
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

665 | P a g e

www.ijacsa.thesai.org

ECOA: An Enhanced Chimp Optimization Algorithm

for Cloud Task Scheduling

Yue WANG

Hebei Chemical & Pharmaceutical College, Hebei, 050026, China

Abstract—Effective scheduling of tasks is a key concern in

cloud computing because it considerably affects system

functionality, resource usage, and execution efficiency. The

present study proposes an Enhanced Chimp Optimization

Algorithm (ECOA) to address such problems by overcoming the

disadvantages of traditional scheduling methods. The proposed

ECOA combines three innovative components: 1) the highly

disruptive polynomial mutation enhances population diversity, 2)

the Spearman rank correlation coefficient promotes the

refinement of inferior solutions, and 3) the beetle antennae

operator facilitates more efficient local exploitation. These

changes significantly enhance the equilibrium between

exploration and exploitation, decrease the chance of premature

convergence, and are a better solution. Extensive experiments on

benchmark datasets prove that ECOA outperforms traditional

algorithms concerning makespan, imbalance degree, and resource

utilization. The obtained results confirm that the proposed ECOA

has excellent potential for better performance in task scheduling

in dynamic and large-scale cloud environments, as it represents a

promising optimization solution for complex problems in cloud

computing.

Keywords—Cloud computing; task scheduling; resource

utilization; chimp optimization

I. INTRODUCTION

Cloud computing has reshaped how computing capabilities
are accessed and used, bringing revolutionary expansion,
adaptability, and affordability [1]. It enables companies and
individuals to dynamically allocate resources to optimize their
processes for optimal performance without requiring investment
in physical infrastructure [2]. From big data analytics to intricate
Internet of Things (IoT) and Artificial Intelligence (AI) systems,
cloud computing forms the pillar of contemporary technology
platforms. Effective management of these resources is the key
for ensuring Quality Of Service (QoS) and optimal system
performance during operations [3]. The recent development of
AI-powered quality control, including employing a hybrid
vision transformer and Convolutional Neural Networks (CNNs)
ensembles for industrial defect inspection, exemplifies the
revolutionary potential of intelligent computing infrastructures
in real-time, high-precision applications [4].

Scheduling tasks in the cloud is one of the biggest challenges
since this environment is dynamic, with heterogeneous
resources [5]. Scheduling involves mapping incoming tasks to
the available resources and must consider many constraints,
such as dependencies between tasks, resource capacities, or QoS
requirements [6]. Poor resource scheduling leads to inefficient
exploitation of resources, prolonged execution of tasks, and
increased business expenses [7]. Further complications in large-

scale and real-time applications aggravate these challenges,
which require innovative ways of handling resource allocation
duties [8]. Similar scheduling concerns are also evident in other
networked environments, such as LTE-Advanced systems,
where dynamic and QoS-aware approaches are essential for
optimizing multi-carrier resource allocation and improving user
experience [9].

While traditional scheduling methods and heuristic
algorithms have widely been put into practice, they still often
suffer from such flaws as premature convergence, inefficiency
in handling complex solution spaces, and poor adaptability
against dynamic cloud environments [10]. Several metaheuristic
algorithms proposed in the literature present promising results,
but they usually show poor performance regarding the harmony
between exploitation and exploration.

Recent studies have highlighted the growing role of machine
learning in analyzing complex economic systems and decision-
making under uncertainty, further underscoring the need for
adaptive and intelligent optimization approaches in dynamic
scenarios [11]. Similarly, in smart grid and energy-aware
systems, integrating energy storage and photovoltaic solutions
has demonstrated the importance of efficient resource
management and real-time optimization, reinforcing the
relevance of such capabilities in cloud-based scheduling
contexts [12]. Despite being efficient, the original version of the
Chimp Optimization Algorithm (COA) has deficiencies in
population diversity and needs to improve in local optimum;
therefore, it cannot guarantee global optimization when tackling
a large-scale task-scheduling problem.

To remedy these defects, this study suggests an Enhanced
Chimp Optimization Algorithm (ECOA) for cloud computing
task scheduling. The enhanced algorithm applies three main
strategies: the highly disruptive polynomial mutation strategy to
keep the variety in populations, Spearman's rank correlation
coefficient for refining less-fit solutions, and the beetle antennae
operator for improving local exploitation.

With the integration of enhancements, ECOA gives a better
balance between exploitation and exploration, resulting in
improved scheduling efficiency and scalability. ECOA obtains
promising results in general because many benchmark datasets
are used under considerable experiments to establish its great
strength in the techniques adopted in task scheduling during this
dynamic cloud environment.

The study is structured into four main sections. Section II
offers an overview of state-of-the-art task scheduling methods
in cloud computing. Section III introduces the proposed ECOA.
Section IV includes extensive experimental analysis of standard

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

666 | P a g e

www.ijacsa.thesai.org

benchmarks with a comparison of the performance of the
developed algorithm with previous algorithms. Section V
critically discusses the practical relevance of the algorithm,
behavior over different datasets, and limitations. Section VI
concludes the primary results of the study, highlights the scope
of the proposed algorithm's potential in large-scale and time-
evolving cloud systems, and provide directions for further
research.

II. RELATED WORKS

Kashikolaei, et al. [13] proposed a hybrid load-balancing
algorithm combining Firefly Algorithm (FA) and Imperialist
Competitive Algorithm (ICA) to address NP-hard challenges in
cloud computing. This enhanced the scheduling speed, load
balancing, CPU time, and makespan. The local search capability
of FA strengthened the global search capability of ICA and
achieved significant improvements in performance metrics.

Velliangiri, et al. [14] suggested a Hybrid Electro Search
with Genetic Algorithm (HESGA) for optimizing cloud task
scheduling. In local optimizations, the hybrid approach uses the
genetic algorithm, and the authors utilize electro-search to
calculate optimal global solutions that would improve load
balancing, makespan, resource utilization, and cost.

Mangalampalli, et al. [15] developed a Cat Swarm
Optimization (CSO) approach for task scheduling to minimize
total power cost, energy usage, migration time, and makespan.
This approach prioritizes tasks and virtual machines, improving
energy efficiency and execution time by considering realistic
workload datasets.

Malathi and Priyadarsini [16] proposed a hybrid Lion
Optimizer and Genetic Algorithm (LO-GA) for load balancing
in cloud environments. The proposed two-stage approach
utilized the lion optimizer for the task and virtual machine
selection probabilities, whereas the modified genetic algorithm

performs the global search. As a result, this hybrid approach
significantly improved resource utilization and turnaround time.

Ghafari and Mansouri [17] introduced an Enhanced African
Vulture Optimization Algorithm (E-AVOA-TS) for task
scheduling in fog-cloud computing. This method guarantees
minimum energy usage, makespan, and cost by sending tasks
sensitive to latency to fog environments. Simulation tests have
been performed on benchmark datasets and have shown the
exceptional performance of E-AVOA-TS over existing
algorithms.

Abualigah, et al. [18] presented an Improved Jaya
Synergistic Swarm Optimization Algorithm (IJSSOA)
integrating Levy flight mechanisms to optimize task scheduling.
By combining Jaya’s exploitation capabilities with SSO’s
collaborative strategy, the algorithm improved scalability,
convergence rate, and outcome, achieving 88% accuracy and a
10% enhancement over the original method.

Boroumand, et al. [19] presented a new methodology to
coordinate tasks in cloud computing, leveraging the features of
the Synergistic Swarm Optimization (SSO) and Jaya algorithms.
In the suggested algorithm, Jaya's exploitation power has been
combined with SSO's collaborative approach to optimize the
quality of the solution, convergence rate, and scalability.

Despite some interesting advances in the state-of-the-art, as
shown in Table I, existing methods have notable scalability,
efficiency, and adaptability limitations across different cloud
environments. ICA+FA and HESGA, for example, consider
only a single objective, such as makespan or load balancing,
while they do not consider multi-objective optimizations. Some
proposals, however, such as CSO and LO-GA, consider multiple
objectives in their optimization but suffer from high
computational complexity and limited scalability.

TABLE I. AN OVERVIEW OF CLOUD TASK SCHEDULING METHODS

Algorithm Metrics improved Strength Weakness

ICA + FA [13]
Makespan, CPU time,

load balancing

Combines the global exploration ability of ICA with the

local search efficiency of FA, achieving improved
scheduling speed and resource utilization.

It requires fine-tuning of parameters for

scalability and limited exploration in high-
dimensional spaces.

HESGA [14]

Makespan, load

balancing, resource
utilization

Combines GA's ability to find local optima with Electro

Search's global optimization, achieving superior task
scheduling performance in multi-cloud environments.

Limited analysis of energy consumption and

migration time; performance is dataset-
dependent.

CSO [15]

Makespan, migration

time, energy

consumption

Addresses multiple objectives, including energy efficiency

and power cost, using realistic workloads, providing a

holistic improvement in task scheduling metrics.

Computational complexity increases with

large-scale tasks that require careful

parameter adjustment.

LO-GA [16]
Turnaround time,
resource utilization

Utilizes lion optimizer for task and VM selection

probabilities and a modified GA for global optimization,

improving resource allocation and reducing bottlenecks.

High computational resources are needed for

hybrid optimization, but there is limited

scalability for diverse tasks.

E-AVOA-TS [17]
Makespan, cost, energy

consumption

Prioritizes latency-sensitive and latency-tolerant tasks
effectively using a fog-cloud hierarchy, achieving superior

task scheduling efficiency and energy savings.

Limited exploration of scalability for
extremely large-scale systems; complexity in

implementation.

IJSSOA [18]
Makespan, convergence

speed, scalability

Integrates Jaya and SSO algorithms with Levy flight for
robust exploration-exploitation trade-offs, achieving high-

quality solutions and fast convergence.

Focuses primarily on benchmark datasets;
limited exploration of dynamic real-world

task variability.

IJSSOA (Levy

Flights
Integration) [19]

Makespan, resource

utilization, scalability

Balances exploration and exploitation effectively with Levy

flights, enabling escape from local optima and providing
scalable performance improvements.

Limited emphasis on energy consumption and

multi-objective optimization across diverse
environments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

667 | P a g e

www.ijacsa.thesai.org

Furthermore, algorithms like IJSSOA show exploration-
exploitation trade-offs confined to benchmark datasets only and
lack robustness for dynamic real-world complexities, including
variability in resources and heterogeneity of tasks. To fill these
gaps, we propose ECOA, which integrates superior mutation
strategies and optimization mechanisms. In this way, the
proposed approach will ensure improved scalability, resource
utilization, and scheduling efficiency while remaining adaptable
to dynamically large-scale cloud environments.

III. PROPOSED METHODOLOGY

A. Problem Formulation

Cloud task scheduling stands for the activity of performing
a scheduler for user-defined computational tasks on available
physical servers or virtual machines for cloud computing.
Scheduling optimizes critical performance indicators, including
execution time, resource utilization, and energy efficiency. Due
to its complexity and constraints, task scheduling is an NP-hard
optimization problem, requiring heuristic and metaheuristic
algorithms for effective solutions.

Tasks (𝑇) are defined as a set 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, where each
task 𝑡𝑖 is characterized by its computational requirements,
execution time, and dependencies. Resources (𝑅) are
represented as 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚} , each having availability,
memory, and processing capacity characteristics. The binary
variable 𝑥𝑖𝑗 indicates whether task 𝑡𝑖 is allocated to resource 𝑟𝑗
as in Eq. (1):

𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑡𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

 The goal is to allocate tasks effectively, maintaining
balanced resource utilization while meeting performance
targets. Task scheduling is constrained by two key factors:
dependency and resource. Some tasks depend on others,
represented as 𝐷𝑖, a sequence of tasks necessary to be
accomplished in advance of 𝑡𝑖 starts execution. Resources have
finite capacity, denoted as 𝑈𝑗, limiting the simultaneous
execution of tasks on a given resource.

The task scheduling problem minimizes several
performance metrics, including resource utilization, makespan,
and total execution time. Resource utilization ensures the best
use of resources by reducing the time spent idling and thus
balancing the workloads. The makespan concerns the time from
the beginning of the first task to the end of the last task. Total
execution time refers to the overall time all tasks take to
complete. The entire VM count in the cloud setup is calculated
using Eq. (2):

ℎ = ∑ 𝑁𝑣𝑚𝑖

𝑁𝑝ℎ

𝑖=1

 (2)

where, 𝑁𝑝ℎ represents the total number of physical hosts,
and 𝑁𝑣𝑚𝑖 stands for the number of VMs on the 𝑖th physical host.
The average number of VMs on each physical host is calculated
as in Eq. (3):

𝑣𝑖𝑗 =
1

𝑁𝑣𝑚𝑖

∑ 1

𝑁𝑣𝑚𝑖

𝑗=1

 (3)

The expected completion time for a task 𝑘 on a VM 𝑗 is given
by Eq. (4):

𝐸𝑇𝐶(𝑗𝑘) =
𝐿𝑘

𝑃𝑗

 (4)

where, 𝐿𝑘 is the length of the task (in millions of
instructions), and 𝑃𝑗 is the processing performance of VM 𝑗. The
execution time for all tasks assigned to a VM 𝑗 is computed
using Eq. (5):

𝐸𝑇𝑗 = ∑ 𝑥(𝑗𝑘). 𝐸𝑇𝐶(𝑗𝑘)

𝑁

𝑘=1

 (5)

where, 𝑥(𝑗𝑘) is the decision variable indicating task
assignment, finally, the makespan is determined as in Eq. (6):

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝐸𝑇𝑗) (6)

Heuristic and metaheuristic algorithms, formulated in an
optimization setting, efficiently explore the vast solution space.
These algorithms repeatedly evaluate various mappings of tasks
to resources, considering constraints to optimize objective
functions. The challenge is to find the trade-off between the two
objective functions: minimizing makespan and maximizing
resource utilization. As the problem scales, dynamic resource
availability, and task variability necessitate robust, adaptive
approaches to achieve near-optimal solutions within reasonable
time frames.

B. Enhanced Chimp Optimization Algorithm

COA is a swarm intelligence-based metaheuristic inspired
by the cooperative hunting strategies of chimpanzees. This
algorithm divides chimpanzees into four hierarchical roles:
attacker, barrier, chaser, and driver, based on their importance in
the optimization process. While the original COA has shown
promise in solving various optimization problems, it suffers
from limited population diversity during initialization and often
gets trapped in local optima during the exploitation phase. COA
is a metaheuristic inspired by swarm intelligence which is
inspired by the cooperative hunting strategies of chimpanzees.
In this algorithm, chimpanzees fall into four hierarchical roles
based on their importance in the optimization process: attacker,
barrier, chaser, and driver.

The original COA has produced promising results for
solving different optimization problems. However, it suffers
from limited population diversity during initialization and often
gets trapped in local optima during exploitation. To overcome
these limitations, the Enhanced COA (ECOA) integrates three
advanced mechanisms: Highly Disruptive Polynomial Mutation
(HDPM), Spearman’s rank correlation coefficient, and the
Beetle Antennae Operator (BAO). These enhancements
improve the balance between exploration and exploitation,
ensuring superior optimization performance.

As shown in Fig. 1, in the original COA, the position of the
chimp is updated by calculating the weighted average of the
contributions from the four roles. The mathematical model for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

668 | P a g e

www.ijacsa.thesai.org

updating the position of the chimp is given as Eq. (7) and Eq.
(8):

𝑋𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) =
𝑋1 + 𝑋2 + 𝑋3 + 𝑋4

4
 (7)

where,

𝑋1 = 𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟(𝑡) − 𝛼1. 𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝑋2 = 𝑋𝐵𝑎𝑟𝑟𝑖𝑒𝑟(𝑡) − 𝛼2. 𝑑𝐵𝑎𝑟𝑟𝑖𝑒𝑟

𝑋3 = 𝑋𝐶ℎ𝑎𝑠𝑒𝑟(𝑡) − 𝛼3. 𝑑𝐶ℎ𝑎𝑠𝑒𝑟

𝑋4 = 𝑋𝐷𝑟𝑖𝑣𝑒𝑟(𝑡) − 𝛼4. 𝑑𝐷𝑟𝑖𝑣𝑒𝑟

(8)

Fig. 1. Position updating in COA

The coefficients 𝑎1, 𝑎2, 𝑎3, and 𝑎4 represent dynamic
adjustment factors that decrease nonlinearly over iterations,
while 𝑑Attacker, 𝑑Barrier, 𝑑Chaser, and 𝑑Driver are the distances between
the chimp and the prey, modeled as in Eq. (9):

𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = |𝑐. 𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟(𝑡) − 𝑚. 𝑋(𝑡)| (9)

where, 𝑐 is a scaling factor (𝑐=2𝑟2, with 𝑟2∈[0,1]) and 𝑚 is a
chaotic map vector that introduces randomness to the search
process.

The position update ensures that the chimps move
collectively toward the global optimum while maintaining role-
specific contributions.

HDPM addresses the limitation of population diversity in the
initialization phase by enhancing the global exploration
capability of the algorithm. Traditional polynomial mutation
fails to utilize boundary variables effectively, which HDPM
resolves by introducing a mutation operator that can handle
boundaries efficiently. The updated position of a chimp 𝑋new is
calculated as in Eq. (10):

𝑋𝑛𝑒𝑤 = 𝑋 + 𝛿𝑘. (𝑢𝑏 − 𝑙𝑏) (10)

where, 𝑢𝑏 and 𝑙𝑏 are the upper and lower bounds of the
search space, respectively. The mutation factor 𝛿𝑘 is computed
using Eq. (11):

𝛿𝑘

= {
[2𝑟 + (1 − 2𝑟). (1 − 𝛿1)

𝜂𝑚+1]
1

𝜂𝑚+1 − 1, 𝑖𝑓 𝑟 ≤ 0.5

1 − [2(1 − 𝑟) + 2(𝑟 − 0.5). (1 − 𝛿2)
𝜂𝑚+1]

1
𝜂𝑚+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

This mutation mechanism ensures a diverse initial
population, enabling the algorithm to explore the search space
more comprehensively in the early stages.

Spearman’s rank correlation coefficient (𝜌) measures the
relationship between the fitness of the attacker chimp (leader)
and the driver chimps (followers). The value of 𝜌 determines
whether the driver chimps require position updates to enhance
their contribution. The coefficient is calculated using Eq. (12):

𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
 (12)

where, 𝑑𝑖 is the difference between the ranks of two variables
(e.g., attacker and driver fitness), and 𝑛 is the dimension of the
problem. If 𝜌 ≤ 0, the driver’s position is refined using the BAO
to prevent stagnation.

BAO enhances local exploitation by simulating the sensory
behavior of beetles. The beetle uses its antennae to search left
and right areas for better solutions. The search direction is
determined using a normalized random vector as in Eq. (13):

𝑏⃗ =
𝑟𝑛𝑑(𝑛, 1)

‖𝑟𝑛𝑑(𝑛, 1)‖
 (13)

The beetle explores the search space using Eq. (14):

𝑋𝑟(𝑡) = 𝑋(𝑡) + 𝑑(𝑡). 𝑏⃗

𝑋𝑙(𝑡) = 𝑋(𝑡) − 𝑑(𝑡). 𝑏⃗
(14)

where, 𝑑(𝑡) represents the step size calculated as in Eq. (15):

𝑑(𝑡) =
𝛿(𝑡)

𝐶

𝛿(𝑡) = 𝐾. 𝛿(𝑡 − 1)

(15)

where, 𝐾 = 0.95 and 𝐶 = 2. The beetle’s new position is
updated as in Eq. (16):

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝛿(𝑡). 𝑏⃗ . 𝑠𝑖𝑔𝑛 (𝑓(𝑋𝑟(𝑡))

− 𝑓(𝑋𝑙(𝑡)))

(16)

This mechanism allows the driver chimps to exploit fine-
grained while avoiding local optima. ECOA operates through a
systematic workflow designed to achieve optimal solutions
effectively. The population is initialized using HDPM to ensure
diversity within the search space. Chimps are assigned specific
roles based on their fitness evaluations, such as attacker, barrier,
chaser, or driver. The position updates occur in subsequent steps,
starting with calculating Spearman’s rank correlation coefficient

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

669 | P a g e

www.ijacsa.thesai.org

(𝜌) for driver chimps. If 𝜌 ≤ 0, the BAO is applied to refine the
driver’s position, enhancing local exploitation.

The positions of all chimps are updated using role-specific
equations to facilitate global optimization. Afterwards, the
fitness of all updated positions is reevaluated, and roles are
reassigned accordingly. This iterative approach continues until
the algorithm converges on an optimal solution or the maximum
number of iterations, ensuring a robust balance between
exploitation and exploration. Fig. 2 illustrates the proposed
algorithm in the form of a flowchart.

Fig. 2. Flowchart of ECOA.

The integration of HDPM, Spearman’s correlation, and the
BAO enables ECOA to overcome the limitations of the original
COA. The algorithm maintains a better equilibrium between
exploration and exploitation, making it more robust for solving
complex optimization problems in cloud computing,
engineering, and other domains. This comprehensive framework
ensures faster convergence, higher solution quality, and
adaptability to dynamic environments.

IV. RESULTS

The proposed ECOA was implemented and tested on a
system whose specifications are given in Table II. The setup
chosen was sufficient to computationally test the performance
of ECOA over a wide variety of synthetic datasets. Synthetic

datasets were used to evaluate task scheduling performance.
Each dataset consisted of tasks from 100 to 500, and task lengths
were randomly chosen between 1000 and 2000 MI. Virtual
machines had processing capacities from 100 to 1000 MIPS.
These datasets provide controlled experimentation under
various workloads and resource configurations.

TABLE II. SYSTEM SETUP FOR TESTING THE PROPOSED ECOA

Parameter Specification

Operating system Windows 11 64-bit

CPU Intel(R) Core(TM) i7-3770 @ 3.90 GHz

SDD 240 GB

Memory 32 GB DDR4

ECOA was tested against some state-of-the-art optimization
algorithms, namely Geyser-Inspired Algorithm (GIA) [20],
Prairie Dog Optimization Algorithm (PDOA) [21], Dwarf
Mongoose Optimization Algorithm (DMOA) [22], Reptile
Search Algorithm (RSA) [23], and Arithmetic Optimization
Algorithm (AOA) [24]. These algorithms' parameter settings are
set to the values indicated in their respective source studies.

The most important performance metric in task scheduling
is called makespan, referring to the total time taken to execute
all the tasks. Fig. 3 depicts the values of makespan for each of
the tasks. It can be noticed that the value of makespan rises with
the increase in the number of tasks in all algorithms, which
reflects an increase in computational complexity and resource
demand.

However, ECOA reliably reached lower makespan values
than other algorithms and thus showed better efficiency in
scheduling. For example, the higher makespan value by
algorithms like PDOA and GIA indicated that the scheduling
solution was not optimal. AOA-LPO has increased stability,
considering a variation of loads.

Fig. 4 depicts the Average Resource Utilization (ARU) over
a range of tasks. ECOA maintained high values of ARU,
reflecting efficient utilization of computational resources. This
remained consistent even with increasing task counts, thus
further proving the adaptability of the algorithm to larger
workloads. Other algorithms, such as PDOA and DMOA, also
maintained relatively stable ARU values, while RSA and GIA
exhibited large variances, indicating sensitivity to workload
size.

Fig. 5 depicts the Diversity Index (DI), which represents the
distribution variety of the tasks. For most practical cases, the
value of DI is preferred to be lower when the distribution among
resources is even. ECOA had a steady DI for different
workloads, indicating the ability to maintain load balance
effectively. Other algorithms had varying DI values with
increased workload; hence, there was a drop in efficiency while
managing task diversity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

670 | P a g e

www.ijacsa.thesai.org

Fig. 3. Makespan comparison

Fig. 4. ARU Comparison

Fig. 5. DI Comparison

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

671 | P a g e

www.ijacsa.thesai.org

V. DISCUSSION

The outcomes demonstrate the effectiveness of ECOA in
task scheduling optimization for cloud computing. Through
improved makespan, increased resource utilization, and
balanced task diversity, ECOA performed better than other
algorithms for various workload conditions. Incorporating
HDPM, Spearman’s rank correlation, and the BAO enabled
ECOA to adjust to multiple workload situations while delivering
stable performance dynamically.

In addition, the results emphasize the significance of using
task scheduling algorithms optimized for a particular workload
and resource setup. Although AOA and LPO were effective
across workloads, some algorithms, including SSOA and GIA,
were workload-sensitive. These observations can inform the
design and choice of algorithms for effective cloud resource
management.

It is noteworthy that ECOA consistently reduces makespan
and optimizes average resource utilization in light and heavy
task loads, indicating that it is not tuned to the specific
conditions of the dataset but is capable of generalized
optimization. On the contrary, enhanced performance becomes
even stronger in loads with large task diversity and resource
constraints, where the balance between exploration and
exploitation becomes paramount. Thus, the proposed algorithm
best suits complex, large-scale, and heterogeneous scenarios yet
still performs competitively under simpler conditions.

The theoretical contributions made by ECOA directly
resulted in practical improvements to cloud computing setups.
Cloud computing providers are tasked with efficiently assigning
computational resources while satisfying dynamic user
demands. If the scheduling of tasks is inefficient, it can result in
idle servers, increased power consumption, and failure to fulfill
service-level agreements. The proposed method of ECOA
overcomes these issues by providing a scalable, adaptive, and
low-overhead method that enhances the utilization of resources,
minimizes task execution time, and preserves load balance in
different intensities of workload. These attributes are highly
desired in real-world applications, including multi-tenant data
centers, IoT-hardened infrastructures, and edge-cloud hybrid
setups since performance degradation in these setups would
incur considerable costs in finance and operations. Hence, the
theoretical design of ECOA proves to be academically sound
and meets practical demands in contemporary cloud computing
systems.

Notwithstanding the encouraging performance realized by
ECOA, a few limitations should be noted. First, the
experimental validations were performed on simulated datasets
in a controlled setup, which might not reflect the real-world
complexities and variations in cloud environments.
Consequently, the algorithm's performance in heterogeneous,
time-unpredictable, and large-scale production environments
still awaits further confirmation. Second, the implementation
focuses mainly on single-objective optimization, aiming for
makespan and resource consumption; multi-objective trade-offs,
e.g., energy efficiency, service level agreements breaching, or
economic cost, were not extensively analyzed.

In addition, while incorporating operators such as
polynomial mutation and BAO enhances convergence behavior,
the algorithm can introduce some computational overhead in
time-sensitive or limited-resource deployments. Future
directions must compare ECOA in production of cloud
platforms, extend it to multi-objective cases, and analyze its
scalability over dynamic loads and different infrastructure
setups.

VI. CONCLUSION

This study proposed the ECOA, a new metaheuristic
algorithm, to handle cloud computing task scheduling problems.
Accordingly, Spearman's rank correlation coefficient, HDPM,
and the BAO mechanism were adopted in the ECOA, effectively
improving the harmony between exploration and exploitation.
The suggested algorithm has been extensively evaluated against
some of the latest optimization methods using synthetic data sets
and yielded superior results on all key metrics, such as
makespan, resource utilization, and task distribution diversity.
The experimental results proved that ECOA showed
consistently lower makespan values, higher average resource
utilization, and stable diversity indices for the increasing
workload size.

The dynamic adaptability of ECOA under changing cloud
environments brings out its robustness and scalability for
effective cloud resource management. ECOA delivers an
effective and scalable framework for optimizing task scheduling
in cloud computing. Further extension can be done by its
application on real-world datasets and finding its performance
in multi-objective optimization problems like minimizing
energy consumption along with the time of execution of tasks.
Exploring various directions for integrating ECOA within a
distributed and edge computing environment would also be
exciting.

REFERENCES

[1] M. Shariq et al., "Anonymous and reliable ultralightweight RFID-enabled
authentication scheme for IoT systems in cloud computing," Computer
Networks, vol. 252, p. 110678, 2024.

[2] A. Zhu, H. Lu, S. Guo, Z. Zeng, M. Ma, and Z. Zhou, "SyRoC: Symbiotic
robotics for QoS-aware heterogeneous applications in IoT-edge-cloud
computing paradigm," Future Generation Computer Systems, vol. 150,
pp. 202-219, 2024.

[3] D. Wang, "Improved Cat Swarm Optimization Algorithm for Load
Balancing in the Cloud Computing Environment," International Journal
of Advanced Computer Science and Applications, vol. 14, no. 7, 2023.

[4] A. Hosseinzadeh, M. Shahin, M. Maghanaki, H. Mehrzadi, and F. F.
Chen, "Minimizing wastevia novel fuzzy hybrid stacked ensembleof
vision transformers and CNNs to detect defects in metal surfaces," The
International Journal of Advanced Manufacturing Technology, pp. 1-26,
2024, doi: 10.1007/s00170-024-14741-y.

[5] B. Ya-meng, W. Yang, and W. Shen-shen, "Deadline-aware Task
Scheduling for Cloud Computing using Firefly Optimization Algorithm,"
International Journal of Advanced Computer Science and Applications,
vol. 14, no. 5, 2023.

[6] F. S. Prity, M. H. Gazi, and K. A. Uddin, "A review of task scheduling in
cloud computing based on nature-inspired optimization algorithm,"
Cluster computing, vol. 26, no. 5, pp. 3037-3067, 2023.

[7] S. Gurusamy and R. Selvaraj, "Resource allocation with efficient task
scheduling in cloud computing using hierarchical auto-associative
polynomial convolutional neural network," Expert Systems with
Applications, vol. 249, p. 123554, 2024.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

672 | P a g e

www.ijacsa.thesai.org

[8] A. Ahmed, M. Adnan, S. Abdullah, I. Ahmad, N. Alturki, and L. J.
Menzli, "An Efficient Task Scheduling for Cloud Computing Platforms
Using Energy Management Algorithm: A Comparative Analysis of
Workflow Execution Time," IEEE Access, 2024.

[9] S. E. Mahdimahalleh and V. T. Vakili, "Optimizing Scheduling
Techniques for Enhanced Carrier Aggregation in LTE-Advanced
Networks," European Journal of Electrical Engineering and Computer
Science, vol. 8, no. 6, pp. 26-32, 2024, doi:
https://doi.org/10.24018/ejece.2024.8.6.675.

[10] R. Nithiavathy, S. Janakiraman, and M. Deva Priya, "Adaptive Guided
Differential Evolution‐based Slime Mould Algorithm‐based efficient
Multi‐objective Task Scheduling for Cloud Computing Environments,"
Transactions on Emerging Telecommunications Technologies, vol. 35,
no. 1, p. e4902, 2024.

[11] M. B. Bagherabad, E. Rivandi, and M. J. Mehr, "Machine Learning for
Analyzing Effects of Various Factors on Business Economic," Authorea
Preprints, 2025, doi:
https://doi.org/10.36227/techrxiv.174429010.09842200/v1.

[12] A. Kermani et al., "Energy management system for smart grid in the
presence of energy storage and photovoltaic systems," International
Journal of Photoenergy, vol. 2023, no. 1, p. 5749756, 2023, doi:
https://doi.org/10.1155/2023/5749756.

[13] S. M. G. Kashikolaei, A. A. R. Hosseinabadi, B. Saemi, M. B. Shareh, A.
K. Sangaiah, and G.-B. Bian, "An enhancement of task scheduling in
cloud computing based on imperialist competitive algorithm and firefly
algorithm," The Journal of Supercomputing, vol. 76, no. 8, pp. 6302-6329,
2020.

[14] S. Velliangiri, P. Karthikeyan, V. A. Xavier, and D. Baswaraj, "Hybrid
electro search with genetic algorithm for task scheduling in cloud
computing," Ain Shams Engineering Journal, vol. 12, no. 1, pp. 631-639,
2021.

[15] S. Mangalampalli, S. K. Swain, and V. K. Mangalampalli, "Multi
objective task scheduling in cloud computing using cat swarm
optimization algorithm," Arabian journal for science and engineering, vol.
47, no. 2, pp. 1821-1830, 2022.

[16] K. Malathi and K. Priyadarsini, "Hybrid lion–GA optimization algorithm-
based task scheduling approach in cloud computing," Applied
Nanoscience, vol. 13, no. 3, pp. 2601-2610, 2023.

[17] R. Ghafari and N. Mansouri, "E-AVOA-TS: Enhanced African vultures
optimization algorithm-based task scheduling strategy for fog–cloud
computing," Sustainable Computing: Informatics and Systems, vol. 40, p.
100918, 2023.

[18] L. Abualigah et al., "Improved Jaya Synergistic Swarm Optimization
Algorithm to Optimize Task Scheduling Problems in Cloud Computing,"
Sustainable Computing: Informatics and Systems, p. 101012, 2024.

[19] A. Boroumand, M. Hosseini Shirvani, and H. Motameni, "A heuristic task
scheduling algorithm in cloud computing environment: an overall cost
minimization approach," Cluster Computing, vol. 28, no. 2, p. 137, 2025.

[20] M. Ghasemi, M. Zare, A. Zahedi, M.-A. Akbari, S. Mirjalili, and L.
Abualigah, "Geyser inspired algorithm: a new geological-inspired meta-
heuristic for real-parameter and constrained engineering optimization,"
Journal of Bionic Engineering, vol. 21, no. 1, pp. 374-408, 2024.

[21] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, and A. H.
Gandomi, "Prairie dog optimization algorithm," Neural Computing and
Applications, vol. 34, no. 22, pp. 20017-20065, 2022.

[22] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah, "Dwarf mongoose
optimization algorithm," Computer methods in applied mechanics and
engineering, vol. 391, p. 114570, 2022.

[23] L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, and A. H.
Gandomi, "Reptile Search Algorithm (RSA): A nature-inspired meta-
heuristic optimizer," Expert Systems with Applications, vol. 191, p.
116158, 2022.

[24] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H. Gandomi,
"The arithmetic optimization algorithm," Computer methods in applied
mechanics and engineering, vol. 376, p. 113609, 2021.

