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Abstract—About 85% of all occurrences of lung cancer are 

classified as Non-Small Cell Lung Cancer (NSCLC), making it a 

serious worldwide health concern. For better treatment results 

and patient survival, NSCLC must be detected early and 

accurately. This research presents an advanced Deep Learning-

enabled Lung Cancer Detection and Classification System 

(LCDCS) aimed at significantly improving diagnostic precision 

and operational efficiency. Emerging technologies such as 

artificial intelligence and multi-level convolutional neural 

networks (ML-CNN) are increasingly being leveraged in CT 

imaging-based deep learning systems for accurate detection. The 

outlined framework leverages a multi-layer convolutional neural 

network to effectively analyse CT scan images and accurately 

classify lung nodules. Tomek link and Adaptive Synthetic 

Sampling (ADASYN) are used in a novel way to balance data, 

address class imbalance, and guarantee strong model 

performance. Deep learning with a CNN model is utilized to derive 

features, and the SoftMax function is applied for multi-class 

classification. Thorough evaluation on datasets like the LUNA16 

dataset demonstrates that the system surpasses earlier models and 

data balancing techniques in accuracy, yielding a training 

accuracy of 95.8% and a validation accuracy of 96.9%. The 

findings demonstrate the potential of the suggested method as a 

trustworthy diagnostic instrument for the prompt identification of 

lung cancer. The study emphasizes on how crucial it is to combine 

deep learning architectures with sophisticated data balancing 

techniques to overcome medical imaging difficulties and raise 

diagnostic accuracy. Future research attempts to investigate real-

time deployment in clinical settings and expand the system's 

capability to encompass more cancer types. 

Keywords—Artificial intelligence; NSCLC; ML-CNN; 

ADASYN; tomek link 

I. INTRODUCTION 

Lung cancer is the leading type of cancer diagnosed 
worldwide. As of the latest data, there are approximately 2.2 
million new cases each year. It continues to be a leading cause 
of cancer-related deaths globally, with Non-Small Cell Lung 
Cancer (NSCLC) comprising roughly 85% of all diagnosed 
cases. Traditionally, the detection and classification of lung 
cancer rely on the expertise of radiologists and pathologists 
who analyze Computed Tomography (CT) images and 
histopathological samples. However, this process is often time-
consuming, subjective, and prone to variability, leading to a 
demand for more reliable and efficient diagnostic tools. In the 
realm of therapeutic diagnostics, the integration of progressed 
innovations like deep learning has assisted a new way of 
accuracy and proficiency. NSCLC, account for a critical portion 
of lung cancer cases, urges precise and timely detection for 

effectual treatment and patient care. Deep learning methods has 
proven its ability in enhancing the detection and classification 
processes, contributing to giving vital insights and improving 
patient outcomes [9]. 

This study proposes a novel Deep Learning-enabled Lung 
Cancer Detection and Classification System (LCDCS) 
particularly for non-small cell. The model leverages multiple 
scales of CT images to capture the diverse features of lung 
nodules, enabling a more comprehensive analysis [17]. By 
integrating the outputs of four CNNs, the suggested framework 
aims to deliver an efficient and accurate classification of lung 
nodules into categories such as benign tissue, large cell 
carcinoma, and squamous cell carcinoma [16]. The 
effectiveness of the proposed model is demonstrated through 
rigorous training and validation on a substantial dataset of 
histopathological images, highlighting its potential to be a 
valuable tool in the prompt diagnosis and care planning for lung 
cancer patients. 

The study introduces a Deep Learning-enabled Lung 
Cancer Detection and Classification System (LCDCS), 
focusing specifically on NSCLC. 

 The system employs a multi-level convolutional neural 
network (ML-CNN) for analyzing CT scan images. 

 It highlights the use of ADASYN (Adaptive Synthetic 
Sampling) combined with Tomek Links for efficient 
data balancing and enhanced classification 
performance. 

 Multi-scale Image Analysis: Utilizes multiple scales of 
CT images to capture diverse features of lung nodules 
for enhanced detection and classification. 

 A comprehensive comparative analysis aimed at 
evaluating the outcome of various class balancing 
strategies for lung cancer detection. 

 The study suggests improving the system so it can be 
used for more types of cancer or even help predict 
related health problems like heart disease. 

II. LITERATURE REVIEW 

The study presents a deep convolutional neural network 
with multiple levels designed to detect and classify lung cancer 
by analyzing CT scan images of lung nodules. By leveraging a 
four-level CNN architecture that processes multiple scales of 
nodule images, the model effectively distinguishes between 
benign tissue, large cell carcinoma, and squamous cell 
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carcinoma. Modeled on a dataset of 25,000 histopathological 
images, the model achieved a notable accuracy of 78% on the 
training set and 89.6% on the validation set, highlighting its 
potential as an efficient tool to aid radiologists in early lung 
cancer diagnosis [1]. Jenita Subash et al. presents a study which 
aims to develop a dual-stage classification system for lung 
cancer detection and staging by integrating hybrid deep 
learning techniques. The study likely involves preprocessing 
lung imaging data, such as CT scans, to improve the quality and 
relevance of the input features. The first stage from the 
classification involves convolutional neural network (CNN) or 
a similar deep learning architecture which is used to identify 
cancerous lesions from the imaging data. Once cancer is 
detected, the second stage involves determining the stage of 
lung cancer (e.g., Stage I, II, III, or IV). This stage might use a 
more complex network or a combination of models to classify 
the cancer stage based on tumor size, spread, and other relevant 
clinical features [2]. 

The study addresses the challenge of diagnosing NSCLC, 
which accounts for approximately 85 % of lung cancer cases. 

The authors employ CNN architectures to analyze the 
images and identify patterns indicative of NSCLC [3] 
Approaches such as Gradient-weighted Class Activation 
Mapping or Local Interpretable Model-agnostic explanations 
are likely used to highlight regions of the images with the 
highest influence on the model's outcomes; by making the 
model’s predictions interpretable. The study aims to increase 
trust in AI systems among medical professionals [4]. 

1) Lung cancer types: Lung cancer is primarily categorized 

into two major types, distinguished by the microscopic 

characteristics of the cancerous cells and their growth patterns. 

Fig. 1 shows lung cancer under the microscope. 

a) Non-Small Cell Lung Cancer (NSCLC): NSCLC is the 

predominant form of lung cancer, representing approximately 

85% of all cases. It encompasses a variety of subtypes, each 

with distinct characteristics. 

 Adenocarcinoma: This is the most prevalent subtype of 
NSCLC, typically originating in the outer regions of the 
lungs. It tends to grow more slowly and is more common 
in non-smokers compared to other types. 

 Squamous Cell Carcinoma: This type usually starts in 
the airways (bronchi) and is more commonly associated 
with smoking. It tends to grow in the central parts of the 
lungs. 

 Large Cell Carcinoma – A relatively uncommon form of 
lung cancer that can develop in any region of the lung, 
characterized by its rapid growth and aggressive spread. 

b) Small Cell Lung Cancer (SCLC): SCLC, also known 

as small cell carcinoma, makes up about 15% of lung cancer 

cases. It's characterized by small, round cells and is often linked 

to smoking. SCLC tends to grow rapidly and is often diagnosed 

at an advanced stage. Each type of lung cancer can vary in its 

treatment and prognosis, so accurate diagnosis and staging are 

crucial for determining the best course of action [5]. 

2) Lung cancer detection techniques: Detecting lung 

cancer early is crucial for effective treatment. Here are some 

common techniques used for detection: 

a) Imaging tests: 

 Chest X-ray: Often the first test used to look for 
abnormalities in the lungs. 

 Computed Tomography (CT) Scan: Generates high-
resolution cross-sectional images of the lungs, enabling 
the detection of smaller tumors and providing precise 
evaluation of their size, location, and potential spread. 

 Positron Emission Tomography (PET) Scan: Utilized to 
assess the spread of cancer to other areas of the body by 
detecting regions with elevated metabolic activity. 

 Magnetic Resonance Imaging (MRI): Less commonly 
used for lung cancer but helpful in assessing spread to 
the brain or spinal cord. 

b) Screening tests: 

 Low-Dose Computed Tomography (LDCT): Suggested 
for individuals at high risk (e.g., heavy smokers or those 
with a smoking history). It can identify lung cancer at an 
earlier stage compared to a chest X-ray. 

c) Biopsy: 

 Needle Biopsy: A small needle is inserted into the chest 
to extract tissue from the lung. 

 Bronchoscopy: A flexible instrument is inserted through 
the nose or mouth into the lungs to obtain tissue 
samples. 

 Endobronchial Ultrasound (EBUS): A specialized form 
of bronchoscopy that utilizes ultrasound imaging to 
precisely guide the biopsy needle for tissue sampling. 

d) Sputum cytology: Analysis of mucus (sputum) from 

the lungs to look for cancer cells, particularly useful in some 

cases of squamous cell carcinoma. 

e) Molecular testing: 

 Genetic Testing: Examines cancer cells for specific 
genetic mutations that can guide targeted therapy 
options [6]. 

Table I depicts the physical examination required for lung 
cancer. Table II depicts the different parameters of blood test 
with their normal ranges. Table III depicts electrocardiogram 
(for heart conditions) with its normal ranges. Table IV shows 
different imaging test required to detect lung cancer. Table V 
shows the analysis of urine with its normal ranges. Table VI 
shows the first assessment of NSCLC diagnosis. 
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Fig. 1. Categories of lung cancer. 

TABLE I PHYSICAL EXAMINATION FOR LUNG CANCER 

Test Parameter 

Physical Examination Palpation: The doctor examines the affected area by touch to identify any tenderness, swelling, or abnormalities. 

  Range of Motion Tests: Assesses the movement in joints or muscles. 

  Neurological Exam: Checks reflexes, muscle strength, and sensory function. 

TABLE II DIFFERENT PARAMETERS OF BLOOD TEST WITH THEIR NORMAL RANGES 

Blood Test Parameter Range 

Complete Blood Count (CBC) White Blood Cell (WBC) 4,000 to 11,000 cells/µL 

  Red Blood Cell (RBC) M: 4.7 to 6.1 million cells/µL, W: 4.2 to 5.4 million cells/µL 

  Hemoglobin (Hb) M: 13.8 to 17.2 g/dL, W: 12.1 to 15.1 g/dL 

  Hematocrit (Hct) M: 40.7% to 50.3%, W: 36.1% to 44.3% 

  Platelet Count 150,000 to 450,000 platelets/µL 

  Red Cell Distribution Width (RDW) 11.5% to 14.5% 

Differential Leucocyte count Segmented Neutrophils 40% to 70% of total WBCs 

  Lymphocytes 20% to 40% of total WBCs 

  Monocytes 2% to 8% of total WBCs 

  Mean Platelet Volume (MPV) 7.5 - 12.0 fL 

TABLE III ELECTROCARDIOGRAM WITH ITS NORMAL RANGE 

Test Parameter Normal Range (Men) Normal Range (Women) Description 

Electrocardiogram Heart Rate (Resting) 60-100 bpm 60-100 bpm Number of heart beats per minute 

 P Wave Duration 0.08 to 0.11 seconds 0.08 to 0.11 seconds Time taken for atrial depolarization 

 PR Interval 0.12 to 0.20 seconds 0.12 to 0.20 seconds Time between P wave start and QRS complex start 

 QRS Duration 0.08 to 0.10 seconds 0.08 to 0.10 seconds Time for ventricular depolarization 

 QT Interval 0.35 to 0.45 seconds 0.36 to 0.46 seconds Time from start of Q wave to end of T wave 

 ST Segment Isoelectric (flat) Isoelectric (flat) 
Represents the period between ventricular 

depolarization and repolarization 

 T Wave Positive in most leads Positive in most leads Represents ventricular repolarization 

 RR Interval 0.6 to 1.2 seconds 0.6 to 1.2 seconds Time between two consecutive R wave peaks 

 Axis −30° to +90° −30° to +90° Heart's electrical axis direction in degrees 
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TABLE IV DIFFERENT IMAGING TEST 

Imaging Test Normal Findings Purpose 

Chest X-ray (CXR) Clear lungs, normal heart size, no fluid or masses Assess lung health, detect infections, evaluate heart size 

Echocardiogram Normal heart size and function, no valve abnormalities Assess heart function, valve abnormalities, heart disease 

Electrocardiogram (ECG) Normal heart rhythm, no signs of arrhythmia or heart damage Monitor heart rhythm, detect arrhythmias, heart damage 

TABLE V URINE ANALYSIS WITH ITS NORMAL RANGE 

Test Parameter Normal Range Description 

Urine Analysis Color Pale yellow to deep amber Indicates hydration levels and possible health issues 

 Clarity Clear Cloudy urine may suggest infection or presence of crystals 

 Odor Mild, not strong Strong odor can suggest infection or diabetes 

 Specific Gravity 1.005 to 1.030 Measures concentration of urine; high values may indicate dehydration 

 pH 4.5 to 8.0 Reflects acidity or alkalinity of urine 

 Protein Negative to trace (up to 150 mg/day) Higher levels can indicate kidney issues 

 Glucose Negative Presence of glucose suggests diabetes 

 Ketones Negative Presence indicates uncontrolled diabetes or starvation 

 Bilirubin Negative Indicates liver function; presence can indicate liver disease 

 Urobilinogen 0.1 to 1.0 mg/dL Low or high levels may suggest liver or bile duct issues 

 Red Blood Cells (RBCs) 0 to 3 RBCs/HPF Higher levels can indicate infection, trauma, or stones 

 White Blood Cells (WBCs) 0 to 5 WBCs/HPF Increased levels suggest infection or inflammation 

 Nitrites Negative Presence suggests bacterial infection 

 Leukocyte Esterase Negative Indicates white blood cells, which may indicate infection 

 Casts None to rare hyaline casts Presence of certain casts suggests kidney disease 

 Crystals None to few High levels may indicate kidney stones or metabolic issues 

 Bacteria None Presence suggests infection 

 Yeast None Presence may indicate infection 

 Epithelial Cells Few (0 to 5 cells/HPF) High numbers may indicate contamination or infection 

 
Fig. 2. Deep learning-enabled lung cancer detection and classification system. 

3) Deep learning: Deep learning has played a 

transformative role in lung cancer detection by increasing the 

precision, responsiveness, and consistency of diagnostic 

processes [8]. The emergence of AI driven learning models 

with a focus on CNNs, offers a powerful tool to automate and 

potentially improve the accuracy of lung cancer classification 

[2]. The study proposes an automated system that combines 

deep learning with multiple strategies like (data augmentation, 

multi-scale analysis, ensemble learning and post processing), to 

improve the identification and categorization of lung nodules in 

CT (Computed Tomography) scans [7]. 
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TABLE VI FIRST ASSESSMENT OF DIAGNOSIS OF NSCLC 

Assessment Step Details 

Patient History 

- Tobacco use history (duration, pack-years) 

- Exposure to environmental or workplace 

carcinogens. 

- Genetic predisposition to lung cancer or other 
neoplasms. 

- Symptoms and warning signs (chronic cough, 

blood-tinged sputum, unexplained weight loss, 
chest pain, shortness of breath). 

Physical 

Examination 

- Inspection (e.g., clubbing, cachexia) 

- Palpation (e.g., lymphadenopathy) 

- Percussion (e.g., dullness over lungs) 

- Auscultation (e.g., wheezes, crackles, absent 

breath sounds) 

Imaging Studies 

- Chest X-ray (initial screening, may show masses, 

consolidation) 

- Chest CT scan (detailed imaging, tumor size, 

lymph node involvement) 

Biopsy 

- Needle biopsy (CT-guided or bronchoscopic 

biopsy) for histopathological diagnosis 

- Sputum cytology (to detect cancer cells in 

sputum) 

Laboratory 

Assessments. 

- Comprehensive blood analysis (CBC) to evaluate 

for anemia, infection, or other hematological 
abnormalities. 

Molecular Testing 
- EGFR, ALK, ROS1 mutations (for targeted 

therapy) 

Staging Tests 

- PET scan (to assess metastasis) 

- Mediastinoscopy (to evaluate mediastinal lymph 
nodes) 

- Brain MRI (if neurological symptoms are present) 

Risk Assessment 

- Eastern Cooperative Oncology Group (ECOG) 

performance status 

- Assessment of comorbidities and general health 

condition 

III. PROPOSED METHODOLOGY 

The proposed Deep Learning-enabled LCDCS (see Fig. 2) 
aims to detect Non-Small Cell Lung Cancer by studying the 
images obtained by CT-scan, MRI using a multi-level 
convolutional neural network for feature extraction and 
SoftMax function for classification purpose. To cater 
unresolved class imbalance there are different sampling 
methods are present, like: 

Over Sampling Methods: 

 SMOTE (Synthetic Minority Over-sampling 
Technique) - produces artificial instances for the 
underrepresented class by interpolating between 
existing minority class examples. 

 Random Over sampling - simply duplicates random 
samples from the minority class to achieve balance. 

 ADASYN (Adaptive Synthetic Sampling) - an advanced 
variant of SMOTE that prioritizes generating synthetic 
instances for minority class samples that are more 
challenging to classify [10]. 

Under-Sampling Methods: 

 Random Under-Sampling - randomly eliminates 
instances from the dominant class to achieve a balanced 
class distribution. 

 NearMiss- chooses instances from the dominant class 
that are nearest to the minority class examples, thereby 
decreasing the size of the dominant class. 

 Tomek Links -identifies and removes overlapping 
samples between classes to create a clearer boundary 
between the majority and minority classes. 

In this research work we have used the combination 
methods i.e. ADASYN (Adaptive Synthetic Sampling) and 
Tomek Links, to achieve data balancing because the hybrid 
combination gives better results as compared to the other 
techniques. The detailed comparison of the proposed Deep 
learning-enabled LCDCS system with alternative dataset 
balancing techniques for recognizing the symptoms of lung 
cancer, accounting for both cases with and without the use of 
DL, is summed up in Table VII. Algorithm 1 and Algorithm 2 
[15] represents the ADASYN algorithm and Tomek link 
algorithm for achieving data balancing. The suggested system's 
first module, which includes steps like pre-processing, data 
balance, and classification, aims to detect lung cancer. Pre-
processing stage which involves: 

1) Data cleaning: It involves handling missing values and 

replace missing values with mean, median, mode. 

2) Data transformation: It involves normalization, 

standardization, log transformation and box-cox 

transformation. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑥′ =
𝑥−min (𝑥)

𝑥−min (𝑥)
                   (1) 

3) Data reduction: It involves principal component 

analysis which reduces the number of features while retaining 

most of the variance. 

If we have a data matrix X with n samples and p features 
(e.g., pixel intensities from CT scans or biomarkers), and we 
aim to reduce this to k principal components (k<p): 

𝑍𝑛 ×  𝐾 =  𝑋𝑛 ×  𝑝 . 𝑊𝑝 ×  𝑘                (2) 

where, Z is the reduced data matrix, X is the original data 
matrix and W is the matrix of selected eigenvectors (principal 
components). 

4) Data encoding: It has categorical encoding which is 

further divided into three categories: 

Label Encoding: Label encoding can be used for ordinal 
variables such as "Stage of Cancer" (e.g., Stage I, Stage II, 
Stage III, Stage IV). 

Let C= {c1, c2,...,ck} be the set of unique categories, and 
let x∈ C, be a category for given observation. 
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One-hot Encoding: For categorical variables without a 
natural order (e.g., "Type of Symptom", "Smoking History"), 
one-hot encoding is more appropriate. 

Let C={c1,c2,…,ck} be the set of categories for a nominal 
variable. One-hot encoding generates a binary v (x) for each 
category x∈ C: 

v (x) = [ v1, v2, v3 …..vk ]                        (3) 

where, 

𝑣𝑖 = {
1 𝑖𝑓 𝑥 = 𝑐𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

5) Data Sampling: 

a) Random sampling: Select a random subset of data to 

reduce computational cost. 

b) Stratified sampling: Ensure that the sample represents 

different strata or groups within the data. 

c) Oversampling and under sampling: Adjust the dataset 

to balance class distribution in imbalanced datasets (e.g., 

SMOTE). 

d) Handling time-series data resampling: Change the 

frequency of time-series data (e.g., daily to monthly). 

Given a time-series 𝑥(𝑡) where t represents the time index 
(e.g., days), resampling to a coarser time frequency (e.g., 
monthly) can be done by aggregating values over the new time 
intervals. If you aggregate using a sum, the equation is:  

   𝑥𝑚 (𝑇) = ∑ 𝑡 ∈ 𝑇 𝑥(𝑡)        (4) 

where, 

𝑥(𝑡) is the original time-series data. 

T is the new time interval (e.g., a month). 

𝑥𝑚(𝑇) is the resampled data at the new frequency. 

 Smoothing- utilize moving means or exponential 
smoothing to minimize fluctuations and enhance signal 
clarity. A simple moving average (SMA) over a window 
of size N is calculated as: 

𝑆𝑀𝐴𝑛(𝑡) = 1/𝑛 ∑ 𝑥(𝑡 − 𝑖)𝑛−1
𝑖=0                   (5) 

where, 

𝑥(𝑡) is the original time series data 

𝑆𝑀𝐴𝑛(𝑡) )is the smoothed value at time t. 

N is the window size. 

 Detrending- remove trends to focus on the seasonality 
and residual components. 

6) Data splitting: Efficient preprocessing can substantially 

boost the efficacy and dependability of machine learning 

models. The selection of methodologies relies on the 

characteristics of the data and the particular demands of the 

analysis or model. 

If the trend is linear, you can model it as: 

Trend (t) = 𝑎. 𝑡 + 𝑏 

where, a is the slope and b is the intercept. 

To detrend the time series: 

𝑥𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑(𝑡) = 𝑥(𝑡) − 𝑇𝑟𝑒𝑛𝑑(𝑡)               (6) 

where, 𝑥𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑(𝑡) is the time-series data after 
removing the trend. 

Algorithm 1 describes the ADASYN sampling technique 
for generating synthetic data points in order to achieve data 
balancing. First of all it checks class imbalance. 

1) If imbalance d <dth, generate synthetic data 

2) In the next step compute required synthetic data count 

G, this controls how much data is needed. 

3) Place more synthetic samples near decision boundaries. 

4) Pick a neighbour, create new samples in between  

si  = xi + (xzi − xi) × λ. 

Algorithm 1 

Input is done when Data set for training is identified. The class 

identity label associated with xi is denoted by yi ∈ Y = {1, −1}, 

where xis is the entity in the n-dimensional feature space X. The 

number of minority class examples is denoted by ms, and the 

quantity of dominant class examples by ml. Therefore, ms + ml = m 
and ms ≤ ml. Degree of class imbalance is calculated by: 

d = ms  /ml                                       (7) 

where, d ∈ (0, 1). 

If d is less than dth, then (dth is a predetermined threshold):  

(a) We determine how many examples of synthetic data must be 

created for the imbalanced class by 

G = (ml − ms) × β                              (8) 

Once the synthetic data is generated, the parameter β∈[0,1] is used 

to control the desired balance level. When β=1, the generalization 
process yields a fully balanced dataset. 

(b) Identify the K nearest neighbours for each instance xi belonging 

to the minority class using the Euclidean distance in an n-

dimensional space. Then, compute the ratio ri, defined as follows: 

  ri = Δi /K, i = 1,...,ms                            (9) 

where ri ∈ [0, 1] since Δi is the count of samples in xi's K nearest 

neighbours that are members of the dominant class; Normalizer ri   

according to  rˆi = ri/ ∑ 𝑟𝑖𝑚𝑠
𝑖=1   so that rˆi is a density distribution  

(∑ 𝑟^𝑖 = 1)𝑖 .   

Next, we determine how many samples of synthetic  

data must be created for every minority example xi by: 

gi =rˆi×G                                (10) 

Hence, according to Eq. (2), G denotes the overall number of 

generated data points that must be produced for the outlier class. 

We create gi synthetic data examples for every outlier class data 

example xi using the procedures listed below when the loop is done 
from 1 to gi. 

(i) For data xi, select one sparse data example (xzi) at random from 

the K nearest neighbours. (ii) Simulated data example is generated 
by: 

si  = xi + (xzi − xi) × λ                    (11) 

where, λ is a random number: λ ∈ [0, 1], and (xzi − xi) is the 

displacement vector. 
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Algorithm 2 presents a data cleaning approach based on 
Tomek Links, which serves as both a data balancing technique 
and a method for addressing two key issues: reducing noise in 
datasets and mitigating class imbalance.  

1) For each majority class sample 𝑥: it is finding its nearest 

neighbours y (the closest data point). 

2) If y is also from the majority class, do nothing and move 

to the next sample. 

3) If y is from the minority class, check if they form a 

Tomek Link: 

 Find the nearest neighbour of y, call it z. 

 If z is the same as 𝑥, then (𝑥 , y ) form a Tomek Link. 

o Remove 𝑥 (the dominant class sample) from the data 
repository because it causes overlap between the 
classes. 

o Repeat this process until no more samples need to be 
removed. 

o Return the cleaned dataset, which is now better 
separated and less noisy. 

Algorithm 2 

Input 

A dataset D = { 𝑥1,  𝑥2 ……𝑥n}, where 𝑥  belongs to either the 

majority or minority class. 

Output   

Cleaned dataset Dclean. 

(1) Initialize: 

Let Dclean = D. 

(2) For each sample 𝑥 ∈ Dclean where 𝑥 belongs to the dominant 

class, do: 

(3) Locate the nearest point y of  𝑥 in Dclean . 

(4) If y is the part of dominant class, then:   

      Move to the next instance 𝑥 and continue. 

(5) Else: 

(6) Find the nearest neighbor z of y  in Dclean. 

(7) If  z = 𝑥 , then:   

 𝑥 and y are nearest neighbors of each other and form a     Tomek 

link. 

(8) Remove 𝑥 from Dclean. 

(9) Repeat Steps 2–8 until no further modifications occur, or no 
samples are removed. 

(10) Return the updated Dclean. 

End Algorithm 

IV. RESULTS AND DISCUSSION 

A. Data Collection and Experimental Setup 

In order to implement Deep Learning-enabled LCDCS 
system, the Google Collab environment was configured to 
utilize advanced computational resources. This setup provided 
robust support for data-intensive operations which included 32 
GB of RAM and 1 TB of NVMe SSD storage for faster data 
handling. For high-performance deep learning and machine 
learning tasks, an NVIDIA RTX 3080 GPU with 10 GB of 

GDDR6X VRAM is used. The GPU's architecture enabled 
efficient parallel processing, significantly reducing training 
time for large-scale models. Additionally, the GPU-accelerated 
environment supported real-time experimentation with 
complex neural networks and computationally expensive tasks, 
maximizing throughput and performance [19]. This 
configuration facilitated smooth execution of ML or DL 
workflows, ensuring scalability and responsiveness for both 
model development and deployment phases. 

In the proposed study, two types of datasets were used to 
diagnose and forecast lung cancer. The LUNA16 dataset [28], 
which included more than 1,000 lung CT images in raw 
DICOM format, served as the source for the initial dataset and 
a real time dataset, acquired from various stake holders. An 
annotation file describing the malignant state of each 
photograph was included. The pictures were saved in PNG 
format to make processing easier. It included PNG-formatted 
CT scan images of both healthy people and patients with lung 
cancer. In all, 979 normal and 1346 malignant pictures were 
found. 

B. Pre-processing Stage 

To align with the model architecture, before being input into 
the CNN model, the original image is converted from BGR and 
RGBA formats to RGB. Considering that most deep learning 
models for image classification are trained using RGB images, 
this conversion is required. After that, the RGB image is scaled 
to 224 × 24 pixels. Prior to input into the model, the input image 
is first subjected to a filtering and noise removal process to 
improve its quality. 

C. Results of Feature Extraction and Classification 

The novel model used deep learning CNN model for the 
feature extraction purpose and SoftMax function for multi-class 
classification. The CNN model is built with different layers, 
Conv2D layer detect important patterns in lung CT scans, such 
as nodules, textures, and abnormalities and tumour regions 
(feature extraction). Max pooling layer, it reduces size and 
focuses on most critical region in the CT scan [18]. Next is 
flatten and dense layer process which extracted features to 
classify lung conditions. The model is fine-tuned with feature 
extraction from the training dataset and is then employed to 
categorize the testing data, detecting the existence or absence 
of lung tumors and finally the SoftMax activation provides the 
final probability distribution over different lung conditions. Fig. 
4 illustrates the confusion matrix for the test data, offering a 
summary of the prediction results obtained by the proposed 
system. 

The model uses a variety of dataset balancing strategies to 
accomplish classification with and without DL methodology, 
data augmentation, ADASYN, class-weighted approach, and 
are some of these methods. The combination of ADASYN and 
Tomek links works better than the other models, according to 
an evaluation of the classification findings. The training 
accuracy of this model is 96.9%. Prior to the application of 
ADASYN, the dataset reveals a significant class imbalance, 
with 784 instances representing the minority class (non-
cancerous cases) and 10, 10 instances representing the majority 
class (cancerous cases).  Fig. 3 illustrates the enhanced 
performance of ADASYN, depicting the correlation between 
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accuracy, loss, and the number of epochs in deep learning. The 
outcomes using DL are displayed in Fig. 3(a) and Fig. 3(b). 
Eventually, the classification accuracy of the lung cancer 
detection module in the suggested system is benchmarked 
against several existing systems, demonstrating superior 
accuracy, as illustrated in Table VIII. Further the relationship 
between training accuracy of different methods are given in Fig. 
5, validation accuracy of different methods are given in Fig. 6, 
and training loss and validation loss with different methods are 
shown in Fig. 7 and Fig. 8 respectively. Table IX discusses the 
recovery symptom of NSCLC. 

 
(a) 

 
(b) 

Fig. 3. a): Accuracy vs. Epoch with DL, b): Loss Vs. Epoch with DL. 

 
Fig. 4. Confusion matrix. 

The model correctly classified mostly non-cancerous case. 
With 47.06 % most cancer cases are correctly detected. 

TABLE VII LUNG CANCER DIAGNOSIS PERFORMANCE COMPARISON: 
LCDCS SYSTEM WITH DEEP LEARNING AGAINST ALTERNATIVE DATASET 

NORMALIZATION METHODS WITH AND WITHOUT DEEP LEARNING (DL) 

Method 

Training 

accuracy 

(%) 

Validation 

Accuracy 

(%) 

Training 

Loss 

(%) 

Validation 

Loss 

(%) 

Deep 

Learning 

enabled 

LCDCS 

(ADASYN+ 

Tomek Link 

+ CNN) 

95.8 96.9 2.7 3.7 

Prox-Smote 

+ CNN 
94.08 95.23 5.21 22.16 

CWA +DL 93.27 94.6 11.64 8.55 

CWA + CNN 95.05 93.34 7.07 22.92 

DA + DL 92.24 95.26 19.62 8.65 

DA +CNN 85.53 78.73 31.01 39.48 

TABLE VIII COMPARISON OF THE SUGGESTED DEEP LEARNING ENABLED 

LCDCS SYSTEM’S MODULE WITH CURRENT SYSTEMS 

Evaluation 

Metric 

Deep 

learning 

enabled 

LCDCS 

Multisection 

CNN [ 1] 

SVM 

[11] 

3D CNN 

[12 ] 

Accuracy (%) 96.9% 92.17% 92% 83.7% 
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Fig. 5. Training accuracy of different methods. 

 
Fig. 6. Validation accuracy of different methods. 

 
Fig. 7. Validation loss of different methods. 

 
Fig. 8. Training loss of different methods. 

TABLE IX RECOVERY SYMPTOM OF NSCLC 

Phase Symptoms/Effects Management 

Immediate 
- Fatigue, pain, nausea, 

appetite loss 

- Rest, pain 

management, anti-
nausea meds 

Short-Term (1–

3 months) 

- Dyspnea, cough, 

weakness, emotional 

distress 

- Pulmonary rehab, 

physical therapy, 

counseling 

Mid-Term (3–6 

months) 

- Sleep issues, 

lymphedema, chest 

discomfort 

- Breathing exercises, 
compression garments 

Long-Term (6+ 

months) 

- Chronic cough, 
neuropathy, emotional 

stress 

- Long-term rehab, pain 

management, counseling 

Emotional 

Recovery 

- Fear, anxiety about 

recurrence 

- Counseling, support 

groups 

D. Comparison of Model Performance 

Evaluating a model is an essential step to determine how 
well it performs. Various metrics can be used for this purpose, 
such as accuracy, recall, F1-score, and precision, specificity, 
FPR each offering different interpretation of the model's 
effectiveness. TABLE X displays a comparison of the 
evaluation metrics for the deep learning-enabled LCDCS with 
those of other machine learning models. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 =

47.0+49.9

47.0+49.9+1.1+2.0
 = 96.9% 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   =  

47.0

47.0+2.0
  = 95.9% 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    =   

47.0

47.0+1.1
  = 97.8% 

F1- Score = 2 X 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  = 

97.8∗95.9

97.8+95.9
  =    96.8 % 

Specificity (True Negative Rate) = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 = 

49.9

49.9+1.1
=  98.0% 

False Positive rate (FPR) = 
𝐹𝑃

𝑇𝑁+𝐹𝑃
 =  

1.1

49.9+1.1
 = 2.2% 
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TABLE X COMPARISON OF THE EVALUATION METRICS FOR THE DEEP 

LEARNING-ENABLED LCDCS WITH THOSE OF OTHER MACHINE LEARNING 

MODELS 

Performance 

Metric (%) 

Deep learning 

enabled 

LCDCS 

Random 

Forest[13] 

KNN 

[14] 

Logistic 

Regression[13] 

Accuracy 96.9 89.5 87.1 90.3 

Recall 95.9 86.9 80.3 89.6 

Precision 97.8 89.1 91.1 90.1 

F1-score 96.8 88.0 85.3 89.9 

Specificity 98.0 91.5 93.1 90.9 

FPR 2.2 8.4 6.8 9.0 

V. ADVANTAGES 

The proposed LCDCS system offers several significant 
advantages, including high diagnostic accuracy (96.9%) in 
detecting and classifying NSCLC, making it a reliable tool for 
supporting early clinical decision-making. The innovative 
integration of ADASYN and Tomek Links for data balancing 
resolves class imbalance issues, enhancing model robustness. 
The system outperforms existing models in both accuracy and 
operational efficiency. 

VI. FUTURE WORK 

The study suggests extending the system for broader 
applications, potentially encompassing additional cancer types 
or integrating predictive capabilities for associated conditions 
like cardiovascular disease. Further improvements in 
interpretability and live implementation are recommended to 
enhance its clinical applicability. 

VII. CONCLUSION 

The study concludes that the proposed LCDCS system, 
powered by deep learning, achieves exceptional accuracy in 
detecting and classifying NSCLC. By integrating a multi-level 
convolutional neural network (ML-CNN) with advanced data 
balancing techniques, the system demonstrates notable 
accuracy and resilience in handling imbalanced datasets. The 
incorporation of multi-scale image analysis further enhances 
the model’s ability to detect and classify lung nodules with 
precision. Through comprehensive comparative evaluation, the 
research underscores the effectiveness of strategic class 
balancing in improving diagnostic outcomes. The system 
proves to be a highly reliable diagnostic tool, offering critical 
support to radiologists in the early detection of conditions and 
enabling timely, more effective treatment planning. 
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