersection network 
at rush hours. The outcomes show that this DRL-based method 
significantly decreases emissions and fuel consumption despite 
the use of a simple reward function of stopped vehicles. 
Nonetheless, the research has some limitations, such as possible 
reliance on high-quality real-world data, complexity of training 
multiagent models, and difficulty in generalizing results to 
heterogeneous urban settings with different traffic conditions. 
Further enhancements are necessary for wider scalability and 
real-world deployment. 

Irfan, Dasgupta, and Rahman [17] details that digital twin 
(DT) technology allows for the development of virtual models 
of physical entities that update in real-time to match their real-
world counterparts, enabling real-time monitoring and 
optimization. In transportation, DT systems can enhance 
intelligent transportation systems (ITSs) by increasing safety 
and mobility. This research undertakes a critical review of DT 
applications in transportation, with specific emphasis on 
enhancing safety and mobility. A hierarchical reference 
architecture is constructed to direct the deployment of 
transportation digital twin (TDT) systems at multiple scales. The 
study also discusses key challenges in the TDT framework, such 
as those involving the physical infrastructure, communication 
gateways, and digital components for secure and efficient ITS 
operations. Future directions for the large-scale deployment of 
TDT systems in connected and automated transportation 
networks are also discussed. The review emphasizes the ability 
of DT technology to maximize transport systems through 
facilitating data-driven decision-making and enhanced 
operational efficiency. Nevertheless, constraints are present 
regarding data integration complexity, scalability in various 
urban contexts, and the high computational resources needed for 
real-time synchronization. In addition, the dynamic 
characteristics of transport networks create challenges in 
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maintaining continuous adaptability and consistency of the DT 
models over time. 

Kušić, Schumann, and Ivanjko [18] studies that the use of 
digital twins in transport systems is revolutionizing real-time 
traffic management and monitoring by developing constantly 
refreshed digital replicas of physical road networks [19]. This 
research examines the use of digital twin technology for 
motorway traffic simulation with a focus on integrating real-
time data into microscopic simulation. An actual-time 
synchronized digital twin model of the Geneva motorway (DT-
GM) is developed based on real-time traffic data streams from 
motorway traffic counters. The study applies the microscopic 
traffic simulator SUMO, where dynamic calibration is provided 
by constantly adding real traffic data into the ongoing simulation 
every minute. This ensures that DT-GM remains synchronized 
with the current traffic conditions and enables having more 
accurate and reactive traffic modeling. The results confirm that 
the approach enhances traffic control based on simulation and 
becomes a foundation for real-time predictive analytics in traffic 
control. There are, however, certain restrictions like the 
limitation of real-time synchronization on greater motorway 
networks, the computation requirement of continual data 
integration, and dependency upon high-quality and fine-grained 
traffic data. Besides, scalability continues to be a problem, as 
expanding the model to broader territories entails more 
breakthroughs in traffic pattern calibration to data processing 
power and model development. 

Nie et al. [20] studies that the Vehicular Ad-Hoc Networks 
(VANETs) play a significant role in Intelligent Transportation 
Systems (ITS) for effective transport planning and safety on 
roads. The increasing volume of transportation data, particularly 
due to disruptions such as the COVID-19 pandemic, necessitates 
advanced predictive models to effectively deal with traffic. This 
study examines the application of digital twins to Transportation 
Big Data (TBD), that is, network traffic prediction in VANETs. 
The significant problem lies in handling the very dynamic and 
fluctuating nature of network traffic. To achieve this, a 
forecasted model on Deep Q-Learning (DQN) and Generative 
Adversarial Networks (GAN) is used for network traffic feature 
extraction. DQN supports network traffic forecasting, whereas 
GAN improves sample generation to enhance the accuracy of 
prediction. The model is tested on three real traffic datasets and 
compared with two current state-of-the-art approaches. 
Experimental results indicate enhanced accuracy in measuring 
time-varying traffic patterns. Some of the current limitations 
include the computational expense of the combination of DQN 
and GAN, the need for heterogeneous and high-quality datasets, 
and the possible difficulty in learning from dynamic and 
changing traffic patterns by the model. Further work is needed 
to examine the scalability of the model and real-time 
deployment across varied VANET environments. 

Khadka et al. [21] studies the  applications of digital twins to 
monitor the performance of traffic signals to improve traffic 
congestion management using ATSPM systems. Within this 
study, the use of a high-fidelity microscopic simulation engine 
to develop simulated traffic signal events and correlated vehicle 
data is introduced. The data allow for ATSPM systems to 
calculate a range of measures of effectiveness (MOEs) to 
measure traffic signal performance. Conventionally, traffic 

signal design is based on averaged delay and stop-based 
measures, but ATSPM MOEs paint a more complete picture of 
real-world signal performance. By incorporating ATSPMs into 
a simulation loop, this approach bridges the gap between design 
and operational evaluation, allowing for improved traffic signal 
optimization before implementation. Connected vehicle data are 
also used to develop new traffic signal MOEs, further enhancing 
decision-making. A case study illustrates the potential of this 
system in identifying detector-related problems and traffic 
congestion issues. Though the methodology enhances precision 
in assessing traffic signals, computational complexity, data 
dependence, and the difficulty in standardizing ATSPM-based 
assessments in heterogeneous traffic environments are the 
constraints. Furthermore, dependence on connected vehicle data 
might restrict the application in technology-poor regions, and 
future improvements would be necessary for universal adoption. 

III. PROBLEM STATEMENT 

Urbanization and population growth have accelerated traffic 
congestion in cities, leading to longer travel times, increased fuel 
consumption, and elevated air pollution levels. Contemporary 
urban traffic is dynamic and unpredictable, and the conventional 
traffic management systems based on pre-programmed routing 
plans and fixed signal timings are not sufficient. The lack of real-
time responsiveness and predictive capability of these legacy 
systems often results in repeated bottlenecks, inefficient traffic 
flow, and suboptimal infrastructure utilization. However, recent 
advances in artificial intelligence (AI), digital twin (DT) 
platforms, and the Internet of Things (IoT) have opened up new 
possibilities for predictive traffic control and smart traffic 
monitoring. These innovations hold the promise to transform 
traffic systems from reactive to proactive, enabling real-time 
adjustment to evolving traffic conditions and data-informed 
decision-making [22]. Current AI-based traffic prediction 
models [23], however, tend to miss the intricate interaction 
between spatial and temporal traffic dependencies, resulting in 
poor predictions and untrustworthy decision-making. In 
addition, existing traffic control mechanisms are not integrated 
with real-time simulations, which hinders testing and applying 
data-driven optimization methods for smart city infrastructure 
management [24]. To overcome these shortcomings, this 
research introduces a Digital Twin-based predictive analytics 
framework that utilizes a hybrid CNN-GRU deep learning 
model to improve urban traffic flow management. With the 
amalgamation of real-time sensor data, historic traffic behavior, 
and AI-based simulations, this study focuses on creating an 
adaptive, scalable, and smart system to alleviate congestion, 
efficient traffic forecasting, and intelligent mobility planning. 
This method provides a ground-breaking way to increase the 
effectiveness of urban transportation, lessen traffic, and promote 
the sustainable development of smart cities. 

IV. DIGITAL TWIN-ENABLED CNN-GRU METHODOLOGY 

FRAMEWORK FOR URBAN TRAFFIC OPTIMIZATION 

The traffic flow optimization and predictive analytics urban 
architecture proposed uses a digital twin-based method, as 
depicted in Fig. 1. This system augments real-time traffic 
management within intelligent city infrastructure through the 
incorporation of CNNs and GRUs. The process starts with data 
collection, where traffic data is collected from sensors, cameras, 
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and IoT devices. In the second step, data pre-processing, the data 
gathered is cleaned, normalized, and formatted to eliminate 
inconsistencies and prepare it for analysis. Once pre-processed, 
the data enters the Input Layer, which is the entry point for the 
predictive model. Within the CNN layers, the Convolutional 
Layer is trained on spatial features such as patterns of traffic 
jams and usage trends of roads. The Max Pooling Layer then 
reduces dimensionality while boosting computational speed 
without losing significant information. The feature set is then 

fed into the GRU Layer, which discovers temporal dependencies 
and sequential traffic behavior to generate accurate predictions 
in the future. Finally, the data proceeds to the Final Prediction 
stage, where the optimal traffic control plans, congestion 
forecasts, and routing recommendations are decided. The CNN-
GRU hybrid model facilitates predictive decision-making and 
enabling more efficient city traffic management and building 
wiser and greener cities.

 

Fig. 1. Model workflow.

A.  Dataset Description 

48,120 hourly data from sensors positioned at four distinct 
traffic intersections make up the Kaggle Traffic Prediction 
Dataset1 [25]. Four essential characteristics are present in the 
dataset: Date Time, which stands for each recorded observation's 
timestamp; ID, a unique identifier for each entry; Vehicles, 
which indicates the number of vehicles passing through the 
junction in a given hour; Junction, which indicates the precise 
traffic junction (ranging from 1 to 4) where data was collected. 
An in-depth temporal investigation of congestion patterns is 
made possible by this dataset, which records actual traffic flow 
trends. Effective preprocessing approaches are necessary 
because some observations may be sparse or missing due to 
different junctions' differing data gathering timeframes. Using 
this dataset, the study analyzes urban traffic flow, forecasts 
trends in congestion, and improves transportation planning. The 
dataset facilitates data-driven decision-making in smart cities 
through the use of predictive analytics, allowing for real-time 
traffic signal modifications, tactics to mitigate congestion, and 
an overall improvement in the efficiency of the road network. It 
is a useful tool for creating models that support intelligent traffic 
management systems and sustainable urban transportation 
because of its practical application. 

The following summarizes some typical characteristics of 
the dataset: 

 Date Time: This feature helps study changes in traffic 
flow over time by indicating the timestamp at which the 
traffic data was recorded. 

                                                           
1 https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset 

 Junction: This allows for location-based traffic analysis 
by specifying the exact traffic intersection (1–4) where 
vehicle count data was collected. 

 Vehicles: This provides details regarding traffic 
congestion trends by indicating the number of cars that 
go through a junction within an hour. 

 ID: Each observation is given a unique ID, which 
maintains data integrity and allows for the monitoring of 
specific records within the collection. 

B. Data Preprocessing 

There are several key processes involved in the 
preprocessing of data for traffic flow prediction to ensure high-
quality input to the model. The first step in data loading and 
familiarization involves reading the dataset, examining its form, 
and checking for missing values, duplicates, and 
inconsistencies. To support efficient trend detection, the Date 
Time column is converted into the correct format for time-series 
analysis. Then, since various junctions gather data at various 
times, it is essential to handle missing and sparse data. 
Interpolation, forward or backward filling, or sparse junction 
elimination with minimum given data are ways of coping with 
missing values. Feature engineering with attribute extraction 
such as Hour of the Day, Day of the Week, Month, Season, and 
Peak Hour indicator features is employed for the improvement 
of forecast accuracy and assisting the model to extract temporal 
patterns. To ensure uniform training of the model, data 
normalization and scaling is performed through Min-Max 
Scaling or Standardization since the vehicle count varies 
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between intersections. Categorical features like Junction ID are 
one-hot encoded for better representation. Temporal 
dependencies need to be handled since the data is time-series in 
nature. Short-term and long-term patterns can be learned by the 
model to organize historical traffic data into sequential inputs. 
The data is divided into training (80%) and test (20%) sets for 
effective learning, ensuring a temporal sequence to prevent data 
leaks. The ability of the GRU + CNN hybrid model in smart city 
infrastructure management to accurately predict traffic jams and 
optimize city mobility is enhanced by the clear, organized 
dataset generated by these preprocessing processes. 

C. Function of GRU in Traffic Flow Optimization in Urban 

Environments 

GRU model in the current work is employed to excavate 
temporal dependency from traffic flow data to enable effective 
congestion prediction and optimization. It starts with input data 
preprocessing, where raw traffic data are cleansed by filling 
missing values, scaling vehicle counts, and selecting important 
temporal features like hour of day and peak-hour indicators. 
Once the data is structured in a time-series manner, ensure that 
previous traffic observations are valuable in the sense that they 
will be beneficial for giving context to future forecasts. The 
GRU model architecture is then utilized, where each time step 
processes traffic data like vehicle count and junction ID. The 
gate update in GRU manages memory of past patterns of traffic, 
while the reset gate manages the impact of past observations on 
the current state, making the model only take note of the most 
significant patterns. The state is dynamically updated, adapting 
to past changes in traffic. For improved predictive accuracy, 
GRU outputs that allow the model to take into account both 
sequential variations and spatial traffic movements across 
several junctions. The model finally provides traffic flow 
predictions, enabling real-time congestion management and 
optimization in a digital twin environment for smart city 
infrastructure management. 

 The update gate manages the retention of previous 
information by deciding how much of the past hidden state 
should contribute to the current state. It keeps significant traffic 
patterns, like peak hours or congestion trends, intact while 
eliminating irrelevant fluctuations, enhancing the model's long-
term prediction capabilities as represented in Eq. (1): 

𝑍𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)  (1) 

𝑍𝑡  update gate at time 𝑡, 𝑥𝑡  input traffic data. The hidden 
state from the previous time step is represented by ℎ𝑡−1. 𝑊𝑧, 𝑈𝑧, 
are Weight matrices, 𝑏𝑧  bias term. 𝜎  Sigmoid function of 
activation. 

The reset gate controls the degree of forgetting old 
information while updating the hidden state. This enables the 
model to discard old traffic patterns, which keeps it responsive 
to unexpected changes like accidents or road closures. Through 
the selective forgetting of previous data, the GRU remains agile 
in changing traffic conditions as shown in Eq. (2): 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟  (2) 

𝑟𝑡  reset gate at time t, 𝑊𝑟 , 𝑈𝑟  are weight matrices, and 𝑏𝑟 
bias term. 

The hidden state update integrates the contributions of 
previous information and newly computed data through the 
update gate. It enables the model to capture intricate sequential 
dependencies in traffic flow. Eq. (3) represents the candidate 
activation, controlled by the reset gate, fine-tunes the prediction 
by selectively adding historical traffic conditions, enhancing 
forecasting accuracy. 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑍𝑡 ⊙ ℎ𝑡  ~  (3) 

ℎ𝑡 updated hidden state, ⊙ Element-wise multiplication. 

D. CNN for Traffic Flow Optimization in Urban 

Environments 

CNNs are crucial to this research by extracting spatial 
features from urban traffic data, which allows for data-driven 
optimization of traffic flow. CNNs are uniquely suited to 
identify local dependencies and structural patterns from large 
datasets and are therefore optimally suited to analyze traffic 
congestion, vehicle density, and road usage patterns. By filtering 
traffic data acquired from different junctions, CNNs are capable 
of identifying trends like peak congestion, busy points, and 
variations by season. In the research, CNNs are used to 
understand spatial correlations in traffic data, representing 
variations between and across different junctions and intervals. 

Convolutional layers impose filters to determine significant 
features like road type, vehicle throughput, and level of 
congestion, giving a holistic understanding of the behavior of 
traffic. These observations are added to real-time monitoring 
and predictive analytics, enabling city planners to make 
informed traffic management, route optimization, and 
infrastructure development decisions. In a digital twin-based 
smart city architecture, CNNs enable the simulation and analysis 
of traffic scenarios, providing proactive congestion mitigation 
solutions. Using CNNs, this work endeavors to construct an 
exceedingly precise, artificial intelligence-based traffic 
prediction system that promotes city mobility, mitigates jams, 
and is suitable for smart sustainable city activities. The 
convolution operation is extracting spatial patterns from the 
traffic data matrix, such as trends of congestion and peak-hour 
patterns as given in Eq. (4): 

𝑓𝑖𝑗 = ∑ ∑ 𝑊𝑚𝑛 .𝑛 𝑥(𝑖+𝑚)(𝑗+𝑛) + 𝑏𝑚                  (4) 

where, 𝑓𝑖𝑗  output feature map at position 𝑖𝑗 , 𝑊𝑚𝑛  is the 

convolutional filter, 𝑥(𝑖+𝑚)(𝑗+𝑛)is the input traffic data matrix 

(vehicle count, junction flow), 𝑏 bias term. The non-linearity is 
provided by the ReLU activation function, where only useful 
spatial patterns are passed to learning as given in Eq. (5): 

𝐴(𝑥) = max (0, 𝑥)    (5) 

𝐴(𝑥) activated feature map, 𝑥 input pixel or feature value. 
Pooling decreases the dimensionality of the feature map without 
losing the necessary traffic flow information as given in Eq. (6): 

𝑃𝑖𝑗 = (𝑓(𝑖+𝑚)(𝑗+𝑛))
𝑚,𝑛

𝑚𝑎𝑥
        (6) 

𝑃𝑖𝑗  pooled feature at position, (𝑓(𝑖+𝑚)(𝑗+𝑛)) feature values 

within the pooling window. The definition of the convolutional 
operation is given in Eq. (7): 
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𝑓𝑖𝑗 = ∑ ∑ 𝑊𝑚𝑛 . 𝑥(𝑖+𝑚)(𝑗+𝑛)𝑚   (7) 

The hybrid CNN-GRU approach of this research takes the 
best of both to deliver accurate and efficient urban traffic flow 
prediction. CNNs are employed to extract spatial features from 
traffic data, which detect congestion patterns, peak-hour trends, 
and variations at multiple junctions. The convolutional layers 
facilitate the evaluation of localized dependencies, including 
road conditions and vehicle density, that are crucial to 

forecasting future traffic behavior. After extracting spatial 
patterns, sequentially of traffic data is retained with the use of 
GRUs, which are particularly suited to handling time-series 
information. GRUs maintain necessary temporal dependencies 
without storing irrelevant information, which helps the model to 
learn from past trends in vehicle flow. GRU's update and reset 
gates manage the effect of previous traffic conditions 
dynamically, which facilitates real-time and future traffic 
prediction. Fig. 2 represents the CNN + GRU Architecture. 

 

Fig. 2. CNN + GRU architecture. 

By combining CNN and GRU under a Digital Twin 
platform, this hybrid model guarantees precise traffic prediction, 
adaptive congestion control, and intelligent city optimization. 
Integrating spatial and temporal learning, policymakers and 
planners can develop fact-based traffic jam solutions, smart 
signal control, and optimal city mobility plans to make cities 
greener and more intelligent. 

The CNN feature extraction equation identifies spatial 
relationships in traffic information through convolutional filters. 
It detects localized patterns, for instance, traffic congestion at a 
given intersection, connectivity of the road network, and 
changes in vehicle density. Integrating CNN with GRU allows 
the model to learn spatial as well as temporal relationships and 
thus improve forecasting accuracy in traffic management in 
cities. 

V. RESULT AND DISCUSSION 

The CNN-GRU hybrid model was able to effectively capture 
both spatial and temporal patterns in urban traffic data, showing 
good performance in traffic flow forecasting. GRU layers 
embodied sequential dependencies to enhance the accuracy of 
time-series prediction, whereas CNN layers identified trends in 
traffic and vehicle density over intersections. High correlation 
with real traffic observations, stable convergence, and minimal 
overfitting were all exhibited by the model. Feature engineering, 

with the addition of seasonal and time-of-day features, further 
enhanced forecast accuracy. The generalizability and stability of 
the model are assured by its low error rates and consistent 
performance across various data scenarios. These results show 
the potential of the model for real-time infrastructure planning 
and traffic control in smart cities, and the power of AI-based 
predictive analytics for green urban mobility. 

A. Performance Evaluation 

The Training versus Validation Accuracy of the suggested 
model for 20 epochs is given in the Fig. 3. The training accuracy 
and validation accuracy both are increasing steadily, reflecting 
effective learning. The training accuracy begins at 
approximately 70%, while validation accuracy is slightly less at 
the beginning. Both curves rise steeply as the epochs advance, 
with the difference between them remaining very small. By the 
10th epoch, the model is more than 85% accurate with a good 
generalization capability. The trend is upward, and by the 
subsequent epochs, both training and validation accuracy are 
nearing 95%, which is indicative of convergence. It is 
noteworthy here that the minimal and consistent gap between 
the two curves indicates that there is little overfitting, i.e., the 
model can generalize quite well to new data. The even rise curve 
informs us that the model's learning process is flat, with no 
sudden drops or rises. It suggests that the chosen CNN+GRU 
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architecture, optimization techniques, and hyperparameters all 
contribute efficiently towards model performance. The tight 
overlapping of training and validation curves guarantees that the 
model is neither underfitting nor overfitting and thus appropriate 

for practical use. Overall, the plot demonstrates the efficacy of 
the model in comprehending complex temporal relationships 
and provides it as a strong candidate for time-series prediction 
tasks.

 
Fig. 3. Model accuracy graph.

Looking at the learning trajectory of the model, the Fig. 4 
plot illustrates Training vs. Validation Loss across 20 epochs. 
Good learning and optimization are reflected in the declining 
training loss and validation loss over epochs. There is a 
temporary mismatch between training and generalization 
performance, as can be seen from the training loss starting at 
around 1.2 and the validation loss being slightly higher. Both 
losses decrease step by step as training continues, indicating that 
the model is indeed reducing errors. The difference between 
training and validation loss is quite minimal at about the tenth 
epoch, showing that the model is generalizing very well without 

overfitting. The last epoch indicates appropriate convergence 
because the validation loss settles at 0.4 and the training loss 
falls to nearly 0.3. The downward trend of both curves 
throughout reinforces the idea that the model is effectively 
learning the underlying data patterns. The slight divergence of 
training and validation loss at the end indicates that there is 
negligible overfitting, with solid predictive capability on unseen 
data. In general, this plot confirms the efficiency of the 
CNN+GRU hybrid model in preserving temporal relationships 
and being resilient, and therefore it is a good option for time-
series prediction and other sequential data tasks. 

 
Fig. 4. Model loss graph.



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

435 | P a g e  

www.ijacsa.thesai.org 

The heatmap in the Fig. 5 depicts the performance measures 
of various models, namely RNN, ARIMA, LSTM, RF, and the 
developed CNN+GRU model. It offers a relative comparison of 
four primary performance metrics: Accuracy, Precision, Recall, 
and F1 Score. The color spectrum from blue to red corresponds 
to relative performance, where darker red corresponds to greater 
scores and blue reflects low values. The CNN+GRU model has 
the best performance on all measures, with an accuracy of 
94.5%, precision of 93.8%, recall of 94.2%, and an F1 score of 
94.0%. The RF model comes in second, while LSTM, ARIMA, 
and RNN have increasingly worse performance. The RNN 

model has the worst performance, with all its scores still in the 
blue range, indicating its inferior ability to manage intricate 
time-series dependencies. This visualization clearly shows the 
advantage of the hybrid architecture, which enjoys the spatial 
feature extraction capability of CNN and the efficient capture of 
temporal dependencies by GRU. The heatmap identifies the 
strong predictive power of the model and justifies its choice for 
traffic forecasting applications. The distinct performance 
difference between the models validates the strength of 
combining convolutional layers with recurrent structures in 
time-series analysis. 

 

Fig. 5. Performance metrics heatmap.

Fig. 6 plot shows the performance trends of various models 
on four important evaluation metrics. Different markers and line 
styles are used to represent each metric so that their varying 
performance can be compared easily. From the graph, a 
consistent upward trend can be seen in all the metrics, showing 
that more complex architectures yield better performance. The 
proposed CNN+GRU model performs the best among all, 
obtaining the highest scores in all cases. The RF and LSTM 
models also perform well, with ARIMA and RNN trailing 
behind, especially with respect to accuracy and recall. The RNN 
model, being the most basic, performs the poorest, showcasing 
its inability to model intricate temporal dependencies. The better 
performance of the CNN+GRU model is due to the combination 
of convolutional layers for feature extraction and GRU's 
efficient handling of sequential dependencies. The narrow gaps 
between precision, recall, and F1 scores between models reflect 
balanced performance without substantial trade-offs. Generally, 
this visualization clearly depicts the increasing improvement in 
performance with the introduction of more advanced 
architectures, highlighting the effectiveness of deep learning, 
especially hybrid models, in time-series forecasting tasks. 

B. Performance Evaluation of Proposed Framework  

Table I illustrates the performance of the hybrid CNN-GRU 
model. It was compared with other dominant approaches, i.e., 

RNN, ARIMA, LSTM, and RF, on the basis of key parameters 
such as accuracy, precision, recall, and F1-score. The outcomes 
confirm that the model proposed did very well on all the 
parameters, suggesting its effectiveness in forecasting traffic 
flow. At 94.5% accuracy, the CNN-GRU model beat 
conventional time-series models such as ARIMA (88.9%) and 
recurrent neural models such as RNN (85.3%), indicating its 
better capacity in working with spatiotemporal dependencies of 
traffic data. Even lower than but getting closer to RF (92.1%) 
and LSTM (91.7%), the hybrid approach offered significant 
enhancement, confirming the strength of the use of 
convolutional feature extraction with sequential learning. The 
accuracy of 93.8% and recall of 94.2% demonstrate that the 
model performs well on not making an incorrect prediction in 
order to result in reliable congestion prediction. In addition, the 
94.0% F1-score indicates the harmony between the precision 
and recall of the model, guaranteeing its trustworthiness for real-
world application. The above findings confirm the success of the 
CNN-GRU hybrid model in traffic flow optimization, reflecting 
its ability to contribute to city mobility planning and 
decongestion. The research highlights the capabilities of deep 
learning-based predictive analytics in informing smart city 
infrastructure management and smart traffic management. Fig. 
7 is a performance graph of the model. 
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Fig. 6. Evaluation metrics line graph. 

TABLE I.  EVALUATION OF PROPOSED PERFORMANCE 

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

RNN 85.3 84.5 84.9 84.7 

ARIMA 88.9 87.6 88.1 87.8 

LSTM 91.7 91.1 91.3 91.2 

RF 92.1 91.4 91.9 91.6 

Proposed CNN+GRU 94.5 93.8 94.2 94.0 

 

Fig. 7. Performance metrics of existing models with proposed framework.
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C. Discussion 

The hybrid CNN-GRU model was able to effectively capture 
the spatial and temporal dynamics of real-world traffic datasets 
with strong abilities in accurately predicting traffic flow. The 
GRU layers were able to model temporal dependencies to 
account for time-based traffic changes, while the CNN layers 
were capable of detecting spatial traffic features such as road 
usage trends and congestion hotspots. The integration of the 
system with IoT sensors, connected vehicles, and real-time 
surveillance feeds increases its real-time adaptability even more 
and ensures that the digital twin remains responsive and current 
at all times. To reduce delays and enhance road safety, this 
feature supports proactive intervention methods such as 
rerouting, dynamic signal adjustments, and emergency service 
prioritization. The model is also highly scalable, as it is 
necessary for smart cities aiming for homogeneous, citywide 
deployments, since it can generalize to numerous metropolitan 
settings with minimal reconfiguration. The simulation capability 
of the digital twin is cost- and time-saving as it allows authorities 
to test various traffic conditions. Furthermore, it provides an 
interactive interface, where policymakers can view the 
outcomes of traffic measures, which encourages wiser and 
better-informed decisions on city mobility. Besides solving 
current inefficiencies, the model sets the stage for further 
advancements like real-time mechanisms for citizen feedback, 
environmental sensing, and interfacing with multimodal 
transportation systems. The integration of CNN-GRU and 
digital twin is outlined in the discussion as a robust, intelligent, 
and future-oriented solution that enhances the vision for smart, 
sustainable urban development. It enhances the efficiency, 
safety, and convenience of contemporary cities by transforming 
traffic management from a reactive to a predictive and 
preventive mode. The data quality and availability is inaccurate 
and incomplete and can compromise model performance. It has 
high complexity and computational demand for advanced 
algorithms. The initial investment and maintenance cost is high. 
Difficulty to scale twins without performance bottlenecks. 
Exposing location increases the risk of cyber-attack. Integration 
and interoperability challenges is difficult due to lack of 
standards. Some models may not handle complex real world 
uncertainties. Most digital twin systems lack long term 
validation in real environment. 

VI. CONCLUSION AND FUTURE WORKS 

The research employs hybrid CNN-GRU deep learning 
model incorporated into a digital twin framework to introduce a 
robust and new approach to optimizing urban traffic flow. The 
model effectively integrates the strengths of Gated Recurrent 
Units (GRUs) for modeling temporal dependency and 
Convolutional Neural Networks (CNNs) for spatial feature 
extraction, resulting in an effective spatiotemporal learning 
system. In comparison to conventional machine learning and 
time-series forecasting methods, the predictive capabilities of 
the model were better when it was extensively tested using 
critical performance indicators, such as accuracy, precision, 
recall, and F1-score, and trained on actual traffic data. The 
technology offers city planners and traffic management agencies 
a powerful tool by detecting significant traffic patterns, 
including peak hours, congestion points, and flow dynamics at 
metropolitan intersections. By enabling real-time monitoring, 

scenario modeling, and proactive decision-making—critical for 
the development of flexible and sustainable smart city 
infrastructures—the incorporation of digital twin technology 
greatly enhances the usefulness of the model. 

Future enhancements could integrate multi-source data 
inputs, such as weather, social event dynamics, and GPS-based 
mobility data, into the model to increase the model's contextual 
knowledge and improve forecasting accuracy. Additionally, 
adding advanced processes like Transformer architecture and 
attention layers might significantly enhance the model's ability 
to interpret long-range relations and handle problematic traffic 
scenarios. In addition, the scalability and utility of the model 
would be validated through real-world implementation in smart 
cities. The system would enable automated traffic management, 
smart rerouting, and adaptive signal regulation through 
integration with real-time urban infrastructure, enabling 
intelligent, time-saving, and environmentally sustainable urban 
mobility solutions. The foundation is created for future traffic 
systems to be responsive, scalable, predictive, and in compliance 
with the tenets of smart city living by this research. 
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