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Abstract—Semantic segmentation is an important operation 

in computer vision, which is generally plagued by computational 

resources and the time-consuming process for labor intensive of 

pixel-wise labeling. As a solution to this issue, the present study 

introduces a state-of-the-art segmentation system based on the 

Forward-Backward Propagated Percept Net (FB-PNet) 

architecture, augmented with Perception Convolution layers 

designed specifically for this purpose. The suggested method 

improves segmentation precision and processing the efficiency by 

capturing fine visual features and reducing some unnecessary 

data. The performance of the model is tested using key 

evaluation metrics, including Intersection over Union (IoU), Dice 

coefficient, Loss, Recall, and Precision. Experimental results 

indicate that the model works effective in segmenting leaf and 

disease regions in plant images without requiring full pixel-by-

pixel labeling. Data augmentation techniques also greatly 

improve the capability of the model to handle new situations. A 

strong partitioning technique of the dataset allows for best 

performance testing, demonstrating the strength and flexibility of 

the model with respect to new data in the PlantVillage dataset, 

even without the employment of annotation masks. The 

innovation of this research is an efficient and scalable approach 

to large-scale plant leaf and disease detection, which is able to 

sustain precision agriculture application cases. 
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I. INTRODUCTION 

The recent advancement in the progress of computer vision 
and deep learning techniques has transformed the domain of 
plant phenotyping, which will enhance the capacity for precise 
and automatic measure of plant characteristics. Accurate leaf 
annotation should outline and distinguish the various parts of 
leaves in an image, necessary to examine the health, growth 
habits, and reaction of plants to environmental factors. While 
traditional methods can depend on time-consuming or semi-
automatic processes that take several days, are labor intensive 
in bulk, and prone to human mistakes, having more high-
resolution plant images to process, as well as advancements in 
advanced deep learning algorithms, and are motivating 
researchers to develop a model that can perform this task 
automatically. 

Recent advancements in deep learning architectures and 
methods have immensely enhanced the process of automatic 
annotation of leaves. In the existing transformer models, the 
Pyramid Vision Transformer (PVT) and Swin Transformer 
have been unparallely effective in handling the dense 

prediction tasks by refine capturing of multi-scale features as 
well as long-range dependencies [1] [2]. These models perform 
very well in handling problems of overlapping leaves and 
complex leaf edges, which are prevalent in handling plant 
images. Further, these self-supervised learning techniques such 
as contrastive learning and data augmentation methods that 
performs operation such as Mixup, have reduced the reliance 
on large manually annotated datasets [3] [4]. These 
advancements bring the possibilities of developing accurate 
models even when handling limited annotated data into reality, 
and hence they are highly beneficial in plant phenotyping 
applications. 

TransUNet and TransFuse are two models that combine 
Transformer-based encoders with CNN-based decoders to get 
cutting edge results in both medical and plant picture 
segmentation [5] [6]. Transformers and Transformative of the 
Convolutional Neural Networks (CNNs) model have made a 
significant contribution to the improvement of labeling 
accuracy, since the architectures such as TransUNet and 
TransFuse and some others combine based on the Transformer 
and Encoder Decoder Structure-CNN architecture to give 
better results in the delineation of medical and botanical 
images [5] [6]. Such designs, in turn, act as a supplement to the 
global context and comprehension that is obtained using 
transformers and enhance the power of localized feature 
extraction using CNNs and are well suited for the annotation of 
plant leaves. In fact, failures have arisen from the integration of 
attention mechanisms in certain regions to enhance their 
performance in complex environments [7]. The novelties of 
these specialized neural networks, distinct from typical 
convolutional ones, involve finesse in handling images that 
possess unstructured or uneven data, thus improving their 
effectiveness in annotating other classes [4]. 

In spite of these positive developments, there are many 
issues that need to be addressed when automating leaf analysis 
in plant leaves. The variations in shapes, sizes and textures of 
different leaves, also the presence of leaves above others and 
obscure backgrounds, make accomplish segmentation hard [8]. 
Several approaches have been taken to bring an end to these 
difficulties, such as the use of some data modification 
methodologies flips, shifts and scaling, and rotation such that 
the dataset is enhanced in terms of having variety [4]. 
Moreover, there was a new focus on artificial intelligence (AI) 
in plants, where additional training data was generated by the 
generative adversarial network (GAN) methods, and there were 
reasons to be hopeful that model performance could be better 
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than with the previously used solutions [9]. These methods are 
empowering in practical cases in which there is limited 
annotated data. Moreover, several other studies have also been 
aimed at making annotated models more efficient and more 
applicable. For example, the development of SegFormer 
utilizes the same principles of the Transformers that work best 
in an encoder but in a relatively simple decoder for reasons of 
minimizing the computational work while still capturing the 
necessary segments [10]. In the same way, DenseCL applies 
contrastive learning to dense prediction tasks, such that the 
need of self-supervised trainings for segmentation models is no 
longer required [11]. The application of these methods made it 
possible to introduce the use of annotation models to actual 
field practices in agriculture despite the inevitable geographical 
constraints. 

Traditional convolution-based and transformer-based 
models have issues in separating the leaves especially when 
they overlap, have innumerable little leaves, and are 
differential in texturing in consequences. This results in 
suboptimal annotation due to the large-scale labeled datasets 
overused by most advanced segmentation models. 
Additionally, computational efficiency is a big question, the 
reason being this is that, normally such high-performing 
models usually demand huge processing power, restricting 
their use on resource-constrained devices. Moreover, 
techniques available at a given time may become immediately 
outdated when applied to different plants under different 
environmental conditions. This is because the conditions of the 
environment, lightning, occlusions including background 
complexity change. 

To address these limitations, this research introduces a 
novel deep learning model called Forward-Backward Percept 
Net (FB-PNet) for automatic annotation of plant leaf and 
disease. The model comprises a pre-trained ResNet50-based U-
Net architecture to which some convolutional layers are added 
for more enhanced feature extraction and improved 
segmentation accuracy. Developed using PyTorch Lightning 
and Segmentation Models for PyTorch, the proposed 
architecture was examined with important metrics of 
performance, including Intersection over Union (IoU), dice 
coefficient, precision, and recall. During the inference phase, 
an input image is given to the FB-PNet model. In each forward 
pass the image is forwarded through all layers to produce 
feature representation known as Percepts. These Percepts are 
then selectively filtered with the input image to produce the 
final rendition of the segmentation. Extensive training and 
validation confirms that the model is strong and able of 
generalizing over several plant datasets. 

This research automated the plant phenotyping and shows a 
significant increase in the field of intelligent and effective leaf 
recognition. In this context, the outcomes of the given study are 
expected to be useful for such areas as precision farming, 
automatic plant monitoring, and protection of biodiversity, thus 
advancing artificial intelligence adoption in the field of plant 
studies. With the automation of the leaf annotation process, this 
work aims to increase the productivity level in agriculture 
while promoting sustainability. The model suggested not only 
mitigating the shortcomings in conventional methods of 

annotation, but also utilizes cutting-edge advances in deep 
learning to attain higher accuracy and working efficiency. 

Further this study continues with previous study related to 
the work in Section II, description of the dataset in Section III, 
methodology of the proposed work in Section IV, followed by 
experimental analysis and conclusion in Section V and Section 
VI respectively. 

II. RELATED WORK 

The task of automatically annotating properties of plant 

leaves and disease has gained most significant attention in 

recent years due to its critical role in plant phenotyping, disease 

detection, and species identification. The entry of deep learning 

along with computer vision technologies has revolutionized 

this area allowing very efficient techniques for leaf, disease 

segmentation and as well as related processes to be developed 

and implemented. The paragraph given below discuss about the 

key advancements and recent research in this domain. 

A. Evolution of Deep Learning for Segmentation Models 

Conventional methods in annotation of plant leaves 
depended on image processing techniques such as 
thresholding, edge detection or region-growing algorithm. 
These techniques, however, do not work effectively because of 
the variability of shapes, overlapping structures or complex 
backgrounds among leaves. The entire advancement starts with 
fully convolutional networks (FCNs), which allowed end-to-
end training for pixel-wise segmentation [12]. They are the 
predecessors of today's segmentation applications of deep-
learning models such as U-Net or DeepLab models. One of 
them, U-Net, introduced by Ronneberger et al. [13], has come 
under most use, as its encoder-decoder architecture combined 
with skip connections makes it a good option for capturing 
local-global features. The attention U-Net and Residual U-Net 
are contemporary refinements that are currently enhancing 
segmentation accuracy through attention mechanisms and 
residual connections [14]. 

The model DeepLab is proposed by [15] and followed this 
atrous convolution and Conditional Random Fields (CRFs) to 
depict fine details and it is used to facilitate boundary 
delineation to enhance segmentation. The encoder-decoder part 
was incorporated in DeepLabv3+ and they achieve state-of-the-
art results in plant leaf segmentation. On the other hand, 
extending Faster R-CNN, Mask-RCNN brought instance 
segmentation with a branch for pixel-wise mask prediction 
[16]. The methodology has been frequently employed for plant 
leaf annotation, especially in conditions of overlapping leaves 
and dense foliage. 

In the last few years, attention mechanisms have been 
included in segmentation models, which improved 
performances in noisy or complex scenarios and also focusing 
on the region of interest. For instance, Partial Convolutions 
(PConv) have been able to deal with incomplete or damaged 
data sources, making them very useful for real-life plant leaf 
annotation tasks [17]. These researches have all revolved 
around the bulk enhancement and improvement concerning the 
robustness and efficiency of automatic annotation models. 
Transformer-based architectures have been pushed forward on 
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segmentation tasks as they capture global dependencies [18]. In 
parallel, self-supervised learning models have been reviewed in 
terms of reducing dependence on widely annotated datasets 
[19]. 

B. Advanced Learning Techniques 

In [20], the authors propose a method for image 
segmentation to imply the ability of multi-feature interaction 
and fusion techniques contained within the cloud framework. 
This method, through that, added a better segmentation 
accuracy provided by the interaction of several attributes of an 
image and their interdependence. Besides, the segmentation is 
parallelized and optimized using cloud computing resources to 
push computation efficiency so that the rapid and accurate 
processing of medical images can occur. 

An advanced deep learning network was also developed by 
[21], aimed at the voxel-level processing and interlayer 
connections, as well as intra-axis feature extraction. The 
proposed model, thus, is capable of dynamically learning the 
3D spatial properties while complementing fine-edge 
delineation. Similarly, the work proposed in [22] involves 
inter-anatomical domain significance, deep reasoning brain 
tumor segmentation, and implementation based on the Swin-T 
architecture. This approach primarily consists of a backbone 
hybrid network (BHN) and a deep micro-texture extraction 
module (DMTE) for improved segmentation accuracy. 
Additionally, [23] introduce a CNN-based brain tumor 
segmentation method that integrates an MIE module to 
enhance the utilization of multi-modality data. 

Zero-label segmentation, as proposed by [24], employs a 
self-training mechanism in iterative manner, where the model 
is initially trained on labeled datasets and subsequently 
generates pseudo-annotation for unannotated data, refining its 
segmentation accuracy through continuous learning. 
Meanwhile, Few-shot learning, as discussed by [25], focuses 
on model development with a minimal training dataset. It aims 
to segment query images using a limited number of reference 
samples. 

C. Computational Constraints and Challenges in Annotation 

Deep learning architectures typically necessitate a 
substantial set of parameters to attain higher precision, which 
can lead to prolonged training times and increased 
computational overhead. To mitigate this issue, researchers 
have designed various foundational network architectures, 
known as backbones, which serve as the core framework for 
different models. In [26], the authors’ models incorporate 
specific backbone networks such as ResNet101, ResNet50 and 
MobileNetV3. In the domain of segmentation task, 
MobileNetV3 is widely utilized as a lightweight backbone 
suitable for embedded and mobile systems, whereas 
ResNet101 and ResNet50 are preferred in scenarios demanding 
high accuracy, although they come with greater computational 
complexity and memory consumption. 

Inherent limitations are common among the above 
mentioned methodologies. The aim to attain absolute accuracy 
and to build a finer and stronger model relies heavily on a 

greater number of computational parameters, which in fact 
greatly adds to the computational load on the system, rendering 
it resource intensive. The other side of this is that it makes the 
model computationally expensive, confirmed by memory 
consumption during execution. 

It's the manual laborious and time-consuming label-to-
image annotation process which becomes the sought-after 
annotation for the semantic segmentation process. That is 
assigning class labels to each pixel of an image and thus 
requiring a steady control over the way. This should be done 
because these will require pixel-level accuracy in the mind of 
the annotators. The interpretation of the semantics of an image 
may differ from one annotator to the next, leading to 
inconsistency in annotating it. This subjectivity also causes 
variations in the dataset and is a challenge in setting a standard 
ground truth. 

Moreover, objects with very complex boundaries or 
irregular geometric structures, such as trees or animals, require 
accurate contour delineation, thus adding to the complexity of 
the whole annotation task. When these complexities are 
compounded further by the endeavors in handling the large-
scale datasets, more computational power and human labor 
become necessary. Domain experts would have to be recruited 
to ensure the accuracy of the annotation process. The training 
and maintenance of consistency of annotations across a large 
dataset have always been difficult. Human annotators would 
themselves introduce errors in pixel classification and also 
inconsistencies in annotations, which would call for intense 
quality control. The whole manual labeling procedure for 
semantic segmentation is thus laden with many challenges, 
such as very high-resolution pixel-wise accuracy, subjective 
interpretation, tricky object boundaries, scalability of the 
datasets, and the need for expert annotators and guaranteed 
quality measures. 

Additionally, models such as Percept-CNN (P-CNN) 
introduce percepts highly activated pixels extracted during 
forward propagation to focus on salient visual information 
[27]. While promising, P-CNN struggles with over-
segmentation at object borders and requires validation for 
multi-class tasks. Enhancing the model with multi-scale 
percept extraction and attention mechanisms could improve its 
robustness and accuracy. 

Various existing segmentation models along with their 
categorization, advancements and correlations are illustrated in 
Fig. 1, where the overlapping regions of the models reflect 
shared characteristics between distinct methodologies. The 
models highlighted in the figure include traditional 
segmentation model, deep learning-based models, lightweight 
model, instance, hybrid, attention-based models as well as self-
supervised models. Fig. 1 leads to a reference point for the 
work as it demonstrates the interrelation of each model and 
thus provides an insight towards the incorporation of different 
algorithm in the proposed work to solve the gap of manual 
annotation in the existing works. This study proposes FB-PNet, 
a hybrid self-supervised lightweight segmentation model, and 
demonstrates the efficiency of the proposed model with respect 
to the segmentation task. 
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Fig. 1. Evaluation overview of segmentation. 

Overall, deep learning-based segmentation techniques have 
significantly improved plant leaf annotation, challenges related 
to computational efficiency, annotation labor, and dataset 
scalability remain critical areas for future research and 
optimization. These limitations are prevalent across all the 
discussed methodologies. 

III. DATASET DESCRIPTION 

The dataset is created from the existing citrus leaf dataset 
which consists of around 500 images [28]. Further the images 
of the new dataset is created by adding two distinct mask to 
support the sematic segmentation process. The proposed 
segmentation and analysis in the system make leverage of two 
distinct dataset with images containing leaf mask and disease 
mask, later the dataset is divided into train, valid, and test splits 
for the segmentation process. To enhance model generalization 
and performance, various levels of augmentation were applied, 
resulting in multiple dataset versions. The dataset used in this 
work is available in zenodo [29]. 

Original Datasets of Leaf and Disease: The initial dataset 
comprises 568 images for both leaf and disease segmentation, 

respectively [30]. Augmented Datasets of leaf and disease: To 
increase dataset diversity and to enhance the model's 
adaptability across diverse conditions, data augmentation were 
implemented, generating a larger dataset. The augmentation 
techniques included transformations such as rotation, flipping, 
scaling, brightness adjustments, and contrast enhancement. 
This resulted in 1,702 augmented images for both leaf and 
disease datasets. Fully Augmented Dataset: A final 
augmentation stage was conducted to further expand the 
dataset, leading to 3,405 images for both leaf and disease 
segmentation. These datasets information and splits are 
mentioned in Table I. 

A. Significance of Dataset Augmentation 

Initially, the images undergo a preprocessing phase 
involving augmentation. This technique generates altered 
versions of the original images by applying various 
transformations. The progressive augmentation strategy 
ensures that the model is trained on a diverse set of images, 
reducing overfitting and enhancing its capability to accurately 
segment leaves and classify diseases under varied 
environmental conditions, lighting variations, and occlusions. 
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By leveraging a structured dataset split, model performance is 
rigorously evaluated, ensuring robust generalization to unseen 
data in plant village dataset [31]. Augmentation enhances the 
model’s exposure to diverse training samples, thus enhancing 
its capability to generalize effectively to unseen or real-world 

conditions. This dataset framework plays a crucial role in 
improving segmentation accuracy, thereby contributing to 
precise automatic plant leaf annotation using deep learning. 
The sample images on leaf and disease dataset is shown in Fig. 
2. 

TABLE I.  OUTLINES THE VARIOUS DATASET AND ITS SPLIT FOR TRAINING, VALIDATION AND TESTING 

Dataset Total No. of images Training set Validation set Test set 

Leaf dataset 568 464 52 52 

Disease dataset 568 464 52 52 

Augmented Leaf dataset 1702 1393 155 154 

Augmented Disease dataset 1702 1393 155 154 

Fully Augmented Leaf dataset 3405 2786 310 309 

Fully Augmented Disease dataset 3405 2786 310 309 

 
Fig. 2. Data samples with the image in the first column and corresponding annotation mask of leaf and disease in second and third column. 

IV. METHODOLOGY 

Forward-Backward Propagated Percept U-Net (FB-PNet) is 
using a Pre-trained U-Net for segmentation. The U-Net 
encoder extracts multi-scale features of leaf or diseases, while 
the decoder reconstructs spatially - detailed feature maps for 
segmentation. The use of SMP U-Net from segmentation 
models pytorch simplifies development by leveraging a 
modular, pre-built network. Custom layers perception 
convolution (PConv) for refinement is used after the U-Net 
decoder output, and additional custom PConv layers are 
applied. These layers refine the segmentation predictions, 
allowing for specific feature transformations beyond the U-
Net's capabilities. This model is based on Single-task pipeline 
and it focuses purely on segmentation with a binary mask 

output. The forward pass outputs logits for the segmentation 
task, followed by a loss function BCEWithLogitsLoss for 
binary segmentation. FB-PNet Model is lighter, leveraging a 
well-tested U-Net for segmentation, making it easier to train 
and apply to binary segmentation tasks. It focuses on a 
streamlined segmentation task with a U-Net backbone, making 
it simpler but task-specific. The proposed model eliminates the 
necessity for pixel-wise annotation by leveraging a 
classification dataset to execute the segmentation task. FB-
PNet captures and transfers essential visual characteristics 
throughout the layers, facilitating their utilization in 
segmentation processes, where the goal is to get visual 
characteristics in the input image and it gives binary 
segmentation output. Fig. 3 describes the complete block 
diagram of the FB-PNet architecture. 
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Fig. 3. Block diagram of proposed model. 

In the Input Image, where X is an input tensor image of 
shape [B, C, H, W], where B is batch size, C is the number of 
channel, H is the height and W is the width. A batch of RGB 
images with shape (batch_size, 3, height, width). 

In the process of the Forward Pass FB-PNet Encoder which 
is hierarchical, multi-scale Features are extracted at multiple 
scales using the ResNet50 encoder. Early percept layers focus 
on low-level features like edges, textures etc. Deeper percept 
layers capture high-level features that are the object shapes, 
contextual information. Output from the percepts gives multi-

scale feature maps. In these, 𝐹𝑒𝑛𝑐
(𝑖)

 is the Percept Feature map at 
stage 𝑖 of FB-PNet encoder. Then these input X is processed 
through the encoder, generating a series of Percept feature 
maps [see Eq. (1)]. 

{𝐹𝑒𝑛𝑐
(1)

, 𝐹𝑒𝑛𝑐
(2)

, … … , 𝐹𝑒𝑛𝑐
(𝑛)

}   =  𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋)           (1) 

Models decoder is percept Multi-Scale Feature 
Combination. The decoder combines these percept multi-scale 
features to generate segmentation features. Percept Features 
from deeper layers are upsampled to match the spatial 
resolution of shallower layers. These upsampled features are 
concatenated with corresponding encoder features using skip 
connections. This combination ensures that both low-level 
percept detailed and high-level semantic information is 

preserved. In these 𝐹𝑑𝑒𝑐
(𝑖)

 is the Percept Feature map at stage 𝑖 of 

the BPNet decoder. The decoder takes the Percept Feature 
maps from the encoder and reconstructs the 𝐹𝐵𝑃𝑁𝑒𝑡  feature map 
[see Eq. (2)]. 

𝐹𝐵𝑃𝑁𝑒𝑡  = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 {𝐹𝑑𝑒𝑐
(1)

, 𝐹𝑑𝑒𝑐
(2)

, … … , 𝐹𝑑𝑒𝑐
(𝑛)

}          (2) 

Refinement of segmentation features in this Percept 
Convolution PConv1 and PConv2 further refine the 
segmentation features. Enhance the representation of fine 
details of leaf and diseases. Improve the distinction between 

leaf, diseases and background regions, where 𝑊𝐿𝑃𝐶𝑜𝑛𝑣
𝑘  is the 

learnable weights of LPConv and 𝑘 × 𝑘  convolution. 
𝜎𝑙: 𝐿𝑒𝑎𝑘𝑦 𝑟𝑒𝑙𝑢  activation function. After obtaining 𝐹𝐵𝑃𝑁𝑒𝑡  
from the BPNet, the following convolution operations are 
applied. In the first 3 × 3 PConv layer with LeakyRelu 
activation as in Eq. (3): 

𝐹𝑃𝐶𝑜𝑛𝑣1  = 𝜎𝑙(𝑊𝑃𝐶𝑜𝑛𝑣1
3×3 ∗ 𝐹𝐵𝑃𝑁𝑒𝑡)                (3) 

The second PConv layer is another 3 × 3  convolution 
followed by LeakyRelu activation which is applied to the 
output of the first PConv layer [see Eq. (4)]. 

𝐹𝑃𝐶𝑜𝑛𝑣2  = 𝜎𝑙(𝑊𝑃𝐶𝑜𝑛𝑣2
3×3 ∗  𝐹𝑃𝐶𝑜𝑛𝑣1)                 (4) 

Segmentation prediction for leaf or disease is a refined 
feature in a single-channel segmentation map, the prediction in 
the model refers to assigning each pixel of the input image a 
class label or a probability of belonging to a leaf or diseases 
class. Final segmentation mask is produced by the pred layer 
using Conv2d. A Conv2d layer reduces the number of channels 
to 1, corresponding to the binary classification for each pixel in 
the leaf image. Kernel size of 1x1, which ensures that the 
spatial dimensions (height, width) remain unchanged. Each 
pixel has a value between 0 and 1 after applying a sigmoid. 
Activation: Sigmoid, applied to the output of this layer to 
produce probabilities for each pixel.  A value close to 1 at pixel 
(i, j) row and column indicate a high probability of the pixel (i, 
j) row and column belonging to the target leaf or disease class. 
Values close to 0 indicate a low probability, it belongs to the 
background. The output shape is (batch_size, 1, height, width). 

In the final prediction layer a 1 × 1 convolution is applied 
to reduce the number of the channels to 1 for the binary 
segmentation logits [see Eq. (5)]. 

𝐹𝑃𝑟𝑒𝑑  = 𝑊𝑃𝑟𝑒𝑑
1×1 ∗ 𝐹𝑃𝐶𝑜𝑛𝑣2           (5) 

Here, the overall FB-PNet models forward pass of 
combining all steps is summarize [see Eq. (6)]. 

𝐹𝑃𝑟𝑒𝑑  = 𝑊𝑃𝑟𝑒𝑑
1×1 ∗  𝜎𝑙(𝑊𝑃𝐶𝑜𝑛𝑣2 

3×3 ∗ 𝜎𝑙(𝑊𝑃𝐶𝑜𝑛𝑣1
3×3 ∗ 𝐹𝐵𝑃𝑁𝑒𝑡))  (6) 

The prediction Y of the annotation is obtained after 
applying the sigmoid activation into the final prediction of FB-
PNet model. It gets the result of the predicted annotation. 

𝑌 =  𝜎(𝐹𝑃𝑟𝑒𝑑)                             (7) 

Perception refer to pixels that encapsulate significant visual 
information extracted after each layer of the network. These 
pixels correspond to regions with high activation values in the 
associated feature maps. The output of this operation is 
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subsequently processed using a sigmoid activation function to 
enhance the perception of essential visual components. 
Mathematically, this is represented as Eq. (7). The application 
of the sigmoid function further emphasizes the most relevant 
pixels in the input image, which are identified as Perception. 

It enables the model to concentrate exclusively on pixels 
containing critical visual information, as illustrated in Fig. 4. 
This figure provides a conceptual representation of how an FB-
PNet layer processes an image using a specific filter. To 
illustrate, consider a filter designed to detect the part of leaf. 

When an image is processed through FB-PNet using this filter, 
it generates a feature map and a corresponding perception 
mask. For intuitive understanding, Fig. 4 presents the original 
image overlaid with the perception mask. 

Fig. 5 shows an illustration of perception generation. A leaf 
image is processed with a filter designed to detect a part of leaf 
and disease parts. The output includes a feature map and a 
percept mask, highlighting pixels corresponding to the detected 
structure. 

 

Fig. 4. Forward-backward propagated perception net. 

 

Fig. 5. Perception generation. 
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Then the output logits 𝐹𝑃𝑟𝑒𝑑  are passed to the binary cross- 
entropy loss function with the logits, this will help the model to 
get the details of the models lagging through the loss function. 
ℒ𝐵𝐶𝐸 represents the binary Cross-Entropy loss, 𝑀𝑖  is the 
ground truth mask of the input leaf or disease and 𝑁 represents 
the total count of pixels in the input image tensor [see Eq. (8)]. 

ℒ𝐵𝐶𝐸 = −
1

𝑁
∑ [ 𝑀𝑖  . log(𝑌) + (1 −  𝑀𝑖) . log(1 − 𝑌)]𝑁

𝑖=1   (8) 

Then the information from the ℒ𝐵𝐶𝐸  loss obtained on the 
forward pass is getting into backward pass. In backward pass 
gradients of the loss are computed with respect to model 
parameters using backpropagation. Here, Adam optimizer 
updates the model parameter regarding the loss obtained in the 
previous inference of the model, it is to minimize the loss and 
increase the predicted annotation mask. 

The comprehensive architecture of FB-PNet is illustrated in 
Fig. 3. The module positioned in the lower right section of the 
architecture serves as a classification unit, employed solely 
during the training phase for weight refinement. During the 
inference stage, the input image undergoes processing through 
FB-PNet, resulting in the generation of a perceptual mask or 
output perception, as illustrated in Fig. 4. The final perceptual 
mask represents the segmentation output. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

To evaluate the effective performance of the proposed deep 
learning model for automatic plant leaf annotation, the FB-
PNet model was trained for 100 epochs using the ResNet50 U-
Net backbone integrated with Perception Convolution layers 
(PConv). A standardized training setup was maintained across 
all datasets to ensure consistency in evaluation for FB-PNet. 
The parameters IoU, dice coefficient, precision and recall is 
used for evaluation and comparison, since these metrics are 
better in determining the quality of segmentation. 

This configuration included: all these models training and 
evaluation process were executed on the GPU available in 
Google colab. This GPU provides more disk space, which 
offered enhanced computational resources and sufficient 
storage capacity for efficient handling of large datasets 
required on training the model. The model was trained on a 
single GPU using CUDA version 11.8 to ensure efficient 
computation. Training was conducted for a maximum of 100 

epochs, with early stopping applied if validation performance 
did not improve for 20 consecutive epochs. To optimize data 
loading and preprocessing, four worker processes were 
utilized. A batch size of 16 images was used during training to 
balance computational efficiency and memory constraints. 
Initially the learning rate was configured to 0.0001, with a 
ReduceLROnPlateau scheduler dynamically adjusting the 
learning rate by a factor of 0.5, if validation loss did not 
improve for 5 epochs. The Adam optimizer was employed, 
along with weight decay (0.00001) to enhance generalization. 
Additionally, gradient clipping with a value of 1.0 was applied 
to prevent exploding gradients. No warm up strategy was 
applied, as the model converged effectively with the selected 
learning rate and optimizer settings. 

The trained proposed FB-PNet model is compared in Table 
II which represents the segmentation performance of different 
models across various dataset configurations, including 
original, augmented, and fully augmented leaf and disease 
datasets. The results demonstrate that our proposed Forward-
Backward-Propagated Percept Net consistently outperforms 
existing architectures, achieving the highest performance 
across all dataset variations. Notably, our model exhibits a 
significant improvement in segmentation accuracy on test data, 
particularly in the fully augmented dataset, where it achieves 
an IoU of 0.9802 and 0.8680 for leaf and disease datasets, 
respectively. The superior performance of our approach 
highlights the effectiveness of incorporating Perception 
Convolution layers and advanced feature propagation 
mechanisms. In contrast, traditional models like P-CNN show 
the lowest performance across all datasets, while other deep 
learning models such as UNetResNet50 and 
UNetEfficientNetB0 show moderate improvements but still fall 
short of FB-PNet’s results. This highlights FB-PNet’s 
effectiveness in handling complex segmentation tasks, 
especially when trained on augmented data. As a result, the 
model's performance was evaluated using the training and 
validation datasets, and the findings are discussed. 

A. Intersection over Union (IoU) 

IoU quantifies the similarity between the predicted and 
actual masks by measuring their overlap [Eq. (9)]. 

𝐼𝑜𝑈 =  
|𝑀∩𝑌|

|𝑀∪𝑌|
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                   (9) 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT SEGMENTATION MODEL ACROSS VARIOUS TEST DATASET 

 
Leaf dataset 

(500+ images) 

Disease dataset 

(500+ images) 

Augmented 

Leaf dataset 

(1500+ images) 

Augmented 

Disease dataset 

(1500+ images) 

Fully Augmented 

Leaf dataset 

(3000+ images) 

Fully 

Augmented 

Disease dataset 

(3000+ images) 

P-CNN 0.5119 0.4113 0.4752 0.4839 0.5223 0.5203 

UNetResNet34 0.8206 0.5535 0.6874 0.6845 0.9406 0.6535 

DeepLabV3PlusResNet50 0.8902 0.6575 0.6307 0.6228 0.9106 0.6307 

UNetEfficientNetBo 0.9091 0.6689 0.8959 0.6838 0.9381 0.7268 

UNetResNet50 0.9325 0.6816 0.9226 0.7100 0.9506 0.7375 

Forward-Backward-Propagated 

Percept Net (Ours) 
0.9391 0.7306 0.9589 0.7174 0.9802 0.8680 

 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

513 | P a g e  

www.ijacsa.thesai.org 

where, 

 TP (True Positives) are correctly predicted leaf or 
diseased pixels. 

 FP (False Positives) are background pixels wrongly 
predicted as leaf or diseased. 

 FN (False Negatives) are leaf or diseased pixels 
wrongly predicted as background. 

B. Dice Coefficient (F1-Score for Segmentation) 

The Dice coefficient evaluates the similarity between the 
predicted and ground truth masks [Eq. (10)]. 

𝐷𝑖𝑐𝑒 =  
2|𝑀∩𝑌|

|𝑀|∪|𝑌|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
           (10) 

Dice is closely related to IoU but gives more weight to 
correctly predicted pixels. 

C. Precision 

Precision measures how many of the predicted positive 
pixels are actually correct [Eq. (11)]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (11) 

D. Recall 

Recall measures how many of the actual positive pixels 
were correctly predicted [Eq. (12)]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (12) 

Table III presents the FB-PNET final training and 
validation performance metrics at epoch 100, including Loss, 
IoU, Dice Coefficient, Precision, and Recall. 

TABLE III.  FB-PNET TRAINING AND VALIDATION METRICS AT EPOCH 

100 

Metric Training Validation 

Loss 0.5218 0.5166 

IoU 0.8071 0.7010 

Dice 0.8928 0.8215 

Precision 0.8094 0.7038 

Recall 0.9966 0.9938 

 

 

Fig. 6. Training and validation of loss of FB-PNet model for leaf annotation. 

 

Fig. 7. Training and validation of loss of FB-PNet model for disease annotation. 
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Fig. 6 and Fig. 7 illustrate the training and validation loss 
trends for leaf annotation and disease annotation, respectively. 
The validation loss remains stable, while training loss exhibits 
fluctuations, indicating the model's learning behavior and 

adaptation to complex features. Fig. 8 and Fig. 9 show the IoU 
trends for leaf and disease annotations, where the validation 
IoU remains relatively stable while training IoU fluctuates, 
indicating the model's robust generalization. 

 
Fig. 8. Training and validation IoU of FB-PNet model for leaf annotation. 

 
Fig. 9. Training and validation IoU of FB-PNet model for disease annotation. 

TABLE IV.  COMPARISON WITH RELATED METHODS 

Method Model Validation IoU Accuracy 

IIC [32] R18+FPN 44.5 

PiCIE [33] R18+FPN 54.2 

P-CNN [27] – 67.2 

DINO [34] ViT-S/8 68.6 

FB-PNet For Leaf FB-PNet (ours) 70.2 

FB-PNet For Disease FB-PNet (ours) 30.5 

Table IV provides a comparative evaluation of different 
segmentation models in terms of validation IoU accuracy. The 
proposed Forward-Backward-Propagated Percept Net (FB-
PNet) outperforms several benchmark methods, including IIC, 
PiCIE, and DINO, achieving an IoU of 70.2 for leaf 
segmentation and 30.5 for disease segmentation. The findings 
emphasize the effective capability of FB-PNet in accurately 
capturing intricate plant leaf structures and disease patterns. 

Fig. 10 provides a qualitative evaluation of the proposed 
FB-PNet model. The figure showcases: 

 Leaf segmentation results: The predicted segmentation 
closely aligns with the ground truth, confirming 
accurate leaf annotation. 

 Disease segmentation results: The disease prediction 
model captures infected regions but exhibits slight over-
segmentation in certain areas. 

The overall architecture of the Forward-Backward 
Propagated Percept Net is illustrated in the center of the figure. 

The bottom section of the figure displays results from the 
PlantVillage dataset those are unseen to the model, showcasing 
the model’s ability to accurately annotate both leaves and 
diseases across various plant species. 

From the findings, it is evident that the proposed model is 

having better efficiency and advantage of avoiding the manual 

annotation during the segmentation process. 
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Fig. 10. Test Results of the proposed model with various dataset. 

VI. CONCLUSION 

This research describes a new improved deep-learning-
based model for plant leaf and disease automatic annotation, 
FB-PNet. The model improves feature extraction by 
emphasizing salient visual details by discarding some other 
computations, thus helpful in enhancing the segmentation 
accuracy. The model trained using BCEWithLogitsLoss and 
the optimization was done using the Adam optimizer with 
ReduceLROnPlateau to stabilize the convergence and improve 
the generalization. Experimental results also clearly indicate 
that this approach offers superior performances measured with 

Intersection over Union (IoU), Dice coefficient, Precision, and 
Recall. However, the model is capable of over-segmenting in 
areas close to object borders because some natural parameters 
impede its effectiveness in accurately segmenting boundaries. 

Despite its strengths, the model occasionally struggles with 
precise boundary segmentation, leading to over-segmentation 
near object borders. In future studies, we may attempt to 
combine multi-scale feature extraction and attention 
mechanisms for eluding trivial features while optimizing some 
crucial details to further improve the performance of the model. 
Future attempts would also include extending the framework to 
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solving multi-label segmentation tasks, improving self-
supervised approaches to increase versatility across different 
datasets. By addressing these issues and fine tuning it, we aim 
to substantially develop our automatic plant leaf and disease 
segmentation system for real-world agricultural and biological 
applications. 
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