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Abstract—Autonomous vehicles need to be equipped with 

smart, understandable, and context-aware decision-making 

frameworks to drive safely within crowded environments. Current 

deep learning approaches tend to generalize poorly, lack 

transparency, and perform inadequately in dealing with 

uncertainty within dynamic city environments. Towards 

overcoming these deficiencies, this study suggests a new hybrid 

approach that combines Neuro-Symbolic reasoning with a 

Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM) architecture, together with a Deep Q-Network 

(DQN) for learning through reinforcement. The model employs 

symbolic logic to enforce traffic regulations and infer context while 

relying on CNN for extracting spatial features and LSTM for 

extracting temporal dependencies in vehicle motion. The system is 

trained and tested using the Lyft Level 5 Motion Prediction 

dataset, which emulates varied and realistic driving scenarios in 

urban environments. Enforced on the Python platform, the new 

framework allows autonomous cars to generate rule-adherent, 

strong, and explainable choices under diverse driving scenarios. 

Neuro-symbolic combination is more robust for learning as well as 

explainability, whereas reinforcement improves long-term 

rewards regarding safety and efficiency. The experiment shows 

that the model provides high accuracy of 98% on scenario-based 

decision-making problems in contrast to classical deep learning 

models used in safety-critical routing. This work is advantageous 

to autonomous vehicle manufacturers, smart mobility system 

developers, and urban planners by providing a scalable, 

explainable, and reliable AI-based solution for future 

transportation systems. 

Keywords—Autonomous vehicles; neuro-symbolic learning; 

Deep Q-Network (DQN); CNN-LSTM architecture; context aware 

I. INTRODUCTION 

Self-driving cars have become one of the most revolutionary 
technologies in the contemporary transport system, which is 
believed to bring about changes such as better safety, more 
efficient traffic flow, and greater accessibility for every traveller 
[1]. These systems utilize a combination of perception, planning 
and control components utilizing machine learning and artificial 
intelligence that enable these systems to operate autonomously. 
This is especially important for an unmanned vehicle due to the 
direct resulting need of making decisions in real time and in a 
complex and dynamic environment. When AVs are driving on 
densely populated roads, unreliable highway, or on 
intersections, the quality and sophistication of the systems’ 
decisions determine safety and user confidence. This has led to 
giving more emphasis on the development of sound learning 
algorithms that exhibit adaptive behavior under different 
conditions. 

In this regard the need to incorporate context awareness to 
make decisions in self-driving cars have emerged as crucial 
aspects in ensuring safe navigation on the roads. Most 
conventional rule-based systems are rigid especially in 
propagation and decision-making and fail to address real-world 
driving conditions and environments while most of the data 
driven models suffer from interpretability and dynamic 
adaptability challenges. Contextual perception involves the 
ability of the AV to capture the driving context within the 
environment and use different elements such as road 
environment, other road users, desired routes, and possible 
dangers in taking a particular decision [2]. Such level of 
intelligence guarantees that AVs do not blindly execute routine 
operations but rather analyse and decide on the driving 
environment. To address these challenges, several works in 
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recent years have been proposed based on the RL technique. For 
instance, Kim, Eoh, and Park [3] proposed the RL methods for 
unplanned event handling, and Wu et al. [4] use the inverse RL 
to learn more human-like behavior in the intersection. It is also 
evident from these advances that learning-based systems can be 
very useful in making decisions that are proper and sensitive to 
all the context involved. 

However, the current learning-based systems involved in RL 
have certain constraints such as interpretability, generalization, 
and safety. There are certain drawbacks inherently associated 
with the high-dimensional decision spaces that dominate many 
deep reinforcement learning (DRL) frameworks, including the 
fact that DRL models can behave like black boxes and may not 
transfer to unstructured or novel scenarios [5]. Thus, in real-
world driving, safety is critical, so the actions performed by AVs 
should be explainable and justified. Furthermore, it is difficult 
to determine the subject’s interactions and best course of action 
with other agents, such as pedestrians or other vehicles in a 
shared environment, and there is a need to model uncertainty, 
which most of the existing systems do not address adequately. 
This was further demonstrated by Golchoubian et al. [6], who 
developed an uncertainty-aware DRL model to enhance 
navigation in shared spaces. Likewise, Sun et al. [7] presented 
neuro-symbolic approaches to address this issue, which they 
explained how the integration of structural knowledge can 
improve decision steadiness. 

To address these limitations, this work introduces a new 
neuro-symbolic reinforcement learning approach for making 
safe decisions in autonomous vehicles with contextual 
awareness. This approach combines the ability of deep 
reinforcement learning for learning and the symbolic reasoning 
for decision making and interpretability for adjusting to different 
situations during the operation of AVs. Although many of the 
prior works have made progress in different aspects like risk-
aware models [8], social value-based reasoning [9], and to some 
extent on the integration of semantic perception [10], most of 
them lack integrated approaches, with real-time context-
awareness, model interpretability or safety consideration. For 
instance, Li and Chen [11] studied reinforcement learning from 
human feedback on decision control; however, such a work did 
not extend to other areas. Similarly, Liao et al. [12] used DRL 
for the highway traffic environment, but they did not consider 
uncertainty or how symbols can be represented. Chen et al. [13] 
discuss decision control in nondeterministic environments, 
however, they paid more attention to the variation of the 
environment than decision-making cognition. These works 
show that there are gaps in current and prior methods and require 
strong, all-encompassing frameworks. Incorporating symbolic 
rules, semantic contexts, and uncertain modeling in the proposed 
RL system allows for the fulfilment of high performance as well 
as satisfactory explanation in safety-constrained contexts. This 
hybrid model is specifically developed to suit complex 
environments of urban driving while incorporating traceable 
decision-making processes leading to safer and smarter self-
driving cars[14]. 

The key contributions of this work are: 

 Proposed a Neuro-Symbolic Reinforcement Learning 
(NSRL) framework that integrates symbolic reasoning 

with deep reinforcement learning to enable context-
aware decision-making in autonomous vehicles, 
improving safety and adaptability in uncertain 
environments. 

 Incorporated symbolic knowledge graphs and logic-
based rules into the learning loop, enhancing model 
interpretability and ensuring that decisions align with 
safety constraints and traffic regulations. 

 Utilized state-of-the-art reinforcement learning 
techniques along with semantic representations of 
driving contexts (e.g., intersection layouts, pedestrian 
behavior, and vehicle intentions) to train and evaluate the 
decision-making system. 

 Demonstrated superior performance in complex driving 
scenarios compared to conventional RL models, 
achieving high decision accuracy while maintaining 
transparency and robustness, especially in safety-critical 
situations. 

The motivation of the study is: 

Autonomous cars are supposed to drive safely and efficiently 
in real-world, dynamic and uncertain environments. Current 
models suffer from important shortcomings. Rule-based 
systems tend to be inflexible and cannot respond effectively to 
changing road conditions, and data-driven deep learning 
solutions are challenged by interpretability and generalization, 
rendering them inadequate for high-stakes decision-making 
where safety and trust are paramount. These challenges hamper 
their capability to deal with complex situations like 
intersections, unstructured roads, or when faced with multiple 
agents. To deal with these challenges, there has been an 
emerging need for models that are capable of blending learning 
with reasoning, learning to adapt to context variations, and 
taking decisions that are intelligent and explainable. This 
research is inspired by the promise of Neuro-Symbolic 
Reinforcement Learning (NSRL) to fill this gap by combining 
deep reinforcement learning with symbolic reasoning. This 
combination helps improve the model's capacity to comprehend 
the driving environment, adhere to traffic laws, and make safer, 
more interpretable decisions, thereby opening the door for the 
next generation of trustworthy and interpretable autonomous 
technologies. 

The rest of the study is structured as follows: Section II 
presents a review of the related literature, focusing on 
reinforcement learning, neuro-symbolic systems, and safe 
decision-making in autonomous vehicles. Section III gives away 
the problem statement. Section IV details the architecture and 
implementation of the proposed NSRL framework. Section V 
discusses the experimental setup, evaluation metrics, and the 
results of simulations conducted under various driving 
scenarios. Finally, Section VI concludes the study with key 
insights, implications, and directions for future work. 

II. RELATED WORKS 

Decision-making frameworks could efficiently cause 
significant changes and appropriately function in varied terrains 
as informed by the autonomous vehicle innovation. An 
extensive literature has explored the RL as an approach of 
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training an AI machine to display the best behavior through a 
process of trial and error. However, the DRL models developed 
during the last days have some drawbacks in terms of 
interpretability, safety, and context. Innovations made in DRL 
to vehicle autonomy have been initially tested under controlled 
conditions for effective performance. For instance, Liao et al.  
[12]  implemented a highway decision model based on deep 
reinforcement learning (DRL) to undertake lane-changing and 
overtaking activities efficiently. As promising as their approach 
yielded outcomes in predetermined settings, it was unable to 
generalize under novel or changing conditions, identifying a 
major drawback of DRL models in dynamic real-life conditions. 
To enhance trajectory planning in dynamical scenarios, Wang et 
al. [8] brought DRL into Frenet space and improved the model's 
flexibility. Still, generalization remains a problem for most DRL 
schemes. Xu et al. [2]compensated for environmental 
uncertainties using distributional RL, which enhanced stability 
and manoeuvrability, and Wu et al. [4] employed inverse 
reinforcement learning for mimicking realistic human behavior 
at intersections, considering contextual factors like other agents 
and pedestrians. Even with the adaptability of DRL, its black-
box nature creates concerns in interpretability and safety, 
especially for safety-critical applications such as autonomous 
driving. Sprenger [5] stressed the necessity of explainability, 
highlighting that black-box systems are not what ethical and 
legal situations need. 

In an effort to address such challenges, researchers have 
combined symbolic reasoning with neural networks, hence 
creating neuro-symbolic learning methods. Sun et al. [7] 
implemented neuro-symbolic program search in AV decision-
making modules with the aim of enhancing decision 
transparency with symbolic representations. Lu et al. [15] 
profiled such methods, highlighting their ability to promote 
reliability in IoT applications like autonomous vehicles. 
Symbolic techniques also facilitate domain knowledge and 
safety constraint encoding at the development stage. Li and 
Chen [11] introduced human feedback-guided reinforcement 
learning with explainable decision-making compatible with user 
preferences and enhanced safety compliance. 

Hybrid approaches that mix neural and symbolic methods 
have also been examined. Panagiotopoulos and 
Dimitrakopoulos [16] demonstrated in-car decision-making 
systems with adaptive driving styles, which is a classic example 
of applying hybrid methods in practical applications. Simulation 
of interactions in complicated environments is another area of 
focus. Crosato et al. [9] proposed social value orientation-based 
decision-making strategies imitating human driver behavior, 
whereas Golchoubian et al.  [6] generalized DRL models for 
incorporating uncertainty for crowd navigation in intersections 
and enhanced context understanding using semantic 
information. Gao et al. [10] improved AV performance in heavy 
traffic through semantic segmentation-based RL. 

Additional developments are adaptive decision frameworks 
under conditions of uncertainty (Kim, Eoh, and Park [3]) and 
predictive modeling-based architectures merged with real-time 
decision-making for unsignalized intersections (Zhang et al. 
[17]). Validation using real-world data in these studies (e.g., Li 
and Chen [11], Liu et al. [18]) emphasizes the applicability in 
practice. Even with these advancements, most DRL models 

continue to struggle with generalizing rare or novel situations, 
and their transparent decision-making processes hinder 
debugging and trust. On the other hand, symbolic approaches, 
though interpretable, may not have the flexibility required for 
dynamic worlds. 

In brief, recent studies portray tremendous advances in both 
DRL and neuro-symbolic approaches, but with no current 
framework approximating safe, interpretable, and context-
sensitive decision-making for AVs. The research seeks to fill 
this gap by proposing a neuro-symbolic reinforcement learning 
framework that combines safety logic and formal reasoning with 
adaptive learning in order to provide both transparency and 
flexibility to real-world autonomous driving. Table I shows the 
summary for the author, purpose, advantages and limitations. 

TABLE I.  SUMMARY OF EXISTING STUDIES 

Author(s) Purpose Advantages Limitations 

Liao et al. 

[12] 

Develop highway 

decision-making 
using DRL 

Effective lane-
changing and 

overtaking in 

controlled settings 

Poor 

generalization 

to unfamiliar 
or dynamic 

environments 

Wang et al. 
[8] 

Improve trajectory 

planning with 
DRL in Frenet 

space 

Better adaptability 

under dynamic 

conditions 

Generalization 

challenges 

remain 

Xu et al. [2] 

Apply 
distributional RL 

for environmental 

uncertainty 

Improved 

maneuverability 
and stability 

Complexity in 
modeling 

unpredictable 

factors 

Wu et al. 
[4] 

Use inverse RL to 

model human 
behavior at 

intersections 

Accounts for 
context like 

agents, road 

contour, 
pedestrians 

Limited 

explainability 
due to black-

box nature 

Sprenger 

[5] 

Highlight 
importance of 

interpretability 

Emphasizes 

ethical and legal 

necessity of 
explainable AI 

DRL systems 

are often 
opaque and 

hard to 

interpret 

Sun et al. 

[7] 

Apply neuro-

symbolic learning 

for decision 
transparency 

Improves decision 

transparency 

through symbolic 
reasoning 

Complexity of 

integration 

with neural 
networks 

Lu et al. 

[15] 

Survey neuro-

symbolic 

approaches in IoT 
and AVs 

Enhances 
reliability and 

safety constraints 

Symbolic 

methods may 

lack flexibility 
for dynamics 

Li and Chen 
[11] 

Reinforcement 

learning with 

human feedback 

Explainable and 

user-aligned 
decisions, safety 

compliance 

Balancing 

flexibility and 

predictability 

Panagiotop

oulos & 

Dimitrakop

oulos [16] 

Hybrid models for 

adaptive driving 

styles 

Practical 

adaptation of 

driving behavior 

Complexity 

and integration 

issues 

Crosato et 

al. [9] 

Social value 
orientation for 

interaction 

modeling 

Mimics human 

driver behavior 

Handling 
diverse social 

interactions is 

challenging 

Golchoubia

n et al. [6] 

Integrate 
uncertainty into 

DRL for crowd 

navigation 

Better handling of 

intersections and 
dynamic agents 

Increased 

model 
complexity 
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Gao et al. 
[10] 

Semantic 

segmentation-
based RL for 

dense traffic 

Significant 

performance 

improvement 

Computational 

cost and 

scalability 

Kim, Eoh, 

and Park [3] 

Adaptive RL for 
uncertain 

conditions 

More flexible and 
adaptive decision-

making 

Generalization 

still limited 

Zhang et al. 

[17] 

Combine 

predictive 
modeling with 

real-time 

decisions 

Improved 

decision-making 

at unsignalized 
intersections 

Requires 
extensive real-

world data 

Liu et al. 

[18] 

Incorporate 

driving prior and 

coordination 
awareness 

Enhances social 
responsiveness for 

real scenarios 

Complexity 
and data 

dependency 

III. PROBLEM STATEMENT 

Autonomous driving involves decision making in complex 
and dynamic contexts as well as safety and context awareness 
[18], [19].  The conventional rule-based systems or monolithic-
approach ML models fail to incorporate the entire context of 
driving, especially in cases of multiple agents on the road, 
unclear road infrastructure, or when there is imperfect 
information on the environment [2], [6]. These models’ major 
problems are that they are non-adaptive, non-interpretable, and 
do not use human-interpretable knowledge, leading to unsafe or 
suboptimal decisions in rare cases. In addition, the data-driven 
DL models have generalization problems and learn to behave 
like black boxes, and their decisions cannot be explained [15]. 

In order to overcome these drawbacks, a novel neuro-
symbolic reinforcement learning approach has been developed 
in the current study. This combines the capability of deep 
reinforcement learning, capable of perceiving the surrounding 
environment, with the advantage of symbolic artificial 
intelligence to reason in different traffic situations while 
following routine and contextually specified standards. The 
selected dataset is the Lyft Motion Prediction Dataset since it 
offers a realistic driving setting and practicality in the system’s 
application, which increases the safety of decision-making. This 
proposed approach allows for creating an interpretable, 
adaptive, safe decision-making model that can be used in the 
next generation of self-driving vehicles. 

IV. PROPOSED NEURO-SYMBOLIC RL MODEL FOR AVS 

Fig. 1 depicts the intended methodology flow for a Neuro-
Symbolic Reinforcement Learning (NSRL) system for 
autonomous driving decision-making. It starts with data 
collection, namely with the Lyft Level 5 Motion Prediction 
dataset that offers rich urban driving data. This is followed by 
the data preprocessing step with several steps: data cleaning to 
remove noise, normalization and scaling to normalize input 
values, and temporal sequence processing to identify time-
dependent movement patterns. This is followed by Trajectory 
encoding that converts the motion paths into machine-readable 
formats, followed by Feature engineering to identify useful 
features and agent filtering to extract meaningful driving entities 
like vehicles and pedestrians. The processed information 
subsequently passes into neuro-symbolic modules, which are 
made up of a neural module to learn from high-dimensional data 
and a symbolic reasoning module to implement logical rules and 
constraints. These modules are coupled through a fusion layer 

that unites learned representations and symbolic knowledge. 
The output of the fusion layer is forwarded to a Deep Q-Network 
(DQN), which uses reinforcement learning concepts to learn 
driving actions that are optimal. The DQN module functions on 
the Q-learning algorithm and learns to predict states to optimal 
actions from rewards received. The hybrid system ensures 
intelligent learning and rule-based compliance with safety. 

A. Dataset Description 

The dataset used in this research is Lyft Level 5 Motion 
Prediction Dataset obtained from Kaggle, which contains 
detailed real-world data of AV location and trajectory. In 
particular, this dataset has been collected for the purpose of 
motion prediction and decision making in urban driving 
scenario, which is highly relevant to context-aware decisional 
context [20]. It contains more than a thousand hours of operation 
of traffic agents collected with the help of AVs equipped with 
LiDAR, radar, and cameras. All scenes contain the position of 
ego vehicle and dynamic behavior of other agents, namely 
vehicles, pedestrians, cyclists, an HD map including lanes, 
traffic signs, crosswalks, and drivable regions. 

The scenes of the videos are ordinary driving scenes with 
several difficulties arising from intersections, merges and 
pedestrian crossroads. Every data sample consists of historical 
position and velocity data over 50 frames (5 seconds), as well as 
target future positions (next 3 seconds), making it suitable for 
reinforcement learning based trajectory and policy prediction. 
Also, contextual map features are represented in vector form so 
that the symbolic rules on the maps can be constructed, as well 
as spatial reasoning can be done on them. The detailed and 
diverse real-world scenarios, as well as clear annotations in the 
given dataset, make it suitable for training and testing the 
proposed Neuro-Symbolic Reinforcement Learning (NSRL) 
framework for optimized and safe AV decision-making. 

B. Data Preprocessing  

Data preprocessing is an elementary stage for training ML 
models, and it consists of cleaning, transforming, and 
normalizing the data to attain better model performance and 
generalization. The Lyft dataset preprocessing steps include data 
cleaning, Trajectory normalization, Trajectory encoding, 
Feature engineering, and agent filtering. 

1) Data cleaning. Cleaning the data is an important process 

that is required in the preparation phase of a dataset for training 

the Neuro-Symbolic Reinforcement Learning model. It is a 

process of excluding irrelevant, ambiguous, and other 

unwanted information as a way of increasing reliability. Any 

instance with incomplete information from the trajectory or 

having perhaps noisy data in the sensors is rejected. Similarly 

any map carrying undefined elements is rejected. Besides, there 

are normalizing measures conducted to remove outliers in 

speed, acceleration, and heading angles to avoid contributing to 

wrong learning. Static objects that do not affect the future 

waypoint decisions of the ego vehicle are thus eliminated to 

reduce the computational burden. This makes sure that only the 

right data are used to increase the toughness of the proposed 

model. More information can be obtained from access, count 

and date criteria. 
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Fig. 1. Overall workflow. 

2) Trajectory normalization. Trajectory normalization also 

aims at capturing the behaviour of vehicles in a similar format 

by transforming global coordinates into a local coordinate 

frame aligned with the ego-vehicle’s reference frame. This 

brings the data to the relative position and bearing of the ego 

vehicle, enabling the model to behave similarly given any two 

locations. The transformation that is used includes translation 

and rotation of coordinates with the ego vehicle placed in the 

origin and facing a fixed direction, normally the x-axis. The 

Min-Max scaling technique, shown in Eq. (1): 

𝑋_𝑛𝑜𝑟𝑚  =  (𝑋 −  𝑋_𝑚𝑖𝑛) / (𝑋_𝑚𝑎𝑥  −  𝑋_𝑚𝑖𝑛) (1) 

Here, X is represented as the original value, Xmin represents 
the minimum value, Xmax is stated as the maximum value, and 
Xnorm is represented as the normalized value in the dataset. This 
formula transforms the value of X in the lies between 0 and 1, 
deducting the minimum value and dividing it by the range 
(Xmax − Xmin). This normalization process ensures the data 
and features scales across the entire dataset. 

3) Temporal sequence processing. Temporal sequence 

processing is an important step in the preparation of the time 

series data that are in the form of sequences such as readings 

from the vehicle sensors, positions, or velocity for the models 

that deal with sequence input models such as LSTM Network. 

Since the state of an autonomous vehicle at any n-moment 

depends on its previous states, it is also important to depict the 

temporal dependency of the system. The purpose is to transform 

the raw individual continuous data into a format that is capable 

of encoding such time-related dependencies. The sliding 

window approach is the one that is quite common, where fixed-

size windows using prior data are created. For example, if the 

window size N is selected to be ten frames and at the time t, 

then the input sequence represents features in the range of t-9 as 

in Eq. (2): 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑡)  =  [𝑋ₜ₋₉, 𝑋ₜ₋₈, . . . , 𝑋ₜ]   (2) 

where, each X is a feature vector such as position, velocity 
or acceleration, etc. This sequence format also facilitates the use 
of LSTM models in making informed predictions on how the 
vehicle and its environment have been changing over time in 
such a sequence. This kind of change in a sequence can be 
expressed as Sequence(t) = (x₁, x₂, …, xₙ), and N = 10. This helps 
the model to be aware of time and contributes to its trajectory 
prediction and planning capabilities. 

4) Trajectory encoding. Trajectory encoding involves 

representing the motion of agents (such as vehicles or 

pedestrians) as feature vectors that include their position and 

velocity. For example, the trajectory of an agent at time t, could 

be encoded as in Eq. (3): 

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑡) = (𝑥𝑡 , 𝑦𝑡  , 𝑢𝑥,𝑡  , 𝑣𝑦,𝑡)    (3) 
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5) Feature engineering. Feature engineering for symbolic 

reasoning means constructing features that operate at a higher 

level and relate to traffic rules regulation as well as safety 

constraints. These features are aimed at making the model 

capable of thinking in line with the symbolic knowledge 

available regarding the environment. For example, such a 

feature can be defined in order to indicate whether the vehicle 

is approaching an intersection or not. 

IsAtIntersection(t)=Trueif distance from intersection<10 
meters. Detecting pedestrians near a crosswalk might be 
represented as PedestrianDetected(t)=Trueif the pedestrian is 
within proximity to the crosswalk. 

These features guide the decision-making process, ensuring 
that traffic rules and safety constraints are taken into account 
during the vehicle's actions. 

6) Agent filtering. To reduce computational complexity and 

focus on the most relevant data, agent filtering is applied. This 

step ensures that only agents within a specified range (e.g., 20 

meters from the ego vehicle) are considered in decision-making. 

The filtering process can be expressed as in Eq. (4): 

𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐴𝑔𝑒𝑛𝑡𝑠(𝑡) = {𝐴𝑔𝑒𝑛𝑡𝑖 ∣  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑔𝑒𝑛𝑡𝑖, 𝑒𝑔𝑜) <
20} (4) 

This step filters out distant or irrelevant agents, allowing the 
model to concentrate on nearby agents that may directly affect 
the vehicle’s trajectory and safety. 

C. Neural-Symbolic Modules 

 The Neural-Symbolic Modules are a blend of the perceptual 
skills of neural networks and the formal logic of symbolic 
reasoning. The combination overcomes one of the primary 
shortcomings in conventional deep learning—limited 
interpretability and the inability to obey formal rules. The 
module has three main components: a neural perception-
prediction system, a symbolic reasoning engine, and an 
integration layer for merging. 

1) Neural module. The Neural Module utilizes a 

CNN+LSTM architecture to process both spatial and temporal 

features. The Convolutional Neural Network (CNN), 

implemented using efficient variants such as ResNet or 

EfficientNet, is employed to extract environmental features 

such as lane boundaries, vehicles, and traffic signals. These 

spatial features are then fed into a Long Short-Term Memory 

(LSTM) network, which learns the temporal evolution of these 

inputs to predict future agent trajectories. This sequential 

modeling allows the system to learn motion patterns and predict 

future positions of nearby agents, essential for safe autonomous 

movement. 

2) Symbolic reasoning module. Supplementing this, the 

Symbolic reasoning module codes up logical constraints 

deriving from traffic laws and safety regulations. By using rule-

based programming languages such as Answer Set 

Programming (ASP) or Prolog, it specifies rules like "If the red 

light appears, then stop the car” or "Yield when a pedestrian is 

approaching a crosswalk”. Such clear rules enable the system to 

operate with a layer of human-like intelligence and impose 

constraints that pure neural models may not catch. 

3) Fusion layer. The Fusion Layer is the integrating 

interface, equilibrating the outputs of the two modules. By 

mechanisms such as attention gates, it makes sure that symbolic 

rules dominate neural predictions when required, for example, 

stopping at red lights even if the trajectory prediction dictates 

movement. The integration makes sure that decisions are data-

informed and rule-compliant, making autonomous systems 

safer and more reliable. 

D. Deep Q Network (DQN) 

The Deep Q Network (DQN) serves as the ultimate decision-
making system in the envisioned neuro-symbolic architecture. It 
employs a reinforcement learning model that acquires optimal 
driving policies by exploring an emulated environment. This 
part takes holistic input from the fusion layer, combining both 
neural predictions and symbolic constraints into a common state 
representation. 

By design, the DQN accepts a state vector with a 
representation that has both symbolic and dynamic qualities in 
the world. For instance, the state would contain the car's location 
and speed, continuous variables, as well as symbols like 
Pedestrian Detected and TrafficLightStatus. Double 
representation gives the agent, at any moment in time, the 
knowledge not just of physical circumstances but of possible 
dangers as well as conditions defined by a series of symbols and 
rules. 

1) Action space. The action space for the DQN is discrete 

driving commands such as Accelerate, Brake, Turn Left, and 

Turn Right. For every state, the DQN approximates Q-values 

for all possible actions, which are the expected total reward of 

executing that action and then following the optimal policy 

thereafter. These Q-values are updated by employing the 

Bellman equation and are optimized through techniques like 

experience replay and target networks to make learning stable. 

2) Reward function. A well-designed reward function 

directs the learning of the agent. Positive rewards (+1) are 

provided for behavior that results in safe and legal driving, 

while violations like running a red light incur negative rewards 

(−1). Less severe situations result in neutral rewards (0). This 

systematic feedback allows the agent to learn context-sensitive 

policies that emphasize safety and respect for symbolic rules. 

Through training over time, the DQN comes to possess an 
adaptive yet rule-compliant driving policy. Such infusion of 
symbolic logic in reinforcement learning allows the car to take 
informed, understandable, and wise decisions in the face of ever-
changing urban environments. 

The Fig. 2 shows the suggested methodology flow for a 
Neuro-Symbolic Reinforcement Learning (NSRL) framework 
being used for autonomous driving decision-making. It starts 
with data acquisition that is, using the Lyft Level 5 Motion 
Prediction dataset to have rich urban driving information. This 
is then followed by the preprocessing phase of data that consists 
of several steps including cleaning the data to remove noise, 
normalization and scaling to convert input values to a standard 
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format, and time sequence processing to identify time-dependent 
movement patterns. Trajectory encoding then converts the 
motion paths into formats that can be read by machines, 
followed by Feature engineering to identify relevant features and 
agent filtering to separate meaningful driving entities like 
pedestrians and vehicles. The processed information then enters 
neuro-symbolic modules, which are a neural module for learning 
from high-dimensional information and a symbolic reasoning 
module for the use of logical rules and constraints. These 
modules are fused through a fusion layer that fuses learned 
representations and symbolic knowledge. The output from the 
fusion layer is sent to a Deep Q-Network (DQN), which uses 
reinforcement learning principles to learn optimal driving 
behaviors. The DQN module works with the Q-learning 
algorithm and is trained to transform states into optimal actions 
based on the rewards received. The hybrid system thus 
guarantees both rule-based safety and intelligent learning. 

 
Fig. 2. DQN architecture. 

V. RESULT 

The Results and Discussion section draws attention to the 
performance of the suggested Neuro-Symbolic Reinforcement 
Learning (NSRL) model in navigating complex urban driving 
situations. The model proved to have enhanced decision-making 
precision, safety adherence, and interpretability over traditional 
deep reinforcement learning methods. Simulation outcomes 
reflected an increased success rate in navigation tasks, lower 
rates of collision, and improved traffic law compliance through 
symbolic reasoning integration. The hybrid approach balanced 
learning effectiveness with logical constraint compliance. These 
results support the validity of integrating neural learning with 
symbolic knowledge, highlighting its promise for safe, context-
sensitive autonomous driving in real-world settings, and it is 
implemented on Python platform. 

1) Experimental setup. The details of the experimental 

design for the current study involve the use of Lyft Level 5 

Motion Prediction Dataset for emulating realistic autonomous 

driving environments. Three main structures have been 

incorporated for autonomous driving: CNN-LSTM for 

perception and trajectory prediction; symbolic reasoning for 

incorporating traffic rules; and DQN for making the final 

decisions as in Table II. The model was run in the cloud for 100 

epochs through a computing platform with NVIDIA RTX 3090 

graphics card and 64 GB RAM disappointment. Python was 

employed for the code implementation including TensorFlow 

or Keras for machine learning, and OpenAI Gym for the 

reinforcement learning environments. Metrics of prediction 

were the mean absolute error (MAE), mean squared error 

(MSE), accuracy, general working of the autonomous agent in 

terms of its ability to predict and avoid safety violations, and the 

reward per episode. 

TABLE II.  EXPERIMENTAL SETUP 

Component Description 

Dataset Lyft Level 5 Motion Prediction Dataset 

Methods Used 

CNN-LSTM for perception and prediction, 

Symbolic Reasoning for traffic rules, Neuro-
Symbolic Fusion, Deep Q Network (DQN) 

Epochs 100 epochs 

Hardware 
GPU (NVIDIA RTX 3090 or equivalent), 64 GB 

RAM 

Software 
Python, TensorFlow/Keras, OpenAI Gym (for 
DQN), NumPy, Matplotlib, Seaborn 

Evaluation Metrics 

MAE (Mean Absolute Error), MSE (Mean Squared 

Error), Accuracy, Safety Violations Detected, 

Reward per Episode 

2) Neurosymbolic modules analysis. A total of 50 testing 

episodes and 1000 training episodes were conducted for 

evaluating model performance across different metrics, 

including trajectory prediction, safety compliance, and reward 

progression. Fig. 3 shows how well the neuro-symbolic 

modules anticipate the movements of the figure to achieve 

trajectory prediction; the ground truth positions are in a blue 

line while the predicted ones are in a red line. The CNN-LSTM 

model captures the temporal features of the motion of the 

autonomous agent as proposed above. The ground truth depicts 

the actual track of the agent, but the predicted track adopts the 

same curvature, inferring competence in temporal modeling. 

 

Fig. 3. Trajectory prediction: Ground truth versus Predicted 

Some discrepancies are seen in the later positions because of 
the cumulative error correction in the sequence but otherwise the 
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overlap is highly satisfactory. This underlines the model’s ability 
of predicting future positions based on the visual and temporal 
inputs. This continuity assures the acquisition of spatial temporal 
properties that enable safe downstream reasoning and decision-
making in evolving traffic situation awareness. 

TABLE III.  SYMBOLIC REASONING RULES 

Scenario Symbolic Rule Action Constraint 

At Intersection Red Light Must Stop 

Near Crosswalk Pedestrian Detected Must Yield 

Overtaking Lane Occupied Abort Overtake 

The symbolic reasoning module proves significant in 
imposing traffic compliance and safety constraints within the 
neuro-symbolic architecture. Table III, given above, shows the 
identified rules based on the specification of the identified 
scenarios in the use of symbolic logic. For example, when the 
ego vehicle is turned at a certain intersection, the veto rule, such 

as Red Light → Must Stop, helps in lawful halting. Similarly, 

the rule “Pedestrian Detected → Must Yield” ensures that 

road users yield around crosswalks putting into consideration 
pedestrians as vulnerable on the roads. If a car is in the lane next 
to us, the constraints are set to ‘Abort Overtake’ to avoid a 
collision during overtaking. These symbolic rules are in the form 
of logic-based languages such as Prolog or ASP and combined 
with the neural outputs for real-time decision making regarding 
safe and contextually appropriate actions during driving 
scenarios, as mentioned in Table III. 

TABLE IV.  IMPACT OF VIOLATIONS ON REWARD BEFORE AND AFTER 

SYMBOLIC REASONING 

Violation Type 
Reward (Before 

Symbolic Reasoning) 

Reward (After 

Symbolic Reasoning) 

Red Light Violation 80 95 

Pedestrian Yield 

Violation 
75 90 

Lane Change 

Violation 
82 88 

Speed Limit 

Violation 
78 92 

Overtaking Violation 84 90 

Table IV illustrates the reward scores for comparison before 
the implementation of symbolic reasoning in the neuro-symbolic 
reinforcement learning approach and after the implementation. 
All the violations, including red light violations, yielding to 
pedestrians, improper changes of lanes, speed and overtaking, 
show a significant increase of reward during post-symbolic 
reasoning. For instance, similar performance for handling red 
light violations increased from 80 to 95, meaning that there is 
compliance to traffic light signals. Likewise, the improvement 
of legal and civilized pedestrian deference yield violations 
increased from 75 to 90, making them safer. Effectiveness of the 
symbolic constraints was useful in improving the identification 
of risky behaviors, which the agent avoided, in order to attain 
legally sustainable habits in line with the law. Therefore, 
symbolic reasoning enhanced the neural policy by incorporating 
the safety rules that led to performance improvement and 
reduced safety violations. 

 
Fig. 4. Impact of violations 

The bar graph in Fig. 4 shows the effectiveness of applying 
symbolic reasoning on different traffic violations and the 
consequent changes encountered in enhancing the rewards. 
Categorically, all types of violations, like red light and 
pedestrian yield violations, demonstrate a gradual rise, and thus, 
symbolic rules promote safety compliance and decision-making 
for AV behavior predictions. 

3) Driving safety metrics. Fig. 5 shows the reward 

trajectory of the Neuro-Symbolic Reinforcement Learning 

(NSRL) agent as a function of training episodes up to 1000. The 

y-axis is the average reward received during each episode, and 

the x-axis is the training iteration (episode number). At the 

beginning, the average reward is low because the agent does not 

have any information about the environment. As training 

continues, the reward curve has an overall upward slope, which 

reflects that the agent is acquiring skills and refining its 

decision-making policy by reinforcement learning. The 

occasional dips in the curve are normal and reflect exploration 

experiences or intricate situations during training. The line chart 

illustrates how the agent moves from arbitrary or suboptimal 

actions to wiser and regulation-conforming driving manoeuvers 

with guidance from the combination of neural learning and 

symbolic logic. This gradual rise in rewards confirms the 

efficacy of the hybrid architecture towards goal-oriented and 

safe autonomous navigation. 

 
Fig. 5. Trajectory of the NSRL 
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Fig. 6. Number of collisions in NSRL 

Fig. 6 displays the number of collisions that the NSRL agent 
has encountered during 50 testing episodes. The x-coordinate is 
the number of collisions per episode from zero to five, and the 
y-coordinate indicates the number of episodes with each count 
of collisions. Most episodes are bunched around the zero or one 
collision mark, showing that the learned model is able to 
generalize safe driving practices to novel environments. There 
were very few episodes where collision counts were higher, and 
these could be explained as resulting from highly involved 
driving scenes or edge cases where pedestrian or driver behavior 
was more random. The overall distribution shows that the NSRL 
system has attained a high safety performance, with the symbolic 
reasoning module guaranteeing adherence to traffic regulations 
and the neural module learning dynamic real-world data. This 
histogram therefore, confirms the argument that the hybrid 
architecture is stable and safe in minimizing collision threats in 
urban driving situations. 

4) Analysis of Q-values on Deep Q Network. Fig. 7 shows 

the evolution of the average rewards for the Deep Q Network 

(DQN) model during the training episodes. First, it starts with a 

value of 10 and increases over time as the model gains some 

experience. Reinforcement learning reveals that the optimal 

reward for maximum episodes is attained at 16 by 1000 

episodes and nearly 19 at 5000 episodes. This trend indicates 

that there is progress in the acquisition of learning for the agent 

by making better decisions with more appropriate state-action-

reward mappings. The idea of increasing the reward means 

decreasing the instances of safety violations and enhancing 

overall performance in the long run. The upward trend 

substantiates that the integration of DQN module with neuro-

symbolic reasoning improves the agent’s learning capability to 

navigate through the challenging driving environment safely 

and effectively. 

Fig. 8 shows how the Q-value changes during the training 
episodes of the Deep Q Network for three distinct actions 
namely Accelerate, Stop and Yield. This is mainly because, at 
the beginning of all actions, the Q-value is low because of the 
lack of information regarding the environment. During learning, 
all actions achieve better Q-values, which for “Accelerate” 
reaches the maximum of approximately 0.75 during the 5000 
episodes suggesting that this action is most rewarding. Second, 
“Yield” is relatively closer to “Immediate” with a coefficient of 
0.7 giving a notion that it plays a critical role making safety-
critical decisions. However, the “Stop” action, which is required, 
increases gradually and reaches a more stable value of 0.6. Based 

on the presented progression, the learning capability of the agent 
increases regarding the connection between actions and long-
term rewards due to symbolic safe rules, which enables safer 
action based on contextual awareness during autonomous 
driving vehicle actions. 

 
Fig. 7. Reward progression 

 
Fig. 8. Q-Values evolution for different actions. 

5) Performance metrics. The accuracy analysis of the 

proposed CNN-LSTM integrated with DQN is done using 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Accuracy as in Table V. 

TABLE V.  PERFORMANCE METRICS 

Method MAE MSE Accuracy 

CNN-LSTM + Deep Q network 
(Proposed) 

1.2 0.02 98% 

As stated above, the MAE for the model is 1.2 which 
quantifies the average absolute error between the predicted and 
the actual trajectory position. It is calculated as in Eq. (5): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1           (5) 

The MSE is 0.02, indicating minimal squared deviations and 
penalizing larger errors more severely. It is given by Eq. (6): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛

𝑖=1
           (6) 
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The model reached 98% of accuracy and this guarantees that 
its forward valid trajectories and safe movements are very 
accurate. These outcomes confirm that the proposed model holds 
the capability of reporting the trajectories for making decisions 
corresponding to the safe constraints and is highly reliable for 
the self-driving environments. 

6) Performance comparison with different models. The 

incorporation of CNN with LSTM being augmented by Deep Q 

Network (DQN) and symbolic reasoning model, does improve 

the performance when compared to previous approaches. It has 

low prediction error as evidenced by having the minimum Mean 

Absolute Error (MAE) of 1.2 and the minimum Mean Squared 

Error (MSE) of 0.02. Precision achieves a maximum of up to 

98%, which enhances the present models, such as CNN-LSTM 

with 95%, Deep Pool of 92%, Vanilla RL of 90%, and Classical 

Heuristic Methods of 85%. In addition, this proposed model 

records a lower number of safety drawbacks, with only 5, 

compared to 15 in CNN-LSTM and between 30 and 50 in other 

models. This improvement can be attributed to the integration 

of Learning from data and symbolic processing for 

computationally efficient decision making, thereby improving 

both prediction accuracy and adherence to safety requirements. 

Overall, the proposed approach offers a robust, accurate, and 

safer solution for autonomous vehicle decision-making. Table 

VI shows the performance comparison, and Fig. 9 provides the 

graph for it. 

TABLE VI.  PERFORMANCE COMPARISON WITH DIFFERENT MODELS 

Method MAE MSE Accuracy 
Safety 

Violations 

CNN-LSTM [21] 1.5 0.03 95% 15 

Vanilla 
Reinforcement 

Learning 

(RL)[22] 

2 0.04 90% 30 

Classical 

Heuristic 

Methods[23] 

2.5 0.05 85% 50 

DeepPool 
(Distributed 

Model-free 

RL)[24] 

1.8 0.035 92% 25 

CNN-LSTM + 

Deep Q network 

(Proposed) 

1.2 0.02 98% 5 

 

Fig. 9. Accuracy comparison with different models 

VI. DISCUSSION 

The suggested Neuro-Symbolic Reinforcement Learning 
(NSRL) model, with the combination of CNN-LSTM and Deep 
Q Network (DQN) with symbolic reasoning, shows better 
performance in multiple aspects compared to traditional 
methods. It largely enhances the accuracy of decision-making, 
safety compliance, and policy explanation in complicated urban 
driving situations. The model attains a very high accuracy of 
98% while minimizing Mean Absolute Error (MAE) and Mean 
Squared Error (MSE) to 1.2 and 0.02, respectively—better than 
current methods like CNN-LSTM (95% accuracy), DeepPool 
(92%), and Vanilla RL (90%). Safety violations are notably 
reduced to only 5 cases, a significant drop from 15 in CNN-
LSTM and up to 50 in traditional heuristic models. The 
integration of symbolic reasoning modules ensures adherence to 
important traffic rules (e.g., red light, pedestrian right-of-way, 
overtaking safety), which increases safety and reward scores. As 
shown in the reward analysis, symbolic reasoning significantly 
contributed to all violation categories—increasing rewards by a 
minimum of 8 to 15 points after integration. Q-value trajectory 
plots and reward plots confirm that the DQN component learns 
efficient action policies as time progresses. The Q-values of 
actions such as "Accelerate” and “Yield” achieve higher stable 
values, which reflect the learning flexibility of the system and 
safe contextual action selection. In general, the hybrid method 
not only improves predictive accuracy and learning efficiency 
but also provides legal compliance, making it suitable for real-
time autonomous driving applications. These results support the 
power of hybridizing neural learning with rule-based symbolic 
logic in enabling safe and robust AV navigation. 

VII. CONCLUSION AND FUTURE WORKS 

This study presents a hybrid solution that combines Neuro-
Symbolic reasoning, Convolutional Neural Networks (CNN), 
Long Short-Term Memory (LSTM) networks, and Deep Q-
Networks (DQN) for improving decision-making in self-driving 
cars. The suggested model seamlessly merges the benefits of 
symbolic logic for rule application and context understanding, 
CNN for spatial feature extraction, and LSTM for learning 
temporal dependencies in vehicle traces. By integrating 
reinforcement learning, the system maximizes long-term 
rewards, facilitating safer and more efficient navigation in 
dynamic cityscapes. Experimental results show that the model 
achieves a remarkable 98% accuracy in scenario-based decision-
making tasks, surpassing current deep learning-based 
approaches in safety-critical navigation situations. The hybrid 
aspect of this method improves both learning ability and 
interpretability, providing a more transparent, reliable, and 
explainable solution for autonomous vehicle systems. This 
method is not just a leap forward in the safety and efficiency of 
autonomous cars, but also creates the potential for broad 
applicability to other dynamic, complex environments, where 
decision-making under uncertainty is paramount. The ability of 
the model to link symbolic reasoning with deep learning 
supports both excellent performance and excellent 
interpretability, which is critical for real-world use in 
autonomous transportation systems. Future research may 
investigate the model's scalability over a wider variety of traffic 
scenes and urban contexts and demonstrate its robustness in real 
situations. Further improvements can also be made to reinforce 
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the model for coping with unforeseen and multi-type events like 
pedestrians, bikers, and ambulances in autonomous driving. 
Future advancements will also include integrating real-time 
decision-making functionality, allowing vehicles to respond to 
unexpected situations in real time. Integration with vehicle 
manufacturers and city planners will be critical to further 
develop this model into an industry-wide solution for more 
efficient and safer transportation systems. 
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