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Abstract—The Internet of Vehicles (IoV) is an indispensable 

part of contemporary Intelligent Transportation Systems (ITS), 

providing efficient vehicle-to-everything (V2X) communication. 

Nevertheless, high mobility and consequent topological changes in 

IoV networks create overwhelming difficulties in establishing and 

maintaining stable and effective communication. In this work, we 

introduce the Enhanced Jaya Algorithm for IoV (EJAIoV), an 

optimized clustering algorithm using optimization to develop 

stable and long-term clusters in IoV scenarios. EJAIoV uses 

efficient random initialization with three scrambling strategies to 

produce diverse, high-quality solutions. Q-learning selection 

between three neighborhood operators enhances local search 

effectiveness by incorporating a segmented operator. In addition, 

an adaptive search balance strategy adjusts solution updating 

dynamically to avoid premature convergence and optimize the 

exploration procedure. Simulation experiments show that EJAIoV 

outperforms existing clustering algorithms, achieving up to 31.5% 

improvement in cluster lifetime and 28.2% reduction in the 

number of clusters across various node densities and grid sizes. 

Keywords—Internet of vehicles; clustering; Jaya algorithm; Q-

learning; optimization 

I. INTRODUCTION 

A. Background 

The Internet of Vehicles (IoV) is an important advancement 
of Vehicular Ad hoc Networks (VANETs), unifying vehicles, 
infrastructure, cloud services, and users into an integrated 
communication and data exchange system [1]. As an intrinsic 
part of Intelligent Transportation Systems (ITS), the IoV enables 
vehicle-to-everything (V2X) to support real-time traffic control, 
accident prevention, and self-driving cars [2]. 

Taking advantage of emerging wireless technologies, cloud 
computing, and the Internet of Things (IoT), IoV is significant 
for roadside safety enhancement, traffic congestion alleviation, 
and smart energy use [3]. Cloud platform support allows IoV to 
be easily deployed on a mass level and offers data-assisted 
services and decision support to urban mobility systems [4]. As 
ITS evolves, efficient and stable communication in IoV 
environments becomes vital to ensuring uninterrupted data 
transmission among high-mobility nodes [5]. Similar to recent 
efforts in industrial automation using hybrid AI models for real-
time defect detection [6], IoV environments demand intelligent, 
adaptive solutions for dynamic clustering under mobility 
constraints. 

Although IoV offers revolutionary transformation prospects, 
it is beset with critical technical issues related to maintaining 
stable communication under highly dynamic conditions. Due to 
the very nature of vehicular networks in terms of high mobility 
among nodes, dynamically updating topologies, and variable 
traffic density, real-time and stable data transmission becomes 
difficult [7, 8]. Transient disconnection and link failures cause 
disruptions to communication continuity, which poses 
significant issues to safety-critical services [9]. 

Furthermore, dynamic vehicular movement necessitates the 
quick adaptation of networks to prevent delay and packet losses 
[10]. Clustering is one commonly used paradigm to address such 
issues by partitioning the vehicles into clusters and assigning 
differentiated Cluster Heads (CHs), which carry out the forward 
and backward communication among and within the clusters 
[11]. However, under high mobility, stable cluster maintenance 
and minimizing reassignment of the CHs prove to be demanding 
without seriously degrading the performance and latency of the 
network. 

B. Literature Review 

Multiple clustering algorithms have been proposed to 
enhance communication efficacy within IoV by selecting the 
most appropriate CHs based on several measures, such as node 
degree, mobility patterns, and distance measures. Traditional 
metaheuristics- and heuristics-based frameworks have 
demonstrated differential success rates. However, current 
methods ignore vehicle mobility or fail to adapt dynamically to 
high mobility among nodes. Such inattention causes more 
instability in the clusters, heavy re-elections of the CHs, and 
high control overhead expense. 

In addition, most algorithms suffer from premature 
convergence and exploration limitations with the solution set, 
thus suboptimal cluster formations. Therefore, there is a critical 
need to develop smart and adaptive clustering, which means it 
excels in global search and local exploitation in an IoV 
environment. The global shift toward intelligent, technology-
driven infrastructure further emphasizes the need for adaptive 
and scalable solutions in dynamic systems such as IoV [12]. The 
widespread application of machine learning in fields such as 
business forecasting, transportation, and economic modeling 
[13] highlights its suitability for real-time, data-driven decision-
making in IoV clustering. 
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Sharif, et al. [14] presented an experience-based CH 
selection mechanism using an Actor-Critic Deep Reinforcement 
Learning (AC-DRL). AC-DLR uses reinforcement learning to 
adaptively manage IoV clustering in noisy and highly dynamic 
environments. Jamalzadeh, et al. [15] EC-MOPSO, an edge 
computing-enabled cluster-based routing approach that uses 
Multi-objective Particle Swarm Optimization (MOPSO). 

Salim, et al. [16] presented IoVSSA based on Sparrow 
Search Algorithm that uses mobility metrics and distances 
among clusters to optimize fewer and more stable clusters. Shen, 
et al. [17] introduced Software-Defined Networking (SDN) and 
Double Deep Q-Network (DDQN) to develop a cloud-edge 
collaborative resource provisioning framework. 

Yuan, et al. [18] suggested an enhanced DBSCAN clustering 
algorithm integrated with Digital Twins (DTs) and a deep 
reinforcement learning-based offloading decision scheme 
(DDQN and dueling DQN). Zhang, et al. [19] combined 
Simulated Annealing (SA) and NSGA-II algorithms to optimize 
task offloading within IoV. Ajaz, et al. [20] proposed a Cluster-
based Lion Optimization Routing Protocol (CLORP), which 
improves AODV with the lion algorithm to select CHs and 
gateway nodes. 

Despite recent advances, existing IoV clustering methods 
exhibit significant limitations in high-mobility scenarios, as 
highlighted in Table I. Many algorithms fail to adapt to frequent 
topology changes, leading to unstable clusters and excessive CH 
reassignments that degrade network performance and increase 
control overhead. Traditional optimization-based approaches 
often suffer from premature convergence and inadequate local 
search capabilities, preventing them from finding robust cluster 
configurations in dynamic environments. 

Reinforcement learning-based techniques, while promising, 
frequently overlook the need for adaptive exploration-
exploitation strategies tuned to mobility-induced fluctuations. 
Therefore, there is a clear need for a clustering solution that is 
explicitly designed to operate effectively under high-speed, 
constantly evolving conditions. Our proposed EJAIoV 
framework addresses this gap by integrating an enhanced Jaya 
algorithm with Q-learning-driven local search and adaptive 
balancing strategies to maintain stability, reduce overhead, and 
ensure communication resilience in highly mobile IoV 
networks. 

C. Contribution 

To overcome the shortcomings mentioned above, this work 
introduces the Enhanced Jaya Algorithm (EJaya), an efficient 
metaheuristic optimization algorithm well suited to the 
dynamism associated with IoV clustering problems. The 
parsimonious and straightforward Jaya algorithm has been used 
to solve many complex optimization problems with great 
success [21]. 

EJaya takes advantage of this by adding several 
enhancements intended to yield better performance: random 
initialization with three scrambling techniques to diversify the 
solution set, segmented operators to enhance convergence rate, 
Q-learning-based operator selection for the neighborhood to 
support local search capacity, and adaptive search balanced 

approach to avoid premature convergence. Collectively, these 
features make EJaya well-suited to strike an effective balance 
between exploration and exploitation to solve the NP-hard 
clustering problem in high-mobility vehicle networks. 

TABLE I.  AN OVERVIEW OF RELATED WORKS 

Reference 
Optimization 

technique 
Achievement Weakness 

[14] 

Actor-critic deep 

reinforcement 

learning 

Improved SLA 
satisfaction (28%) 

and throughput 

(35%) over static 
and DQN methods 

Requires 
extensive training 

data; performance 

depends on 
reward design 

[15] 

Multi-objective 

particle swarm 

optimization 

Reduced latency, 

fewer hops, and 
improved packet 

delivery rate 

Scalability can be 

an issue; mobility 
modeling is 

limited 

[16] 
Sparrow search 
algorithm 

Fewer and more 

stable clusters 
with longer 

lifetimes 

Lacks adaptive 
learning; may 

struggle with 

rapidly changing 
topologies 

[17] 

Double deep Q 
network with 

software-defined 

networking 

Reduced latency 

by up to 34.8% 

and increased 
edge provider 

profits by 33.3% 

Initial clustering 

is static; 

computation 
overhead for 

DDQN is high 

[18] 
Enhanced 

DBSCAN + DRL 

Improved 
clustering under 

high speed, 

reduced latency, 
and better 

offloading 

decisions 

High complexity; 
requires robust 

digital twin 

modeling 

[19] 

Particle swarm 

optimization, 
simulated 

annealing, and 

NSGA-II 

Lower system 

costs by balancing 

delay and energy 
consumption 

Complexity of 
multi-objective 

tuning; simulated 

annealing 
increases 

computation time 

[20] 
Lion 
optimization 

algorithm 

Enhanced routing 

efficiency and 

reduced control 
message overhead 

AODV 
dependency 

limits 

adaptability; 
mobility handling 

is a basic 

This study presents an innovative IoV clustering framework 
called EJAIoV and takes advantage of the advanced 
optimization power of EJaya to build stable mobility-aware 
clusters. The algorithm incorporates mobility and distance into 
a multi-objective fitness function to ensure that chosen CHs are 
associated with low relative velocity and high link stability. 
Adaptive learning and search mechanisms incorporated into the 
algorithm enable the algorithm to adapt well to sudden 
topological changes, maintain communication effectiveness, 
and decrease CH reassignments. 

The remainder of this paper is organized as follows: Section 
II presents the system model and formally defines the clustering 
problem in the context of dynamic IoV environments. Section 
III details the proposed EJAIoV algorithm. Section IV discusses 
simulation results, evaluating EJAIoV’s performance against 
state-of-the-art algorithms under various mobility and network 
conditions. Finally, Section V concludes the study and outlines 
potential directions for future research. 
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II. SYSTEM MODEL AND PROBLEM DEFINITION 

As shown in Fig. 1, an IoV setup generally is composed of 
five main components: RSUs, On-Board Units (OBUs), Cloud 
Center (CC), Transportation Control Center (TCC), and the 
Internet. OBUs are vehicle devices utilizing Wireless Access in 
Vehicular Environments (WAVE) to offer secure and reliable 
communication. RSUs deployed on the roadside offer vehicle 
communication so that OBUs can send and receive traffic-
related information with the RSUs and the surrounding 
infrastructure within the communication range. 

 
Fig. 1. Vehicular communication framework. 

The role of the TCC is to supervise and manage the deployed 
RSUs, and the CC is the centralized virtual hub used to hold 
data, resources, and software critical to car control. The 
framework supports more advanced messaging to reach more 
cars and infrastructure through the Internet and provides 
significantly enhanced data-gathering capabilities. 

Structure of the IoV topology is represented by an undirected 
graph 𝐺 = (𝑁, 𝐿) , with N stands for vehicles (nodes) and L 
signifies communication links (edges). Two vehicles 𝑛𝑖 and 𝑛𝑗, 

can communicate with one another if the distance 𝐷(𝑛𝑖 , 𝑛𝑗) is 

not more than the smaller of its transmission ranges 𝑇𝑟𝑖  and 𝑇𝑟𝑗. 

The identification of the vehicles is unique and paired with 
OBUs with GPS receivers and wireless transceivers to track the 
positions in real-time and to compute the relative distances and 
speeds among the vehicles. RSUs with a transmission radius of 
1.5 km are positioned around 3 km apart to provide extensive 
coverage and centralized cluster control. The system model 
parameters can be expressed as follows: 

Vehicle neighbors: Directly connected (one-hop neighbors) 
vehicles are represented as follows: 

𝑉𝑁𝑖 = {𝑛𝑗 ∈ 𝑁|(𝑛𝑖, 𝑛𝑗) ∈ 𝐿} (1) 

Vehicle degree: This metric quantifies the number of one-
hop neighbors connected to the vehicle 𝑛𝑖 , mathematically 
expressed using Eq. (2). 

𝑉𝐷𝑖 = |𝑉𝑁𝑖| (2) 

Mobility factor: In clustering, this parameter is defined by 
the following sub-parameters: 

Neighbor count: This degree is equivalent to the vehicle 
degree. 

𝑁𝐶𝑖 = 𝑉𝐷𝑖 (3) 

 Average relative velocity: The average relative speed 
between vehicle 𝑛𝑖 and its neighbors, calculated using Eq. 4. 

𝐴𝑅𝑉𝑖 =
1

𝑁𝐶𝑖

∑ |𝑣𝑖 − 𝑣𝑗|

𝑁𝐶𝑖

𝑗=1,𝑗≠𝑖

 (4) 

Vehicles with lower ARV values indicate higher stability. 

Average neighbor distance: This parameter represents the 
mean Euclidean distance between the vehicle 𝑛𝑖  and its 
neighbors. 

𝐴𝑁𝐷𝑖 =
1

𝑁𝐶𝑖

∑ √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

𝑁𝐶𝑖

𝑗=1,𝑗≠𝑖

 (5) 

Where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) denote the positions of vehicles 

𝑛𝑖 and its neighbor 𝑛𝑗, respectively. Vehicles with smaller AND 

are more centrally positioned within their clusters. 

Link stability: This parameter indicates the consistency of 
the connection between the vehicle 𝑛𝑖 and its neighbors based 
on variations in the average distance over time: 

𝐿𝑆𝑖(𝑡) = |𝐴𝑁𝐷𝑖(𝑡1) − 𝐴𝑁𝐷𝑖(𝑡2)| (6) 

Where 𝑦 = 𝑡2 − 𝑡1. 

Considering the above sub-parameters, the mobility factor 
for vehicle 𝑛𝑖 is formulated as: 

𝑀𝐹𝑖 =
𝐿𝑆𝑖(𝑡)

𝑁𝐶𝑖

+ √ln (1 −
𝐴𝑅𝑉𝑖

𝑣𝑚𝑎𝑥

)
2

+
𝐴𝑁𝐷𝑖

𝐷𝑚𝑎𝑥,𝑖

 (7) 

The mobility factor for vehicle 𝑖 aggregates three key 
indicators: average relative velocity (𝐴𝑅𝑉𝑖), average neighbor 

distance (𝐴𝑁𝐷𝑖) , and link stability (𝐿𝑆𝑖(𝑡)) . These are 

normalized by the product of the maximum observed neighbor 
distance (𝐷𝑚𝑎𝑥 ) and the road's speed (𝑣𝑚𝑎𝑥 ), ensuring that 
mobility values are scale-independent and comparable across 
different traffic conditions. Lower 𝑀𝐹𝑖 values indicate vehicles 
with greater local stability, making them stronger candidates for 
cluster heads in high-mobility environments. 

These parameters and metrics are essential for accurately 
characterizing network mobility and stability, thus directly 
informing the clustering algorithm's effectiveness in dynamic 
IoV environments. 

III. PROPOSED METHOD 

EJAIoV generalizes the traditional Jaya optimization 
algorithm for mobility-aware and stable clustering in extremely 
dynamic vehicular environments. Acknowledging the 
shortcomings of traditional clustering techniques, EJAIoV 
incorporates new strategies such as diversity-enhanced 
initialization, direction-aware solution updates, a reinforcement 
learning-enabled local search method, and adaptation-enabled 
exploration-exploitation adjustment. Additionally, EJAIoV 
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includes domain-based mobility and topological attributes in a 
multi-objective clustering fitness model for tackling specific 
needs in IoV communication. 

A. Solution Representation 

In EJAIoV, every possible solution to the clustering problem 
exists as a one-dimensional vector. The vector describes a full 
clustering state for all vehicles in the IoV network. It is 
represented by: 

𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑁) (8) 

Where 𝑆 is a candidate solution in the search space and  𝑠𝑖 is 
the cluster identifier assigned to the 𝑖th vehicle. 𝑠𝑖 is an integer in 
the range [1, 𝐶𝑚𝑎𝑥] , indicating to which cluster vehicle 𝑖 
belongs. 𝑁 is the number of vehicles (nodes) participating in the 
IoV network. 𝐶𝑚𝑎𝑥  is the predefined maximum number of 
clusters allowed in the solution space. 

This coding assigns each vehicle to a particular cluster, 
satisfying the condition of mutually exclusive clusters in IoV 
environments. Cluster-ID acts as a label for clustering vehicles 
with similar mobility patterns or topological proximity. Every 
solution vector represents a point in the multidimensional 
solution space, where each dimension represents a cluster 
decision for one vehicle. The EJAIoV algorithm optimizes the 
vector over time toward the most suitable clustering 
configuration that maximizes intra-cluster communication 
efficiency, link stability, and mobility awareness. This 
representation is compact, flexible, and suitable for EJaya’s 
search operations, such as scrambling, updating solutions, and 
locally guided Q-learning exploration. It also enables 
straightforward calculation of a cluster's fitness value because 
each 𝑠𝑖  explicitly states cluster membership is necessary for 
calculating metrics such as intra-cluster distance and mobility 
value. 

B. Initial Population Construction 

The quality of metaheuristic algorithms such as EJAIoV 
depends on initial population diversity and quality. For a wide 
scope of problem space exploration, EJAIoV utilizes a hybrid 
population initialization method that blends random generation, 
linear spreading, and scrambling operators. The initial 
population generation and diversification mechanisms are 
described in the following section. The initial construction of 
each solution vector assigns a random cluster ID for each vehicle 
as follows: 

𝑠𝑖 ∈ {1,2, … , 𝐶𝑚𝑎𝑥}, ∀𝑖 ∈ {1,2, … , 𝑁} (9) 

This provides equal opportunity for any vehicle to be placed 

in any cluster at initialization, providing randomness for initial 

exploration. To add systematic variation throughout the 

population and prevent premature convergence based on overly 

random patterns, a portion of the population is initialized using 

a linear spreading method. 

𝑠𝑖 = 𝑠𝑚𝑖𝑛 + (
𝑖 − 𝑁 2⁄

(𝑁 − 1) − 𝑁 2⁄
) × (𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) (10) 

Where 𝑠𝑚𝑖𝑛  stands for minimum cluster-ID and 𝑠𝑚𝑎𝑥 
denotes maximum cluster ID. 

To increase the diversity of the initial population, three 
specialized scrambling operators, namely exchange, reverse, 
and insert, are used by EJAIoV, each having a distinct role in 
exploring the solution space. Exchange scrambling creates two 
random positions in a solution vector, promoting local cluster 
assignment adjustments. Reverse scrambling chooses a 
subsequence (often from a randomly selected index up to the 
end) and inverses the sequence, admitting moderate-level 
structural change and local minima avoidance. Insert scrambling 
introduces diversity from outside by generating a new random 
cluster insertion of the same at a random position and removing 
the last element to maintain vector length. Fig. 2 depicts these 
operators. 

 

Fig. 2. Scrambling operators in EJAIoV for enhancing population diversity. 

C. Best-Worst Guided Solution Update 

The key mechanism of the EJAIoV algorithm is efficiently 
updating solutions by pushing them toward promising regions 
of the search space. For this purpose, EJAIoV employs a 
directional updating approach based on the original Jaya 
algorithm. More precisely, with each iterative update, each 
solution in the population improves by moving towards the best-
performing solution and away from the worst-performing one. 
The best-worst update rule mathematically represents this 
mechanism. Each component of a solution vector is updated as 
follows: 

𝑠𝑖
𝑛𝑒𝑤 = 𝑠𝑖 + 𝑟1. (𝑠𝑖

𝑏𝑒𝑠𝑡 − |𝑠𝑖|) − 𝑟2. (𝑠𝑖
𝑤𝑜𝑟𝑠𝑡 − |𝑠𝑖|) (11) 

After computing the updated solution vector, its fitness is 
evaluated using the multi-objective function. If the updated 
solution achieves a better fitness score than the original 𝑆, it 
replaces the current solution in the population. Otherwise, the 
original solution is retained. This selective replacement policy 
ensures elitism by preserving high-quality solutions, prevents 
regression in solution quality over iterations, and gradually 
refines clustering configurations toward optimality. 
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D. Q-Learning-Guided Local Search 

A local search approach based on reinforcement learning is 
incorporated to further enhance the precision of EJAIoV, 
especially for refining clustering configurations in subsequent 
iterations. Specifically, EJAIoV uses the model-free 
reinforcement learning algorithm Q-learning for intelligent 
choice and neighborhood operator application that facilitates 
improved local exploitation. This renders the algorithm adaptive 
and self-enhancing, necessary for handling the dynamic 
characteristics of IoV networks. 

As illustrated in Fig. 3, the candidate solution is treated as an 
agent acting on the environment. There are four phases of 
learning: state (Current clustering configuration), action (Either 
one of the three local operators used for perturbing the solution), 
reward (A real value indicating whether the action resulted in an 
improved solution), and Q-value (Estimated value for applying 
action a from state s. The algorithm continually updates its Q-
values through trial-and-error interaction with the environment 
for learning the most useful operator for a particular state of the 
solution. 

 
Fig. 3. Segmentation operator. 

EJAIoV utilizes three neighborhood operators specific to the 
domain, as illustrated in Fig. 4, from which the Q-learning agent 
chooses. The segmentation operator splits the solution into two 
regions and exchanges them to rearrange cluster assignments. 
The mutation operator substitutes a random subset of cluster IDs 
to explore local perturbations. The crossover operator crosses 
over two parents in the two regions to produce offspring. The 
operators vary in their level of aggression and granularity, thus 
catering to a balance between local refinement and structural 
change of the solution. 

 
Fig. 4. Mutation operator. 

The Bellman update rule governs the learning mechanism of 
Q-learning: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)

+ 𝑎 [𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)

− 𝑄(𝑠, 𝑎)] 

(12) 

Where 𝑄(𝑠, 𝑎)  refers to the current Q-value for applying 
action 𝑎 in state 𝑠, 𝛼 is the learning rate controlling how quickly 

new experiences overwrite old ones, 𝛾 is the discount factor that 
weighs future rewards relative to immediate rewards, 𝑠′ is the 
next state (new clustering configuration after applying the 
action), 𝑎′ is the next potential action, and 𝑟 is the immediate 
reward received after transitioning from 𝑠 to 𝑠′ via 𝑎. 

The reward value is calculated by improving the fitness 
value of the solution as follows: 

𝑟 = {

0,                                                𝑖𝑓 𝑓𝑖𝑡 𝑤𝑜𝑟𝑠𝑒𝑛𝑠   
1,                           𝑖𝑓 𝑓𝑖𝑡 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

2. (𝑜𝑙𝑑 𝑓𝑖𝑡 − 𝑛𝑒𝑤 𝑓𝑖𝑡), 𝑖𝑓 𝑓𝑖𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠
 (13) 

This reward structure encourages the algorithm to explore 
actions that lead to improvements while penalizing those that 
degrade solution quality. 

As shown in Fig. 5, local search using the Q-learning 
approach is embedded in the EJAIoV algorithm as a key 
refinement after the global best-worst update. The incumbent 
solution is taken as a state. The action (operator) is chosen based 
on an exploration-exploitation policy (for example, via ε-
greedy). The operator is executed to produce a new candidate. 
Fitness is calculated and reward determined. The Q values are 
updated. The best solutions are preserved for the next 
generation. 

 

Fig. 5. Crossover operator. 

E. Adaptive Search Balance 

In dynamic IoV environments, a successful metaheuristic 
should have a delicate balance between exploration (exploring 
novel regions of the solution space) and exploitation (iteratively 
improving already-found good regions). One of the main 
advances of EJAIoV is its adaptive balance of the search 
strategy, which evolves gradually from global exploration 
towards local exploitation with increasing iterations. This 
mechanism is crucial in preventing premature convergence 
during initial stages (when the solutions are immature) and 
facilitating solution refinement in advanced stages (when the 
algorithm needs to tweak close-to-optimum clusters). 

Although no explicit formula is provided in the base 
framework, the adaptive balance can be mathematically 
expressed using a time-dependent weighting factor, defined 
throughout iterations 𝑡 as follows: 

𝜃(𝑡) = 1 −
𝑡

𝑇𝑚𝑎𝑥

 (14) 
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This parameter can be used internally to scale or switch 
between strategies. It may, for instance, scale up and change the 
frequency or intensity of scrambling operators, bias the 
probability of choosing aggressive versus mild local search 
actions, or alter the acceptance criteria for inferior solutions to 
escape local optima earlier. Let 𝑃𝑒𝑥𝑝𝑙𝑜𝑟𝑒  and 𝑃𝑒𝑥𝑝𝑙𝑜𝑖𝑡  be the 

probabilities of choosing exploration-based or exploitation-
based strategies, respectively. These can be controlled as: 

𝑃𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑡) = 𝜃(𝑡), 𝑃𝑒𝑥𝑝𝑙𝑜𝑖𝑡(𝑡) = 1 −  𝜃(𝑡)  (15) 

This makes the algorithm self-adaptive to the optimization 
phase. In early iterations, high exploration ensures broad 
coverage of the solution space. In later iterations, high 
exploitation ensures local convergence around optimal 
solutions. 

F. Objective Function 

Clustering for effective operations in IoV environments 
relies on two key objectives: compact cluster maintenance (i.e., 
intra-cluster distance minimization) and CH stability in the 
presence of mobility among vehicles. To address these aspects 
simultaneously, EJAIoV constructs a multi-objective fitness 
function encompassing both space- and mobility-driven 
optimization objectives. The global objective function is given 
by: 

𝐹 = 𝜔1. 𝑓1 + 𝜔2. 𝑓2 (16) 

In this study, the weights 𝜔1 and 𝜔2 are both set to 0.5 to 
assign equal importance to the two core objectives. This neutral 
weighting reflects a balanced optimization goal that aims to 
simultaneously minimize intra-cluster distances and ensure 
stable cluster head selection, especially under high-mobility IoV 
conditions. Equal weighting is also common in multi-objective 
scenarios where no prior bias exists toward either component, 
and it enables a fair assessment of each objective’s influence on 
the clustering outcome. The first component measures the 
relative spatial compactness of clusters, formulated as: 

𝑓1 =
𝐷𝑖𝑛𝑡𝑟𝑎

𝐷𝑡𝑜𝑡𝑎𝑙

 (17) 

Where 𝐷𝑖𝑛𝑡𝑟𝑎 refers to the total intra-cluster distance across 
all clusters and 𝐷𝑡𝑜𝑡𝑎𝑙  is the total communication distance across 
the entire network, calculated by Eq. (18) and (19), respectively. 

𝐷intra = ∑ ∑ 𝐷(𝐶𝐻𝑗 , 𝐶𝑀𝑗,𝑘)

|𝐶𝑀𝑗|

𝑘=1

|𝐶|

𝑗=1

 (18) 

𝐷total = ∑ ∑ 𝐷(𝑣𝑖 , 𝑁𝑖,𝑗)

|𝑁𝑖|

𝑗=1

|𝑉|

𝑖=1

 (19) 

In Eq. (18), |𝐶| is the total number of clusters, 𝐶𝑀𝑗 is the CH 

of the 𝑗th cluster, 𝐶𝑀𝑗,𝑘  is 𝑘th member of cluster 𝑗, and 

(𝐶𝐻𝑗 , 𝐶𝑀𝑗,𝑘) is the Euclidean distance between the CH and the 

member. 

In Eq. (19), |𝑉|  is the total number of vehicles in the 
network, 𝑣𝑖  is the 𝑖th vehicle, 𝑁𝑖  is neighbor set of vehicle 𝑣𝑖 , 

𝑁𝑖,𝑗 is 𝑗th neighbor of vehicle 𝑣𝑖, and 𝐷(𝑣𝑖 , 𝑁𝑖,𝑗) is the Euclidean 

distance between vehicle 𝑣𝑖 and its neighbor. A lower value of 
𝑓1 indicates that clusters are spatially tight and better organized. 

The second objective evaluates the stability of selected CHs 
based on their relative mobility and local topology as follows: 

𝑓2 =
1

∑ 𝑀𝑉𝑡
|𝑉|
𝑡=1

⋅ (∑ 𝑀𝑉𝑖

|𝐶|

𝑖=1

) (20) 

Where 𝑀𝑉𝑖 stands for mobility value of the CH in cluster 𝑖, 
𝑀𝑉𝑡  denotes the mobility value of the 𝑡th vehicle. A lower 𝑓2 
value means the selected CHs are more stable (less mobile, 
better connected). 

Each vehicle’s mobility value is computed using three 
components: link stability, node degree, and average distance to 
neighbors, calculated as follows: 

𝑀𝑉𝑖 =
𝑆𝐿𝑖

𝑉𝑁𝐶𝑖

+ √ln (1 −
𝑅𝑉𝐴𝑖

𝑣max

)
2

+
𝐷𝐴𝑖

𝐷𝐴max

 (21) 

Where 𝑆𝐿𝑖 signifies link stability of vehicle 𝑖, 𝑉𝑁𝐶𝑖 denotes 
the number of one-hop neighbors of vehicle 𝑖, 𝑅𝑉𝐴𝑖  is the 
average relative velocity between vehicle 𝑖 and its neighbors, 
𝑣max is the maximum possible speed in the network, 𝐷𝐴𝑖 is the 
average distance between vehicle 𝑖 and its neighbors, and 𝐷𝐴max 
is the maximum observed distance average among all vehicles. 

Eq. (21) prioritizes vehicles that maintain stable links, have 
higher connectivity, move with similar velocity as their 
neighbors, and stay closer to their local neighborhood. Thus, 
lower 𝑀𝑉𝑖  values are preferred when selecting CHs, as they 
imply greater stability. 

G. Algorithmic Workflow Summary 

EJAIoV algorithmic workflow combines all key building 
blocks into one unified optimization procedure applicable to the 
time-evolving characteristics of IoV clustering. It starts with a 
diversified initial population through linear spread and 
randomness, followed by scrambling operations to include 
further variation. A fitness function, which evaluates both spatial 
compactness and stability of mobility, is utilized to evaluate 
each solution. 

The solutions are updated through the convergence of the 
best and divergence of the worst, thus enabling efficient global 
search. These solutions are refined through a Q-learning process 
based on learned reward values for local operator choice in 
efficient adaptation and exploitation. An adaptive method of 
search balance is employed that gradually transitions the 
algorithm from exploration to exploitation with time for greater 
convergence behavior. The iteration continues until a stopping 
criterion arises, resulting in a convergent and optimized 
clustering configuration for application under high-mobility 
vehicular environments. 

IV. RESULTS AND DISCUSSION 

In this section, we analyze the efficiency of the proposed 
EJAIoV based on its performance on different parameters like 
the number of clusters, cluster life, grid size, vehicle density, and 
transmission range. All simulations were carried out in 
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MATLAB using the parameters shown in Table II. To validate 
the robustness and feasibility of EJAIoV, simulations were 
carried out using 30–60 vehicle nodes on different grid sizes 
ranging from 1–4 km². Based on several metrics, the 
abovementioned scenarios have been employed to compare 
EJAIoV with GWOCNET [22], GOA [23], MFCA [24], and 
CAVDO [25]. 

Fig. 6-9 clearly show the interaction between transmission 
range and number of clusters for different grid sizes and vehicle 
densities. There is clearly an inverse relationship between 
transmission range and the number of clusters such that a high 
communication radius allows every CH to communicate with a 
large number of neighbors, forming a smaller number of 
clusters. This behavior occurs for all algorithms, but EJAIoV 
consistently outperforms baseline approaches by forming fewer 
clusters in all scenarios. 

TABLE II.  CONFIGURATION SETTINGS FOR SIMULATION ENVIRONMENT 

Parameter Configured value 

Initial population size 100 candidate solutions 

Maximum generations 150 iterations 

Repetitions per scenario 20 simulation runs 

Number of road lanes 6 

Mobility model Freeway traffic mobility 

Number of vehicles 30-60 

Communication range 100 to 500 meters 

Simulation area sizes 1×1 km, 2×2 km, 3×3 km, and 4×4 km 

Vehicle speed range 20 to 35 meters per second 

 

 
(a)      (b) 

 
(c)      (d) 

Fig. 6. Clustering performance comparison across different transmission ranges and node densities within a 1×1 km grid: (a) 30 nodes, (b) 40 nodes,  

(c) 50 nodes, (d) 60 nodes. 
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(a)      (b) 

 
(c)      (d) 

Fig. 7. Clustering performance comparison across different transmission ranges and node densities within a 2×2 km grid: (a) 30 nodes, (b) 40 nodes, (c) 50 nodes, 

(d) 60 nodes. 
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(c)      (d) 

Fig. 8. Clustering performance comparison across different transmission ranges and node densities within a 3×3 km grid: (a) 30 nodes, (b) 40 nodes, (c) 50 nodes, 

(d) 60 nodes. 

 

(a)      (b) 

 

(c)      (d) 

Fig. 9. Clustering performance comparison across different transmission ranges and node densities within a 4×4 km grid: (a) 30 nodes, (b) 40 nodes, (c) 50 nodes, 

(d) 60 nodes. 
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This superior performance can be attributed to EJAIoV’s 
multi-objective fitness function, which balances spatial 
compactness with mobility-aware stability. By favoring CHs 
with lower relative speeds and good positional properties, the 
algorithm constructs clusters that are both topologically efficient 
and resilient to mobility-induced failures. It is particularly 
significant that, with both increasing transmission range and 
node density, the performance difference increases. For 
example, for a 4×4 km² grid (Fig. 9), with greater inter-vehicle 
distances and greater mobility effect, EJAIoV performs better 
with respect to maintaining coherence in clusters than the 
alternatives. This proves that the proposed approach scales well 
in large vehicular environments. In addition, consistency with 
respect to varying vehicular densities demonstrates the 
resilience of the EJAIoV's adaptive mechanisms, such as 
operator selection based on Q-learning, which adjusts the 
exploration-exploitation ratio adaptively according to local 
topological complexity. 

Fig. 10-13 illustrate the effect of increasing grid sizes on the 
number of clusters produced at constant node densities. Overall, 
there is a trend that with growth in the simulation area, there is 
an increase in clusters because there is less connectivity between 
far-off vehicles, reducing the ability of a CH to have stable links 
with dispersed nodes. Nevertheless, despite this spatial 
dispersal, EJAIoV is highly resilient by maintaining a consistent 
number of clusters across all grid sizes. 

Its robustness stems mainly from the algorithm's joint 
spatial-mobility optimization approach. It is particularly intra-
cluster distance minimization that fosters tight clusters, with 
mobility-aware stability cost that drives the algorithm to choose 
CHs that are not only close to their members but also show 
optimal minimal dynamic variance compared to nearby 
vehicles. Adaptive search balancing ensures solution diversity is 
sustained through clustering under sparse scenarios and enforces 
convergence in better spatial configurations. 

 

(a)      (b) 

Fig. 10. Clustering performance comparison across different grid sizes and node densities (200 transmission range): (a) 30 nodes, (b) 60 nodes. 

 
(a)      (b) 

Fig. 11. Clustering performance comparison across different grid sizes and node densities (300 transmission range) : (a) 30 nodes, (b) 60 nodes. 
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(a)      (b) 

Fig. 12. Clustering performance comparison across different grid sizes and node densities (400 transmission range): (a) 30 nodes, (b) 60 nodes. 

 
(a)      (b) 

Fig. 13. Clustering performance comparison across different grid sizes and node densities (500 transmission range): (a) 30 nodes, (b) 60 nodes. 

For example, in Fig. 12 and Fig. 13, with grid sizes extended 
to 4×4 km², EJAIoV maintains a lower number of clusters with 
30 and 60 vehicles, while all other algorithms exhibit an 
increased rate of clustering fragmentation. This demonstrates 
that EJAIoV performs better at alleviating sparse topologies 
issues, with minimal unnecessary CH reassignments and 
overhead. In short, the observations presented in Fig. 10–13 
confirm that EJAIoV supports better spatial scalability and 
retains effective cluster organization under light-density 
vehicular scenarios, an important feature in realistic IoV 
deployments with diverse node distributions and changing 
network topologies. 

Fig. 14 compares clusters over different ranges of 
transmission, node density, and grid sizes to demonstrate the 
long-term stability of the proposed EJAIoV algorithm under 
dynamic IoV conditions. Cluster lifespan is a critical measure 
indicating the stability and robustness of the clustering approach 
with respect to vehicular mobility and varying communication 

ranges. It demonstrates the clustering algorithm's ability to 
accommodate high vehicular mobility with reduced cluster 
rebuilding requirements and lower control overhead. Fig. 14(a) 
to 14(d) present cluster lifetime over different transmission 
ranges for different grid sizes. Based on the results, with an 
increase in transmission range, cluster lifetime is prolonged, 
mostly because of increased communication range. This leads to 
reduced cluster reassignments. Vehicles with long-range stable 
links naturally undergo less frequent cluster reformation. 

Fig. 14 clearly shows that EJAIoV can sustain stable 
lifespans in clusters under all scenarios. Compared with some of 
its competing algorithms, EJAIoV achieves much longer CH 
lifetimes, especially in high-mobility and large grid 
environments. This performance reflects the algorithm's strong 
capability to cope with dynamic variations inherent in IoV 
networks, particularly considering vehicular movement pattern 
variability. 
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(a)      (b) 

 
(c)      (d) 

Fig. 14. Cluster lifespan comparison across different transmission ranges and node densities within different grid sizes: (a) 1km x 1km, (b) 2km x 2km, (c) 2km x 

2km, (d) 2km x 2km.

Its main driving force for such high performance lies in 
EJAIoV's paradigm of mobility-aware clustering, which aims to 
prefer vehicles with smaller relative speeds and improved 
positional stability. CH reassignments are minimized by opting 
for steadier, slower CHs with improved connectivity. This 
minimizes communication interruptions, extending cluster 
lifetime. This is evident clearly in Fig. 14(a) and 14(b), in which 
EJAIoV maintains stability in clusters irrespective of large node 
densities, proving that it could counteract both high-density and 
high-mobility scenarios. 

In addition, the adaptive balance between exploration and 
exploitation of EJAIoV enables the algorithm to adjust between 
exploration and exploitation in a dynamic fashion, allowing it to 
improve clustering based on changing network topology. This is 
key for sustaining stable clusters over a long time, regardless of 
varying vehicular speeds and locations. As the number of nodes 
increases, not only the frequency of CH reassignments 
decreases, but clusters are also more robust to perturbations, 
resulting in more resilient clusters. 

V. CONCLUSION 

This study introduced EJAIoV, a novel clustering scheme 
for IoV intended to achieve mobility-aware, communication-
efficient, and stable cluster formations in highly dynamic 
vehicular environments. By incorporating a diversity-improving 
initialization method, the best-worst directional update method, 
and a local search module guided by a Q-learning algorithm, 
EJAIoV optimized global exploration and local exploitation 
during the optimization task. Moreover, a multi-target fitness 
function that balances mobility stability and intra-cluster 
distance recognized strong CHs with higher lifetimes and 
minimal reconfiguration overhead. 

Comprehensive simulations illustrated that EJAIoV 
outperformed other state-of-the-art techniques like GWOCNET, 
GOA, MFCA, and CAVDO, to minimize the number of groups, 
optimize group length, and respond optimally to varying 
densities and transmission radii. The results revealed that 
EJAIoV's strength rests on its ability to handle sudden topology 
change and heavy vehicle mobility, which are key challenges in 
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IoV clustering. Potential research paths could include real-time 
traffic data, the algorithm's scalability for a heterogeneous 
vehicular environment, and the performance assessment with 
5G-enabled edge computing environments. 

EJAIoV is well-suited for deployment in real-time vehicular 
networks due to its lightweight design, adaptive learning, and 
ability to operate under continuously changing topologies. The 
algorithm can be integrated with edge computing platforms 
(e.g., roadside units or in-vehicle processors) to make on-the-fly 
clustering decisions using local traffic and mobility data. Given 
its reliance on parameters such as relative velocity, 
neighborhood distance, and link stability, which are readily 
obtainable from GPS and V2X sensors, EJAIoV can operate 
effectively with real-world vehicular datasets such as those 
provided by the VeReMi, SUMO, or TAPASCologne mobility 
traces. Future work will involve validating EJAIoV against these 
datasets and deploying the algorithm within a 5G-enabled edge 
computing framework to assess latency, scalability, and energy 
impact in real-time communication scenarios. 
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