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Abstract—To address the issues of relevance and diversity 

imbalance in the augmented data and the shortcomings of existing 

loss functions, this study proposes a recommendation algorithm 

based on hybrid sequence augmentation and optimized 

contrastive loss. First, two new data augmentation operators are 

designed and combined with the existing operators to form a more 

diversified augmentation strategy. This approach better balances 

the relevance and diversity of the augmented data, ensuring that 

the model can make more accurate recommendations when facing 

various scenarios. Additionally, to optimize the training process of 

the model, this study also introduces an improved loss function. 

Unlike the traditional cross-entropy loss, this loss function 

introduces a temporal accumulation term before calculating the 

cross-entropy loss, integrating the advantages of binary cross-

entropy loss. This overcomes the limitation of traditional methods, 

which apply cross-entropy loss only at the last timestamp of the 

sequence, thereby improving the model's accuracy and stability. 

Experiments on the Beauty, Sports, Yelp, and Home datasets show 

significant improvements in the Hit@10 and NDCG@10 metrics, 

demonstrating the effectiveness of the recommendation model 

based on hybrid sequence augmentation and optimized 

contrastive loss. Specifically, the Hit metric, which reflects model 

accuracy, improves by 8.64%, 13.07%, 5.92%, and 19.28% 

respectively on these four datasets. The NDCG metric, which 

measures ranking quality, increases by 15.60%, 19.01%, 9.66%, 

and 20.31% respectively. 

Keywords—Recommendation algorithm; data sparsity; loss 

function; sequence augmentation; timestamp optimization 

I. INTRODUCTION 

Recommendation systems analyze vast amounts of data to 
help users select items they might be interested in, thereby 
better meeting their personalized needs. These systems 
typically make inferences based on users' historical behavior 
data, preferences, and interests, providing accurate 
recommendations and saving users the time they would 
otherwise spend filtering content in an environment of 
information overload. Sequence recommendation, as a more 
advanced recommendation technique, predicts future items or 
content that users may like by analyzing and mining users' 
historical behavior data within a specific time period. 
Specifically, sequence recommendation not only focuses on 
users' historical behavior but also considers the temporal 
sequence of the behavior, allowing it to more accurately capture 
users' dynamic changes in interests. For example, the user may 
have first purchased a phone, then selected headphones, and 
later became interested in a tablet. Based on this historical data, 
the recommendation system can predict the user's potential 
future purchase behavior and infer the user's next possible 
interest. Sequence recommendation plays a crucial role in 

various internet applications, especially in scenarios such as e-
commerce, video streaming, and social platforms. By deeply 
mining users' historical behavior and preferences, it helps 
recommendation systems generate personalized results. 
However, data sparsity has always been a significant challenge 
for recommendation systems. Since interaction data between 
users and items is often scarce, especially in large-scale 
systems, where many items may have been interacted with by 
only a few users, it becomes difficult for the system to 
accurately capture the complex relationships between user 
preferences and item characteristics. This is especially 
problematic in sequence recommendation, where models need 
to handle vast amounts of user behavior data and perform time-
series modeling. Due to the sparsity of data, there is often 
insufficient interaction information between users and items, 
making it difficult for the model to accurately predict the user's 
next action, thus affecting the accuracy and effectiveness of the 
recommendation. 

To address the problem of data sparsity, researchers have 
introduced data augmentation methods. However, there has 
been limited research on the imbalance between the relevance 
and diversity of the augmented data, which leads to semantic 
drift issues or limited performance improvements. In response 
to this, Dang et al. [1] proposed a new model, BASRec, which 
designed two new operators, M-Reorder and M-Substitute, and 
used single-sequence and cross-sequence augmentation 
modules to solve the above problems. However, previous 
research has shown that using only Reorder and Substitute 
operators does not yield the best data augmentation results. 
Furthermore, BASRec uses the commonly used BCE loss 
function [2] to calculate contrastive loss. Previous studies have 
indicated that using the CE loss function [3] in recommendation 
models may lead to better performance. However, the drawback 
of CE loss is that it is applied only to the last timestamp of the 
input sequence, which also affects the model's performance [4]. 

To address these issues, inspired by the literature [4, 5, 6, 
7], this study proposes a recommendation algorithm based on 
hybrid sequence augmentation and optimized contrastive loss 
(RM-HSAOCL) on the basis of BASRec. Firstly, to further 
enhance the effect of data augmentation, this study designed 
two new data augmentation operators—M-Crop and M-Mask. 
The M-Crop operator enhances the data by cropping the 
original data and randomly selecting a subpart of the input 
sequence, ensuring the diversity of the augmented data while 
maintaining its relevance to the original data. The M-Mask 
operator randomly masks part of the data in the input sequence, 
simulating missing or incomplete information. This operation 
not only improves the robustness of the model but also helps 
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the model better adapt to the issue of incomplete data in real-
world scenarios. These two new operators, together with the 
existing M-Reorder and M-Substitute operators, form a more 
diversified data augmentation scheme. Through this diversified 
augmentation strategy, the augmented data not only maintains 
a certain level of relevance but also greatly improves its 
diversity, thus enhancing the model's performance in various 
situations and ensuring more accurate recommendations. In 
addition to the innovation in data augmentation, this study also 
designed an improved ICE loss function for optimization. 
Unlike the traditional Cross-Entropy (CE) loss function, the 
ICE loss function introduces a time accumulation term before 
calculating the CE loss, compensating for the limitation of 
traditional methods, which only apply the CE loss at the final 
timestamp of the input sequence. As a result, the ICE loss 
function can capture key information not only at the last 
moment of the time series but also effectively utilize 
information from all timestamps in the sequence, improving the 
model’s ability to understand long-term time series data. At the 
same time, the ICE loss function also incorporates the 
advantages of BCE loss, optimizing data across all timestamps 
and further improving the model's performance. 

The following outlines the structure of the study: Section II 
reviews related work. Section III delves into the design of the 
RM-HSAOCL model, covering hybrid sequence enhancement 
method, improved loss function and model training loss. 
Section IV presents and analyzes experimental results to 
validate the approach. Section V summarizes the work and 
explores future research directions. 

II. RELATED WORK 

A. Data Augmentation 

Although sequential recommendation models have made 
significant progress in personalized recommendations, the 
prevalent issue of data sparsity remains a major bottleneck that 
limits their performance. In practical applications, many users 
have limited behavior records, especially for new users or the 
cold-start problem, where there is often a lack of sufficient 
interaction data, making it difficult for recommendation 
systems to effectively capture user preferences. To address this 
challenge, researchers have proposed data augmentation 
methods. These methods have shown significant effectiveness 
in tackling the data sparsity problem in sequential 
recommendations. By generating more user behavior 
sequences, introducing generative models, utilizing multimodal 
data, and performing sample reconstruction, recommendation 
systems can better cope with the challenges posed by sparse 
data. It is a commonly used technique, especially in deep 
learning and machine learning, that helps improve the diversity 
of the dataset, enhance the model's generalization ability, and 
reduce the risk of overfitting. 

Initially, Tang et al. [8] proposed generating new training 
samples through a sliding window approach to increase the 
training data for the model. However, since heuristic algorithms 
like sliding windows rely solely on local information, the 
augmented data generated by this method may be of lower 
quality, potentially leading to overfitting or poor training 
results. Therefore, researchers gradually introduced many data 
synthesis methods that require training in order to overcome the 

limitations of traditional augmentation methods and further 
enhance the model's generalization ability. For example, Li et 
al. [9] improved recommendation accuracy and personalization 
by better capturing users' latent interest shifts through the 
consideration of spatial and temporal factors. Jiang et al. [10] 
proposed a conditional Generative Adversarial Network 
(GAN), which generates new data similar to the original data, 
thereby enabling the recommendation system to leverage more 
data. Wang et al. [11] innovatively adjusted user behavior 
sequences from a counterfactual reasoning perspective, 
specifically by replacing some of the purchased items with 
unknown items to simulate different behavior scenarios, 
helping the model better understand users' latent preferences 
and decision-making processes. Liu et al. [12] adopted a 
diffusion model for sequence generation and designed two 
guidance strategies to control the consistency of the generated 
data with the original data, ensuring that the generated items 
maintained a high degree of similarity with users' actual 
interests. Wang et al. [13] improved temporary user 
recommendations and reduced cold-start problems by 
leveraging the behavior features of core users. However, 
although these training-based data synthesis methods can 
improve the model's performance to some extent, the 
augmented data they generate may still have inconsistencies in 
quality compared to the original data. 

To address this issue, many researchers have optimized 
models by generating contrastive samples using self-supervised 
learning techniques. For example, Xie et al. [5] proposed a self-
supervised learning method based on data augmentation, 
designing three data augmentation operators and combining 
them with a contrastive learning framework to improve the 
model's generalization ability. Yao et al. [14] proposed a two-
stage augmentation strategy, where the first stage involves 
masking operations on the embedding layer, and in the second 
stage, they discard other classification features except for those 
used in contrastive learning, to learn more refined feature 
representations. Zhou et al. [15] also employed contrastive 
learning, enhancing the model’s learning ability by maximizing 
mutual information between attributes. Their study also 
introduced random masking of attributes and item order 
techniques, further improving the model's adaptability to data 
diversity and noise. Liu et al. [16]  combined item similarity 
information with the contrastive learning objective and 
proposed a novel data augmentation method, which included 
insertion and replacement operations. Qiu et al. [17] further 
optimized the training process by constructing contrastive 
samples, helping the model recognize subtle differences 
between different categories, thus improving prediction 
accuracy. Bian et al. [18] conducted two types of representation 
augmentation to enhance personalized feature representations 
of users. Dang et al. proposed five types of data operators to 
expand item sequences based on time intervals, enhancing the 
accuracy and effectiveness of recommendations by optimizing 
the sequence order of time series [19, 20]. 

However, these methods have limited research on the issue 
of imbalance between the relevance and diversity of augmented 
data, which can lead to semantic drift or limited performance 
improvement. To address this issue, this study designs two new 
data augmentation operators, M-Crop and M-Mask, based on 
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the BASRec model. These operators help the model better 
balance the relevance and diversity of the augmented data, 
making the data augmentation process more refined. This 
ensures that the augmented data retains key information while 
providing greater diversity, thereby enhancing the algorithm's 
adaptability and robustness in practical applications. 

B. Loss Function 

In recent years, with the rapid development of deep learning 
technology, sequence-based recommendation models based on 
neural networks have made significant progress in the field of 
personalized recommendations. These models, by deeply 
mining the temporal features in user behavior sequences, are 
able to more accurately predict users' future preferences. 
Traditional recommendation systems often focus on predictions 
based on static user data (such as user history, ratings, etc.), 
while sequence-based recommendation systems further utilize 
the time information in user behavior, capturing the dynamic 
changes in user interests. Specifically, these models usually 
treat user behavior sequences as input, and through the layers 
of a neural network, they progressively extract users' potential 
interests and behavior patterns, thereby generating personalized 
recommendation content and greatly enhancing the accuracy of 
recommendations and the user experience. 

Among many sequence-based recommendation models, 
Transformer-based models have particularly attracted 
widespread attention and favor from researchers. The 
Transformer architecture was originally proposed to solve 
sequence-to-sequence tasks (such as machine translation), and 
its self-attention mechanism allows it to effectively capture 
long-distance dependencies with high computational 
efficiency. The first models to apply Transformer to sequence 
recommendation tasks were SASRec [21] and BERT4Rec [22]. 
SASRec and BERT4Rec were inspired by the success of the 
GPT [23] and BERT [24] architectures, which made significant 

breakthroughs in natural language processing (NLP) tasks, and 
thus their design ideas were transferred to the sequence 
recommendation field. Although SASRec and BERT4Rec are 
similar to their original designs in many aspects, they have 
made adjustments to the training objectives and attention 
mechanisms. The authors of BERT4Rec believe that the 
bidirectionality of the model is the main reason for its 
performance surpassing that of SASRec. However, subsequent 
research has shown that the key factor behind the performance 
improvement is actually the difference in the loss functions 
used by the two models, while other modifications might have 
an adverse impact [25, 26]. SASRec is trained using binary 
cross-entropy (BCE) loss [2], with one positive sample and one 
negative sample, while BERT4Rec uses cross-entropy (CE) 
loss [3] across the entire project catalog. This highlights the 
superiority of CE loss over BCE loss in multi-class 
classification. However, because BCE demonstrates superior 
scalability when dealing with larger project portfolios, it is 
often the more preferred choice in real-world applications. 

In addition, many researchers have made improvements to 
the standard cross-entropy loss. For instance, Li et al. [27] 
adjusted the weights of positive and negative samples, reducing 
the loss contribution of simple samples (i.e., easy-to-classify 
samples), thereby shifting the focus of training to harder-to-
classify samples. This adjustment helps the model focus more 
on predicting difficult user behaviors during the training 
process, thereby improving the accuracy and effectiveness of 
the recommendations. These improvements demonstrate that, 
in practical recommendation systems, how to design an 
appropriate loss function and sample weighting strategy is often 
more effective in enhancing model performance than purely 
architectural innovations. Therefore, this study proposes an 
improvement to the CE loss by combining the advantages of 
BCE loss to enhance the model's recommendation 
performance. 
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Fig. 1. The Overall framework diagram of the RM-HSAOCL model.
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III. RM-HSAOCL MODEL DESIGN 

A. Notation, Definition and Description 

Sequence recommendation is the task of recommending the 
next item that a user is likely to interact with based on their 
historical interaction data. Let 𝑈 and V denote the set of users 

and items, respectively. A user 𝑢∈𝑈 has an interacted item 

 1 2, ,..., ...,u j NS v v v v
, 

 jv V 1 j N  
, denoted as the 

item interacted by user 𝑢 at position j in the sequence, where N 

is the sequence length. Given the historical interactions uS
 , the 

goal of sequence recommendation is to recommend an item 
from the set of items V that user 𝑢 is likely to interact with at 
step N + 1, which can be expressed as formula (1): 

1arg max ( | )N u
v V

P v v S




                      (1) 

B. Overall Framework 

The overall framework of the RM-HSAOCL model 
proposed in this study is shown in Fig. 1. After the input 
sequence passes through the embedding layer, it is processed 
by the M-Crop and M-Mask operators designed in this section, 
along with the original M-Reorder and M-Substitute operators, 
to perform single-sequence enhancement. Then, it goes through 
the encoding layer, where positive and negative item 
embeddings are read out, followed by cross-sequence 
enhancement. Finally, the ICE loss function designed in this 
section is used to compute the next item prediction loss, single-
sequence enhancement loss, and cross-sequence enhancement 
loss. 

C. Hybrid Sequence Enhancement Method 

In the BASRec model proposed by Dang et al. [1], two new 
operators, M-Reorder and M-Substitute, were designed to 
perform data augmentation. However, previous research shows 
that using only the Reorder and Substitute operators does not 
achieve the best data augmentation results. In this section, two 
new operators, M-Crop and M-Mask, are designed, which, 
together with the original M-Reorder and M-Substitute 
operators, complete the data augmentation operation. 

1) M-Crop. Random cropping (Crop) is a common and 

efficient data augmentation technique in computer vision, 

widely used to improve the generalization ability of deep 

learning models [5]. Its basic principle is to randomly select a 

subregion from the original image for cropping and use the 

cropped image as a training sample. In this way, the model is 

exposed to different parts of the image, increasing the diversity 

of the training data, which helps the model make better 

predictions when faced with new, unseen images. In sequence 

recommendation tasks, models often need to process long 

sequence data, which may include user history, click records, 

or browsing records. To enhance the training data for 

recommendation algorithms, researchers have introduced the 

concept of random cropping into this field. 

Inspired by the work in [1], this section improves upon the 
Crop technique and introduces a new data augmentation 
operator, M-Crop, as shown in Fig. 2. Given an original 

sequence uS , M-Crop first selects a subsequence of length

c rate N  . This section introduces the method of drawing 

rate from a uniform distribution, making the length of the 

augmented subsequence no longer fixed. This allows for the 
generation of subsequences of varying lengths, thereby 
increasing the diversity of the augmented data as shown in 
formula (2): 

   
 ~ ,rate Uniform a b

                      (1) 

1v 2v 3v 4v
5v

rate~uni(a,b)

Mixup

 ~ ,Beta  

3v 4v
5v

Single item 

embedding

 

Fig. 2. The Data augmentation operator M-Crop. 

where, a and b are hyperparameters, and 0 1a b   . 

Then, the augmented sequence is obtained starting from 
position i  as in formula (3): 

 
   1 1, , ,u u i i i cS Crop S v v v  

  
    (2) 

Unlike traditional operators that directly use uS   as the new 

sample for model training, this method mixes the corresponding 

terms of uS  and uS   together, generating new training samples 

in the representation space as in formulas (4) and (5): 

 
 ,u u uA Look up S S  

                      (3) 

 
 1In

u u uA A A      
         (4) 

 where, uA
 is the original item representation, 

 ~ ,Beta  
 is the mixing weight, and 

In
uA

 is the 
augmented representation used for model training. 

2) M-Mask. In many natural language processing tasks, 

such as sentence generation, sentiment analysis, and question 

answering, the technique of randomly masking input words, 

also known as "word dropout", is widely used to avoid 

overfitting. In [5], the authors proposed a data augmentation 

method called random item masking (Mask). Inspired by the 

work in [1], this section improves upon Mask and introduces a 

new data augmentation operator, M-Mask, as shown in Fig. 3. 

Given the original user sequence uS
, the items l rate N   in 

the sequence are masked, where rate  is obtained from formula 

(2), and the augmented sequence can then be obtained as 

formula (6): 
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   1 2, , , , ,u u l NS Mask S v v v v  
               (6) 

By following the same steps as in M-Crop, the augmented 

representation 
In
uA

 can be obtained through formulas (4) and 
(5). 

1v 2v
3v

4v
5v

rate~uni(a,b)

Mixup

 ~ ,Beta  

3v
4v 5v

1v mask

 

Fig. 3. The Data augmentation operator M-Mask. 

D. Improved Loss Function 

As discussed in related work, BERT4Rec achieves better 
performance due to the use of cross-entropy (CE) loss across 
the entire item sequence [25, 26], whereas in many real-world 
applications, binary cross-entropy (BCE) loss may be more 
applicable. The BCE loss is suitable for binary classification 
problems. Its design allows the model to effectively measure 
the gap between the predicted values and the true labels, 
helping the model continuously optimize its predictions during 
training. The specific mathematical formulas for CE loss and 
BCE loss are as follows [see formulas (7) and (8)]: 

 

 

 

,

,1

exp log
log

exp log

t pos

C

t cc

i
CE

i


 

              (5) 

   , ,

1 1

log log 1
s

j

Nl

t pos t neg

t j

BCE r r 
 

 
    

  
 

 (6) 

Here, l  represents the length of the input sequence. The CE 

loss only involves the final timestamp of the input sequence, as 
shown in Fig. 4. In contrast, the calculation of BCE loss 
involves all timestamps of the input sequence, as shown in Fig. 
5. 

User sequence： 16 26 666 18
1 2 3 4 5

Input：

32
6

Label： 32
6

Output：
5T

5

16 26 666 18
1 2 3 4 5

 
Fig. 4. CE Loss. 
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2 3 4 5

32
6

 
Fig. 5. BCE Loss. 

Inspired by the studies [4, 7], this section introduces an 
optimized loss function, ICE, which builds upon the traditional 
CE loss function and incorporates an innovative cumulative 
time term before its calculation. Specifically, the traditional CE 
loss function usually only considers the last timestamp of the 
sequence, ignoring the potential information from other 
timestamps within the sequence. However, in many practical 
applications, the temporal characteristics of data often have a 
crucial impact on the model's predictions and performance. To 
overcome this limitation, the ICE loss function incorporates the 
accumulation term of time when calculating the CE loss, 
enabling a more comprehensive consideration of the 
information at each timestamp in the sequence, thus fully 
leveraging the temporal dependencies in the data. The specific 
mathematical formula of the ICE loss function is as follows 
[formula (9)]: 

 

 

 

,

1 ,1

exp1
log

exp

l
t pos

C
t t cc

i
ICE

l i


  
                   (7) 

The core innovation of the ICE loss function lies in the fact 
that, in the calculation at each timestamp, it takes into account 
the information from all previous timestamps. This 
accumulation mechanism effectively captures the long-term 
dependencies in the input sequence. Specifically, in the 
traditional CE loss, the model only focuses on the last moment 
of the sequence, which may overlook potentially useful 
information in the historical data. In contrast, ICE accumulates 
the effects of all timestamps, allowing the model to consider the 
context of the entire time series. This approach enables the 
model to more accurately capture long-term patterns and trends 
in the time series, improving the prediction accuracy and 
reliability. 

At the same time, the ICE loss function also draws on the 
advantages of the BCE loss function, optimizing each 
timestamp of the entire time series, rather than just the last one. 
The BCE loss function is typically used in multi-label 
classification problems. By optimizing the loss at all 
timestamps, it achieves a more comprehensive optimization, 
ensuring that the model not only focuses on the final prediction 
result but also considers the prediction performance at all 
moments during the process. The ICE loss function combines 
this idea with the accumulation term of time, gradually 
optimizing the prediction error at each timestamp during the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

522 | P a g e  

www.ijacsa.thesai.org 

training process, thereby improving the overall performance of 
the model. 

E. Model Training Loss 

This section simultaneously optimizes the entire framework 
by leveraging the multi-task learning paradigm. The formula 
for the total model training loss L  is as follows [formula (10)]: 

 rec ssa csaL L L L  
             (8) 

where, recL  is the next item prediction loss, ssaL is the 

single-sequence enhancement loss, and csaL is the cross-

sequence enhancement loss. The calculation methods for these 
are the same as in BASRec, except that the BCE loss originally 
used is replaced with the ICE loss function designed in this 
section, that is [formulas (11),(12),and (13)]: 

 
 , ,rec u u uL ICE H A A 

                        (9) 

 
 , ,In

ssa u u uL ICE H A A   
                      (10) 

 
 , ,Out Out Out

csa u u uL ICE H A A 
                    (11) 

F. Model Pseudocode 

To help readers understand the workflow of the model, this 
section provides the pseudocode of the RM-HSAOCL model, 
as shown in Algorithm 1. 

Algorithm 1: Pseudocode of the RM-HSAOCL Model 

1: While RM-HSAOCL Not Convergence do: 

2: for x in Dataloader (X) do: 

3: Input the user sequence into the embedding layer for 

processing; 

4: Apply the M-Crop and M-Mask operators designed in this 

section to the output, along with the original operators, for 

single-sequence enhancement; 

5: Pass through the encoding layer, perform positive and 

negative item embedding readout, and then apply cross-

sequence enhancement; 

6: Calculate the next item prediction loss recL
, single-

sequence enhancement loss ssaL
, and cross-sequence 

enhancement loss csaL
 using equation (9), as shown in 

equations (11) to (13); 

7: Calculate the total model training loss L using equations 

(10); 

8: End for 

9: End while 

10: Return L 

                                                           
1 https://cseweb.ucsd.edu/~jmcauley/ 

IV. EXPERIMENTAL SETUP AND RESULTS ANALYSIS 

A. Experimental Setup 

The experimental environment in this section uses 
Windows 11, with a GPU configuration of RTX 3060 and a 
memory capacity of 16GB. All the experimental code in this 
section is written in Python 3.10, and the experimental 
framework uses PyTorch 1.12.1. All parameter settings are 
consistent [1]. 

To ensure the generalizability of the experiment, this 
section uses four publicly available datasets employed by 
BASRec: the Beauty, Sports, and Home datasets 1  from the 
largest e-commerce platform Amazon, as well as the 
commercial dataset Yelp 2 . For these datasets, the data 
processing method proposed by Dang et al. [1] is used, which 
removes users and items with fewer than 5 interactions. Then, 
a Leave-One-Out strategy is employed to evaluate the 
performance of each model. During this process, the data is 
divided based on the timestamps provided in the dataset into 
training, validation, and test sets. Specifically, for each user, the 
last record is selected as the test data, the second-to-last record 
as the validation data, and the remaining records are used as 
training data. The detailed information for the four datasets is 
shown in Table I. 

TABLE I.  STATISTICAL INFORMATION OF EXPERIMENTAL DATASETS 

Dataset #User #Item #Action Sparsity Avg. Len. 

Beauty 22,363 12,101 198,502 99.92% 8.9 

Sports 35,598 18,357 296,337 99.95% 8.3 

Yelp 30,431 20,033 316,354 99.95% 10.4 

Home 66,519 28,237 551,682 99.97% 8.3 

This section uses the commonly used evaluation metrics 
Hit@10 and NDCG@10 for sequence recommendation. The 
higher the values of Hit and NDCG, the more accurate the 
recommendations. A high Hit value typically indicates that the 
recommendation system can provide more items related to the 
user's interests, while a high NDCG value suggests that the 
system is able to accurately rank items according to the user's 
preferences, ensuring that the most relevant recommendations 
are prioritized. Therefore, the larger the Hit and NDCG values, 
the higher the accuracy of the recommendation system, leading 
to a better recommendation experience for users. The system's 
personalization and precision are also significantly improved. 

B. Comparison and Analysis of Model Results 

To validate the effectiveness of the RM-HSAOCL model, 
this section compares it with several representative sequence-
based recommendation models: SASRec (2018) [21] 
introduces the self-attention mechanism into sequence 
recommendation tasks, addressing the issues of information 
loss and computational efficiency encountered by traditional 
sequence models when dealing with long sequences. The self-
attention mechanism allows the model to dynamically assign 
different weights to the user's historical behavior when 
generating each recommendation, thereby capturing changes in 
user interest at different time points. ASReP (2021) [10] is a 

2 https://www.yelp.com/dataset 

https://cseweb.ucsd.edu/~jmcauley/
https://www.yelp.com/dataset
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pre-training method designed to solve short-sequence 
recommendation problems. Its core idea is to generate pseudo-
items (i.e., pseudo-predictive items) by reversing the input 
sequence and inserting them at the beginning of the sequence, 
thereby extending the sequence length. DiffuASR (2023) [12] 
is a diffusion-model-based sequential recommendation 
algorithm aimed at solving data sparsity and long-tail user 
problems in sequential recommendation systems. Its core idea 
is to use data augmentation techniques and employ diffusion 
models to generate high-quality pseudo-sequence data, thus 
enhancing the performance of the recommendation system. 
CL4SRec (2022) [5] is a sequence recommendation method 
based on contrastive learning, which addresses data sparsity 
and improves user representation quality by extracting self-
supervised signals from both the original and augmented data 
using random data augmentation and contrastive learning. 
BASRec (2025) [1] proposed two new operators, M-Reorder 
and M-Substitute, for single-sequence augmentation. These 
operators mix the representations of items in the original 
sequence with those in the augmented sequence to generate new 
samples. Along with the cross-sequence augmentation module 
it designed, these operators perform augmentation and fusion 
operations to generate new samples that balance relevance and 
diversity. 

Experiments were conducted on the Beauty, Sports, Yelp, 
and Home datasets, and the results are shown in Table II, where 
boldface indicates the best performance and underlined text 
indicates the second-best performance. All improvements are 
statistically significant, as determined by a paired t-test with the 

second best result in each case (p ≤ 0.05). From these results, 

it can be observed that: 

Compared to SASRec, ASReP and DiffuASR perform 
significantly better, which proves that introducing data 
augmentation methods indeed has a positive effect on 
mitigating data sparsity, helping to improve the model's 
robustness and generalization ability. Meanwhile, CL4SRec 
outperforms ASReP and DiffuASR, indicating that introducing 
a similarity contrast between augmented data and original data 
can effectively maintain consistency and quality between the 
augmented and original data, further enhancing the model's 
performance. This method ensures that the augmented data's 
quality is comparable to the original data, avoiding the 
introduction of excessive noise or inconsistent information, 
thus optimizing the model's prediction accuracy. However, 
compared to CL4SRec, BASRec's performance is even more 
superior, proving that balancing relevance and diversity in the 
process of generating augmented data is crucial for improving 
the model's performance. BASRec, by optimizing the 
augmented data, ensures both the relevance between data and 
effectively enhances the diversity of the data. This balance not 
only improves the model's adaptability to different user needs 
but also enhances its performance in complex recommendation 
tasks. Therefore, BASRec, by introducing the balance of 
relevance and diversity in the data augmentation process, 
effectively overcomes the potential overfitting and information 
overload issues found in traditional methods, demonstrating 
outstanding performance across various evaluation metrics. 

TABLE II.  COMPARISON OF EXPERIMENTAL RESULTS OF VARIOUS MODELS 

Dataset Metrics SASRec ASReP DiffuASR CL4SRec BASRec Ours Improvement（%） 

Beauty 
Hit@10 0.0639 0.0664 0.0679 0.0686 0.0810 0.0880 8.64 

NDCG@10 0.0338 0.0351 0.0372 0.0366 0.0455 0.0526 15.60 

Sports 
Hit@10 0.0320 0.0353 0.0387 0.0412 0.0436 0.0493 13.07 

NDCG@10 0.0174 0.0195 0.0202 0.0221 0.0242 0.0288 19.01 

Yelp 
Hit@10 0.0277 0.0319 0.0308 0.0355 0.0326 0.0376 5.92 

NDCG@10 0.0136 0.0162 0.0150 0.0176 0.0164 0.0193 9.66 

Home 
Hit@10 0.0149 0.0184 0.0179 0.0212 0.0223 0.0266 19.28 

NDCG@10 0.0078 0.0099 0.0105 0.0119 0.0128 0.0154 20.31 
 

The RM-HSAOCL model proposed in this section 
demonstrates improvements compared to the models 
mentioned above. The RM-HSAOCL model innovatively 
introduces two entirely new operators, M-Crop and M-Mask, 
which, along with the M-Reorder and M-Substitute operators 
designed in BASRec, participate in the data augmentation 
process to effectively generate more representative augmented 
data. This augmentation method not only increases the diversity 
of the training data but also ensures the quality and relevance 
of the augmented data, further optimizing the model’s training 
process. Specifically, the M-Crop operator simulates user 
behavior changes by randomly cropping different parts of the 
data, while M-Mask enhances the model's robustness to missing 
information by randomly masking parts of the data. These 
operations effectively alleviate the data sparsity problem and 
improve the model's prediction capability for unseen data. In 

addition, the RM-HSAOCL model also designs a new loss 
function, ICE, which adds a time accumulation term before the 
CE loss, addressing the limitation of applying CE only to the 
last timestamp of the input sequence. It leverages the advantage 
of BCE by optimizing across all timestamps. The use of the ICE 
loss in the joint training loss calculation further enhances the 
model’s performance. On the Beauty dataset, Hit@10 increased 
by 8.64%, and NDCG@10 increased by 15.60%. On the Sports 
dataset, Hit@10 improved by 13.07%, and NDCG@10 
increased by 19.01%. On the Yelp dataset, Hit@10 increased 
by 5.92%, and NDCG@10 increased by 9.66%. On the Home 
dataset, Hit@10 improved by 19.28%, and NDCG@10 
increased by 20.31%. These results show a significant 
improvement in the recommendation accuracy and ranking 
quality of the model on these datasets. Overall, the 
experimental results across all datasets demonstrate substantial 
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improvements on various metrics, indicating that the method is 
highly applicable and effective in recommendation tasks across 
different domains. 

C. Ablation Experiment 

1) Verify the effectiveness of the M-Crop and M-Mask data 

augmentation operators. In order to analyze the effects of M-

Crop and M-Mask, this section designed three variant models 

using the control variable method: RMHSAOCL-C, which 

removes the M-Crop operator; RMHSAOCL-M, which 

removes the M-Mask operator; and RMHSAOCL-CM, which 

removes both the M-Crop and M-Mask operators. The 

experiments were conducted on the Beauty, Sports, and Yelp 

datasets, and the results are shown in Table III. 

From the experimental results, it can be observed that on the 
Beauty and Yelp datasets, the performance metrics of 
RMHSAOCL-C and RMHSAOCL-M are significantly higher 
than those of RMHSAOCL-CM. This indicates that adding the 
M-Crop and M-Mask operators designed in this section can 
provide more effective data augmentation for the model, which 
helps improve its performance. Compared to the three variant 
models, RMHSAOCL achieves the best performance. This 
result suggests that the synergistic effect of the M-Crop and M-
Mask operators significantly enhances the model's learning 

ability on these two datasets, especially in terms of data 
augmentation. The generated samples not only exhibit greater 
diversity but also maintain a high correlation with the original 
data, thereby avoiding excessive noise interference. 

The experimental results on the Sports dataset, however, 
were different. The performance metrics of RMHSAOCL-M 
were significantly higher than those of RMHSAOCL-C and 
RMHSAOCL-CM, and were comparable to the performance of 
RMHSAOCL. This suggests that, on the Sports dataset, the M-
Crop operator played a key role in improving the model's 
performance, while the M-Mask operator did not significantly 
enhance the performance. A possible reason for this could be 
that the features in the Sports dataset are more reliant on the 
overall structure and temporal aspects of the data, and the M-
Mask operator did not provide enough benefit for this type of 
data. On the other hand, M-Crop, by effectively selecting local 
data segments, may have helped the model better capture 
important local patterns and temporal relationships within the 
data, thus playing a more critical role in improving performance. 

In summary, the experimental results indicate that the 
sensitivity to M-Crop and M-Mask operators varies across 
different datasets, which suggests that in practical applications, 
data augmentation strategies may need to be adapted and 
adjusted for specific datasets.

TABLE III.  THE ABLATION EXPERIMENT TO VALIDATE THE EFFECTIVENESS OF THE M-CROP AND M-MASK OPERATORS 

Model 
Beauty Sports Yelp 

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 

RMHSAOCL 0.0880 0.0526 0.0493 0.0288 0.0376 0.0193 

RMHSAOCL-C 0.0859 0.0513 0.0474 0.0275 0.0363 0.0182 

RMHSAOCL-M 0.086 0.0516 0.0498 0.0286 0.0364 0.0190 

RMHSAOCL-CM 0.0844 0.0506 0.0477 0.0274 0.0367 0.0180 

TABLE IV.  THE ABLATION EXPERIMENT TO VALIDATE THE EFFECTIVENESS OF THE ICE LOSS FUNCTION 

Model 
Beauty Sports Yelp 

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 

RMHSAOCL 0.0880 0.0526 0.0493 0.0288 0.0376 0.0193 

RMHSAOCL+B 0.0787 0.0450 0.0441 0.0239 0.0337 0.0168 

RMHSAOCL+C 0.0686 0.0392 0.0332 0.0187 0.0234 0.0113 

RMHSAOCL+F 0.0805 0.0449 0.0421 0.0228 0.0320 0.0159 
 

2) Verify the effectiveness of the ICE loss function: To 

validate the effect of the ICE loss function in the model, three 

variant models were designed. RMHSAOCL+B indicates the 

use of the BCE loss function in the model, RMHSAOCL+C 

indicates the use of the CE loss function in the model, and 

RMHSAOCL+F indicates the use of the Focal Loss function in 

the model. The experiments were conducted on the Beauty, 

Sports, and Yelp datasets, and the experimental results are 

shown in Table IV. 

The experimental results show that, across the three datasets, 
the performance of RMHSAOCL+B is significantly better than 
that of RMHSAOCL+C and RMHSAOCL+F. This result 
indicates that, compared to the CE loss function, the BCE loss 

function can simultaneously consider the impact of all 
timestamps in the input sequence and demonstrate superior 
performance when handling larger datasets. Specifically, the 
BCE loss function can optimize the model more stably when 
the ratio of positive and negative samples is relatively balanced, 
avoiding the training instability or slow convergence issues that 
the CE loss function may encounter when dealing with larger 
datasets. The experimental results also show that, when the 
ratio of positive and negative samples is balanced, the 
performance of the Focal Loss function is not significantly 
better than that of the BCE loss function. This could be because 
Focal Loss focuses more on distinguishing difficult samples, 
and when the positive and negative samples are already 
balanced, the advantages of Focal Loss do not manifest. In 
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contrast, the BCE loss function, due to its simple and effective 
nature, provides better performance. 

The performance of the RMHSAOCL model far exceeds 
that of the other three variant models, proving the effectiveness 
of the ICE loss function. The ICE loss function optimizes the 
BCE loss function across all timestamps and combines the 
advantages of the CE loss function, significantly improving the 
model's recommendation accuracy and generalization ability. 
This demonstrates that integrating information from different 
timestamps to optimize the CE loss function is a key strategy 
for enhancing model performance. With this approach, the 
model not only better captures historical information but also 
effectively improves its performance in practical 
recommendation scenarios, especially when handling large-
scale datasets, where its advantages are even more pronounced. 

D. The Impact of Data Augmentation in Mixing Weights on 

Model Performance 

 ~ ,Beta    is a mixing weight parameter used to 

adjust the mixing ratio between the original item representation 
and the augmented item representation, thereby generating 
augmented representations for model training. Specifically, the 
goal of the mixing weight is to find the optimal balance between 
the original features and the augmented features, so that the 
model can better learn and capture potential patterns and 
relationships in the data. The augmented representation extends 

the original data by introducing certain variations or noise, 
enabling the model to have stronger generalization ability. The 
Beta distribution is chosen to describe this mixing process, with 
its parameters being a hyperparameter that controls the shape 
and mixing intensity of the distribution, which is crucial for the 
model’s learning and final performance. In this study, different 
values were selected for the experiment, ranging from {0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8}, in order to observe the specific impact 
of different values on the model's performance. The experiment 
was conducted on the Beauty dataset, and the results are shown 
in Fig. 6. 

From the experimental results, it can be seen that Hit@10 
achieves the best value when a = 0.4, meaning that the model's 
recommendation accuracy is strongest at this setting, allowing 
it to better predict user interests. NDCG@10 achieves the best 
values when a = 0.3 and a = 0.5, where the model performs best 
in terms of ranking accuracy. At a = 0.4, the performance of 
NDCG@10 is not as good as at 0.3 and 0.5, but still achieves a 
suboptimal value, indicating that the model at this setting 
balances recommendation accuracy and ranking performance, 
maintaining good overall performance. 

In summary, different values of the hyperparameter have 
varied impacts on the model's performance across different 
metrics. On the Beauty dataset, for the Hit@10 and NDCG@10 
metrics, setting a = 0.4 yields good results. 
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Fig. 6. Sensitivity analysis of the hyperparameter. 

V. CONCLUSION 

This study proposes a recommendation algorithm based on 
mixed sequence augmentation and optimized contrastive loss. 
By introducing two new data augmentation operators, M-Crop 
and M-Mask, the data expansion process is enhanced. 
Additionally, a loss function, ICE, which improves upon the CE 
loss, is designed for next-item prediction loss, single-sequence 
augmentation loss, and cross-sequence augmentation loss 
calculation, thereby improving the accuracy of the 
recommendation system. The experiments in this study were 
validated on four public datasets: Beauty, Sports, Yelp, and 
Home, with significant improvements in various metrics. The 
application demonstrates notable effects, proving the 

effectiveness and advancement of the proposed 
recommendation algorithm based on mixed sequence 
augmentation and optimized contrastive loss in current 
sequence recommendation models. Although the algorithm 
proposed in this study effectively improves the model's 
performance, in real-world recommendation systems, data may 
come in various types, such as text, images, videos, etc. The 
method presented in this study mainly focuses on modeling and 
augmenting behavior sequence data. However, it may not be 
effective in integrating and utilizing other types of data, such as 
user reviews of products or the image features of products. This 
could result in suboptimal performance when the model deals 
with multimodal data, as it may fail to fully leverage the 
information from various data sources to enhance 
recommendation performance. 
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Future research can focus on the following aspects to further 
optimize and expand the algorithm proposed in this study: 

Diversity and adaptability of augmentation methods: The 
current M-Crop and M-Mask operators mainly enhance 
sequence data. In the future, more augmentation methods 
targeting different types of data can be explored, especially in 
recommendation systems that integrate multimodal data. How 
to design more refined and adaptive augmentation operators 
will be an important direction. 

Interpretability of sequence recommendation models: As 
recommendation algorithms are increasingly applied in real-
world scenarios, the interpretability of models becomes 
particularly important. Future research can combine the current 
augmentation and optimization methods to explore how to 
improve the interpretability of recommendation systems, 
allowing users to better understand the recommendation logic 
of the model and increasing their trust in the recommendation 
system. 

Combination of reinforcement learning and transfer 
learning: Reinforcement learning and transfer learning are 
technologies that have gradually gained attention in 
recommendation systems in recent years. Future research could 
consider combining reinforcement learning with hybrid 
sequence augmentation methods to dynamically adjust 
recommendation strategies and optimize users' long-term 
satisfaction. Transfer learning, on the other hand, can help 
transfer knowledge from different domains or tasks to the target 
recommendation task, thereby enhancing the system's cross-
domain application ability. 

In conclusion, the recommendation algorithm based on 
hybrid sequence augmentation and optimized contrastive loss 
proposed in this study has demonstrated superior performance 
in experiments, with strong practical value. However, as the 
scale of data grows and recommendation scenarios become 
more complex, how to further improve the accuracy, efficiency, 
and scalability of recommendation systems remains an area 
worthy of in-depth research. Future research can focus on areas 
such as multimodal recommendation, personalized 
optimization, and real-time processing, driving 
recommendation technologies towards more efficient and 
intelligent development. 
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