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Abstract—A linear correction model based on joint 

independent information is proposed to optimize the statistical 

inference performance in high-dimensional data and small sample 

scenarios by integrating Fiducial inference and Bayesian posterior 

prediction methods. The model utilizes multi-source data features 

to construct a joint independent information framework, 

combined with an information domain dynamic correction 

mechanism, significantly improving parameter estimation 

efficiency and confidence interval coverage. Numerical simulation 

shows that when the sample size is 30, the posterior prediction 

method has a coverage rate of 0.927, approaching 95% of the 

theoretical value, and the coverage probability approaches the 

ideal level with increasing sample size. Compared with traditional 

methods, the model exhibits stronger adaptability and stability in 

high-dimensional noise covariance and dynamic data streams, 

providing an efficient and robust theoretical tool for statistical 

inference in complex data environments. 
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I. INTRODUCTION 

Accurate analysis and interpretation of data are crucial in 
numerous scientific research fields and practical production and 
life scenarios. Statistical inference, as one of the core 
components of data analysis, aims to infer the characteristics and 
patterns of the population through the study of sample data, 
thereby providing reliable basis for decision-making [1, 2]. 
However, the actual collected data is often affected by various 
factors, resulting in a certain degree of error and bias, which 
poses a challenge to the accuracy of statistical inference. The 
linear correction model, as an important data processing tool, 
plays a crucial role in solving data errors and improving the 
reliability of statistical inference. It is based on the assumption 
of linear relationships, and by appropriately transforming and 
adjusting the data, it can effectively correct systematic biases in 
the data, making statistical inference results more realistic [3]. 
From a theoretical development perspective, the research on 
linear correction models has undergone multiple stages of 
evolution. Early linear correction models were relatively simple, 
but with the continuous advancement of mathematical theory 
and computational techniques, the complexity and adaptability 
of the models have been significantly improved, enabling them 
to handle more complex data structures and error patterns [4, 5]. 
Nowadays, linear correction models have been widely applied 
in many fields such as medicine, economics, environmental 
science, engineering technology, etc. In the medical field, linear 
correction of Magnetic Resonance Imaging signals can 
eliminate device measurement errors and improve the accuracy 

of clinical diagnostic data. In the field of economics, market 
forecasting algorithms correct model biases and enhance the 
reliability of macroeconomic trend analysis. In the field of 
environmental science, sensor data from air quality monitoring 
networks is dynamically linearly corrected to reduce the 
interference of systematic errors on pollution trend analysis. In 
the field of engineering technology, linear models significantly 
reduce the computational burden caused by high-frequency 
updates in real-time satellite clock calibration. In the field of 
artificial intelligence, high-dimensional sensor data from 
Internet of Things devices is suppressed by dynamic calibration 
models to ensure real-time data reliability. With the explosive 
growth of data volume and the increasing complexity of data 
types, the stability and efficiency of linear correction models in 
high-dimensional data environments have decreased. Therefore, 
to construct a more efficient and stable linear correction model 
and improve the statistical inference ability of the model in small 
sample situations, the theoretical system of the linear correction 
model is systematically reviewed, and a linear correction model 
based on joint independent information is constructed to 
statistically infer the independent variables in the data prediction 
model. 

When dealing with high-dimensional data and small sample 
scenarios, traditional methods assume a single data source or 
fixed error covariance, making it difficult to effectively integrate 
heterogeneous data from multiple sources, resulting in low 
parameter estimation efficiency and significant confidence 
interval coverage bias. In response to the above issues, this study 
aims to construct a joint independent information-driven linear 
correction model, which integrates Fiducial inference and 
Bayesian posterior prediction methods to achieve the following 
goals: improve statistical inference efficiency under high-
dimensional noise covariance, and solve the problem of 
insufficient stability of traditional methods in complex data 
structures. The research results can provide efficient and robust 
statistical inference tools for fields such as medical image 
correction, environmental monitoring, and industrial Internet of 
Things, promoting the theoretical deepening and application 
expansion of linear correction models in data science. 

The study innovatively proposes a linear correction model 
based on jointly independent information, with its primary 
advantage lying in the integration of Fiducial inference and 
Bayesian methods to resolve the issues of low efficiency and 
significant coverage bias in confidence interval estimation for 
traditional models under high-dimensional data and small-
sample scenarios. The core contributions include constructing a 
joint independent information framework to integrate multi-
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source data features, significantly enhancing parameter 
estimation efficiency. Technical Integration: Inverse parameter 
distribution analysis is combined with Bayesian posterior 
predictive correction to optimize confidence interval coverage 
through Fiducial inference. Adaptability Enhancement: A 
dynamic information domain correction mechanism is 
introduced to improve the model's adaptability to complex data 
structures, thus providing an efficient and stable statistical 
inference tool for high-dimensional environments. 

The main structure of the study is divided into five sections: 
Section II is a review of the current research status of linear 
correction models. Section III is the estimation method for the 
parameter interval of the linear correction model. Section IV is 
the numerical simulation analysis of model parameter interval 
estimation. Section V details the discussion. Section VI is a 
summary of the research content. 

II. RELATED WORKS 

The linear correction model is mainly used to eliminate 
systematic errors or biases, thereby improving the accuracy and 
reliability of data. Zhang R et al. proposed a new mathematical 
model for correcting the contact and separation conditions to 
address the inaccuracy of classical piecewise linear models in 
describing the dynamic behavior of mechanical systems with 
gaps. The results showed that the new model explained the 
premature separation and contact hysteresis phenomena of the 
primary system, and its contact point, separation point, and 
amplitude frequency response were significantly different from 
those of the classical model [6]. Sun T et al. proposed a method 
for calculating asymptotic bias and developing bias correction 
to address the issue of measurement error impact on matrix data 
in generalized linear models. The results showed that this 
method effectively addressed the impact of measurement errors, 
and its statistical properties have been validated through 
synthesis and analysis of real datasets [7]. Li H et al. proposed 
an improved real-time service method using extrapolation 
algorithms and linear models to address the computational 
burden and timeliness challenges caused by frequent updates in 
real-time satellite clock calibration. The results showed that a 
satellite clock correction sequence with a one-hour arc length 
was most suitable for fitting the Lauch-Dong-Streebel linear 
model [8]. ElHorbaty Y S et al. proposed a permutation test 
method using analysis of variance to test for zero variance 
components in generalized linear models, which only requires 
fitting the zero model. The results showed that, through Monte 
Carlo simulation verification, the new test had a correct Class I 
error rate and was superior to existing bootstrap score tests [9]. 
Maksaei N et al. proposed a local influence method based on 
correction score function and Ridge estimation to evaluate the 
impact of small data disturbances in linear mixed measurement 
error models. The results showed that simulation studies and real 
data applications demonstrated that this method could 
effectively identify influential observations and demonstrate 
good diagnostic performance [10]. 

Wang P et al. proposed a magnetic structure coupling 
correction model based on classical axial vibration model and 
image method to investigate the influence of magnetic structure 
coupling on winding short circuit during transformer axial 
vibration process. The results showed that compared with the 

classical model, the vibration amplitude increment of the 
magnetic structure coupling correction model was smaller [11]. 
Gibiansky et al. proposed a bivalent binding model considering 
a 2:1 stoichiometric ratio to address the issue of neglecting 
double binding sites in monoclonal antibody pharmacokinetic 
models, and studied its effects through simulation. The results 
showed that the unit price model could not accurately describe 
the data of the divalent model, and a model with correct 
stoichiometric assumptions need to be used [12]. Emami H et al. 
proposed diagnostic measures based on case deletion, mean shift 
outlier model, and corrected likelihood to address the issue of 
identifying influential observations in some linear models. The 
results showed that both manual examples and real data 
examples validated the performance of these methods, 
demonstrating their effectiveness in identifying potential 
outliers [13]. Chang H et al. proposed an accurate closed form 
bias correction method to address the bias issue of linear 
regression estimators in randomized controlled trials pointed out 
by Freedman. The results showed that the estimator after bias 
correction had the same limit distribution as the uncorrected 
estimator [14]. Li L et al. proposed a direct standardization 
algorithm for transfer component analysis that combines 
nonlinear and linear correction to address the issue of 
insufficient prediction accuracy caused by consistency between 
near-infrared spectrometers. The experimental results showed 
that the direct standardization algorithm of transfer component 
analysis was superior to traditional methods on public datasets, 
significantly improving the model transmission performance 
[15]. 

The linear correction model, as an important statistical tool, 
has demonstrated strong application potential in multiple fields. 
In recent years, with the development of methods such as 
dynamic correction, high-dimensional data correction, and 
robust correction, significant progress has been made in the 
research of linear correction models. However, linear correction 
models still have low processing efficiency and noise covariance 
issues in high-dimensional data processing. Therefore, the study 
proposes to construct a univariate linear correction model and 
adjust its confidence interval to improve statistical inference 
performance. 

III. METHODS AND MATERIALS 

A. Linear Correction Model Based on Fiducial Inference 

The core of a linear correction model is to establish a linear 
relationship between input variables and output variables. When 
using a single variable, its general expression is shown in Eq. 
(1): 

i iy x b  
                                     (1) 

In Eq. (1), iy  represents the observation value to be 

corrected;   represents the input variable;   represents the 

vector of correction coefficients to be estimated;   stands for 

random error term. The random error term of offline calibration 
models is usually assumed to follow a normal distribution with 
a mean of 0. According to different application scenarios, the 
univariate linear correction model can be adjusted to 
multivariate joint correction, dynamic linear correction, and 
linear correction with errors [16]. If the calibration data for the 
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target to be calibrated comes from different experimental data, 
it is necessary to consider the impact of joint independent 
information on the linear calibration model. The research 
assumes that there is a set of data from different experiments 
with different variances, which satisfies the calibration model as 
shown in Eq. (2). 

, 1,2, , ; 1,1,2, ,ij i i j ijy a b x i k j n    
          (2) 

In Eq. (2), k  represents the number of data sources; n  

represents the number of independent response variables; jx  

represents the actual value of the j th unit; ijy  represents the 

measurement values related to 
jx  obtained from the i th 

experimental plan; 
ia  and 

ib  represent unknown parameters. 

Corresponding to the uncorrected observations from different 
sources to an explanatory variable, the model also conforms to 
the predictive model shown in Eq. (3) [17]. 

0 0 , 1,2, ,i i i iy a b i k    
                    (3) 

In Eq. (3),   represents the explanatory variable of the 

unknown value. The random term errors in both the calibration 
model and the prediction model follow a normal distribution 
with a mean of 0, and the random error terms of the two models 
are independent of each other. The univariate linear correction 
model based on joint independent information can estimate   

based on the response variables in Eq. (2) and Eq. (3). The 
general steps of the linear correction model are shown in Fig. 1 
[18, 19]. 

In the linear correction model based on joint independent 
information in Fig. 1, the estimation efficiency of the correction 
coefficient to be estimated is relatively low. Fiducial inference 
is a statistical inference method that attempts to provide a 
different approach to dealing with uncertainty than the 
frequency school and Bayesian school. It can effectively 
improve the estimation efficiency and prediction accuracy of 
linear correction models for estimating parameters. Therefore, 
the study proposes using Fiducial inference to improve the joint 
independent information linear correction model. The core of 
Fiducial inference lies in determining the distribution of 
parameters through reverse data analysis, rather than directly 
estimating parameters based on sample data. The application 
steps of Fiducial inference are shown in Fig. 2 [20, 21]. 

As shown in Fig. 2, when applying Fiducial inference, it is 
necessary to first set up the model, and a linear correction model 
can be directly used here. After determining the model, 
parameter inversion is performed and a Fiducial distribution is 
constructed. Subsequently, the Fiducial distribution is used to 
calculate the confidence interval of the estimated parameter, 
adjust the predicted value, and perform prediction correction 
[22]. Fiducial inference assumes that there is a known random 
variable distributed in the random error space, and the function 
of parameters from   to   satisfies the relationship shown 

in Eq. (4). 

 ,dX h E
                                (4) 
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Fig. 1. Building the steps of the linear correction model. 
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Fig. 2. The Application steps of Fiducial inference. 
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In Eq. (4),   represents the parameter; E  represents known 

random variables. If all parameters are included in   and any 

x  , e  ,  ,x h e  has a unique solution  x e  in the 

solution space, the distribution of  x E  can be called   

distribution, and the distribution of   x E   can be called 

     distribution. According to the above derivation, the 

Fiducial distribution of the parameters of the linear correction 
model is shown in Eq. (5): 

     Prx xF E    
                          (5) 

In Eq. (5),  xF   is in the interval [0, 1], and  xF   is non-

decreasing with respect to  . At this point, the Fiducial interval 

of the parameter can be calculated. For any number   in the [0, 

1] interval, the 1- Fiducial lower boundary of   is shown in 

Eq. (6): 

  sup : xx F


   


 
                          (6) 

In a linear correction model, a function  ; ,R X x   is 

defined. X  represents a random variable,   represents a 

parameter that is related to the interest and dislike parameters, 
and x  represents the observed value of the random variable x . 

The distribution of the random variable X  is related to the 

parameter  . Function  ; ,R X x   satisfies two basic 

conditions. Firstly, the distribution of the function is 

independent of the parameter  ,   . Secondly, the observed 

values of this function have a low correlation with the aversion 

parameter. The function  ; ,R X x   is the generalized pivot 

quantity and the subset of the sample space of the function 
satisfies Eq. (7): 

  ; , 1 ,0 1rP R X x C      
                (7) 

In Eq. (7), rC  represents a subset of the sample space of the 

function. According to Eq. (7), the subset of parameter space 
satisfies Eq. (8): 

    ; ,c rr R x x C    
                 (8) 

Eq. (8) is the generalized confidence interval of the interest 
parameter. The confidence interval will have an impact on the 
linear correction results, and the linear correction problem can 
be transformed into a G-H problem. In the G-H problem, the 
confidence coefficient of the bounded confidence interval is 0, 
and the correction of the confidence interval is based on the 

models  ,i iy x  and 0y . Firstly, it is necessary to calculate and 

y , as shown in Eq. (9): 

1

1
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1
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


                                (9) 

The least squares estimation of 
0b  and 

1b  are represented by 

0b̂  and 1b̂ , and the calculation of 
0b̂  and 1b̂  is shown in Eq. (10): 
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


                          (10) 

Research makes the hypothesis shown in Eq. (11): 

 
2

13
1

n

i

i

x x

x
n

 



 




                       (11) 

According to Eq. (11), it is assumed that as n  approaches 

infinity, 

 
2

1

1

n

i

i

x x

n








 also tends to a constant. At this point, the 

information domain is introduced, as shown in Eq. (12):  

 1 :
nB nx B    

                      (12) 

In Eq. (12),  nB o n
. 

B. Confidence Interval Correction and Parameter Interval 

Estimation of Linear Correction Model 

After establishing the linear correction model, it is necessary 
to revise its confidence interval and estimate the parameter 
interval. When performing confidence interval correction on a 
linear calibration model, it is necessary to first provide the 
generalized confidence interval of the linear calibration model. 
For the data in the linear correction model, it is necessary to first 

calculate statistics such as iy , x , xxS , and 
2

iS , and use the 

least squares method to estimate ˆia  and ˆib . Based on the 

properties of the model, Eq. (13) can be obtained [23]: 

{
𝑦𝑖𝑜 − 𝑦𝑖̅: 𝑁 (𝑏𝑖(𝜃 − 𝑥̿), (1 +

1

𝑛
)𝜎𝑖

2)

𝑏̂: 𝑁𝑘 (𝑏,
∑  

𝑆𝑥𝑥
) ,

𝑆𝑖
2

𝜎𝑖
2 : 𝑥2(𝑛 − 2)

               (13) 

By using variable transformation, and 1 xxb b S , 

 
1

1
1 xx

x

S
n







 
 

 

 can obtain Eq. (14), 
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 


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In Eq. (14),   represents the disliked parameter in 

generalized p-value calculation, and the elements in 

𝐸1, 𝐸2: 𝑁𝑘(0, 𝐼𝑘) and 
3E  satisfy the conditions shown in Eq. (15): 

𝑒𝑖𝑖
2 ∶  𝑥2(𝑛 − 2)                           (15) 

All elements in 
3E  are independent of each other, and based 

on this, a generalized pivot quantity  1 1; , , ,R Y y b   can be 

constructed. The construction steps of the generalized pivot 
quantity are shown in Fig. 3 [24]. 
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Fig. 3. Construction steps of generalized pivot quantity. 

After constructing the generalized pivot quantity, the 
generalized confidence interval of the model can be determined. 

It assumes that ˆ
LR  and ˆ

UR  are the 100 %
2

a
 quantile and 

100 1 %
2

a 
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 
 quantile of the generalized pivot distribution, 

respectively, then Eq. (16) can be obtained: 

1 1
ˆ ˆ( ( ; , , , ) ) 1L UP R R Y y b R a                 (16) 

According to Eq. (16),    ˆ ˆ,L UG Y R R  is the  100 1 a  

generalized confidence interval of the interest parameter  . 

Monte Carlo simulation is a computational method based on 
probability and statistics theory, also known as statistical 
simulation method. Its core is to use a large number of random 
numbers for simulation experiments, and the generalized 
confidence interval of the interest parameter   can be obtained 

using this method. 1x , 1y , and sI  are calculated for a given set 

of data 
1 2( , , , )nx x x  and 

1 2 0( , , , , )ny y y y y . For 

1,2, ,i k , Eq. (17) can be generated: 

2 2

1 2~ (0, ), ~ (0, ), ~ ( 2)k k j k k jjE N I E N I e n 
      (17) 

By calculating the generalized pivot quantity, the 

generalized confidence interval of 
1  can be obtained. The 

modified generalized confidence interval is shown in Eq. (18): 

      ˆ ˆmax , min ,L n U nCG Y R x B R x B  
       (18) 

In Eq. (18), 
nB  represents information domain related 

parameters that satisfy | | nx B   's adjustable correction 

interval for values. In summary, when obtaining the generalized 
confidence interval of a linear correction model and correcting 
it, the relevant statistics and parameter estimates are first 
calculated based on the model data, and the generalized pivot 
quantity is constructed through variable transformation. Due to 
the difficulty in obtaining its distribution, Monte Carlo 
simulation is used to determine the generalized confidence 
interval by generating random numbers for a specific 
distribution multiple times. To optimize the performance of the 
confidence interval, the information domain is introduced for 
correction. The modified generalized confidence interval is 
obtained by taking the maximum value of the range related to 
the original generalized confidence interval and the information 
domain. After obtaining and correcting the generalized 
confidence interval, it is necessary to modify the post confidence 
interval of the linear correction model. The determination of 
prior distribution requires the use of Fisher information matrix 

to obtain the Jeffreys priors of a , b , and 
1

  in the univariate 

linear correction model with joint independent information, as 
shown in Eq. (19): 

11 1

2( , , ) | |  
 

                         (19) 

Based on the linear correction model, an expression for the 
prior distribution is derived, which in turn leads to the posterior 

distribution of a  given b  and i , and the posterior distribution 

of b 's and 
1

i


 given
1

i


. On this basis, the posterior predictive 

distribution of  1,2, , 1rep

iY i n   is obtained. When b  and 

  are known, the least squares estimation of the interest 
parameter   can be obtained. When   and   are unknown, 

the corresponding estimation values are introduced to ̂ , and a 

generalized pivot quantity is constructed. Due to the difficulty 
in obtaining the distribution of pivot quantities, numerical 
Monte Carlo simulations are used to obtain the confidence 

interval for ̂ . Its confidence interval is adjusted based on the 

information domain. When constructing a posterior prediction 
distribution, it is necessary to use the Fisher information matrix 
to determine the prior of the relevant parameters. Parameter 
posterior prediction distribution is derived based on prior 

knowledge. Then, based on b  and whether it is known or not, 

an estimated value of interest parameter b  is obtained and a 

pivot quantity is constructed. The confidence interval of interest 
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parameter   is obtained through Monte Carlo simulation. 

Finally, to optimize the confidence interval, the information 
domain is used for correction, resulting in a more reasonable 
posterior prediction interval and improving the accuracy and 

reliability of estimating the interest parameter . The study uses 

numerical simulation methods to validate the interval estimation 
method of the linear correction model, as shown in Fig. 4. 
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Fig. 4. Numerical simulation validation steps for interval estimation. 

In Fig. 4, the numerical simulation operation steps can be 
divided into three parts. Firstly, the simulation setting is carried 
out using Monte Carlo simulation method, with 2500 × 5000 
cycles. The explanatory variables are set to have a mean of 0.5 
and a variance of 1. From this distribution, specific values are 
selected for different sample sizes and other model parameters 

are determined. Next is to determine the value of 1 . Finally, 

there is simulation calculation, which calculates the coverage 
probability and interval length of each confidence interval to 
evaluate its goodness. 

IV. RESULTS 

When verifying the feasibility of the interval estimation 
method for the linear correction model designed in the study, the 
Monte Carlo simulation method was used. This method is a 
numerical calculation method based on probability and statistics 
theory. Its core idea is to simulate various uncertain factors using 
random numbers through a large number of random 
experiments, and then solve problems in fields such as 
mathematics, physics, and engineering. This method requires 
determining a probability model or stochastic process related to 

the problem, so that the problem to be solved can be represented 
by certain statistical features of this model. Next, computer-
generated random numbers conforming to a particular 
distribution were used to simulate multiple repeated trials of that 
probabilistic model or stochastic process. Finally, an 
approximate solution to the problem was obtained by 
statistically analyzing the results of these simulations. The 
values of the explanatory variables for the numerical simulation 
setup of the study are shown in Table I. 

In Table I, the study set up three different sets of data, with 
the first set consisting of 10 data points, the second set consisting 
of 20 data points, and the third set consisting of 30 data points. 
The highest x  value for the first set of data was 2.3, and the 

lowest was -0.6. The second set of data had a maximum x  value 

of 1.5 and a minimum x  value of -2.3. The highest x  value for 

the third set of data was 2.6, and the lowest was -1.4. In the 

numerical simulation process, let k  be 3, intercept a  be (1, 1, 

1), and   be diagonal matrices with diagonals of 1, 2, and 3, 
respectively. The numerical simulation results of the first set of 
data are shown in Table II. 

TABLE I.  THE VALUES OF THE EXPLANATORY VARIABLES FOR THE NUMERICAL SIMULATION 

n  x  

10 -0.4 0.1 0.6 1.4 -0.8 0.4 2.3 -0.6 -0.4 1.7 

20 0.3 0.4 1.6 0.6 0.4 -0.6 -1.3 -2.1 -2.1 -1.6 

2.6 1.3 1.2 -2.0 1.5 1.7 0.5 -1.6 -2.2 0.4 2.3 

30 

-0.4 0.3 0.5 1.6 -0.6 -1.2 1.3 2.4 2.5 -1.3 

-1.2 1.3 2.0 0.6 -1.3 -0.4 2.1 1.5 1.7 1.8 

-0.6 -1.3 -0.9 1.6 1.3 -0.7 1.6 -1.8 0.5 0.6 
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TABLE II.  RESULTS OF THE NUMERICAL SIMULATIONS OF THE FIRST SET OF DATA 

n    
1b  

Method 
(1,2,3) (2,1,5) (3,4,10) 

10 

1 

0.892 0.924 0.946 Generalized confidence intervals and corrections 

0.931 0.944 0.942 
Confidence interval and correction of posterior prediction 

method 

0.5 

0.952 0.945 0.932 Generalized confidence intervals and corrections 

0.944 0.942 0.956 
Confidence interval and correction of posterior prediction 

method 

0 

0.974 0.964 0.944 Generalized confidence intervals and corrections 

0.941 0.948 0.943 
Confidence interval and correction of posterior prediction 
method 

-0.5 
0.935 0.942 0.946 Generalized confidence intervals and corrections 

0.933 0.953 0.948 
Confidence interval and correction of posterior prediction 

method 

-1 

0.883 0.921 0.934 Generalized confidence intervals and corrections 

0.924 0.946 0.942 
Confidence interval and correction of posterior prediction 

method 
 

As shown in Table II, after correction, its confidence interval 

was more in line with the requirements. When 
1b  was (1, 2, 3) 

and 
1b  was -1, the confidence interval coverage probability of 

the posterior prediction method was 0.924, while the generalized 
confidence interval was only 0.883. The confidence intervals of 

the posterior prediction method were closer, and as 
1b  

increased, the confidence intervals of both methods gradually 

approached 0.95. When 1b  was (1, 2, 3), taking different values 

resulted in significant fluctuations in the coverage probability of 

the generalized confidence interval; When 1b  was (3, 4, 10), the 

coverage probability was relatively closer to 95%. Overall, in 
terms of sample size, confidence intervals based on posterior 
prediction distributions outperformed generalized confidence 
intervals in terms of coverage probability. The numerical 
simulation results of the second set of data are shown in Table 
III. 

Table III shows the coverage probabilities of different 
confidence intervals in the linear correction model. This table 

compares the coverage probabilities of generalized confidence 
intervals and corrections, based on posterior prediction methods 

at different values. When 
1b  was (1, 2, 3) and   was 1, the 

confidence interval coverage probability of the posterior 
prediction method was 0.916, while the generalized confidence 
interval was 0.896. Meanwhile, the coverage probability of the 
generalized confidence interval might differ significantly from 
95% in some cases, but as it increased, its coverage probability 

gradually approached 95%. For example, when 
1b  was (3, 4, 

10), the coverage probability of the generalized confidence 
interval was closer to 95% for each value. In addition, as the 
sample size increased from 10 to 20, the coverage probabilities 
of both confidence intervals became closer to 95%. This 
indicated that when the sample size was 20, the confidence 
interval of the posterior prediction distribution performed better 
in terms of coverage probability, and an increase in sample size 
helped to improve the accuracy of the confidence interval 
coverage probability. The numerical simulation results of the 
third set of data are shown in Table IV. 

TABLE III.  RESULTS OF THE NUMERICAL SIMULATIONS OF THE SECOND SET OF DATA 

n    
1b  

Method 
(1,2,3) (2,1,5) (3,4,10) 

20 

1 
0.896 0.912 0.945 Generalized confidence intervals and corrections 

0.916 0.943 0.946 
Confidence interval and correction of posterior prediction 

method 

0.5 

0.952 0.945 0.933 Generalized confidence intervals and corrections 

0.945 0.952 0.956 
Confidence interval and correction of posterior prediction 

method 

0 

0.977 0.965 0.947 Generalized confidence intervals and corrections 

0.942 0.946 0.943 
Confidence interval and correction of posterior prediction 

method 

-0.5 

0.937 0.944 0952 Generalized confidence intervals and corrections 

0.936 0.955 0.943 
Confidence interval and correction of posterior prediction 
method 

-1 
0.888 0.928 0.936 Generalized confidence intervals and corrections 

0.923 0.948 0.946 
Confidence interval and correction of posterior prediction 

method 
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TABLE IV.  RESULTS OF THE NUMERICAL SIMULATIONS OF THE THIRD SET OF DATA 

n    
1b  

Method 
(1,2,3) (2,1,5) (3,4,10) 

30 

1 

0.892 0.911 0.945 Generalized confidence intervals and corrections 

0.912 0.943 0.949 
Confidence interval and correction of posterior prediction 

method 

0.5 

0.920 0.932 0.936 Generalized confidence intervals and corrections 

0.946 0.947 0.959 
Confidence interval and correction of posterior prediction 

method 

0 

0.976 0.965 0.944 Generalized confidence intervals and corrections 

0.942 0.941 0.947 
Confidence interval and correction of posterior prediction 
method 

-0.5 
0.936 0.943 0955 Generalized confidence intervals and corrections 

0.938 0.955 0.946 
Confidence interval and correction of posterior prediction 

method 

-1 

0.886 0.926 0.933 Generalized confidence intervals and corrections 

0.924 0.943 0.941 
Confidence interval and correction of posterior prediction 

method 

TABLE V.  COMPARATIVE ANALYSIS OF LINEAR CORRECTION MODELS 

Method Applicable scenarios Computing efficiency Confidence interval coverage (sample size=30) 

Traditional Fiducial inference Low dimensional data, large sample size Medium 0.898 

Bayesian calibration model Small sample, stable data structure Low 0.912 

Generalized linear model Medium-dimensional data High 0.885 

Dynamic linear correction model Real time data stream High 0.902 

This method High dimensional data, small sample size High 0.927 
 

According to Table IV, after correction using the posterior 
prediction method, the confidence interval was closer to 0.95 
and the coverage level was better. The confidence interval 
coverage probability of the posterior prediction method was 
0.927, while the generalized confidence interval was 0.898. The 
coverage probability of the generalized confidence interval 
might deviate significantly from 95%, but as it increased, its 

coverage probability approached 95%. For example, when 1b  

was (1, 2, 3), the generalized confidence interval coverage 

probability fluctuated significantly. 1b  had a relatively stable 

coverage probability of (3, 4, 10) and was closer to 95%. As the 
sample size increased from 10 and 20 to 30, the coverage 
probability of both confidence intervals approached 95%, 
indicating that increasing the sample size can improve the 
performance of coverage probability. Overall, when the sample 
size was 30, the confidence interval based on posterior 
prediction distribution performed better in terms of coverage 
probability. The study further compared the performance of the 
research-designed method with other current methods, and the 
results are shown in Table V. 

The research-designed model achieved a coverage rate of 
0.927 at a sample size of 30, significantly better than traditional 
Fiducial methods and generalized linear models, highlighting its 
superiority in small sample scenarios. Although Bayesian 
methods performed moderately, they relied on prior 
distributions and had limited flexibility. Integrating Fiducial 
inference (reverse parameter analysis) with Bayesian posterior 
prediction reduced redundant iterations and achieved efficiency 
comparable to GLM while maintaining high accuracy. 

V. DISCUSSION 

A. The Significance of Research Results 

The joint independent information linear correction model 
proposed in the study significantly improved the accuracy and 
efficiency of statistical inference in high-dimensional data and 
small sample scenarios by integrating Fiducial inference and 
Bayesian methods. Simulation experiments showed that when 
the sample size was 30, the confidence interval coverage of the 
posterior prediction method reached 0.927, approaching the 
theoretical 95% confidence level, which has significant 
advantages over traditional Fiducial methods and generalized 
linear models. This result validated the effectiveness of the 
model in reducing coverage bias and enhancing the robustness 
of parameter estimation. Especially in high-dimensional noise 
covariance and dynamic data stream scenarios, the model 
achieved adaptive adjustment of complex data structures 
through information domain dynamic correction mechanism. 

B. Comparative Advantages with Existing Methods 

Compared with traditional methods, the innovation of 
research-designed model mainly lies in their high-dimensional 
adaptability: although existing methods support real-time data 
streams, their ability to handle high-dimensional noise 
covariance is limited. This study significantly improved 
computational stability in high-dimensional environments by 
integrating multi-source data features through a joint 
independent information framework. Dynamic correction 
capability: The information domain dynamic correction 
mechanism integrates background knowledge and data features 
to solve the limitations of traditional Bayesian methods that rely 
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on fixed prior distributions, demonstrating stronger scene 
adaptability in industrial manufacturing multi-sensor systems. 
Balancing efficiency and accuracy: Fiducial's reverse parameter 
distribution analysis reduces the iterative redundancy of 
Bayesian posterior prediction, allowing the model to maintain 
high coverage while maintaining computational efficiency 
comparable to generalized linear models, making it suitable for 
resource constrained real-time systems. 

C. Actual Application Potential 

The research-designed method has broad application 
prospects in medical image analysis, environmental monitoring, 
and industrial Internet of Things. In the medical field, B1 non-
uniformity correction of MRI signals can be combined with 
dynamic correction in the information domain to improve image 
signal-to-noise ratio. In the field of environmental monitoring, 
in the fusion of multi-source precipitation data, the model can 
dynamically integrate meteorological station and satellite data to 
reduce systematic bias. In the field of industrial Internet of 
Things, dynamic calibration of real-time sensor data streams can 
optimize manufacturing process monitoring and reduce 
equipment anomaly false alarm rates. 

VI. CONCLUSION 

The study successfully improved the accuracy and reliability 
of statistical inference by constructing a linear correction model 
based on joint independent information and combining it with 
Fiducial inference method. The research results indicated that 
the confidence interval correction method designed in the study 
had better performance, especially in small sample situations, 
where the confidence interval coverage probability of the 
posterior prediction method was closer to the 95% confidence 
level. The specific data showed that when the sample size was 
10, the confidence interval coverage probability of the posterior 
prediction method was 0.923, while the generalized confidence 
interval was 0.889. When the sample size increased to 30, the 
confidence interval coverage probability of the posterior 
prediction method was 0.927, and the generalized confidence 
interval was 0.898. In addition, as the sample size increased, the 
coverage probabilities of both confidence intervals were closer 
to 95%, indicating that an increase in sample size helps to 
improve the accuracy of the confidence intervals. The study also 
found that in some cases, the generalized confidence interval had 
a large deviation between the coverage probability and 95%, but 
as the sample size increased, its coverage probability gradually 
approached 95%. For example, when the sample size was 30, 
the fluctuation of the coverage probability of the generalized 
confidence interval was significantly reduced, and the coverage 
probability was relatively stable and closer to 95%. This 
indicated that confidence intervals based on posterior prediction 
distributions performed better in larger sample sizes. The study 
validated the effectiveness and stability of a linear correction 
model based on joint independent information in processing 
high-dimensional data through numerical simulations. The 
research results provide new theoretical support and 
methodological improvements for linear correction models in 
high-dimensional data environments, and have important 
theoretical and practical value. However, the statistical inference 
correction model designed for research cannot meet the 
requirements for model inference correction when dealing with 

multivariate problems. Future research will focus on highly 
coupled multivariate data and propose to introduce tensor 
decomposition techniques and graph model structures to address 
the problem of insufficient representation of complex 
correlation structures in current models by characterizing the 
nonlinear relationships and topological dependencies between 
variables. At the same time, for large-scale data, it plans to 
combine distributed computing architecture and hardware 
acceleration technology to design layered iterative algorithms to 
reduce memory usage. Low-level approximations and sparse 
representations of model parameters are also explored to 
compress computational complexity while ensuring statistical 
performance. 

REFERENCES 

[1] Xie W, Yi S, Leng C. Two-Stage Multi-Source Precipitation Data 
Merging Method Combining Bias Correction and Dynamic Constrained 
Linear Regression Model. Journal of Geo-Information Science, 2024, 
26(11): 2506-2528. 

[2] Ouyang Y, Taljaard M, Forbes A B, Li F. Maintaining the validity of 
inference from linear mixed models in stepped-wedge cluster randomized 
trials under misspecified random-effects structures. Statistical Methods in 
Medical Research, 2024, 33(09): 1497-1516. 

[3] Zhou J, Claeskens G. Automatic bias correction for testing in high-
dimensional linear models. Statistica Neerlandica, 2023, 77(01): 71-98. 

[4] Sun P Z. Quasi-steady-state (QUASS) reconstruction enhances T1 
normalization in apparent exchange-dependent relaxation (AREX) 
analysis: A reevaluation of T1 correction in quantitative CEST MRI of 
rodent brain tumor models. Magnetic Resonance in Medicine, 2024, 
92(01): 236-245. 

[5] Kaitan R G, Bellec P C. Noise covariance estimation in multi-task high-
dimensional linear models. Bernoulli, 2024, 30(03): 1695-1722. 

[6] Zhang R, Shen Y, Han D. Correction and dynamical analysis of classical 
mathematical model for piecewise linear system. Lixue Xuebao/Chinese 
Journal of Theoretical and Applied Mechanics, 2024, 56(01): 225-235. 

[7] Sun T, Li W, Lin L. Matrix-variate generalized linear model with 
measurement error. Statistical Papers, 2024, 65(06): 3935-3958. 

[8] Li H, Luojie D, Ding H. Real-time service performances of BDS-3 and 
Galileo constellations with a linear satellite clock correction models. 
Satellite Navigation, 2023, 4(03): 72-81. 

[9] ElHorbaty Y S. A Monte Carlo permutation procedure for testing variance 
components in generalized linear regression models. Computational 
Statistics, 2024, 39(05): 2605-2621. 

[10] Maksaei N, Rasekh A, Babadi B. Local influence in linear mixed 
measurement error models with ridge estimation. Communications in 
Statistics - Simulation and Computation, 2024, 53(12): 5899-5912. 

[11] Wang P, Teng F, Geng J, Liu Y. Axial vibration characteristics analysis 
of transformer windings based on magnetic-structural coupling correction 
model. IET Electric Power Applications, 2024, 18(10): 1408-1420. 

[12] Gibiansky L, Gibiansky E. Note on importance of correct stoichiometric 
assumptions for modeling of monoclonal antibodies. Journal of 
Pharmacokinetics and Pharmacodynamics, 2024, 51(04): 307-317. 

[13] Emami H. Diagnostics for partially linear measurement error models. 
Communications in Statistics - Theory and Methods, 2024, 53(17): 6224-
6239. 

[14] Chang H, Middleton J A, Aronow P M. Exact bias correction for linear 
adjustment of randomized controlled trials. Econometrica, 2024, 92(05): 
1503-1519. 

[15] Li L, Wang Z, Chen J, Lu F. A model transfer method based on transfer 
component analysis and direct correction. Spectroscopy and Spectral 
Analysis, 2024, 44(12): 3399-3405. 

[16] Cardot H, Mas A, Sarda P. Correction: CLT in functional linear regression 
models (Probability Theory and Related Fields, (2007), 138, 3-4, (325-
361), 10.1007/s00440-006-0025-2). Probability Theory and Related 
Fields, 2023, 187(1-2): 519-522. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

448 | P a g e  

www.ijacsa.thesai.org 

[17] Wan W, Bai Y, Lu Y, Ding L. A hybrid model combining a gated 
recurrent unit network based on variational mode decomposition with 
error correction for stock price prediction. Cybernetics and Systems, 
2024, 55(05): 1205-1229. 

[18] Hong S, Jiang J, Jiang X, Wang H. Inference for possibly misspecified 
generalized linear models with nonpolynomial-dimensional nuisance 
parameters. Biometrika, 2024, 111(04): 1387-1404. 

[19] Bariffi J, Bartz H, Liva G, Rosenthal J. Error-correction performance of 
regular ring-linear LDPC codes over Lee channels. IEEE Transactions on 
Information Theory, 2024, 70(11): 7820-7839. 

[20] Haschka R E. Robustness of copula-correction models in causal analysis: 
Exploiting between-regressor correlation. IMA Journal of Management 
Mathematics, 2024, 36(01): 161-180. 

[21] Wu Q, Gong P, Liu S, Li Y. B1 inhomogeneity corrected CEST MRI 
based on direct saturation removed omega plot model at 5T. Magnetic 
Resonance in Medicine, 2024, 92(02): 532-542. 

[22] Saraswat S P, Addad Y. A comprehensive examination of the linear and 
numerical stability aspects of the bubble collision model in the TRACE-
1D two-fluid model applied to vertical disperse flow in a PWR core 
channel under loss of coolant accident conditions. Nuclear Engineering 
and Technology, 2024, 56(08): 2974-2989. 

[23] Lu Q, Wang B, Huang Z. A dual electrode mixed potential SO2 sensor 
with humidity self-correction function utilizing multiple linear regression 
model. IEEE Electron Device Letters, 2024, 45(07): 1293-1296. 

[24] Simicic D, Zollner H J, DaviesJenkins C W, Hupfeld K E, Edden R A E, 
Oeltzschner G. Model-based frequency-and-phase correction of 1H MRS 
data with 2D linear-combination modeling. Magnetic Resonance in 
Medicine, 2024, 92(05): 2222-2236. 


