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Abstract—To that end, this study presents the Hierarchical 

Context-Aware Transformer (HCAT), a new model to perform 

analysis on unstructured healthcare data that resolves significant 

problems related to medical text. In the proposed model, the 

hierarchical structure of the system is integrated with the context-

sensitive mechanisms to process the healthcare documents at 

sentence level and document levels. HCAT complies with domain 

knowledge by a specific attention module and uses a detailed loss 

function that focuses on classification accuracy besides 

encouraging domain adaptation. The quantitative experiment 

shows that HCAT is a better choice than Bi-LSTM and BERT for 

sentence representation. The model attains 92.30% test accuracy 

on medical text classification, conversing with high computational 

efficiency; batch processing time is about 150ms, while the 

memory consumed is 320 MB. The proposed architecture for 

clinical text representation facilitates the incorporation of long-

range dependencies for clinical story representation, whereas the 

context-sensitive layer supports a better understanding of medical 

language. Precision and recall are significant because of the 

healthcare application of the model; the model has an accuracy of 

91.8% and a recall of 93.2%. From these results, it can be 

concluded that HCAT presented significant progress in computing 

healthcare data. It provides a highly practical application for real-

world extraction of medical data from unformatted text. 
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I. INTRODUCTION 

Because of technological development, it has been identified 
that there has been an exponential increase in unstructured data 
in the healthcare domain, which brings both opportunities and 
threats to healthcare systems in the present day. Electronic 
Health Records, clinical notes, medical literature and patients’ 
corners all comprise a huge pool of potential knowledge that, if 
only harnessed correctly and effectively, has the potential to 
transform healthcare delivery, clinical decision making and 
patients’ outcomes [1]. But organizing this sort of data is highly 
problematic because it is complex and unstructured, and because 
of this, it requires highly advanced techniques to be used to work 
through this raw data and transform it into usable information. 

Today, NLP has indeed proven itself to be an important 
technology that helps to transpose huge amounts of healthcare 
data and traditional clinical associations. In particular, 
healthcare is an example of a domain, where NLP is beneficial 
because of the capacity of NLP to process narrative texts and 
extract high-level meaning [2]. NLP has had recent 
developments in the areas of machine learning and artificial 
intelligence to provide rich meanings of the normally complex 
medical terms, taken into consideration contextual connotations 
and improve accuracy-based information retrieval. Recent 
models leveraging deep transfer learning have demonstrated 
substantial improvements in interpreting domain-specific 
imagery and text [3, 4]. 

Today, Natural Language Processing (NLP) has emerged as 
a critical technology for transforming vast amounts of 
unstructured healthcare data into actionable knowledge. 
Healthcare, in particular, benefits greatly from NLP due to its 
ability to process narrative clinical texts and extract high-level 
semantic information [2]. Recent advances in machine learning 
and artificial intelligence have further empowered NLP systems 
to handle complex medical terminology, capture contextual 
nuances, and improve the accuracy of information retrieval. 
Furthermore, deep transfer learning models have shown 
considerable success in enhancing the interpretation of domain-
specific text and medical imagery [5, 6] , demonstrating progress 
in applications across both healthcare [7, 8] and agriculture [9, 
10]. 

Notwithstanding these progresses, there are still many issues 
that arise in the use of NLP for HC data. The complexity of the 
problem is that medical language is domain-specific, contains 
abbreviations and acronyms, is dependent on temporal 
references and is used in a context that cannot allow any 
inaccuracies. Most basic NLP methods actually work quite well 
for common text processing, but when it comes to healthcare 
data, they do not fare very well [11]. This limitation emphasizes 
the fact that there is a need for specially designed architectures 
to adequately express the aspect of the hierarchy of medical 
information besides considering the context even at different 
levels. Hierarchical and domain-specific architectures like 
hybrid CNN-transformers have been successful in modeling 
structured patterns in both medical [12, 13] and agricultural [14, 
15] data. 
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Notwithstanding these progresses, there are still many 
challenges in applying NLP to healthcare data. Medical 
language is domain-specific, rich with abbreviations and 
acronyms, often temporally bound, and highly context-sensitive, 
which leaves little room for error. While traditional NLP 
methods perform adequately for general-purpose text, they often 
fall short when processing complex healthcare narratives [11]. 
This limitation underscores the necessity for specialized 
architectures that can represent the hierarchical structure and 
contextual depth of medical information. Recent research has 
explored the integration of deep learning techniques—such as 
transfer learning and ensemble-based architectures—to address 
these complexities in the medical domain [12, 13]. Similarly, in 
agriculture, deep learning approaches including DenseNet 
variations, ensemble models, and domain-adapted classifiers 
have shown promise in handling structured and unstructured 
data for plant disease and crop classification tasks [14, 15]. 
These advances highlight the growing relevance of domain-
specific and hybrid architectures across disciplines dealing with 
complex, unstructured data. 

Experiments on applying the NLP systems in the healthcare 
processes has revealed its effectiveness in everyday clinical 
practice, overuse of clinical decision support tools, risk 
assessment of the patient, and prediction of treatment outcomes. 
However, current approaches lack in achieving a good trade-off 
between performance accuracy and time. The growth in data 
generated within the health sector requires handling of 
information in real-time and with accuracy and reliability [4]. 
This requirement becomes especially important in clinical 
laboratories, where fast analysis can directly influence patient 
management. To overcome these challenges, this study proposes 
a new HCAT model for unstructured healthcare data called the 
Hierarchical Context-Aware Transformer. The model suggested 
in the work contains several elements that improve existing 
learning models. First of all, its inherent hierarchy structure 
allows for processing medical text at a single, term, and overall 
document level. Second, the context-aware mechanism ensures 
that the model encapsulates relevant medical context throughout 
the analysis stage. Last, the given transformer-based architecture 
is computationally efficient enough to be implemented in real-
life healthcare environments. 

Several recent studies in agriculture [16–19]  and healthcare 
[5] have demonstrated the efficacy of transformer-based and 
transfer learning architectures. However, these approaches often 
lack computational efficiency and fall short in capturing multi-
level contextual information essential for domain-specific tasks. 
The improvements introduced in this study form the theoretical 
foundation of the proposed Hierarchical Context-Aware 
Transformer (HCAT) model. Unlike prior models, HCAT 
demonstrates superior handling of short-range word 
dependencies, which is crucial for accurately interpreting 
nuanced medical text. The model’s hierarchical structure 
enables it to process documents of varying lengths while 
effectively capturing contextual shifts. Additionally, the 
integration of a context-aware layer allows the model to embed 
domain-specific knowledge, thereby enhancing its 
understanding and translation of medical terminology. These 
architectural enhancements collectively contribute to improved 
performance. Compared to established models like Bi-LSTM 

and BERT, HCAT achieves higher accuracy, precision, recall, 
and F1-score, all while reducing processing time and memory 
usage—making it more viable for real-time healthcare 
applications. 

 

Fig. 1. Challenges and opportunities in healthcare data analysis. 

It can be seen from Fig. 1 that the design and implementation 
of solutions to process unstructured healthcare data come with 
several challenges (left); on the other hand, with a proper 
approach to big data analysis, there are major opportunities to be 
leveraged for care delivery improvement (right). The existence 
of the challenges and opportunities themselves in both directions 
shows how the solutions to the challenges will hold key 
solutions to healthcare improvement. 

 
Fig. 2. High-level architecture of the proposed Hierarchical Context-Aware 

Transformer (HCAT) model. 

The architecture, as shown in Fig. 2, consists of four main 
components: a healthcare input layer for handling unstructured 
data, a hierarchical encoder to process textual data at two levels, 
the sentence and document level, a context-aware layer for 
integration of domain knowledge, an output layer to produce the 
predictions and insights. 

The novel contributions of this research are as follows: 

 First, proposing the novel Hierarchical Context-Aware 
Transformer (HCAT) architecture integrates hierarchical 
modeling with context awareness for healthcare data 
processing. From this distinctive architectural feature, 
the system can analyze medical text at the sentence and 
document level in a parallel manner, which enhances the 
decoding of intricate medical narratives. 

 A novel context-aware layer that incorporates domain-
specific knowledge through a specialized attention 
mechanism, 𝐶(ℎ)  =  𝛼 ·  𝐵𝑖𝑜𝐵𝐸𝑅𝑇(ℎ)  +  (1 −  𝛼)  ·
 ℎ , 𝑜𝑚  (4), where α is a newly learned parameter. The 
approach works in a way that there is an interchangeable 
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process between general language comprehension and 
medical field comprehension. The translation result will 
be more accurate towards healthcare-related word usage 
and meanings. 

 The development of a comprehensive loss function that 
combines three components: cross-entropy loss, 𝐿2 
regularization, and domain adaptation loss (𝐿𝑡𝑜𝑡𝑎𝑙 =
 𝜆₁𝐿𝑐𝑒 +  𝜆₂𝐿𝑟𝑒𝑔 +  𝜆₃𝐿𝑑𝑜𝑚𝑎𝑖𝑛).  The multi-faceted 
approach in the present work guarantees thorough 
training throughout the organization while retaining the 
specificity of different domains. 

 A novel computational efficiency framework that 
performs the tasks in much less time (150𝑚𝑠/𝑏𝑎𝑡𝑐ℎ) 
and with fewer memory resources (320𝑀𝐵)  than the 
benchmark BERT (180ms, 384MB) and Bi-LSTM 
(220𝑚𝑠, 512𝑀𝐵)  while achieving higher accuracy, 
3.2% 𝑎𝑛𝑑 8.1%, respectively. 

 The implementation of a hierarchical encoder processes 
input at two distinct levels: proposed models called 
sentence-level encoding (SLE) and document-level 
encoding (DLE), which are linked by an innovative 
attention function. For heart, kidney, liver and other 
medical requisites, the RNN-based model can better 
predict the more nuanced local medical details and the 
overarching global clinical situation and context, both of 
which cannot be captured efficiently by single-level 
architectures. 

 An extensive prescreening process that could be applied 
to the healthcare domain and consists of general 
preprocessing tools together with several domain-
dependent preconditions and real-healthcare-data 
normalization techniques. This pipeline also consists of 
specific noise elimination functions and domain-wise 
embedding pairings that enhance the quality of input data 
of this kind of medical text. 

The remainder of this study is organized as follows: Section 
II further systematically reviews previous NLP tools and 
techniques applied in healthcare and their advantages and 
disadvantages. Section III outlines the methods involving the 
structure of the HCAT model, model training, and optimisation. 
Section IV explains the measures used for performance 
evaluation. In Section V, actual results and comparisons are 
provided. Section VI presents conclusions and discusses 
findings on their significance and relevance at the end of the 
study. Lastly, Section VII outlines the directions for further 
study of the proposed approach and its possible extensions. 

II. LITERATURE REVIEW 

The usage of Natural language processing in healthcare has 
grown over the past years due to researchers' efforts to discover 
modes of analyzing the vast medical unstructured data. Another 
Eclipse article by Davuluri [20] provides an excellent synthesis 
of clinical text analysis methods focusing on the role of context 
when dealing with medical stories. The author addresses the 
issue of Clinical Information Retrieval and Text (CIRT) 
processing, particularly clinical abbreviations and medical 
terminology. Combined, their work outlines how preprocessing 

for domain-specific data improves medical text analysis by 
about 15% of generic NLP techniques. 

Vashishtha and Kapoor [21] present a fresh approach to 
converting patients’ feedback into proactive imperatives. Their 
studies are concerned with crowd-sourcing the sentiment of 
patient comments regarding healthcare services; more 
specifically, they apply and compare sentiment analysis 
methods and topic modelling. This approach achieved the 
categorisation of patient concerns with 87% accuracy, proving 
that NLP can improve PEM. Junnu’s study specifically looks at 
how NLP enables data extraction from medical text. The author 
discusses several text-mining approaches designed for dealing 
with medical terms. Their study presents a new method of 
tackling medical abbreviations and acronyms, scoring 92% on 
medical term disambiguation. 

For a comprehensive overview of clinical text analysis 
methodologies emphasizing the union of machine learning with 
conventional NLP strategies, readers are referred to the work of 
Janowski [22]. Their research shows how deep learning models 
provide a more accurate method of medical entity recognition, 
by being 23% more precise than the traditional approaches. The 
study is susceptible to how medical context is sustained during 
text processing. Spadacini [23] brings fresh perspectives on data 
visualization in healthcare NLP. The work offers techniques for 
encoding this information based on complex medical relations 
derived from text, where such information would be useful to 
healthcare suppliers. We have learned that their visualization 
framework enables the reduction of decision-making time by 
35% in the clinics. Upadhyaya et al. [24] explore focusing on 
using NLP to build effective healthcare solutions. Their work 
can help provide a full outline of how NLP can be incorporated 
into a clinical decision-support environment; they obtained an 
89 per cent accuracy out of clinical notes in detecting possible 
instances of drug interactions. 

The study by Sharma et al. [25] focuses on integrating two 
paradigms, namely, NLP and big data analytics in the healthcare 
application. They show how integrating these technologies can 
enhance the processing of big medical datasets in terms of time 
with equal to or higher accuracy compared to times before with 
40% less time. Kalusivalingam et al. [26] describe comparison 
using BERT and LSTM in processing clinical data. Their work 
also demonstrates the approaches of integrating both 
architectures to improve the evaluation of complicated medical 
cases with an efficiency of 91% on the medical concept 
extraction. Uddin addressed the general survey on real-time 
analytics in healthcare NLP [27], but the paper emphasised 
identifying the issues related to the processing of streaming 
medical data. The author offers new methods for processing 
medical text in real-time, increasing the processing time by 30% 
more than batch processing. 

Several examples of NLP applications are investigated by 
Roy et al. [28], who describe case studies of various healthcare 
organizations. They show that using rule-based approaches to 
analyse clinical notes can increase productivity and time to do 
so by a quarter. Thatoi, et al. [29] has reviewed specifically on 
the NLP applications towards cancer prognosis, where they have 
described new strategies for identifying prognostic markers 
from the clinical records. Their approach obtained an accuracy 
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of 88 % in predicting relevant prognosis factors from textual 
medical data. Ahmed et al. [30]  discussed more recent work 
about using NLP in clinical decision support systems. Their 
work shows how NLP can be easily incorporated into clinical 
practice to improve decision-making by 32% compared to 
traditional decision-making methods. 

Last but not least, Wi et al. [31] give a real view of how NLP 
can be implemented in enhancing the capturing of data from 
cervical biopsy diagnosis. Their study focused on the 
methodology by demonstrating that micro-level data entry errors 
could be decreased to 45%. In comparison, the feature-level 
clinical notes completeness could be increased by 28% by use 
of automated text analysis. Each of these works points to the 
change of course of the application of NLP models in healthcare 
and what is still required. Although recent years have witnessed 
remarkable progress in challenges like medical entity 
recognition, contextual representation, and real-time analysis, 
many challenges remain to step up the deployment of text data 
in medical modalities. Current issues among them are lack of 
situational awareness, processing of domain-specific language 
and large amount of medical data. These challenges inspire our 
ongoing work, which eliminates these shortcomings using the 

potential Hierarchical Context-Aware Transformer (HCAT) 
model. This work builds upon these existing studies while 
introducing novel approaches to enhance both the accuracy and 
efficiency of medical text processing. 

Table I compares the existing Natural Language Processing 
(NLP) approaches for healthcare applications in terms of their 
focus areas, findings, limitations and strengths of the proposed 
Hierarchical Context-Aware Transformer (HCAT) model. A 
number of methods have previously been proposed, and these 
have played various roles, including enhancing medical term 
disambiguation, real-time data analysis, and patient feedback 
classification, among others. However, they have shortcomings. 
These are poor marshalling of hierarchical and contextual 
relations, restricted applicability to large-scale healthcare data 
analysis, and weak adaptability to the domain. The HCAT model 
proposed herein overcomes these challenges with the help of a 
hierarchal architecture of text processing for medical text 
through a sentence and document. Therefore, it achieves higher 
accuracy, precision, and recall together with computational 
efficiency, making it ideal for immediate and limited healthcare 
settings. 

TABLE I.  COMPARATIVE ANALYSIS OF NLP APPROACHES IN HEALTHCARE WITH FOCUS ON SHORTCOMINGS AND MERITS OF THE PROPOSED HCAT MODEL 

Ref. Year Focus Area Key Findings Shortcomings 
Merits of the Proposed 

Scheme (HCAT) 

[11] 2022 Clinical text analysis 

Highlighted challenges in 

medical abbreviations and 
jargon; proposed semantic-

based enhancements 

Limited handling of complex 
hierarchical relationships in medical text 

Superior context-awareness 

and better handling of domain-

specific medical jargon 

[20] 2024 
Patient feedback 

automation 

Used sentiment analysis for 

insights; achieved 87% 
categorization accuracy 

Focused only on sentiment and lacked 

broader medical context 

Contextual analysis across 

sentences and documents for 
actionable insights 

[21] 2023 
Text mining in 
healthcare 

Developed novel 

disambiguation techniques; 
achieved 92% accuracy in term 

resolution 

Limited ability to manage large-scale, 
real-time medical datasets 

Higher precision (91.8%) and 

recall (93.2%) for term 

interpretation 

[22] 2023 Data visualization 

Enhanced medical relationship 

representation; reduced 
decision-making time by 35% 

Focused on visualization rather than text 

comprehension 

Faster processing (150ms per 

batch) and more accurate 
relationship extraction 

[23] 2022 
Data-driven 

healthcare solutions 

Achieved 89% accuracy in drug 

interaction identification 

Lacked hierarchical processing and 

domain-specific adaptation 

Superior computational 

efficiency and multi-faceted 
analysis capabilities 

[24] 2025 
Big data analytics in 
healthcare 

Combined big data with NLP 

for large-scale dataset 

processing 

Focused on scalability but lacked 
nuanced text interpretation 

Real-time processing capability 

with optimized memory usage 

(320MB) 

[25] 2022 
Comparative analysis 

of BERT and LSTM 

Achieved 91% accuracy in 

concept extraction 

Lacked contextual coherence across 

sentence and document levels 

Achieved higher accuracy 

(92.3%) and precision 

[26] 2021 
Real-time healthcare 

analytics 

30% faster processing 

compared to batch processing 

Lacked advanced attention mechanisms 

for domain-specific context 

Dynamic attention mechanisms 
enabling real-time 

responsiveness 

[27] 2024 
NLP in clinical 

workflows 

Improved workflow efficiency 

by 25% 

Limited ability to extract insights from 

unstructured data comprehensively 

Dual-level encoding enhances 

workflow automation and 
efficiency 

[28] 2021 Cancer prognosis 
88% accuracy in prognostic 

factor extraction 

Narrow application focus with limited 

generalizability across specialties 

Domain-specific preprocessing 

ensures accurate prognosis-
related term extraction 

[29] 2023 
Clinical decision 
support systems 

32% improvement in decision-
making accuracy 

Lacked comprehensive integration of 
context-aware mechanisms 

Hierarchical context leads to 

enhanced decision-making 

accuracy 

[30] 2023 
Data capture 
improvement 

Reduced manual errors by 45%; 

improved record completeness 

by 28% 

Did not address semantic relationships 
between medical entities 

Context-aware mechanism 

improves data completeness 

and relevance 
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III. PROPOSED METHODOLOGY 

In this section, the study describes the proposed unstructured 
healthcare data analytical framework based on a hierarchical 
context-aware transformer (HCAT). As illustrated, the proposed 
methodology addresses specific logistical and analytical issues 
by providing a systematic view joint to hierarchical modeling 
and context awareness. 

A. Data Preprocessing Pipeline 

Given a corpus of unstructured healthcare documents 𝐷 =
 {𝑑₁, 𝑑₂, . . . , 𝑑ₙ}, where each document dᵢ consists of multiple 
sentences 𝑆 =  {𝑠₁, 𝑠₂, . . . , 𝑠ₘ} , the preprocessing pipeline 
implements the following transformations: 

1) Data cleaning: A noise reduction function 

f_clean(dᵢ)  →  d′ᵢ  removes irrelevant text and incomplete 

records using regular expressions and healthcare-specific 

filtering rules. 

2) Tokenization: Each cleaned document d'ᵢ is tokenized 

into sentences and then into tokens, 𝑇(𝑑′ᵢ)  =  {𝑡₁, 𝑡₂, . . . , 𝑡ₖ}, in 

which 𝑡ⱼ represent individual tokens. 

3) Embedding: Tokens are transformed into dense vector 

representations using a combination of pre-trained 𝑊𝑜𝑟𝑑2𝑉𝑒𝑐 

and domain-specific embeddings: 𝐸(𝑡ⱼ)  =  𝑊 ·  𝑡ⱼ +  𝐵 

where, 𝑊 ∈  ℝᵈˣ|𝑉|  is the embedding matrix, d is the 

embedding dimension, and |𝑉| is the vocabulary size. 

4) Normalization: Numerical features are standardized 

using z-score normalization, 𝑧 =  (𝑥 −  𝜇) / 𝜎 which is 

where, the mean and 𝜎  the standard deviation of the feature 

distribution are. 

B. HCAT Model Architecture 

The HCAT model architecture consists of four main 
components designed to capture both local and global contextual 
information: 

1) Hierarchical encoder: The encoder processes input at 

two levels: 

 Sentence-level encoding: ℎˢ =  𝑆𝐿𝐸(𝑠₁, 𝑠₂, . . . , 𝑠ₘ) 
where, SLE is the sentence-level encoder function: 
𝑆𝐿𝐸(𝑠)  =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐵𝑙𝑜𝑐𝑘(𝐸(𝑠))  +
 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑠) 

 Document-level encoding: ℎᵈ =
 𝐷𝐿𝐸(ℎˢ₁, ℎˢ₂, . . . , ℎˢₘ) where 𝐷𝐿𝐸 aggregates sentence 
representations using attention mechanisms. 

2) Self-attention mechanism: The model employs multi-

head self-attention defined as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉.         (1) 

 where, 𝑄, 𝐾, 𝑉  are query, key, and value matrices 
respectively, and 𝑑_𝑘  is the dimension of the key 
vectors. The multi-head attention is computed as: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)  =
 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑₁, . . . , ℎ𝑒𝑎𝑑ₕ)𝑊^𝑂 𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑ᵢ    =

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊^𝑄_𝑖, 𝐾𝑊^𝐾_𝑖, 𝑉𝑊^𝑉_𝑖).     (2) 

3) Context-aware layer: The context-aware layer 

incorporates domain knowledge through a specialized attention 

mechanism: 

𝐶(ℎ)  =  𝛼 ·  𝐵𝑖𝑜𝐵𝐸𝑅𝑇(ℎ)  + (1 −  𝛼)  ·  ℎ       (3) 

 where, α is a learnable parameter determining the 
contribution of domain-specific knowledge, and 
𝐵𝑖𝑜𝐵𝐸𝑅𝑇(ℎ) represents the contextualized 
representation from the pre-trained medical language 
model. 

4) Output layer: The final predictions are generated 

through a series of dense layers with non-linear 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠: 

𝑦 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2 ·  𝑅𝑒𝐿𝑈(𝑊1 ·  𝐶(ℎ) + 𝑏1) +  𝑏2)  (4) 

where 𝑊₁, 𝑊₂, 𝑏₁, 𝑏₂ are learnable parameters. 

C. Training and Optimization 

The model is trained using a combination of task-specific 
losses: 

𝐿_𝑡𝑜𝑡𝑎𝑙 =  𝜆₁𝐿_𝑐𝑒 +  𝜆₂𝐿_𝑟𝑒𝑔 +  𝜆₃𝐿_𝑑𝑜𝑚𝑎𝑖𝑛    (5) 

where, 

 L_ce is the cross-entropy loss for classification tasks. 

 L_reg is the L2 regularization term. 

 L_domain is a domain adaptation loss λ1,λ2,λ3 are 
hyperparameters controlling the contribution of each loss 
component. 

Optimization is performed using Adam optimizer with a 
learning rate schedule: 

𝜂_𝑡 =  𝜂_𝑖𝑛𝑖𝑡 ·  √(1 −  𝛽₂^𝑡)/(1 −  𝛽₁^𝑡)       (6) 

where, 𝜂_𝑖𝑛𝑖𝑡  is the initial learning rate, and 𝛽₁, 𝛽₂  are 
Adam's exponential decay rates. 

D. Model Comparison Framework 

To compare the performance of the proposed HCAT model, 
based on the identified metrics, the model is compared with Bi-
LSTM and BERT, wherein the metrics include accuracy, 
precision, recall, F1 score, time, and memory. For the purpose 
of defining the level of statistical significance, we’re using 
paired t-tests with Bonferroni correction. This methodology 
imparts a strong structural model for analyzing unstructured 
healthcare data and is computationally efficient and 
interpretable. The flow of hierarchy and the context-aware 
mechanisms allow for the representation of relationships in 
medical text data. 

IV. PERFORMANCE METRICS 

Performance evaluation is essential to assess the efficacy of 
the proposed Hierarchical Context-Aware Transformer (HCAT) 
model. This section elaborates on the six key metrics employed 
to compare the performance of HCAT with other models, such 
as −𝐿𝑆𝑇𝑀, 𝐵𝐸𝑅𝑇. They are: Accuracy, Precision, Recall, F1-
Score, Processing Time, and Memory Utilization. 
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A. Accuracy 

Accuracy represents the proportion of correctly classified 
instances among the total instances. It is a fundamental metric 
for evaluating the overall effectiveness of the model. The 
mathematical formula for accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                  (7) 

where, 

 𝑻𝑷: 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 𝑻𝑵: 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 𝑭𝑷: 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 𝑭𝑵: 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

This metric is particularly critical in healthcare as it directly 
impacts clinical decision-making and patient safety. 

B.  Precision 

Precision measures the proportion of true positives among 
all positive predictions. It is particularly important in reducing 
false positives, which is crucial for healthcare applications to 
prevent unnecessary treatments or interventions. Precision is 
mathematically defined as: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (8) 

High precision is vital for applications like disease diagnosis, 
where overestimating a condition's presence can have 
significant consequences. 

C. Recall 

Recall quantifies the proportion of true positives identified 
out of all actual positives in the dataset. In healthcare, this metric 
is essential because missing true cases (false negatives) can lead 
to severe outcomes. Recall is expressed as: 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (9) 

This metric emphasizes the model's ability to 
comprehensively identify critical data points, ensuring that no 
relevant information is overlooked. 

D. F1-Score 

The F1-Score is the harmonic mean of precision and recall, 
providing a balanced measure of a model’s ability to minimize 
false positives and false negatives. It is particularly useful when 
precision and recall are equally important. The formula for F1-
Score is: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 == 2 ×
Precision×Recall

Precision+Recall
                (10) 

This metric ensures a robust evaluation by combining the 
strengths of both precision and recall. 

E. Processing Time 

Processing time evaluates the computational efficiency of a 
model by measuring the time required to process one batch of 
data. This metric is especially relevant in real-time healthcare 
applications, where timely analysis can be critical for decision-
making. Processing time can be expressed as: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = {𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ (𝑚𝑠)}  (11) 

A faster processing time indicates better computational 
efficiency, making the model suitable for practical deployment 
in real-time systems. 

F. Memory Utilization 

Memory utilization measures the computational resources 
required by the model during execution. This metric is vital for 
assessing the feasibility of deploying the model in resource-
constrained environments, such as edge devices in healthcare 
systems. Memory utilization is typically measured in megabytes 
(MB) and expressed as: 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =

𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑀𝐵)      (12) 

Efficient memory usage ensures scalability and cost-
effectiveness, especially in environments with limited 
computational resources. 

Each performance metric plays a critical role in evaluating 
the suitability of the proposed 𝐻𝐶𝐴𝑇  model for healthcare 
applications. The accuracy, precision, recall, and F1-Score 
assess the model's ability to make correct predictions, while 
processing time and memory utilization evaluate its 
computational efficiency and scalability. 

By employing these metrics, a comprehensive performance 
evaluation can be conducted, providing insights into the model’s 
strengths and areas for improvement. The results of this analysis, 
along with graphical representations, are presented in the 
Results and Discussion section. These metrics collectively 
demonstrate the 𝐻𝐶𝐴𝑇  model's potential to address the 
challenges posed by unstructured healthcare data and pave the 
way for advanced healthcare analytics and decision-support 
systems. 

V. RESULTS AND DISCUSSION 

In this section, we analyze the performance of the proposed 
Hierarchical Context-Aware Transformer (𝐻𝐶𝐴𝑇)  model 
compared to 𝐵𝑖 − 𝐿𝑆𝑇𝑀 𝑎𝑛𝑑 𝐵𝐸𝑅𝑇  across six evaluation 
metrics: Accuracy, Precision, Recall, F1-Score, Processing 
Time, and Memory Utilization. Each figure corresponds to one 
metric, illustrating the trends over training epochs. 

A. Accuracy 

Fig. 3 compares the accuracy of  𝐵𝑖 − 𝐿𝑆𝑇𝑀, 𝐵𝐸𝑅𝑇 , and 
𝐻𝐶𝐴𝑇 over 10 training epochs. The 𝐻𝐶𝐴𝑇 consistently 
outperformed the other models, reaching an accuracy of 92.3% 
at the 10th epoch, compared to 
89.1% 𝑓𝑜𝑟 𝐵𝐸𝑅𝑇 𝑎𝑛𝑑 84.2% 𝑓𝑜𝑟 𝐵𝑖 − 𝐿𝑆𝑇𝑀 .This 
improvement is attributed to 𝐻𝐶𝐴𝑇′𝑠  ability to incorporate 
hierarchical context, enabling a better understanding of long-
term dependencies in the data. The trend demonstrates 𝐻𝐶𝐴𝑇′𝑠 
robustness and superior learning capacity as training progresses. 

B. Precision 

Fig. 4 depicts the precision metric for the three models. 
𝐻𝐶𝐴𝑇 achieved the highest precision, peaking at 91.8% after 10 
epochs, followed by 𝐵𝐸𝑅𝑇 at 87.5% and 𝐵𝑖 − 𝐿𝑆𝑇𝑀 at 81.0%. 
The higher precision of 𝐻𝐶𝐴𝑇  indicates its effectiveness in 
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minimizing false positives. This is particularly critical in 
healthcare applications, where precision directly impacts the 
reliability of diagnoses derived from unstructured data. 

 
Fig. 3. Accuracy comparison over training epochs. 

 
Fig. 4. Precision comparison over training epochs. 

C. Recall 

As shown in Fig. 5, recall values for all models increased 
with training epochs, with 𝐻𝐶𝐴𝑇 achieving the highest value of 
93.2% by the 10th epoch. 𝐵𝐸𝑅𝑇 followed with 88.3%, and Bi-
LSTM lagged at 82.7%. The superior recall of 𝐻𝐶𝐴𝑇 highlights 
its ability to capture the majority of relevant data points, making 
it highly suitable for healthcare scenarios that require 
comprehensive data extraction. 

D. F1-Score 

Fig. 6 presents the F1-Score, which balances precision and 
recall. 𝐻𝐶𝐴𝑇 attained the highest F1-Score of 92.5%, compared 
to 87.9% for 𝐵𝐸𝑅𝑇 and 81.8% for 𝐵𝑖 − 𝐿𝑆𝑇𝑀. This indicates 
that 𝐻𝐶𝐴𝑇 provides a balanced performance, excelling in both 
precision and recall. Such balanced performance is essential in 
healthcare, where both metrics are equally important for reliable 
decision-making. 

 
Fig. 5. Recall comparison over training epochs. 

 
Fig. 6. F1-Score comparison over training epochs. 

E. Processing Time 

Fig. 7 compares the processing times of the models. 𝐻𝐶𝐴𝑇 
is the fastest, stabilizing at 150 milliseconds per batch by the 
10th epoch, while 𝐵𝐸𝑅𝑇 and 𝐵𝑖 − 𝐿𝑆𝑇𝑀 required 180 ms and 
220 ms, respectively. The reduced processing time of 𝐻𝐶𝐴𝑇 is 
due to its optimized architecture, which enhances computational 
efficiency without sacrificing performance. This advantage is 
crucial for real-time healthcare applications, where quick data 
processing is a necessity. 

F. Memory Utilization 

Fig. 8 evaluates memory utilization across the models. 
𝐻𝐶𝐴𝑇  demonstrated the lowest memory usage, stabilizing at 
320 MB, compared to 384 MB for 𝐵𝐸𝑅𝑇 and 512 MB for 𝐵𝑖 −
𝐿𝑆𝑇𝑀. The efficient memory usage of HCAT makes it more 
feasible for deployment in resource-constrained environments, 
such as edge devices in healthcare settings. This efficiency is 
achieved without compromising the model's accuracy or 
robustness. 
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Fig. 7. Processing time comparison over training epochs. 

 
Fig. 8. Memory utilization comparison over training epochs. 

G. Comparative Analysis 

The outcomes prove that the proposed HCAT model is way 
better than Bi-LSTM and BERT. For HCAT, the given 
performance metrics included higher accuracy, precision, recall, 
and the F1-Score; however, processing time was slightly lower 
than that of GloVe, and the memory used was comparatively less 
than LDA. For this reason, it is well suited for processing health 
care related complex and un-systematized data and drawing 
useful information from the same. They accurately point out that 
changes in accuracy and recalls are essential because they define 
the quality and reliability of healthcare analytics. 

In conclusion, the HCAT model shows essential possibilities 
to revolutionize the handling and analysis of unstructured 
healthcare information. Generating overall higher composite 
outcome standards in the role of quantitative performance 
facilitates better solutions and service in healthcare informatics. 

VI. CONCLUSION 

This study presented HCAT, a new framework for handling 
and interpreting the unstructured data common in the healthcare 
domain. A comparison of the result has shown that the 

previously utilized model like the Bi-LSTM and BERT was 
enhanced by the proposed model in all benchmark measures. 
HCAT had higher test accuracy at 92.3%, precision at 91.8%, 
recall at 93.2%, and lower batch processing time at 150ms, and 
memory usage at 320MB. The hierarchical structure of HCAT, 
with the help of context-aware features, demonstrates high 
efficiency in capturing both local and global contexts in medical 
text. Implementing multiple levels of information processing 
and preserving the domain-specific context is a major 
enhancement in HC-NLP. Specifying the attention mechanism 
for incorporating the key domain knowledge improved the 
model’s ability to perceive medical terms and concepts. The 
results from the comprehensive evaluation clearly confirm that 
HCAT can indeed work for the intended purpose in real world 
with inspirational healthcare solutions. The combined enhanced 
numerical and analytical performance of the model indicates 
that it is ideal for implementation in limited access and high-
demand medical centres, where timely medical data analysis is 
vital. 

VII. FUTURE SCOPE 

There are several exciting paths that may be explored in the 
future if the implementation of the HCAT model discussed here 
is successful. New directions for further development are 
expanding multilingual and multimodal capabilities to enhance 
international healthcare applications and intercultural medical 
studies and extending knowledge into text analysis together with 
medical imaging and sensor data. Furthermore, creating new 
sub-modules of explainable AI would improve the current 
model’s information transparency and better adapt it to a clinical 
setting, where it is often necessary to check and verify the results 
of the AI system. The model could also be modified for a 
particular medical specialization by including smaller 
specialized ontology bases and the corresponding vocabulary. 
Moreover, the study of certain federated learning solutions 
would. This research would allow patient data confidentiality to 
remain assured even while models were being trained 
cooperatively. These improvements would greatly expand the 
applications of HCAT in different healthcare contexts and 
enhance the application of the framework in enhancing medical 
data analysis as well as clinical decision making. 
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