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Abstract—Effective scheduling of tasks is a key concern in 

cloud computing because it considerably affects system 

functionality, resource usage, and execution efficiency. The 

present study proposes an Enhanced Chimp Optimization 

Algorithm (ECOA) to address such problems by overcoming the 

disadvantages of traditional scheduling methods. The proposed 

ECOA combines three innovative components: 1) the highly 

disruptive polynomial mutation enhances population diversity, 2) 

the Spearman rank correlation coefficient promotes the 

refinement of inferior solutions, and 3) the beetle antennae 

operator facilitates more efficient local exploitation. These 

changes significantly enhance the equilibrium between 

exploration and exploitation, decrease the chance of premature 

convergence, and are a better solution. Extensive experiments on 

benchmark datasets prove that ECOA outperforms traditional 

algorithms concerning makespan, imbalance degree, and resource 

utilization. The obtained results confirm that the proposed ECOA 

has excellent potential for better performance in task scheduling 

in dynamic and large-scale cloud environments, as it represents a 

promising optimization solution for complex problems in cloud 

computing. 
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I. INTRODUCTION 

Cloud computing has reshaped how computing capabilities 
are accessed and used, bringing revolutionary expansion, 
adaptability, and affordability [1]. It enables companies and 
individuals to dynamically allocate resources to optimize their 
processes for optimal performance without requiring investment 
in physical infrastructure [2]. From big data analytics to intricate 
Internet of Things (IoT) and Artificial Intelligence (AI) systems, 
cloud computing forms the pillar of contemporary technology 
platforms. Effective management of these resources is the key 
for ensuring Quality Of Service (QoS) and optimal system 
performance during operations [3]. The recent development of 
AI-powered quality control, including employing a hybrid 
vision transformer and Convolutional Neural Networks (CNNs) 
ensembles for industrial defect inspection, exemplifies the 
revolutionary potential of intelligent computing infrastructures 
in real-time, high-precision applications [4]. 

Scheduling tasks in the cloud is one of the biggest challenges 
since this environment is dynamic, with heterogeneous 
resources [5]. Scheduling involves mapping incoming tasks to 
the available resources and must consider many constraints, 
such as dependencies between tasks, resource capacities, or QoS 
requirements [6]. Poor resource scheduling leads to inefficient 
exploitation of resources, prolonged execution of tasks, and 
increased business expenses [7]. Further complications in large-

scale and real-time applications aggravate these challenges, 
which require innovative ways of handling resource allocation 
duties [8]. Similar scheduling concerns are also evident in other 
networked environments, such as LTE-Advanced systems, 
where dynamic and QoS-aware approaches are essential for 
optimizing multi-carrier resource allocation and improving user 
experience [9]. 

While traditional scheduling methods and heuristic 
algorithms have widely been put into practice, they still often 
suffer from such flaws as premature convergence, inefficiency 
in handling complex solution spaces, and poor adaptability 
against dynamic cloud environments [10]. Several metaheuristic 
algorithms proposed in the literature present promising results, 
but they usually show poor performance regarding the harmony 
between exploitation and exploration. 

Recent studies have highlighted the growing role of machine 
learning in analyzing complex economic systems and decision-
making under uncertainty, further underscoring the need for 
adaptive and intelligent optimization approaches in dynamic 
scenarios [11]. Similarly, in smart grid and energy-aware 
systems, integrating energy storage and photovoltaic solutions 
has demonstrated the importance of efficient resource 
management and real-time optimization, reinforcing the 
relevance of such capabilities in cloud-based scheduling 
contexts [12]. Despite being efficient, the original version of the 
Chimp Optimization Algorithm (COA) has deficiencies in 
population diversity and needs to improve in local optimum; 
therefore, it cannot guarantee global optimization when tackling 
a large-scale task-scheduling problem. 

To remedy these defects, this study suggests an Enhanced 
Chimp Optimization Algorithm (ECOA) for cloud computing 
task scheduling. The enhanced algorithm applies three main 
strategies: the highly disruptive polynomial mutation strategy to 
keep the variety in populations, Spearman's rank correlation 
coefficient for refining less-fit solutions, and the beetle antennae 
operator for improving local exploitation. 

With the integration of enhancements, ECOA gives a better 
balance between exploitation and exploration, resulting in 
improved scheduling efficiency and scalability. ECOA obtains 
promising results in general because many benchmark datasets 
are used under considerable experiments to establish its great 
strength in the techniques adopted in task scheduling during this 
dynamic cloud environment. 

The study is structured into four main sections. Section II 
offers an overview of state-of-the-art task scheduling methods 
in cloud computing. Section III introduces the proposed ECOA. 
Section IV includes extensive experimental analysis of standard 
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benchmarks with a comparison of the performance of the 
developed algorithm with previous algorithms. Section V 
critically discusses the practical relevance of the algorithm, 
behavior over different datasets, and limitations. Section VI 
concludes the primary results of the study, highlights the scope 
of the proposed algorithm's potential in large-scale and time-
evolving cloud systems, and provide directions for further 
research. 

II. RELATED WORKS 

Kashikolaei, et al. [13] proposed a hybrid load-balancing 
algorithm combining Firefly Algorithm (FA) and Imperialist 
Competitive Algorithm (ICA) to address NP-hard challenges in 
cloud computing. This enhanced the scheduling speed, load 
balancing, CPU time, and makespan. The local search capability 
of FA strengthened the global search capability of ICA and 
achieved significant improvements in performance metrics. 

Velliangiri, et al. [14] suggested a Hybrid Electro Search 
with Genetic Algorithm (HESGA) for optimizing cloud task 
scheduling. In local optimizations, the hybrid approach uses the 
genetic algorithm, and the authors utilize electro-search to 
calculate optimal global solutions that would improve load 
balancing, makespan, resource utilization, and cost. 

Mangalampalli, et al. [15] developed a Cat Swarm 
Optimization (CSO) approach for task scheduling to minimize 
total power cost, energy usage, migration time, and makespan. 
This approach prioritizes tasks and virtual machines, improving 
energy efficiency and execution time by considering realistic 
workload datasets. 

Malathi and Priyadarsini [16] proposed a hybrid Lion 
Optimizer and Genetic Algorithm (LO-GA) for load balancing 
in cloud environments. The proposed two-stage approach 
utilized the lion optimizer for the task and virtual machine 
selection probabilities, whereas the modified genetic algorithm 

performs the global search. As a result, this hybrid approach 
significantly improved resource utilization and turnaround time. 

Ghafari and Mansouri [17] introduced an Enhanced African 
Vulture Optimization Algorithm (E-AVOA-TS) for task 
scheduling in fog-cloud computing. This method guarantees 
minimum energy usage, makespan, and cost by sending tasks 
sensitive to latency to fog environments. Simulation tests have 
been performed on benchmark datasets and have shown the 
exceptional performance of E-AVOA-TS over existing 
algorithms. 

Abualigah, et al. [18] presented an Improved Jaya 
Synergistic Swarm Optimization Algorithm (IJSSOA) 
integrating Levy flight mechanisms to optimize task scheduling. 
By combining Jaya’s exploitation capabilities with SSO’s 
collaborative strategy, the algorithm improved scalability, 
convergence rate, and outcome, achieving 88% accuracy and a 
10% enhancement over the original method. 

Boroumand, et al. [19] presented a new methodology to 
coordinate tasks in cloud computing, leveraging the features of 
the Synergistic Swarm Optimization (SSO) and Jaya algorithms. 
In the suggested algorithm, Jaya's exploitation power has been 
combined with SSO's collaborative approach to optimize the 
quality of the solution, convergence rate, and scalability. 

Despite some interesting advances in the state-of-the-art, as 
shown in Table I, existing methods have notable scalability, 
efficiency, and adaptability limitations across different cloud 
environments. ICA+FA and HESGA, for example, consider 
only a single objective, such as makespan or load balancing, 
while they do not consider multi-objective optimizations. Some 
proposals, however, such as CSO and LO-GA, consider multiple 
objectives in their optimization but suffer from high 
computational complexity and limited scalability. 

TABLE I.  AN OVERVIEW OF CLOUD TASK SCHEDULING METHODS 

Algorithm Metrics improved Strength Weakness 

ICA + FA [13] 
Makespan, CPU time, 

load balancing 

Combines the global exploration ability of ICA with the 

local search efficiency of FA, achieving improved 
scheduling speed and resource utilization. 

It requires fine-tuning of parameters for 

scalability and limited exploration in high-
dimensional spaces. 

HESGA [14] 

Makespan, load 

balancing, resource 
utilization 

Combines GA's ability to find local optima with Electro 

Search's global optimization, achieving superior task 
scheduling performance in multi-cloud environments. 

Limited analysis of energy consumption and 

migration time; performance is dataset-
dependent. 

CSO [15] 

Makespan, migration 

time, energy 

consumption 

Addresses multiple objectives, including energy efficiency 

and power cost, using realistic workloads, providing a 

holistic improvement in task scheduling metrics. 

Computational complexity increases with 

large-scale tasks that require careful 

parameter adjustment. 

LO-GA [16] 
Turnaround time, 
resource utilization 

Utilizes lion optimizer for task and VM selection 

probabilities and a modified GA for global optimization, 

improving resource allocation and reducing bottlenecks. 

High computational resources are needed for 

hybrid optimization, but there is limited 

scalability for diverse tasks. 

E-AVOA-TS [17] 
Makespan, cost, energy 

consumption 

Prioritizes latency-sensitive and latency-tolerant tasks 
effectively using a fog-cloud hierarchy, achieving superior 

task scheduling efficiency and energy savings. 

Limited exploration of scalability for 
extremely large-scale systems; complexity in 

implementation. 

IJSSOA [18] 
Makespan, convergence 

speed, scalability 

Integrates Jaya and SSO algorithms with Levy flight for 
robust exploration-exploitation trade-offs, achieving high-

quality solutions and fast convergence. 

Focuses primarily on benchmark datasets; 
limited exploration of dynamic real-world 

task variability. 

IJSSOA (Levy 

Flights 
Integration) [19] 

Makespan, resource 

utilization, scalability 

Balances exploration and exploitation effectively with Levy 

flights, enabling escape from local optima and providing 
scalable performance improvements. 

Limited emphasis on energy consumption and 

multi-objective optimization across diverse 
environments. 
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Furthermore, algorithms like IJSSOA show exploration-
exploitation trade-offs confined to benchmark datasets only and 
lack robustness for dynamic real-world complexities, including 
variability in resources and heterogeneity of tasks. To fill these 
gaps, we propose ECOA, which integrates superior mutation 
strategies and optimization mechanisms. In this way, the 
proposed approach will ensure improved scalability, resource 
utilization, and scheduling efficiency while remaining adaptable 
to dynamically large-scale cloud environments. 

III. PROPOSED METHODOLOGY 

A. Problem Formulation 

Cloud task scheduling stands for the activity of performing 
a scheduler for user-defined computational tasks on available 
physical servers or virtual machines for cloud computing. 
Scheduling optimizes critical performance indicators, including 
execution time, resource utilization, and energy efficiency. Due 
to its complexity and constraints, task scheduling is an NP-hard 
optimization problem, requiring heuristic and metaheuristic 
algorithms for effective solutions. 

Tasks (𝑇) are defined as a set 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, where each 
task 𝑡𝑖 is characterized by its computational requirements, 
execution time, and dependencies. Resources (𝑅) are 
represented as 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚} , each having availability, 
memory, and processing capacity characteristics. The binary 
variable 𝑥𝑖𝑗 indicates whether task 𝑡𝑖 is allocated to resource 𝑟𝑗 
as in Eq. (1): 

𝑥𝑖𝑗 = {
1,   𝑖𝑓 𝑡𝑎𝑠𝑘 𝑡𝑖  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑗
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             

 (1) 

 The goal is to allocate tasks effectively, maintaining 
balanced resource utilization while meeting performance 
targets. Task scheduling is constrained by two key factors: 
dependency and resource. Some tasks depend on others, 
represented as 𝐷𝑖, a sequence of tasks necessary to be 
accomplished in advance of 𝑡𝑖 starts execution. Resources have 
finite capacity, denoted as 𝑈𝑗, limiting the simultaneous 
execution of tasks on a given resource. 

The task scheduling problem minimizes several 
performance metrics, including resource utilization, makespan, 
and total execution time. Resource utilization ensures the best 
use of resources by reducing the time spent idling and thus 
balancing the workloads. The makespan concerns the time from 
the beginning of the first task to the end of the last task. Total 
execution time refers to the overall time all tasks take to 
complete. The entire VM count in the cloud setup is calculated 
using Eq. (2): 

ℎ = ∑ 𝑁𝑣𝑚𝑖

𝑁𝑝ℎ

𝑖=1

 (2) 

where, 𝑁𝑝ℎ represents the total number of physical hosts, 
and 𝑁𝑣𝑚𝑖 stands for the number of VMs on the 𝑖th physical host. 
The average number of VMs on each physical host is calculated 
as in Eq. (3): 

𝑣𝑖𝑗 =
1

𝑁𝑣𝑚𝑖

∑ 1

𝑁𝑣𝑚𝑖

𝑗=1

 (3) 

The expected completion time for a task 𝑘 on a VM 𝑗 is given 
by Eq. (4): 

𝐸𝑇𝐶(𝑗𝑘) =
𝐿𝑘

𝑃𝑗

 (4) 

where, 𝐿𝑘 is the length of the task (in millions of 
instructions), and 𝑃𝑗 is the processing performance of VM 𝑗. The 
execution time for all tasks assigned to a VM 𝑗 is computed 
using Eq. (5): 

𝐸𝑇𝑗 = ∑ 𝑥(𝑗𝑘). 𝐸𝑇𝐶(𝑗𝑘)

𝑁

𝑘=1

 (5) 

where, 𝑥(𝑗𝑘) is the decision variable indicating task 
assignment, finally, the makespan is determined as in Eq. (6): 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝐸𝑇𝑗) (6) 

Heuristic and metaheuristic algorithms, formulated in an 
optimization setting, efficiently explore the vast solution space. 
These algorithms repeatedly evaluate various mappings of tasks 
to resources, considering constraints to optimize objective 
functions. The challenge is to find the trade-off between the two 
objective functions: minimizing makespan and maximizing 
resource utilization. As the problem scales, dynamic resource 
availability, and task variability necessitate robust, adaptive 
approaches to achieve near-optimal solutions within reasonable 
time frames. 

B. Enhanced Chimp Optimization Algorithm 

COA is a swarm intelligence-based metaheuristic inspired 
by the cooperative hunting strategies of chimpanzees. This 
algorithm divides chimpanzees into four hierarchical roles: 
attacker, barrier, chaser, and driver, based on their importance in 
the optimization process. While the original COA has shown 
promise in solving various optimization problems, it suffers 
from limited population diversity during initialization and often 
gets trapped in local optima during the exploitation phase. COA 
is a metaheuristic inspired by swarm intelligence which is 
inspired by the cooperative hunting strategies of chimpanzees. 
In this algorithm, chimpanzees fall into four hierarchical roles 
based on their importance in the optimization process: attacker, 
barrier, chaser, and driver. 

The original COA has produced promising results for 
solving different optimization problems. However, it suffers 
from limited population diversity during initialization and often 
gets trapped in local optima during exploitation. To overcome 
these limitations, the Enhanced COA (ECOA) integrates three 
advanced mechanisms: Highly Disruptive Polynomial Mutation 
(HDPM), Spearman’s rank correlation coefficient, and the 
Beetle Antennae Operator (BAO). These enhancements 
improve the balance between exploration and exploitation, 
ensuring superior optimization performance. 

As shown in Fig. 1, in the original COA, the position of the 
chimp is updated by calculating the weighted average of the 
contributions from the four roles. The mathematical model for 
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updating the position of the chimp is given as Eq. (7) and Eq. 
(8): 

𝑋𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) =
𝑋1 + 𝑋2 + 𝑋3 + 𝑋4

4
 (7) 

where, 

𝑋1 = 𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟(𝑡) − 𝛼1. 𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟  

𝑋2 = 𝑋𝐵𝑎𝑟𝑟𝑖𝑒𝑟(𝑡) − 𝛼2. 𝑑𝐵𝑎𝑟𝑟𝑖𝑒𝑟  

𝑋3 = 𝑋𝐶ℎ𝑎𝑠𝑒𝑟(𝑡) − 𝛼3. 𝑑𝐶ℎ𝑎𝑠𝑒𝑟  

𝑋4 = 𝑋𝐷𝑟𝑖𝑣𝑒𝑟(𝑡) − 𝛼4. 𝑑𝐷𝑟𝑖𝑣𝑒𝑟  

(8) 

 
Fig. 1. Position updating in COA 

The coefficients 𝑎1, 𝑎2, 𝑎3, and 𝑎4 represent dynamic 
adjustment factors that decrease nonlinearly over iterations, 
while 𝑑Attacker, 𝑑Barrier, 𝑑Chaser, and 𝑑Driver are the distances between 
the chimp and the prey, modeled as in Eq. (9): 

𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = |𝑐. 𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟(𝑡) − 𝑚. 𝑋(𝑡)| (9) 

where, 𝑐 is a scaling factor (𝑐=2𝑟2, with 𝑟2∈[0,1]) and 𝑚 is a 
chaotic map vector that introduces randomness to the search 
process. 

The position update ensures that the chimps move 
collectively toward the global optimum while maintaining role-
specific contributions. 

HDPM addresses the limitation of population diversity in the 
initialization phase by enhancing the global exploration 
capability of the algorithm. Traditional polynomial mutation 
fails to utilize boundary variables effectively, which HDPM 
resolves by introducing a mutation operator that can handle 
boundaries efficiently. The updated position of a chimp 𝑋new is 
calculated as in Eq. (10): 

𝑋𝑛𝑒𝑤 = 𝑋 + 𝛿𝑘. (𝑢𝑏 − 𝑙𝑏) (10) 

where, 𝑢𝑏 and 𝑙𝑏 are the upper and lower bounds of the 
search space, respectively. The mutation factor 𝛿𝑘 is computed 
using Eq. (11): 

𝛿𝑘

= {
[2𝑟 + (1 − 2𝑟). (1 − 𝛿1)

𝜂𝑚+1]
1

𝜂𝑚+1 − 1,   𝑖𝑓 𝑟 ≤ 0.5

1 − [2(1 − 𝑟) + 2(𝑟 − 0.5). (1 − 𝛿2)
𝜂𝑚+1]

1
𝜂𝑚+1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(11) 

This mutation mechanism ensures a diverse initial 
population, enabling the algorithm to explore the search space 
more comprehensively in the early stages. 

Spearman’s rank correlation coefficient (𝜌) measures the 
relationship between the fitness of the attacker chimp (leader) 
and the driver chimps (followers). The value of 𝜌 determines 
whether the driver chimps require position updates to enhance 
their contribution. The coefficient is calculated using Eq. (12): 

𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
 (12) 

where, 𝑑𝑖 is the difference between the ranks of two variables 
(e.g., attacker and driver fitness), and 𝑛 is the dimension of the 
problem. If 𝜌 ≤ 0, the driver’s position is refined using the BAO 
to prevent stagnation. 

BAO enhances local exploitation by simulating the sensory 
behavior of beetles. The beetle uses its antennae to search left 
and right areas for better solutions. The search direction is 
determined using a normalized random vector as in Eq. (13): 

𝑏⃗ =
𝑟𝑛𝑑(𝑛, 1)

‖𝑟𝑛𝑑(𝑛, 1)‖
 (13) 

The beetle explores the search space using Eq. (14): 

𝑋𝑟(𝑡) = 𝑋(𝑡) + 𝑑(𝑡). 𝑏⃗  

𝑋𝑙(𝑡) = 𝑋(𝑡) − 𝑑(𝑡). 𝑏⃗  
(14) 

where, 𝑑(𝑡) represents the step size calculated as in Eq. (15): 

𝑑(𝑡) =
𝛿(𝑡)

𝐶
 

𝛿(𝑡) = 𝐾. 𝛿(𝑡 − 1) 

(15) 

where, 𝐾 = 0.95 and 𝐶 = 2. The beetle’s new position is 
updated as in Eq. (16): 

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝛿(𝑡). 𝑏⃗ . 𝑠𝑖𝑔𝑛 (𝑓(𝑋𝑟(𝑡))

− 𝑓(𝑋𝑙(𝑡))) 

(16) 

This mechanism allows the driver chimps to exploit fine-
grained while avoiding local optima. ECOA operates through a 
systematic workflow designed to achieve optimal solutions 
effectively. The population is initialized using HDPM to ensure 
diversity within the search space. Chimps are assigned specific 
roles based on their fitness evaluations, such as attacker, barrier, 
chaser, or driver. The position updates occur in subsequent steps, 
starting with calculating Spearman’s rank correlation coefficient 
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(𝜌) for driver chimps. If 𝜌 ≤ 0, the BAO is applied to refine the 
driver’s position, enhancing local exploitation. 

The positions of all chimps are updated using role-specific 
equations to facilitate global optimization. Afterwards, the 
fitness of all updated positions is reevaluated, and roles are 
reassigned accordingly. This iterative approach continues until 
the algorithm converges on an optimal solution or the maximum 
number of iterations, ensuring a robust balance between 
exploitation and exploration. Fig. 2 illustrates the proposed 
algorithm in the form of a flowchart. 

 
Fig. 2. Flowchart of ECOA. 

The integration of HDPM, Spearman’s correlation, and the 
BAO enables ECOA to overcome the limitations of the original 
COA. The algorithm maintains a better equilibrium between 
exploration and exploitation, making it more robust for solving 
complex optimization problems in cloud computing, 
engineering, and other domains. This comprehensive framework 
ensures faster convergence, higher solution quality, and 
adaptability to dynamic environments. 

IV. RESULTS 

The proposed ECOA was implemented and tested on a 
system whose specifications are given in Table II. The setup 
chosen was sufficient to computationally test the performance 
of ECOA over a wide variety of synthetic datasets. Synthetic 

datasets were used to evaluate task scheduling performance. 
Each dataset consisted of tasks from 100 to 500, and task lengths 
were randomly chosen between 1000 and 2000 MI. Virtual 
machines had processing capacities from 100 to 1000 MIPS. 
These datasets provide controlled experimentation under 
various workloads and resource configurations. 

TABLE II.  SYSTEM SETUP FOR TESTING THE PROPOSED ECOA 

Parameter Specification 

Operating system Windows 11 64-bit 

CPU Intel(R) Core(TM) i7-3770 @ 3.90 GHz 

SDD 240 GB 

Memory 32 GB DDR4 

ECOA was tested against some state-of-the-art optimization 
algorithms, namely Geyser-Inspired Algorithm (GIA) [20], 
Prairie Dog Optimization Algorithm (PDOA) [21], Dwarf 
Mongoose Optimization Algorithm (DMOA) [22], Reptile 
Search Algorithm (RSA) [23], and Arithmetic Optimization 
Algorithm (AOA) [24]. These algorithms' parameter settings are 
set to the values indicated in their respective source studies. 

The most important performance metric in task scheduling 
is called makespan, referring to the total time taken to execute 
all the tasks. Fig. 3 depicts the values of makespan for each of 
the tasks. It can be noticed that the value of makespan rises with 
the increase in the number of tasks in all algorithms, which 
reflects an increase in computational complexity and resource 
demand. 

However, ECOA reliably reached lower makespan values 
than other algorithms and thus showed better efficiency in 
scheduling. For example, the higher makespan value by 
algorithms like PDOA and GIA indicated that the scheduling 
solution was not optimal. AOA-LPO has increased stability, 
considering a variation of loads. 

Fig. 4 depicts the Average Resource Utilization (ARU) over 
a range of tasks. ECOA maintained high values of ARU, 
reflecting efficient utilization of computational resources. This 
remained consistent even with increasing task counts, thus 
further proving the adaptability of the algorithm to larger 
workloads. Other algorithms, such as PDOA and DMOA, also 
maintained relatively stable ARU values, while RSA and GIA 
exhibited large variances, indicating sensitivity to workload 
size. 

Fig. 5 depicts the Diversity Index (DI), which represents the 
distribution variety of the tasks. For most practical cases, the 
value of DI is preferred to be lower when the distribution among 
resources is even. ECOA had a steady DI for different 
workloads, indicating the ability to maintain load balance 
effectively. Other algorithms had varying DI values with 
increased workload; hence, there was a drop in efficiency while 
managing task diversity. 
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Fig. 3. Makespan comparison 

 
Fig. 4. ARU Comparison 

 
Fig. 5. DI Comparison 
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V. DISCUSSION 

The outcomes demonstrate the effectiveness of ECOA in 
task scheduling optimization for cloud computing. Through 
improved makespan, increased resource utilization, and 
balanced task diversity, ECOA performed better than other 
algorithms for various workload conditions. Incorporating 
HDPM, Spearman’s rank correlation, and the BAO enabled 
ECOA to adjust to multiple workload situations while delivering 
stable performance dynamically. 

In addition, the results emphasize the significance of using 
task scheduling algorithms optimized for a particular workload 
and resource setup. Although AOA and LPO were effective 
across workloads, some algorithms, including SSOA and GIA, 
were workload-sensitive. These observations can inform the 
design and choice of algorithms for effective cloud resource 
management. 

It is noteworthy that ECOA consistently reduces makespan 
and optimizes average resource utilization in light and heavy 
task loads, indicating that it is not tuned to the specific 
conditions of the dataset but is capable of generalized 
optimization. On the contrary, enhanced performance becomes 
even stronger in loads with large task diversity and resource 
constraints, where the balance between exploration and 
exploitation becomes paramount. Thus, the proposed algorithm 
best suits complex, large-scale, and heterogeneous scenarios yet 
still performs competitively under simpler conditions. 

The theoretical contributions made by ECOA directly 
resulted in practical improvements to cloud computing setups. 
Cloud computing providers are tasked with efficiently assigning 
computational resources while satisfying dynamic user 
demands. If the scheduling of tasks is inefficient, it can result in 
idle servers, increased power consumption, and failure to fulfill 
service-level agreements. The proposed method of ECOA 
overcomes these issues by providing a scalable, adaptive, and 
low-overhead method that enhances the utilization of resources, 
minimizes task execution time, and preserves load balance in 
different intensities of workload. These attributes are highly 
desired in real-world applications, including multi-tenant data 
centers, IoT-hardened infrastructures, and edge-cloud hybrid 
setups since performance degradation in these setups would 
incur considerable costs in finance and operations. Hence, the 
theoretical design of ECOA proves to be academically sound 
and meets practical demands in contemporary cloud computing 
systems. 

Notwithstanding the encouraging performance realized by 
ECOA, a few limitations should be noted. First, the 
experimental validations were performed on simulated datasets 
in a controlled setup, which might not reflect the real-world 
complexities and variations in cloud environments. 
Consequently, the algorithm's performance in heterogeneous, 
time-unpredictable, and large-scale production environments 
still awaits further confirmation. Second, the implementation 
focuses mainly on single-objective optimization, aiming for 
makespan and resource consumption; multi-objective trade-offs, 
e.g., energy efficiency, service level agreements breaching, or 
economic cost, were not extensively analyzed. 

In addition, while incorporating operators such as 
polynomial mutation and BAO enhances convergence behavior, 
the algorithm can introduce some computational overhead in 
time-sensitive or limited-resource deployments. Future 
directions must compare ECOA in production of cloud 
platforms, extend it to multi-objective cases, and analyze its 
scalability over dynamic loads and different infrastructure 
setups. 

VI. CONCLUSION 

This study proposed the ECOA, a new metaheuristic 
algorithm, to handle cloud computing task scheduling problems. 
Accordingly, Spearman's rank correlation coefficient, HDPM, 
and the BAO mechanism were adopted in the ECOA, effectively 
improving the harmony between exploration and exploitation. 
The suggested algorithm has been extensively evaluated against 
some of the latest optimization methods using synthetic data sets 
and yielded superior results on all key metrics, such as 
makespan, resource utilization, and task distribution diversity. 
The experimental results proved that ECOA showed 
consistently lower makespan values, higher average resource 
utilization, and stable diversity indices for the increasing 
workload size. 

The dynamic adaptability of ECOA under changing cloud 
environments brings out its robustness and scalability for 
effective cloud resource management. ECOA delivers an 
effective and scalable framework for optimizing task scheduling 
in cloud computing. Further extension can be done by its 
application on real-world datasets and finding its performance 
in multi-objective optimization problems like minimizing 
energy consumption along with the time of execution of tasks. 
Exploring various directions for integrating ECOA within a 
distributed and edge computing environment would also be 
exciting. 
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