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Abstract—The rapid development of the Internet of Things 

(IoT)-based Wireless Sensor Networks (WSNs) has fueled security 

challenges, necessitating efficient intrusion detection approaches. 

The computationally intensive nature and the high-dimension 

data preclude the direct employment of machine learning-based 

Intrusion Detection Systems (IDSs). This study introduces GOA-

WO-ML, a robust IDS system that integrates the Gannet 

Optimization Algorithm (GOA) and Walrus Optimizer (WO) for 

feature selection and parameter tuning in machine learning 

algorithms. The system is tested on the NSL-KDD dataset, 

indicating better cyberattack detection performance. The 

experimental findings suggest that GOA-WO-ML improves 

intrusion detection accuracy, decreases false positives, and has low 

computational overhead compared to traditional methods. By 

adopting bio-inspired methods, the proposed system successfully 

counteracts security issues in IoT-WSNs through efficient 

surveillance. Future research directions include considering deep 

learning improvements and real-time deployment methods in 

dynamic environments for further intrusion detection 

performance. 
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I. INTRODUCTION 

The Internet of Things (IoT) and Wireless Sensor Networks 
(WSNs) have revolutionized many industries by allowing for 
easy communications and real-time data acquisition [1]. The 
networks comprise many connected devices used to monitor, 
control, and automate processes. The IoT-enabled WSNs are 
used in health, agriculture, smart cities, and environmental 
surveillance [2]. However, increased connectivity and the use of 
radio frequency communications make them susceptible to a 
broad variety of cyber-attacks, including unauthorized access, 
data manipulation, and denial-of-service attacks [3]. 

Intrusion Detection Systems (IDSs) are vital for protecting 
IoT-WSNs by detecting malicious behaviors in the network and 
initiating proper countermeasures. With growing IoT networks, 
the role of effective intrusion detection mechanisms gains 
significance [4]. A good IDS must recognize various real-time 
attacks while maintaining network security and firmness. 
Classical IDSs mostly depend upon preconfigured signatures or 
simple anomaly detection approaches. Such systems are mainly 
unable to keep pace with changing threats in dynamic and 
resource-limited environments such as IoT-WSNs [5]. 

The main problem in designing an IDS for IoT-WSNs is 
dealing with the high dimensionality of data in these networks 
[6]. The extensive network traffic data with high dimensionality 
demands sophisticated feature selection and optimization 
techniques. Moreover, conventional IDS methods are burdened 
by excessive false alarms, delayed detection, and ineffective 
parameter adjustment. ML has demonstrated the potential to 
overcome these challenges, but the workload remains a problem 
without optimization. Also, traditional optimization methods are 
not effective in dealing with the high-dimensional, noisy nature 
of data in IoT-WSNs, resulting in suboptimal outcomes. 

In response to these challenges, we introduce a new hybrid 
IDS, GOA-WO-ML, integrating the Gannet Optimization 
Algorithm (GOA) and the Walrus Optimizer (WO) algorithms 
for effective feature selection and parameter adjustment in 
Machine Learning (ML) models. GOA is a bio-mimetic search 
algorithm based on the predation mechanism of the gannet [7], 
whereas the WO has mimicked the behavior of walruses [8]. 
Machine learning has demonstrated significant utility across 
diverse domains, including healthcare, agriculture, and 
economics, by uncovering patterns in high-dimensional data [9]. 
These capabilities are now being increasingly adopted to secure 
IoT environments through intelligent intrusion detection 
frameworks. 

This system, leveraging the potential of GOA and WO, 
improves intrusion detection accuracy and minimizes false 
positives and computation complexities. We couple these 
optimization algorithms with a Support Vector Machine (SVM) 
classifier, guaranteeing top performance even in large, high-
dimensional datasets such as NSL-KDD. 

The remaining content of this paper is presented as follows. 
Section II reviews related research on intrusion detection in IoT-
WSNs. Section III discusses the details of the proposed GOA-
WO-ML system. The results section is given in Section IV and 
discussions comparing the efficiency of GOA-WO-ML with 
conventional IDS approaches are given in Section V. Section VI 
offers an in-depth discussion of the findings. The conclusion of 
this paper and research directions are given in Section VI. 

II. RELATED WORK 

Zhao, et al. [10] proposed a Network Intrusion Detection 
(NID) system for IoT based on a Lightweight Deep Neural 
Network (LDNN). They used dimension reduction with 
Principal Component Analysis (PCA) to overcome raw traffic 
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features limitations in high dimensions. The LNN contains a 
compressible and expanded design, residual inverse 
architecture, and shuffled channels for low-complexity feature 
extraction. They also proposed a novel NID loss function for 
imbalanced sample distribution multiclassification. 

Gangula and V [11] proposed a network intrusion detection 
system utilizing the Improved Flower Pollination Algorithm 
(IFPA) and ensemble classification. Using a scaling factor for 
improved convergence, they employed IFPA to choose the best 
features from the NSL-KDD and UNSW-NB15 datasets. The 
features identified were passed through an ensemble classifier, 
where multiple models, random forest, decision trees, and SVM 
were combined. 

Asgharzadeh, et al. [12] suggested a deep learning-based 
intrusion detection scheme for IoT devices through automatic 
feature extraction with Convolutional Neural Networks (CNNs). 
They employed a hybrid model, IoTFECNN, based on 
combining deep learning with a Binary Multi-objective 
Improved Capuchin Search Algorithm (BMECapSA) for feature 
selection. 

Recent studies have explored the integration of vision 
transformers with convolutional architectures for more accurate 
and scalable classification tasks. For example, a fuzzy hybrid 
stacked ensemble combining ViTs and CNNs was proposed to 
detect defects in metal surfaces, demonstrating the effectiveness 
of hybrid deep learning approaches in real-time industrial 
environments [13]. 

Hanafi, et al. [14] developed a new intrusion detection 
system by utilizing an optimized Binary Golden Jackal 
Optimization (BGJO) algorithm, along with LSTM networks. 
The OBL was used to optimize the IBGJO for optimal feature 
selection and prevent local optima. The BGJO-LSTM model 
resulted in an accuracy of up to 98.2% for CICIDS2017 and 
NSL-KDD datasets. The results were more accurate than those 
of BGJO-LSTM and in contrast with other SVM-based 
methods. 

Yang, et al. [15] developed a Lightweight Convolutional 
Neural Network (LSCNN) for detecting intrusions in the IoT, 
targeting high-dimensional data. They proposed a Data 
Purification Algorithm (DPA) to transform unstructured data 
into images, eliminate duplicate data, and enhance the 
performance of CNN. LSCNN, drawing from separate 
convolution, was more efficient in terms of time consumption 
and detecting intrusions. 

Makhadmeh, et al. [16] introduced a novel network IDS, 
MPAC, derived from the Marine Predators Algorithm (MPA) 
augmented by a crossover operator. MPAC emphasizes 
effective feature selection by optimizing the most valuable 
features for NIDS. They showed MPAC's performance is better 
than that of alternative methods, with high accuracy in various 
datasets. The system reported strong results, performing better 
in detecting network attacks than various current models. 

Shi, et al. [17] presented an ensemble system of intrusion 
detection for the security of IoTs based on an Enhanced 
Artificial Hummingbird Algorithm (EAHA). The system 
employed the binary version of EAHA (BEAHA) in feature 
selection and ensemble classifier design for intrusions in a 
network. The accuracy of their model, when validated through 
use with CSE-CIC-IDS2018, CIC-IDS2017, and NSL-KDD 
benchmark datasets performed well while reducing feature 
dimensionality by at least 69%, demonstrating efficiency as well 
as competitiveness. 

Asif [18] proposed the OSEN-IoT, a stacked ensemble 
network for IoT, by utilizing multiple convolutional neural 
networks (DenseNet121, MobileNetV2, and ResNet50V2) in a 
stacking manner. The system is augmented by a channel and a 
spatial attention mechanism, and it was optimized by a genetic 
algorithm. OSEN-IoT achieved better performance with 
accuracy rates of 99.71% in Edge-IIoTset, 99.15% in UNSW-
NB15, and other data sets, surpassing current deep learning 
approaches in cyber-threat detection. 

TABLE I.  RECENT INTRUSION DETECTION SYSTEMS FOR IOT NETWORKS 

Reference Key techniques Datasets Accuracy Shortcoming 

[10] 
Lightweight deep neural network and 

PCA for feature reduction 
UNSW-NB15 and Bot-IoT 96.15 and 86.11 

The model is computationally intensive and 

may overfit on small datasets. 

[11] 
Enhanced flower pollination 
algorithm and ensemble classifier 

UNSW-NB15 and NSL-KDD 
99.32% and 
99.67% 

The ensemble approach is complex and may 
struggle with feature selection flexibility. 

[12] 
Convolutional neural networks and 

enhanced capuchin search algorithm 
TON-IoT and NSL-KDD 

99.99% and 

99.85% 

The model consumes high resources and has 

slow training times. 

[14] 
Binary golden jackal optimization 
and LSTM 

NSL-KDD and CICIDS2017 98.21% and 99.25 
Sensitive to class imbalances and requires 
intricate parameter tuning. 

[15] 
Lightweight CNN and data 

purification algorithm 
AWID and NSL-KDD 91.7 % and 85.13% 

May not generalize well to unseen attack types 

and is computationally complex. 

[16] 
Marine predators algorithm with 
crossover operator 

NSL-KDD, UNSW-NB15, Bot-
IoT2018, and CICIDS2017 

99.58%, 98.98%, 
99.98%, 97.67% 

The method may converge to local optima and 
demands extensive computational resources. 

[17] 
Artificial hummingbird algorithm and 

ensemble classifier 

NSL-KDD, CIC-IDS2017, and 

CSE-CIC-IDS2018 

99.74%, 99.59%, 

and 98.51% 

The method can suffer from overfitting on 

large datasets and has slower convergence. 

[18] 
Stacked ensemble CNN and genetic 
algorithm 

Edge-IIoTset, UNSW-NB15, 
and IoT_Malware 

99.71%, 99.15%, 
and 96.17% 

The model is computationally expensive and 
may not scale efficiently for larger datasets. 

 

The current approaches are primarily based on traditional 
ML methods or sophisticated deep learning approaches, not 
optimizing feature selection and model complexity for IoT-
WSNs. Based on the observations in Table I, most methods aim 

to improve performance with large-sized models, which are 
inappropriate for the resource-limited environment of IoT 
devices. Moreover, most traditional methods do not handle high-
dimensional, noisy data, resulting in suboptimum performance. 
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There is also a demand for efficient real-time detection methods, 
maintaining a trade-off between accuracy, efficiency, and 
computational overhead. 

Our GOA-WO-ML framework fills all these gaps by 
integrating the GOA and WO, which are superior in exploration 
and exploitation for feature selection and parameter adjustment. 
Our hybrid solution balances high detection accuracy with low 
computational complexity, better fitting the environment of the 
IoT. Our system is capable of performing well under real-time 
conditions, thereby helping develop intrusion detection methods 
for IoT-enabled WSNs. 

III. PROPOSED INTRUSION DETECTION SYSTEM 

Hybrid metaheuristic algorithms have proven effective in 
addressing complex optimization problems in smart grids and 
energy systems [19]. Inspired by such advances, the present 
study proposes a new, automated GOA-WO-ML technique 
involving the combination of GOA with ML to ensure effective 
intrusion detection in the domain of IoT-integrated WSNs. The 
GOA-WO-ML methodology uses nature-based optimization 
techniques, GOA, and ML to design a robust and reliable IDS 
for IoT-WSNs. 

This study plans to secure the WSN-IoT systems by utilizing 
the GOA-WO-ML methodology to detect intrusions promptly. 
The mechanism streamlines the intrusion detection process 
while ensuring efficient detection and dependability, thereby 
maintaining data and device integrity in the network. The 
method generally contributes to detecting intrusions, effectively 
solving the security issues introduced by the ubiquitous and 
widely dispersed characteristics of IoT and WSN equipment. 

GOA-WO-ML enables accurate differentiation between 
multiple cyberattacks, thereby enhancing WSN-IoT security. 
The process comprises four major steps: data scaling, selecting 
GOA features, classification with ML, and parameter tuning 
utilizing WO. Fig. 1 illustrates the framework for detecting 
threats and upgrading security in the WSN-IoT environment. 

The initial step in GOA-WO-ML is data standardization, in 
which the values are equivalent to a predefined range. This 
standardization helps keep the weighted summation of inputs 
within the limits in model initialization. In some cases, it can 
lead to inefficient training and slower convergence when data is 
not scaled appropriately. On the other hand, data scaling 
decreases dimensionality, thus enabling faster processing. Eq. 
(1) is employed, in which data is scaled by mapping it between 
zero and one. 

𝑍𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1) 

Where 𝑍𝑛𝑜𝑟𝑚 represents the scaled data, 𝑥 is the original 
value, 𝑥𝑚𝑎𝑥 is the maximum value, and 𝑥𝑚𝑖𝑛   is the minimum 
value used for scaling. 

GOA is used to select the most applicable features in the 
intrusion detection mechanism for IoT-enabled WSNs. Its 
motivation comes from the diving nature of gannets, which 
plunge from a great height to catch prey in the water. This 
nature-inspired behavior is mimicked for searching and 
exploring feature space in optimal feature selection. The process 

starts with creating a first population of solutions, in which every 
solution contains a set of feature subsets in the search space. The 
solutions are initialized at random. The locations of the 
individuals in the population are stored in a matrix, as in Eq. (2). 

𝑋 = [

𝑥1,1 ⋯ 𝑥1,𝐷𝑖𝑚1 𝑥1,𝐷𝑖𝑚−1
𝑥2,1 ⋯ 𝑥2,𝐷𝑖𝑚−1 𝑥2,𝐷𝑖𝑚
⋮ ⋱ ⋮ ⋮

𝑥𝑁,1 ⋯ 𝑥𝑁,𝐷𝑖𝑚−1 𝑥𝑁,𝐷𝑖𝑚

] (2) 

Where 𝑥𝑖 denotes the position of the 𝑖th individual, and each 
element 𝑥𝑖,𝑗 in the matrix 𝑋 is calculated using Eq. (3). 

𝑥𝑖,𝑗 = 𝑟1 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵 (3) 

Where 𝑈𝐵𝑗  and 𝐿𝐵𝑗  are the upper and lower bounds for the 

𝑗th dimension of the problem, respectively, 𝑁 represents the 
number of individuals in the population, 𝐷𝑖𝑚 refers to the 
dimensional size of the problem, and 𝑟1 is a random number 
between 0 and 1. 

A memory matrix MX is also introduced, in which the best 
positions of the individuals during the optimization process are 
stored. The memory matrix plays a central role in retaining the 
optimum solutions in memory for future iterations. The memory 
matrix is refreshed after each evolution step by calculating the 
fitness value of each individual. For each candidate solution, 
whenever it is better, it replaces the incumbent solution in the 
memory matrix with its position. Otherwise, the solution from 
the current matrix is retained. 

 

Fig. 1. Workflow of the GOA-WO-ML methodology. 

The second step is exploring the feature space by the two 
dive strategies motivated by gannets: the U-shaped dive, also 
known as the plunge dive, and the V-shaped dive. As shown in 
Fig. 2, these strategies lead the search process, in which the U-
shaped dive corresponds to long-range, deep exploration, while 
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the V-shaped dive represents a concentrated, shallow search. 
The U-shaped dive is controlled by Eq. (4) and Eq. (5). 

𝛼 = 2. cos(2. 𝜋. 𝑟2) . 𝑡 (4) 

𝑏 = 2.√2. 𝜋. 𝑟3. 𝑡 (5) 

Where 𝑟2 and 𝑟3 are random numbers between 0 and 1, and 
𝑡 is the iteration count. These calculations help determine the 
trajectory of the dive, simulating the search behavior of gannets. 
For the V-shaped dive, the update is more localized, given in Eq. 
(6). 

𝑉(𝑥) = {
−
1

𝜋
. 𝑥 + 1, 𝑖𝑓 𝑥 ∈ (0, 𝜋) 

1

𝜋
. 𝑥 − 1, 𝑖𝑓 𝑥 ∈ (𝜋, 2𝜋)

 (6) 

In this case, the algorithm uses the V-shaped dive to narrow 
down the search space, focusing more precisely on potential 
solutions. Once the exploration phase identifies promising 
solutions, the exploitation phase begins. Here, the position of 
each individual is refined based on the best-performing solution 
so far, represented as 𝑋𝐵𝑒𝑠𝑡 , and the average position of all 
individuals in the population, 𝑋𝑚 . The update is performed 
using Eq. (7). 

𝑀𝑋𝑖(𝑡 + 1) = {
𝑋𝑖(𝑡) + 𝛽1 + 𝛽2,   𝑞 ≥ 0.5

𝑋𝑖(𝑡) + 𝜐1 + 𝜐2,   𝑞 < 0.5
 (7) 

Where q is a random number used to choose between the two 
dive strategies. The variables 𝛽1  and 𝜐2 are calculated using 
Eq. (8) and Eq. (9). 

𝛽2 = 𝐴. (𝑋𝑖(𝑡) − 𝑋𝑟) (8) 

𝜐2 = 𝐵. (𝑋𝑖(𝑡) − 𝑋𝑚) (9) 

Where 𝐴 and 𝐵 are scaling factors defined by Eq. (8) and Eq. 
(9). 

𝐴 = (2. 𝑟4 − 1). 𝛼 (8) 

𝐵 = (2. 𝑟5 − 1). 𝑏 (9) 

These position updates guide the algorithm towards more 
optimal feature sets by refining the current solutions. The 
parameter values 𝑟4 and 𝑟5 are random values between 0 and 1, 
ensuring a stochastic search. 

In the exploitation phase, the GOA adjusts the position of 
each individual solution based on the best-performing solution 
found so far (𝑋𝐵𝑒𝑠𝑡) and the average position of all individuals. 
The position update is based on a random selection of 
exploration or exploitation strategies using a random number 𝑞. 
The update rule is as follows: 

𝑀𝑋𝑖(𝑡 + 1) =

{
 
 

 
 𝑋𝑖(𝑡) + 𝛿. (𝑋𝑖(𝑡) − 𝑋𝐵𝑒𝑠𝑡(𝑡)) +

𝑋𝑖(𝑡),    𝑖𝑓 𝐶𝑎𝑝𝑡𝑢𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥ 𝑐

𝑋𝐵(𝑡) − (𝑋𝑖(𝑡) − 𝑋𝐵𝑒𝑠𝑡(𝑡)).  

𝑃. 𝑡,   𝑖𝑓 𝐶𝑎𝑝𝑡𝑢𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 < 𝑐

 (10) 

Where 𝑃 is the Levy flight function and 𝛿 is computed based 
on capturability, calculated using Eq. (11). 

𝛿 = 𝐶𝑎𝑝𝑡𝑢𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦. |𝑋𝑖(𝑡) − 𝑋𝐵𝑒𝑠𝑡(𝑡)| (11) 

The Levy flight is used to refine the search and help escape 
local optima by introducing randomness into the search process, 
calculated as follows: 

𝑃 = 𝐿𝑒𝑣𝑦(𝐷𝑖𝑚) = 0.01 ×
𝜇. 𝜎

|𝜐|
1
𝛽

 (12) 

Where 𝜇 and 𝜎 are random values between 0 and 1, and 𝛽 = 
1.5 β=1.5 is a pre-determined constant. Additionally, the scaling 
factor 𝜎 is defined using Eq. (13). 

𝜎 = (
Γ(1+𝛽)×sin(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1
2 )
)

1

𝛽

                       (13) 

The capturability metric determines whether the algorithm 
can effectively catch the optimal feature subset, calculated as 
follows: 

𝐶𝑎𝑝𝑡𝑢𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑅.𝑡2
                     (14) 

 
Fig. 2. Exploration strategies in GOA-WO-ML. 
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Where 𝑅 represents the energy required to catch the optimal 
feature subset, and 𝑡2 adjusts based on the time spent during the 
optimization process. This ensures that the algorithm refines its 
search for the most relevant features as the optimization 
progresses, ultimately converging on an optimal feature subset. 

Algorithm 1 presents the pseudocode of the GOA. The GOA 
keeps refining the solutions until the stopping conditions are 
achieved, usually when the solution converges or the maximum 
iterations are reached. The optimal solution for intrusion 
detection in IoT-WSNs is represented by the feature subset thus 
selected. Overall, GOA-based feature selection judiciously 
balances exploration with exploitation to identify the best 
features for intrusion detection. Modeling the foraging behavior 
of the gannet, the algorithm successfully narrows the feature set 
while making detection more accurate, keeping costs low. 

Algorithm 1 Pseudocode of GOA 

Inputs: population size (N), dimensionality of the problem (Dim), 
and the maximum iteration count (𝑇max _𝑖𝑡𝑒𝑟). 

Outputs: The optimal solution (location of the gannet) and its 
associated fitness score. 

Random initialization: 

     Initialize the population of solutions 𝑋 randomly. Each solution 
𝑋𝑖 is assigned values within the bounds of the problem as 
specified in Eq. 2. 

Memory matrix setup: 

     Create an auxiliary matrix 𝑀𝑋 to store the best solutions 
encountered during the optimization process. 

Fitness evaluation: 

     Compute the fitness values for all solutions in the population. 

Optimization loop: 

     Repeat the following steps until the maximum number of 
iterations is reached: 

     Decision between exploration and exploitation: 

           A random number 𝑟𝑎𝑛𝑑 is generated. 

           If 𝑟𝑎𝑛𝑑 > 0.5, proceed with the exploration strategy; 
otherwise, exploit the best solutions. 

     Exploration phase: 

           For each solution in the memory matrix 𝑀𝑋: 

                If 𝑞 ≥ 0.5, update the position using Eq. 7a to explore the 
feature space. 

                If 𝑞 < 0.5, update the position using Eq. 7b for a different 
exploration pattern. 

     Exploitation phase: 

           For each solution in the memory matrix 𝑀𝑋: 

                If the capturability value exceeds a threshold, update the 
solution using Eq. 10a to exploit the current best 
solutions. 

                Otherwise, use Eq. 10b to perform a less aggressive 
exploitation. 

     Memory update: 

                After calculating the fitness of all solutions in 𝑀𝑋, 
compare them with the corresponding solutions in 𝑋. 

                If a solution in 𝑀𝑋 outperforms its counterpart in 𝑋, 
replace the corresponding solution in 𝑋 with the one 
from 𝑀𝑋. 

     Termination: 

                End the optimization process when the stopping 
condition is fulfilled. 

Intrusion detection in WSN-IoT systems takes advantage of 
the SVM classifier and parameter optimization through 
optimization algorithms. The GOA is employed for feature 
selection optimization and bias, while the WO is used to fine-
tune the SVM parameters to enhance classifying performance. 

To begin, we assume an input vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛], 
where the network contains 𝑀 neurons in the hidden layer. The 
weighted sum of inputs for each neuron in the hidden layer is 
calculated using Eq. (15). 

𝑧𝑖 =∑𝑤𝑖𝑗 . 𝑥𝑗 + 𝑏𝑖

𝑀

𝑗=1

 (15) 

Where 𝑤𝑖𝑗  represents the weight from the input 𝑥𝑗  to the 

neuron in hidden layer 𝑖, and 𝑏𝑖  denotes the hidden neuron's 
bias. 

A non-linear activation function is applied to the weighted 
sum of each hidden neuron, with the tanh function being one 
possible example: 

ℎ𝑖 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑧𝑖) (16) 

For each output neuron 𝑘, a weighted sum of the hidden layer 
outputs is computed: 

𝑦𝑘 =∑𝜐𝑘𝑖 . ℎ𝑖 + 𝑐𝑘

𝑀

𝑖=1

 (17) 

Where 𝜐𝑘𝑖  is the weight from the 𝑖th hidden neuron to the 𝑘th 
output neuron, and 𝑐𝑘 is the bias term for the 𝑘th output neuron. 

The final output is obtained by applying the activation 
function to the weighted sum of the outputs from each output 
neuron: 

𝑦𝑘 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑦𝑘) (18) 

GOA is used for feature selection and bias terms in SVM 
optimization. GOA replicates the predatory nature of gannets 
and is employed to determine the most informative features from 
a big dataset, thereby decreasing feature space while ensuring 
better computational efficiency. GOA conducts exploration and 
exploitation in feature space by applying a blend of random 
search methods and iterative refining. The optimization allows 
the most valuable features to be selected for training SVM, 
thereby improving the accuracy and efficiency of the model. 

Subsequent SVM parameter tuning is performed by utilizing 
the WO. The WO performs excellently in global optimization 
problems by iteratively traversing the solution space, searching 
for close-to-optimum SVM parameter configurations. The 
algorithm fine-tunes the SVM's parameters, including the 
penalty term C and the kernel coefficients, in a search for the 
highest attainable classification accuracy. 

The integrated system is a good and effective alternative for 
detecting intrusion in IoT-based WSNs by utilizing GOA for 
feature selection and WO for parameter tuning. The mechanism 
proposed by the authors maintains computations while ensuring 
good performance in terms of classification. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

563 | P a g e  

www.ijacsa.thesai.org 

The weight terms 𝑤𝑖𝑗  and 𝜐𝑘𝑖 , as well as the biases 𝑏𝑖 and 

𝑐𝑘, are updated using gradient descent. The GOA helps identify 
the most relevant features from the input data, while WO ensures 
that the SVM's hyperparameters are optimized for the best 
performance. This combined approach leads to a more efficient 
and accurate intrusion detection model capable of identifying 
potential threats in IoT-WSNs with minimal computational 
overhead. 

IV. RESULTS 

This section introduces the performance evaluation of GOA-
WO-ML in terms of intrusion detection when used in the NSL-
KDD dataset, which has 149,000 records belonging to two 
classes detailed in Table II. The GOA-WO-ML model was 
executed by using the Scikit-Learn program on a computer with 
primary hyperparameters specified as follows: learning rate of 
0.01, batch size of 32, dropout rate of 0.2, Tanh activation 
function, and number of epochs of 60. 

TABLE II.  DISTRIBUTION OF SAMPLES IN THE NSL-KDD DATASET 

Category Type of attack Sample distribution 

Attack traffic Remote to Local (R2L) Training: 1,240 

  Test: 3,023 

 Probing Attack (PA) Training: 2,636 

  Test: 5,883 

 User to Root (U2R) Training: 53 

  Test: 227 

 Denial of Service (DoS) Training: 45,967 

  Test: 11,963 

Normal traffic Normal Training: 67,344 

  Test: 10,664 

Total samples  149,000 

  Training: 117,240 

  Test: 31,760 

During evaluation of intrusion detection systems such as 
GOA-WO-ML, the model's performance should be measured in 
terms of several metrics to validate its performance across 
various detection dimensions. The metrics used are Area Under 
Curve (AUC), F1-score, specificity, sensitivity, and accuracy, 
each of which can offer distinct insights into model 
performance. 

Accuracy is defined as the number of correct predictions 
(both true positives and true negatives) divided by the total 
number of predictions. It is a broad criterion for the performance 
of the model, indicating the frequency with which the model 
classifies the samples appropriately. 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (19) 

Where 𝑇𝑃 stands for true positives (correctly identified 
attacks), 𝑇𝑁 refers to true negatives (correctly identified normal 
samples), 𝐹𝑃 denotes false positives (normal samples 
incorrectly identified as attacks), and 𝐹𝑁 outlines false 
negatives (attacks incorrectly identified as normal). 

Sensitivity, also known as recall or true positive rate, 
calculates the model's performance in identifying the attack 
samples (the true positives) against all the actual positives. It is 
a crucial metric in intrusion detection since a highly sensitive 
model guarantees a substantial proportion of the attacks are 
detected, avoiding attacks that might go unnoticed. 

Sensitivity=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20) 

Specificity is the complement of sensitivity and measures 
how well the model can accurately label normal traffic (true 
negatives) from all real negative samples. This metric is 
beneficial in cases where false positives are costly, as it reduces 
the number of standard samples flagged incorrectly as attacks. 

Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (21) 

F1-score is the harmonic mean of recall and precision. It 
balances the trade-off between recall and precision, giving a 
single value for a model's performance when it considers false 
positives and false negatives. The F1-score is particularly useful 
when working with imbalanced sets, as it considers both recall 
and precision, not giving preference to either. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (22) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (23) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (24) 

AUC refers to the area under the receiver operating 
characteristic curve. It is a metric of the overall performance of 
a binary classifier, indicating how well the model separates the 
classes. The AUC value is between 0 and 1, with a higher value 
near 1 representing good model performance. The higher the 
AUC, the better the model can separate normal from attacking 
traffic. 

𝐴𝑈𝐶 = ∫ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)𝑑𝑥
1

0

 (25) 

The metrics for evaluation of the GOA-WO-ML are given in 
Table III, with 80% of the data used for training, and Table IV 
shows metrics with 20% testing. The metrics show GOA-WO-
ML's success at detecting threats in WSN-IoT environments. 
Fig. 3 demonstrates the performance of GOA-WO-ML trained 
with 80% of the dataset against the rest, i.e., 20%. 

TABLE III.  PERFORMANCE EVALUATION OF THE GOA-WO-ML METHOD 

WITH 80% TRAINING DATA 

Attack 

types 
AUC 

F1-

score 
Specificity Sensitivity Accuracy 

PA 98.35 95.82 99.63 97.76 99.33 

U2R 97.72 94.34 99.77 96.82 99.21 

R2L 98.98 96.61 99.56 98.88 99.52 

DoS 99.47 98.24 99.83 99.05 99.45 

Normal 99.76 99.49 99.86 99.73 99.67 

Average 98.85 96.9 99.73 98.44 99.43 
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TABLE IV.  PERFORMANCE EVALUATION OF THE GOA-WO-ML METHOD 

WITH 20% TESTING DATA 

Attack 

types 
AUC 

F1-

score 
Specificity Sensitivity Accuracy 

PA 98.17 94.69 99.73 97.12 99.24 

U2R 97.65 93.61 99.58 98.26 99.61 

R2L 98.39 92.49 99.72 97.33 99.26 

DoS 99.42 96.07 99.35 98.41 99.47 

Normal 99.48 99.93 99.95 99.87 99.34 

Average 98.62 95.35 99.66 98.19 99.38 

 
Fig. 3. Comparison of evaluation metrics for 80% training and 20% testing 

data sets. 

Table V presents the performance metrics from 90% of the 
data used in training, while Table VI contains the metrics from 
the data set used in testing. The results further prove the 
reliability of the GOA-WO-ML model in real-life intrusion 
detection. The results of the GOA-WO-ML model trained with 
a 90% dataset are presented in Fig. 4 when tested with a dataset 
of 10%. 

Fig. 5 depicts the GOA-WO-ML model's training and 
validation accuracy. Both values rise with time, implying that 
the model improves over time. The rising training accuracy 
suggests that the model is learning well from training data, while 
the increasing validation accuracy indicates its superior 
capability of generalizing well to unseen data, also showing the 
model's strength. 

TABLE V.  PERFORMANCE EVALUATION OF THE GOA-WO-ML METHOD 

WITH 90% TRAINING DATA 

Attack 

types 
AUC 

F1-

score 
Specificity Sensitivity Accuracy 

PA 98.93 96.22 99.97 98.41 99.71 

U2R 98.52 94.83 99.88 97.65 99.88 

R2L 99.27 96.51 99.79 98.98 99.53 

DoS 99.97 98.73 99.98 99.18 99.59 

Normal 99.91 99.87 99.89 99.72 99.75 

Average 99.32 97.23 99.9 98.78 99.69 

TABLE VI.  PERFORMANCE EVALUATION OF THE GOA-WO-ML METHOD 

WITH 10% TESTING DATA 

Attack 

types 
AUC 

F1-

score 
Specificity Sensitivity Accuracy 

PA 98.89 95.62 99.79 97.33 99.42 

U2R 98.73 94.66 99.74 98.61 99.35 

R2L 98.86 95.89 99.79 97.87 99.71 

DoS 99.93 96.83 99.56 98.52 99.63 

Normal 99.75 99.95 99.91 99.89 99.58 

Average 99.23 96.59 99.75 98.44 99.53 

 
Fig. 4. Comparison of evaluation metrics for 90% training and 10% testing 

data sets. 

 
Fig. 5. Training and validation accuracy of the GOA-WO-ML model over 

epochs. 

Fig. 6 measures the GOA-WO-ML model's training loss and 
validation loss. The declining trends in both parameters show 
the model's performance to minimize training loss and 
validation loss, ensuring effective learning and good 
generalization, essential in real-time intrusion detection. In 
Table VII and Fig. 7, the performance of GOA-WO-ML in terms 
of classification is compared with several other models. The 
performance results from the experiments reveal that GOA-
WO-ML performs better in accuracy than the rest of the 
algorithms. 
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Fig. 6. Training and validation loss of the GOA-WO-ML model over epochs. 

TABLE VII.  PERFORMANCE EVALUATION OF GOA-WO-ML OVER OTHER 

METHODS WITH 80% TRAINING AND 10% TESTING DATA 

Methods AUC 
F1-

score 
Specificity Sensitivity Accuracy 

KNN-PSO 96.51 95.43 98.38 95.37 96.43 

XGBoost 95.68 94.56 97.87 94.88 95.35 

ALO 93.27 92.41 93.25 92.89 93.44 

Random 

forest 
94.97 93.79 95.66 93.44 94.95 

LightGBM 94.67 93.47 99.21 93.07 94.65 

GOA-WO-
ML 

98.85 96.9 99.73 98.44 99.43 

 

Fig. 7. Performance evaluation of GOA-WO-ML over other methods. 

TABLE VIII.  COMPUTATION TIME OF GOA-WO-ML OVER OTHER 

METHODS 

Methods Time (Sec) 

KNN-PSO 13.82 

XGBoost 10.31 

ALO 14.62 

Random forest 12.34 

LightGBM 15.41 

GOA-WO-ML 7.25 

Finally, Table VIII and Fig. 8 compare GOA-WO-ML's 
computational time with other algorithms. Experimental data 
shows GOA-WO-ML has a computation time of 7.25 seconds. 
This is evidence of the GOA-WO-ML technique's efficiency, 
qualifying it for real-time recognition of intrusions in WSN-IoT 
systems. The results confirm that combining GOA for feature 
selection with WO for parameter adjustment can significantly 
enhance the accuracy and efficiency of the intrusion detection 
system. GOA-WO-ML is a highly reliable and robust 
framework for detecting intrusions in the WSN-IoT system. 

 

Fig. 8. Computation time of GOA-WO-ML over other methods. 

Epochs

10 20 30 40 50

P
er

fo
rm

an
ce

 (
%

)

3.6

3.8

4.0

4.2

4.4

4.6

4.8

Validation loss 
Training loss 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

566 | P a g e  

www.ijacsa.thesai.org 

V. DISCUSSION 

The experimental outcomes of the GOA-WO-ML model 
underscore its effectiveness in addressing key challenges 
associated with intrusion detection in IoT-enabled Wireless 
Sensor Networks. The observed performance, across various 
training/testing splits, confirms the robustness of the hybrid 
feature selection and parameter optimization strategy. Notably, 
the model demonstrates high classification accuracy, low false 
positive rates, and minimized computational time, which are 
critical in constrained IoT environments. 

The integration of the GOA and WO proved particularly 
beneficial in handling high-dimensional network traffic data. 
GOA's ability to efficiently explore the feature space reduced 
the dimensionality of input data, while WO effectively tuned the 
SVM classifier’s hyperparameters to maximize detection 
performance. This hybrid approach not only enhanced accuracy 
but also contributed to a significant reduction in training loss and 
validation loss. 

Compared to prior studies, GOA-WO-ML achieved 
competitive or superior results with less computational 
overhead. For instance, while ensemble models like OSEN-IoT 
or deep learning frameworks such as IoTFECNN demonstrated 
high accuracy, they often incurred high computational costs or 
suffered from overfitting on small datasets. In contrast, GOA-
WO-ML balances detection performance and computational 
efficiency, making it more suitable for real-time deployment in 
lightweight IoT devices. 

However, it is important to acknowledge the limitation 
related to the dataset used in this study. The NSL-KDD dataset, 
although widely used and improved over the original KDD’99, 
was collected over a decade ago and lacks representation of 
modern, sophisticated attack vectors. Its continued use is 
justified in part by its structured format, benchmark status, and 
extensive prior utilization that facilitates comparative 
evaluation. Nevertheless, the evolving nature of cyber threats, 
especially in IoT contexts, necessitates validation on more 
recent and complex datasets to ensure broader applicability. 

To enhance the relevance and applicability of future 
research, we recommend extending the evaluation of GOA-WO-
ML using contemporary datasets such as CSE-CIC-IDS2018, 
CIC-DDoS2019, and Edge-IIoTset. These datasets incorporate 
diverse and modern intrusion types, emulate realistic IoT 
scenarios, and reflect the dynamic behaviors of current network 
environments. Incorporating them would enable further 
validation of GOA-WO-ML’s scalability, adaptability, and 
resilience against emerging threats. 

VI. CONCLUSION 

In this paper, we introduced the GOA-WO-ML method to 
detect intrusions in WSN-IoT systems, integrating feature 
selection through GOA with WO for parameter tuning in an ML 
environment. The combination of the optimization methods with 
a ML classifier, in this case SVM, improved the detection 
efficacy while reducing the cost of computations. The GOA-
WO-ML performance was explored in the NSL-KDD dataset, 
with extensive experiments across varied training and testing 
splits. The experiments confirmed the better accuracy, 
sensitivity, specificity, F1-score, and AUC performance of the 

model when it outperformed traditional approaches in terms of 
accuracy, sensitivity, specificity, F1-score, and AUC, thus 
proving effectual in identifying intrusions in IoT-enabled 
wireless sensor network. 

Along with performance, GOA-WO-ML was highly 
computationally efficient, running the task in appreciably lower 
computational time than alternative procedures at a processing 
time of 7.25 seconds. This renders GOA-WO-ML a high-
performance solution and a scalable, efficient, real-time 
intrusion detection procedure. Future research can involve 
expanding the introduced method for more sophisticated attack 
cases, performing performance testing with real-time IoT data, 
and studying the integration of deep learning methods to further 
improve detection accuracy. Real-time deployment and online 
learning can also be investigated to adapt to changing network 
environments and new attack trends. GOA-WO-ML has a solid 
basis for accurate vulnerability identification in WSN-IoT 
architectures, qualifying it as a plausible solution for ensuring 
the security of IoT-based systems and applications. 
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