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Abstract—Precision Agriculture is a combination of Artificial 

Intelligence (AI) and the Internet of Things (IoT) to improve 

farming efficiency, sustainability, and overall productivity. This 

work presents hybrid CNN-TAM (Convolutional Neural 

Network–Temporal Attention Mechanism) model running on 

Edge AI devices for real time crop soil temperature and Soil 

Moisture prognosis. IoT sensors gather long term environmental 

data which is preprocessed to remove noise and extract 

meaningful spatial and temporal features. CNN can obtain spatial 

patterns and TAM assigns dynamic attention weights to important 

time steps enhancing prediction accuracy. The proposed hybrid 

model surpasses the conventional methods like Linear Regression, 

Random Forest, LSTM, and independent CNN with the lowest 

RMSE (1.7). Different from cloud-based deployments, the Edge AI 

deployment offers reduced latency, consumes lower bandwidth, 

and is better suited for scalability, enabling large-scale, real-time 

precision farming. Experimental outcome confirms enhanced 

real-time prediction capability allowing farmers to optimize 

irrigation schedules, reduce resource waste, and improve crop 

resilience against extreme weather conditions. This ensures 

sustainable resource management, conserves water and fertilizers, 

and enhances decision-making in agriculture. The results 

demonstrate the capability of AI-driven decision-support tools in 

present-day agriculture and presents a scalable, cost-effective and 

deployable solution for both small- and large-scale farms. By 

emphasizing data privacy, real-time processing, and low-latency 

inference, this research contributes to the area of precision 

agriculture relying on AI, addressing key challenges such as real-

time analytics, unreliable connectivity, and the need for immediate 

on-site decision-making. The study develops an AI-powered 

system for intelligent farm management to support sustainable 

and Smart Irrigation Optimization is used for efficient 

agricultural practices. 

Keywords—Precision agriculture; edge AI; convolutional neural 

network; temporal attention mechanism; smart irrigation 

optimization 

I. INTRODUCTION 

In the recent history, PA has been a new way of farming that 
relies on the use of highly developed technologies such as IoT 
and AI in a bid to improve productivity, conserve resources from 
wastage, and promote sustainable farming. The integration of 
Edge AI with precision agriculture is highly crucial since it 
provides on-location and real-time processing of data that are 
collected using an array of IoT sensors in farms, facilitating real-
time decision-making [1]. The transfer of technology may 
significantly boost yields, better handle soil health management, 
and help improve weather prediction for more knowledgeable 
farm operation. Among the critical parameters that influence 
agricultural productivity are weather patterns and soil 
conditions, and they have a direct bearing on crop growth, water 
consumption, and resource utilization. The use of Temporal 
Attention Mechanisms with CNNs is a viable solution. CNNs 
initially designed to process images can be used to restructure 
data from diverse sources such as soil sensors, satellite images, 
and drones and capture spatial features such as temperature, 
moisture in the soil, and nutrients. CNNs or Temporal Attention 
Mechanisms enable the model to navigate through sensor 
readings in time-series format and weather patterns and identify 
dynamic temporal patterns that affect agronomic conditions 
such as temperature variation, rain pattern, and change in 
moisture over time [2]. With the combination of spatial as well 
as temporal data, the hybrid model is able to make enhanced and 
consistent predictions, providing real-time data about soil status 
and weather required for efficient crop management [3]. 
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The study seeks to utilize this hybrid method to enhance crop 
monitoring and intelligent farm management, enabling farmers 
to maximize the utilization of resources such as water, 
fertilizers, and pesticides. Real-time weather prediction and soil 
monitoring via IoT-based Edge AI would allow farmers to make 
decisions and act in a timely manner to avoid crop diseases, 
pests, and nutrient deficiencies, thereby maximizing crop yields 
and minimizing costs [4]. The relevance of this study stems from 
its ability to solve precision farming challenges by creating AI 
models that can run directly on edge devices like agricultural 
sensors or drones with minimal dependency on cloud computing 
infrastructure. This both lessens the bandwidth load and 
enhances scalability, making the solution available even in 
remote agricultural areas where cloud-based systems would be 
impracticable. Additionally, data processing on the edge keeps 
sensitive data like weather conditions and soil types safe, leading 
to improved privacy and regulation compliance [5] Regarding 
resource optimization, the instant feedback from the system 
would enable farmers to change irrigation timetables, use 
fertilizers only where needed, and reduce the effect of weather 
occurrences like drought or excessive rain [6]. Detection of pests 
or diseases at an early stage, along with accurate predictions of 
weather and soil conditions, would allow farmers to act 
preventively, lessening the necessity for the use of pesticides and 
enhancing crop health [7]. The hybrid approach, by analysing 
spatial as well as temporal data, improves the system's accuracy 
and responsiveness, making agricultural practices more 
sustainable [8]. 

The system's ability to deliver real-time prediction and 
anticipatory control has the potential to greatly enhance the 
crops' tolerance towards environmental stress, thereby ensuring 
greater yields and decreased farm losses. The paper further 
discusses measuring the practicable feasibility of employing a 
hybrid AI model like that described here for managing 
intelligent farms in terms of its ability to adapt to heterogeneous 
forms of data sources as well as provide actionability 
explainability that is accessible for farmers lacking in technical 
skill sets. The primary objective is to create an affordable, 
scalable, and deployable solution for farmers of all sizes, from 
smallholder farms to large-scale agricultural operations. In 
addition, the research aims to further the general goals of 
environmental sustainability by ensuring water and fertilizer 
loss reduction, minimizing the use of pesticides, and enhancing 
the overall efficiency of farms [9].Through the implementation 
of edge-based real-time AI predictive systems, this approach 
intends to increase the sensitivity of agriculture to changing 
climatic conditions and lower its carbon footprint. Secondly, the 
research hopes to encourage broader uses of IoT-based AI 
technology across the agricultural sector, showcasing their 
potential to improve productivity, enhance decision-making 
procedures, and facilitate sustainable agricultural production 
globally. By focusing on CNNs and Temporal Attention 
Mechanisms, this study aims to fill the gap that exists in existing 
systems that rely primarily on static data models or cloud 
computing and create a more dynamic, responsive, and efficient 
system for agriculture [10]. The study also investigates the 
practicability of applying the model to existing agricultural 
systems, making them compatible with existing infrastructure 
and enhancing the overall system reliability. The study is part of 
the global agenda to embrace AI and IoT technology in 

agriculture since they can reshape the art of agriculture in the 
face of burgeoning dangers such as climate change, water 
shortages, and food demands. The outcome of the research will 
not just encourage precision farming but also enhance 
sustainable farming practice required to secure future food 
supplies. By employing an Edge AI-based hybrid technique, this 
work can revolutionize agriculture by enhancing productivity, 
decreasing costs, and making agriculture climate-resilient, 
eventually establishing smart, sustainable agriculture globally 
[11]. The key contribution of the study is followed as below: 

 This study proposes a CNN-TAM model to achieve real 
soil moisture and temperature prediction for enhanced 
precision agriculture. 

 The fusion of CNN and TAM improves the accuracy of 
prediction, surpasses traditional models in both RMSE-
based evaluation. 

 Use of model on Edge AI device decreases latency, 
reduce bandwidth consumption and enabling real time 
decision making in farming. 

 The suggested method makes irrigation scheduling 
better, lessens resource loss, and improves sustainability 
in contemporary agriculture. 

The remainder of the paper is organized as follows: Section 
II provides a review of pertinent work. In Section III, the 
problem statement is explained. The proposed method is 
described in Section IV. Section V presents and compares the 
experimental results. Section VI concludes the work and offers 
suggestions for additional research. 

II. LITERATURE REVIEW 

Sharma and Shivandu [10] explain the ways IoT and AI are 
transforming precision agriculture through automatic 
monitoring and management of crops. The study identifies the 
technologies of high-throughput phenotyping, remote sensing, 
and AgroBots which enable harvesting, sorting, and weed 
identification to be carried out with increased efficiency and 
reduced labor and environmental costs. High-throughput 
phenotyping integrates spectral imaging, robotics, and remote 
sensing to enhance decision-making related to pest control, 
fertilization, and irrigation. DGPS and remote sensing offer 
precise real-time data for soil and crop health assessment, and 
image segmentation algorithms allow fruit and plant detection 
under challenging circumstances. PACMAN SCRI for apple 
orchard management and Project PANTHEON's SCADA 
system for hazelnut plantations are examples of AI-IoT 
integration in agriculture. Research gaps, such as scalability to 
small farms, real-time decision-making, and robustness of AI 
models, are also covered in the paper. Upcoming advancements 
such as 5G and 6G cellular networks are projected to push the 
adoption further. Satisfying data convergence, privacy, and 
security issues will promote precision agriculture to deliver 
sustainable and efficient agricultural practice. 

Fuentes-Peñailillo [11] address the role of digital agriculture 
in smart crop management, focusing on IoT, remote sensing, and 
AI in enhancing crop productivity and sustainability. The article 
points out how real-time information from IoT and sensor 
networks can evaluate soil health, plant water status, pest 
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infestation, and environmental conditions. Such information 
facilitates data-driven decisions to optimize irrigation, 
fertilization, and pest management. UAVs and drones improve 
monitoring by performing in-depth field surveys and monitoring 
crop growth with great accuracy. The research also investigates 
the application of big data analytics and AI in handling large 
datasets to detect patterns and trends and provide insights for 
improved agricultural management. Challenges include low 
adoption rates due to the complexity of technology, high prices, 
and farmer training requirements. The research promotes 
ongoing research and cooperation to break these barriers and 
facilitate the global implementation of smart agriculture, 
especially in climate change and resource-scarce regions. 

Avalekar et al. [12] discuss the intersection of AI and IoT in 
agricultural automation systems, their integration with wireless 
sensor networks and cloud computing. The paper suggests an 
architecture composed of modules such as Wireless Sensor 
Networks (WSN), Data Processing and Edge Computing, Cloud 
Computing, AI and Machine Learning, IoT Integration, and 
User Interface Control. The study is intended to improve crop 
quality, optimize yields, embrace weather-sensitive 
management, and AI-enabled crop rotation. The research 
hypotheses are AI-controlled quality, embracing real-time 
weather data inputs, and analytics-based decision-making. AI 
and IoT will automatically revolutionize precision agriculture on 
a large scale by optimizing the use of resources and making 
agriculture more sustainable, the study contends. Paradigm-
breaking synergy of AI-IoT-cloud computing is making for a 
sustainable and effective data-driven agricultural framework. 
Future research has to defeat connectivity, security of data, and 
scalability issues of infrastructure if it has to be universally 
embraced. 

Khan, Hassan, and Shahriyar [13] also suggest an IoT- and 
cloud-based platform for the improvement of onion crop 
management. The system is IoT sensor-based for online 
temperature, humidity, and soil moisture measurement 
supported by aerial drones for remote monitoring. The 
information is processed on edge computing to reduce latency 
and securely transmitted to a cloud platform to store and 
analyze. Applications based on machine learning learn patterns 
of onion growth, health, and weather conditions and give 
predictive suggestions on the need for irrigation and 
fertilization. A dashboard provides farmers an easy way to look 
at real-time data, and automated alerts inform them about 
deviations from ideal conditions. Predictive analytics also help 
plan in the long term by detecting growth patterns. Security 
measures such as encrypted data storage and transfer safeguard 
farmer data. The study indicates that cloud and IoT technology 
enhance the sustainability and productivity of crops but with 
issues related to cost, scalability, and access in small-scale 
farming. 

Boahen and Choudhary [14] discuss computer vision and AI 
technologies for precision agriculture, for instance, intelligent 
monitoring of soil and crops. The article provides developments 
in machine learning and image processing that enhance the 
efficiency of resource utilization and crop production. Computer 
vision provides means for plant health monitoring by 
autonomous means through spectral analysis for disease 
detection, nutrient deficiency, and pest attack. Machine learning 

algorithms improve precision in such analysis to facilitate real-
time suggestions on best farming practices. The article directs 
towards the functions of image segmentation and deep learning 
in solving variables in illumination as well as backgrounds that 
are very complex in instances of field deployment. The use of 
AI-fueled decision support systems allows farmers to attempt 
precision irrigation, fertilization, and crop management. The 
article recommends additional research to further fine-tune AI 
models for various agricultural settings and enhance small-scale 
farmer adoption. 

Soultane, Salih-Alj, and Et-taibi [12] provide an intelligent 
agriculture system that employs recurrent neural networks 
(RNN) and edge computing to improve agricultural 
productivity. The platform employs IoT drones with 
multispectral cameras and LiDAR to gather large amounts of 
data on crop health, soil health, and weather conditions IoT 
sensors like pH, soil moisture, temperature, and humidity 
sensors provide real-time data for data-driven decision-making. 
Integration of the RNN model offers predictive analysis to 
enhance irrigation schedules, monitor possible disease states, 
and predict crop yields the study highlights the benefits of AI-
driven analytics in improving crop yields, reducing resource 
consumption, and minimizing environmental footprints. But it 
identifies challenges such as the cost of deployment, the need 
for skilled personnel, and data privacy concerns that require 
additional researches and technology improvements. 

III. PROBLEM STATEMENT 

Precision agriculture is evolving through the integration of 
AI and IoT, but internal issues such as high implementation 
costs, limited scalability, data security concerns, and difficulties 
in real-time decision-making are hampering scale up of the 
technology adoption. Small farmers lack access to sophisticated 
digital options, which holds them back from maximizing 
resource utilization and improving crop yields [13]. Connection 
problems and computational delay, further hamper real-time 
decision-making, ultimately reducing the efficiency of AI 
models under varying environmental conditions. Although AI-
based systems significantly improve soil monitoring, irrigation 
and pest control, challenges such as data privacy concerns, 
infrastructure latency and model degradation hinder large-scale 
implementation. Addressing these issues is crucial to to fully 
harness the AI-IoT synergy for sustainable and intelligent 
agriculture [14]. This research presents an Edge AI-based CNN-
TAM model to tackle these challenges by enabling a real-time, 
low-latency soil and crop sensing, thereby optimizing farming 
operations. 

IV. RESEARCH METHODOLOGY 

The proposed methodology Fig. 1 illustrates a CNN-TAM 
(Convolutional Neural Network with Temporal Attention 
Mechanism) model designed for precision agriculture. The 
workflow begins with data collection, where IoT sensors gather 
soil moisture and temperature readings from multiple depths 
over a decade. Next, data preprocessing ensures quality through 
cleaning, handling missing values, and outlier removal. Feature 
engineering extracts spatial and temporal patterns, with CNN 
identifying spatial dependencies and TAM assigning dynamic 
attention weights to critical time steps, such as extreme weather 
events. The CNN architecture involves convolutional layers for 
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feature extraction, ReLU activation for non-linearity, pooling 
layers for dimensionality reduction, and fully connected layers 
for classification or regression. 

The Temporal Attention Mechanism (TAM) prioritizes key 
time steps that significantly impact soil moisture and crop 

health. The CNN-TAM model is deployed on Edge AI devices, 
enabling real-time analysis and decision-making with minimal 
latency. Finally, the system undergoes training and validation, 
ensuring robust prediction accuracy, outperforming traditional 
models like Linear Regression, Random Forest, LSTM, and 
standalone CNN in RMSE-based evaluations. 

 
Fig. 1. Workflow of proposed method. 

Fig. 1 illustrates the workflow of a CNN-TAM model for 
real-time soil moisture and temperature prediction in precision 
agriculture. It starts with data collection using IoT sensors, 
followed by data pre-processing to clean, handle missing values, 
and remove outliers. Feature engineering extracts key spatial 
dependencies from the processed data. The CNN architecture 
captures spatial features using convolutional, ReLU, pooling 
and fully connected layers. The TAM module applies attention 
to critical time steps, especially during extreme weather. The 
hybrid model is then deployed on Edge AI devices, offering low 
latency and efficient processing. This setup supports scalable, 
real-time farm management. 

A. Data Collection 

This data, donated by Caley Gasch and David Brown of 
Washington State University, contains useful soil moisture and 
temperature values observed via IoT sensors across almost a 
decade (2007–2016). Data is organized in daily and hourly 
readings from 42 sites, presenting information about volumetric 
water content (VW) and temperature (T) for different soil depths 
(30cm to 150cm). The VW readings are soil-specific and 
corrected with a two-step correction procedure to ensure precise 
moisture estimation. Temperature measurements, on the other 
hand, depend on factory calibration to keep all sensor readings 
consistent. This dataset is also highly beneficial for machine 

learning applications, including time series prediction of soil 
moisture levels and environmental monitoring for precision 
agriculture [15]. 

B. Data Pre-processing 

The procedure of preparing unprocessed data for deep 
learning model training is known as data pre-processing. It 
represents the first and most crucial phase of the development of 
the model. The deep learning models cannot be taught just 
feeding it raw data. The most critical and significant factor 
influencing the model's ability to generalize is data pre-
processing. In order to identify and eliminate inaccurate or noisy 
data from the dataset [16]. 

1) Data cleaning: Handling missing data involves using 

linear, spline, or polynomial interpolation for small gaps, while 

KNN imputation predicts missing values based on nearby data 

points. If a sensor has more than 50% missing data, it may be 

removed. Outliers are addressed using the Z-score method 

(removing values beyond ±3 standard deviations), the IQR 

method (eliminating values exceeding 1.5×IQR), and domain-

based filtering (discarding physically unrealistic values, such as 

soil moisture >100%). These steps ensure clean and reliable 

data for further analysis. 
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Fig. 2. Overall flowchart for CNN-TAM. 

Fig. 2 presents the architecture of the proposed CNN-TAM 
model for real-time soil moisture and temperature prediction. It 
begins with data preprocessing, where missing values and 
outliers are handled, and temporal features are extracted. The 
processed data is passed through the CNN architecture, where 
the convolutional layer extracts spatial features, the ReLU 
activation introduces non-linearity, the pooling layer reduces 
dimensionality and the flatten layer converts data into a 1D 
vector. This is followed by fully connected layers that learn 
complex relationships, leading to the output layer for regression 
or classification. To enhance accuracy, the Temporal Attention 
Mechanism (TAM) computes attention weights for significant 
time steps, aggregates them, and refines the output, producing a 
final prediction that emphasizes key temporal dynamics. 

2) Temporal feature engineering: Temporal feature 

engineering involves extracting time-based patterns such as 

seasonality, daily variations, and long-term trends to better 

understand fluctuations in soil moisture and temperature. Lag 

features are created to capture time dependencies, such as using 

past 7-day or 30-day moving averages to predict future values. 

Additionally, rolling statistical features like mean and variance 

are computed to smooth out noise and highlight significant 

trends, ensuring that models effectively learn from past 

observations while accounting for natural variations in 

environmental conditions. 

C. CNN Architecture for Soil Moisture and Temperature 

Prediction 

Convolutional layers of a CNN are used to derive spatial and 
temporal patterns from input data, i.e., temperature and soil 
moisture measurements. Convolution starts with applying 
filters, or kernels, over the input data to determine the important 
features. Mathematically, a convolution operation can be 
defined as an element-wise sum of the input data with the filter. 
The output is a new feature map that emphasizes the significant 
patterns, such as short-term variations in moisture or long-term 
seasonal patterns in Eq. (1), 

𝑦(𝑖, 𝑗) − (𝑥 ∗ 𝑤)(𝑖, 𝑗) − ∑ ∑ 𝑥(𝑖 + 𝑚 − 1, 𝑗 + 𝑛 −𝑁
𝑛=1

𝑀
𝑚=1

1). 𝑤(𝑚, 𝑛)           (1) 

where 𝑥 is the input data (e.g., soil moisture or temperature 
readings),𝑤 is the kernel (filter), y is the output feature map,𝑀 
and 𝑁 are the dimensions of the filter. 

A ReLU activation function is then used for this feature map 
to bring non-linearity into the model. This only forwards 
positive values, enabling the model to learn more complex 
relationships between the data and enhance its capability to 
identify intricate environmental interactions[17], that is 
represented in Eq. (2), 

𝑅𝑒𝐿𝑈(𝒛) = 𝑚𝑎𝑥(0, z)                              (2) 

where z is the input to the 𝑅𝑒𝐿𝑈 function, 𝑅𝑒𝐿𝑈(𝒛) is the 
output of the ReLU activation function for the input z , 
𝑚𝑎𝑥(0, z)  means the function returns the maximum value 
between 0 and z. 

The pooling layers of the CNN structure compress the 
feature map dimension while maintaining the most important 
information. This is typically done with a max pooling 
operation, in which the highest value within a specified pooling 
region, typically a 2x2 window, is found. The pooling operation 
retains the most important aspects of the data and eliminates less 
important information, thus lowering the computational 
complexity and the possibility of overfitting. By representing the 
most important features, such as temperature differences at 
various depths of soil, pooling renders the model more efficient 
without compromising the integrity of the original data. This is 
an important step towards improving the performance of the 
model, especially for the handling of big data sets with noisy or 
irrelevant information is calculated in Eq. (3), 

𝐲(𝐢, 𝐣) = max
𝑚,𝑛∈𝑝𝑜𝑜𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 

𝑥(𝑖 + 𝑚, 𝑗 + 𝑛)               (3) 

where 𝐲(𝐢, 𝐣)  is the output value at position (𝐢, 𝐣)  in the 
pooled feature map (after max pooling), 𝑥(𝑖 + 𝑚, 𝑗 + 𝑛) is the 
input value from the original feature map at a specific location 

within the pooling window, max
𝑚,𝑛∈𝑝𝑜𝑜𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 

 is the maximum 
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value is selected from all positions within the defined 
pooling region, (𝑚, 𝑛) denotes indices within the pooling 
region, 𝑝𝑜𝑜𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 indicates a small sub-region (like 2×2 or 
3×3) of the input feature map over which the max operation is 
applied. 

Dense or fully connected layers are applied following the 
convolutional and pooling layers in order to merge the features 
that the input data have learned. The layers project the 
multidimensional feature maps onto a one-dimensional vector 
and subsequently drive the vector into a set of neurons. Each 
neuron utilizes a weighted sum of the inputs as well as an 
activation function is calculated using Eq. (4), 

𝑍 = 𝑊. 𝑥 + 𝑏                                         (4) 

where 𝑥 is the vectorized input (flattened output of pooling 
layers pooled), 𝑊 is the weight matrix, 𝑏 is the bias vector, 𝑍 is 
the output vector prior to the application of the activation 
function. 

The output layer is the last unit of the CNN model, wherein 
predictions are determined using the acquired features. For 
classification problems, the layer tends to employ the Softmax 
activation function to yield probabilities for all available classes, 
i.e., varying soil states (e.g., "Dry," "Optimal," or "Saturated"). 
The Softmax function guarantees that the total probability of all 
classes is one, and the model can select the most probable result. 
In regression problems, for instance, soil moisture or 
temperature values prediction, the output layer employs the 
linear activation function to generate continuous predictions. 
The model provides an output of a numerical value representing 
the anticipated level of moisture or temperature that aids in the 
decision-making process, for example, irrigation scheduling or 
resource management. Training a CNN model involves 
minimizing a loss function to improve the model's accuracy in 
predicting or classifying soil conditions [18]. 

D. Temporal Attention Mechanism 

The Temporal Attention Mechanism (TAM) is a strong tool 
that is used to overcome the challenges of handling time-series 
data by allowing models to pay attention to the most important 
time steps, an important feature in dynamic domains such as 
agriculture. In agricultural operations, environmental factors 
like weather conditions, soil wetness, and temperature 
fluctuations may vary with time and influence the health and 
growth of crops. However, all time steps within a time series 
sequence are not equally important with some time intervals 
(e.g., severe weather conditions, irrigation cycles) playing a 
greater role in crop status than others. TAM provides dynamic 
attention weights to different segments of the sequence such that 
the model can weigh the most applicable time intervals for 
example, if there has been an unusual rain or heatwave, the 
model will give higher focus to the respective time steps, with 
these events having a greater influence on the health of crops. 
Mathematically, TAM acts by employing an attention score 
𝛼𝑡which is calculated for each time step 𝑡 in the sequence. The 

attention score decides the amount of attention a time step must 
possess in the end prediction, represented in Eq. (5) 

𝛼𝑡 =
exp (𝑓(ℎ𝑡))

∑ exp (𝑓(ℎ𝑡
′))𝑡′

                                          (5) 

where 𝑓(ℎ𝑡)  is the relevance function, typically 
implemented using a neural network that processes the hidden 
state ℎ𝑡  at each time step  t, and t’represents all other time steps. 
The attention score 𝑎𝑡ℎ𝑡

is then used to calculate the weighted 

sum of the time-series data, which is used as input for the 
prediction is calculated in Eq. (6), 

𝑦 = ∑ 𝑎𝑡ℎ𝑡𝑡                                        (6) 

where 𝑦 is the model's output (for instance, predicted crop 
health or yield), and ℎ𝑡  is the feature vector at time t. The 
process allows the model to selectively focus on the most 
important periods, enhancing its ability to keep track of long-
term dependencies within time-series data, for instance, the 
prolonged effect of a drought on vegetation growth. TAM is 
especially useful in agriculture, where some temporal 
occurrences (e.g., temperature declines, rain) have a big impact 
on the health of crops, but such occurrences tend to be irregular. 

In practice, this can result in the model being more focused 
on particular time steps when environmental conditions pass 
specific thresholds, so that the system can pick up on small but 
important changes in crop status. Second, TAM boosts model 
performance through maintaining these long-term dependencies 
across sequences of data, which are critical to projecting future 
crop patterns based on prior trends. For example, while 
processing weather data collected using IoT sensors, a TAM-
based model will assign greater priority to those time steps 
where the temperature or rainfall changed more than normal so 
that the model can learn trends like crop status following 
heatwaves or recovery following rain the integration of TAM 
into precision agricultural systems significantly enhances the 
prediction accuracy, be it for crop disease, yield, or pest 
infestation, by allowing the model to effectively process and 
highlight the most important time steps in complex, time-series 
agricultural data [19]. 

Fig. 3. The figure illustrates the architecture of a hybrid 
CNN-TAM model integrated with multiple Temporal Attention 
SubModules. Initially, the input data is processed through a 
sequence of convolutional layers with increasing filter sizes 
(Conv 32, 64, and 128), followed by max pooling operations to 
reduce dimensionality and retain essential features. After each 
significant convolutional-pooling block, temporal features are 
extracted and passed to corresponding Temporal Attention 
SubModules (1, 2, and 3). These submodules take the local 
features (L¹, L², L³) along with global contextual information 
(G) to compute refined attention-enhanced representations. 
These outputs are then fused into a final fully connected layer 
(Layer 2), enabling the model to capture both spatial and 
temporal dependencies for more accurate and context-aware 
predictions. 
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Fig. 3. Structure of CNN-TAM. 

E. AI Devices 

The integration of Convolutional Neural Networks (CNNs) 
and the Temporal Attention Mechanism (TAM) allows efficient 
and intelligent analysis of spatial and temporal information in 
precision agriculture and is thus highly suitable for application 
on Edge AI devices. Edge AI devices such as NVIDIA Jetson, 
Raspberry Pi with AI accelerators, and specialized IoT gateways 
execute computations locally, maintaining latency minimal and 
cloud computing utilization at its lowest. In a CNN-TAM hybrid 
system, the CNN learns spatial features from multispectral 
satellite imagery, drone-shot farm views, and heat maps created 
by sensors, recognizing patterns such as vegetation health and 
soil type. At the same time, TAM analyzes time-series data from 
IoT sensors, targeting important environmental changes such as 
temperature increases, variations in soil moisture, and rainfall 
changes that affect crop growth. The Edge AI deployment of 
such a hybrid model enables real-time on-field inference, 
making farmers' decision-making optimal by automatically 
identifying anomalies, forecasting yield fluctuation, and 
recommending irrigation fine-tuning in real time. 
Mathematically, Edge AI deployment means quantization and 
pruning of CNN-TAM models for efficient execution on low-
power platforms. The inference can be symbolically represented 
in Eq. (7), 

𝑦 = ∑ 𝛼𝑡𝑡 ℎ𝑡 + CNN(X)                                (7) 

where 𝛼 denotes TAM's time-step t attention weight. ℎ𝑡  is 
the temporal feature representation and CNN(X) retains spatial 
farming knowledge. Applying the CNN-TAM hybrid to Edge 
AI chips provides farm systems with low-latency decision 
responses, less bandwidth consumption, and increased data 
secrecy, which helps facilitate real-time crop monitoring on a 
large scale and targeted interventions in precision agriculture. 

V. RESULT AND DISCUSSION 

The Results emphasizes the performance of the proposed 
CNN-TAM model for the prediction of soil moisture and 
temperature in precision agriculture. Experimental comparisons 
confirm that CNN-TAM clearly outperforms conventional 
models, and the best RMSE (1.7) outperforms Linear 
Regression (3.5), Random Forest (2.8), LSTM (2.4), and single 
CNN (2.1). The Temporal Attention Mechanism (TAM) 
enhances the model's predictive capability by concentrating on 
major time steps such as rainfall episodes and drought periods 
to make better irrigation and resource allocation decisions. 
Training and validation loss curves confirm the model's 
excellent generalization capability, with minimal overfitting. 
Scatter plot examination of real vs. predicted values reveals 
CNN-TAM makes very precise predictions, with small 
differences arising from environmental uncertainties. In 
addition, temporal attention weight visualization shows that the 
model assigns higher importance to impactful time steps, 
improving its ability to detect trends in soil moisture variations. 
Edge AI deployment further enhances the model’s real-world 
applicability, reducing latency and bandwidth usage while 
ensuring real-time farm monitoring. The results validate that 
CNN-TAM is an effective, scalable, and intelligent solution for 
improving agricultural decision-making, optimizing irrigation 
schedules, and ensuring sustainable resource management. 

Fig. 4 shows the daily variations in soil moisture (%) and 
temperature (°C) for a ten-year period (2007–2016). The 
periodic trends reflect seasonal changes, with increases and 
decreases in temperature corresponding to natural climatic 
fluctuations. Soil moisture level varies with precipitation, 
evaporation, and water application management as well. Real-
world variation of environmental conditions implies both signals 
include the presence of noise, so predictive modeling will be 
effective in. 
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Fig. 4. Time series of soil moisture & temperature (2007–2016). 

 

Fig. 5. Training & validation loss curve (CNN-TAM model). 

Fig. 5 illustrates how the CNN-TAM model learns for more 
than 50 epochs. The training loss slowly diminishes, indicating 
the model is improving in terms of fitting the data. The 
validation loss diminishes too but at a slower rate, indicating 
generalization to new data. The small difference between 
training and validation loss indicates the model is not overfitting 
and, therefore, is trustworthy in real-world prediction. The 
minuscule differences are due to the stochastic process of 
optimization, which is common in deep models. 

 
Fig. 6. Temporal attention weights (CNN-TAM model). 

Fig. 6 is a scatter plot of predicted versus measured values 
from the CNN-TAM model. Red dashed line is a theoretical best 
prediction (when predicted = measured). Most points are near 
this line, showing the model to be highly accurate. The minor 
deviations are small prediction errors that may be caused by 
environmental uncertainties or sensor noise. Overall, the model 
is capable of learning soil moisture patterns well, and thus can 
be applied to real-time crop monitoring. 

 
Fig. 7. Temporal attention weight distributions across different weather 

events (CNN-TAM model). 

 
Fig. 8. Temporal attention weight distributions across time steps in the CNN-

TAM model. 

Fig. 8 illustrates the distribution of temporal attention 
weights assigned by the CNN-TAM model across 10 time steps 
(days) and Fig. 7 shows temporal attention weight distribution 
across different weather events (CNN-TAM model). Each bar 
represents the relative importance of data from a specific day in 
contributing to the final prediction of soil moisture or 
temperature. The model assigns higher weights to days 3 to 6, 
indicating that information from these time steps carries more 
significance in learning temporal patterns. In contrast, the 
weights are lower at the beginning and end (days 1, 9, and 10), 
suggesting reduced influence from these periods. This selective 
attention enables the model to focus on the most relevant 
temporal features, enhancing prediction accuracy. 

Table I presents the Root Mean Square Error (RMSE) values 
for different predictive models, with lower values indicating 
better performance. Among the models compared, Linear 
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Regression has the highest RMSE (3.5), showing the least 
accuracy in predicting soil moisture. Random Forest improves 
upon this with an RMSE of 2.8, followed by LSTM at 2.4, which 
leverages sequential learning to capture temporal dependencies. 
CNN further reduces the error to 2.1 by extracting spatial 
patterns in soil moisture data. Finally, the CNN-TAM model 
achieves the lowest RMSE (1.7), demonstrating its superior 
ability to combine convolutional feature extraction with 
temporal attention mechanisms, making it the most effective 
model for precise soil moisture prediction. 

TABLE I.  COMPARISON WITH VARIOUS MODELS 

Model RMSE (Lower is Better) 

Linear Regression 3.5 

Random Forest 2.8 

LSTM 2.4 

CNN 2.1 

CNN-TAM 1.7 

 
Fig. 9. Performance comparison. 

Fig. 9 compares the performance of different predictive 
models including Linear Regression, Random Forest, LSTM, 
CNN and the proposed CNN-TAM model in terms of Root 
Mean Square Error (RMSE). Since RMSE is used to measure 
prediction error (lower is better), the CNN-TAM model 
performs the best with the lowest value of RMSE, illustrating 
that it is the best in accuracy. On the other hand, Linear 
Regression performs the worst, followed by Random Forest and 
LSTM. The CNN model by itself is superior to these 
conventional approaches, but the incorporation of Temporal 
Attention Mechanism in CNN-TAM boosts prediction accuracy 
for soil temperature and moisture in precision agriculture 
substantially. 

A. Discussion 

Compares the performance of different predictive models 
including Linear Regression, Random Forest, LSTM, CNN and 
the proposed CNN-TAM model in terms of Root Mean Square 
Error (RMSE). Since RMSE is used to measure prediction error 
(lower is better), the CNN-TAM model performs the best with 
the lowest value of RMSE, illustrating that it is the best in 

accuracy. On the other hand, Linear Regression performs the 
worst, followed by Random Forest and LSTM. The CNN model 
by itself is superior to these conventional approaches, but the 
incorporation of Temporal Attention Mechanism in CNN-TAM 
boosts prediction accuracy for soil temperature and moisture in 
precision agriculture substantially. 

The critical challenges like power limitations and sensor 
calibration problems. Power limitations occur because sensors 
are deployed remotely and tend to be powered by batteries or 
solar power, which results in potential loss of data, system 
downtime, and real-time monitoring breaks when power runs 
out. Such interruptions can lower the accuracy of AI forecasts, 
resulting in inefficiencies such as crop stress or irrigation 
mismanagement. Secondly, sensor calibration is critical for 
precision readings, given that soil moisture sensors are soil-
specific and temperature sensors drift with time. Unless 
accurately calibrated, information input into AI models becomes 
questionable, resulting in misclassifications and false decisions 
like over-irrigation, under-irrigation, or untimely planting. 
Cumulatively, these challenges undermine the effectiveness and 
reliability of AI-based decisions in precision agriculture, 
necessitating energy-efficient designs, reliable calibration 
procedures, and smart data handling strategies. 

The CNN-TAM model presented in this research 
significantly advances precision agriculture by combining 
spatial feature extraction with temporal analysis, achieving the 
best RMSE of 1.7 compared to conventional models. This 
innovative approach prioritizes crucial temporal patterns like 
rainfall and drought periods, enabling more informed 
agricultural decision-making while its Edge AI implementation 
reduces latency and bandwidth requirements, making real-time 
monitoring accessible even in remote farming locations with 
limited connectivity. Despite these achievements, the study 
acknowledges challenges including sensor drift, environmental 
noise and processing limitations on Edge devices. Future 
research directions aim to incorporate additional agronomic 
parameters, enhance cross-climate adaptability, and optimize for 
ultra-low-power hardware, ultimately supporting more 
sustainable farming practices through improved resource 
management and increased resilience to changing 
environmental conditions. The practical implications of this 
research extend beyond technological advancement, offering 
tangible benefits for agricultural sustainability and food security. 
By providing farmers with accurate, real-time soil moisture and 
temperature predictions, the CNN-TAM model enables precise 
irrigation scheduling, reduces water and fertilizer waste, and 
helps mitigate the impacts of extreme weather events on crop 
yields. This represents a crucial step toward smart farming 
systems that can address global challenges such as climate 
change, resource scarcity, and increasing food demand while 
simultaneously improving economic outcomes for farmers 
through optimized resource utilization. 

VI. CONCLUSION AND FUTURE WORKS 

This research proposal creates an Edge AI-based CNN-TAM 
model that improves forecast of soil moisture and temperature, 
resulting in the best management irrigation and sustainable 
agriculture practices. The spatio-temporal feature enhancement 
through the fusion of CNN’s spatial pattern extraction and 
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TAM’s temporal feature prioritization brings in a good level of 
the predictive accuracy, shaving RMSE to 1.7—a clear leap over 
common models. The Edge AI deployment allows for real-time 
inference low latency and reduced reliance on the cloud giving 
it actually suitable for rural areas which are not going to have a 
very high level of network availability. The model reduces water 
and fertilizers waste more effectively, enhancing intelligence at 
farm level and building resilience with the climate. By solving 
important agricultural problems, this AI-based method increases 
farming efficiency and diligence.Despite being effective, there 
still are certain limitations. Sensor drift, noise due to external 
factors and, processing overhead on power-constrained Edge AI 
Hardware may degrade the deployment efficiency. 

In order to enhance the model robustness, the future work 
will test including in the model of additional agronomic 
arguments with such as crop growth progression, pest detection, 
and multi-spectral imaging. Increasing model portability across 
different climatic settings and adjustment to onboard on ultra-
low-power AI chips shall also extend applications. Furthermore, 
using the blockchain for the secure management of farm data 
and viewing a farm as a place where AI-driven systems can 
automate the farming procedures will facilitate its practical 
inclusion. These advancements will drive wider adoption of AI-
based precision agriculture for long-term sustainability. 
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