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Abstract—To address the issue of inadequate diagnosis of 

power line faults, an automated power line fault diagnosis 

technology is put forward. In this context, the research leverages 

the object detection algorithm YOLOv5 to construct a fault 

diagnosis model and enhances its anchor box loss function. In 

addition, the study introduces digital twin models for fault point 

localization, and improves the recognition model by introducing 

GhostNet and attention mechanism, thereby enhancing the 

diagnostic performance of the technology in multi-objective 

scenarios. In the performance test of the loss function, the 

improved loss function performs the best in both regression loss 

and intersection over union ratio, with the average loss value and 

intersection over union ratio being 125 and 0.986, respectively. In 

multi-scenario fault diagnosis, the research model performs the 

best in accuracy and model loss, with values of 0.986 and 0.00125, 

respectively. In multi-scenario fault diagnosis, such as abnormal 

heating detection, when the number of targets is 4, the relative 

error of the research model is 0.86%, which is better than similar 

models. Finally, in the testing of frame rate recognition and 

diagnostic time, the research model shows excellent performance, 

surpassing similar technologies. The technology proposed by the 

research has good application effects. This study provides 

technical support for the construction of power informatization 

and line maintenance. 

Keywords—YOLOv5; route; fault diagnosis; digital twin; loss 

function 

I. INTRODUCTION 

As a key component of the power system, the safe and stable 
operation of power lines is crucial for socio-economic 
development. However, the environment in which power lines 
are located is complex and ever-changing, and they are 
susceptible to natural disasters, human damage, and other 
factors, leading to frequent failures. Traditional power line fault 
detection methods mainly rely on manual inspection and rule-
based signal processing, which are inefficient, costly, and 
difficult to cope with complex and changing fault modes. In 
recent years, with the development of artificial intelligence 
technology, Deep Learning (DL) has gradually been applied in 
the field of power line fault detection and has achieved excellent 
results. For example, fault diagnosis technology based on deep 
convolutional neural networks can capture key features of power 
lines and train to recognize complex targets. In addition, there is 
a fault diagnosis technology based on recurrent neural networks, 
which achieves fault analysis through feature extraction of 
power lines. However, the above-mentioned DL techniques still 
face problems in the processing of power lines in complex 

scenarios, such as high cost of data annotation, long model 
training time, and poor recognition accuracy. In recent years, 
You Only Look Once version 5 (YOLOv5), as an advanced 
object detection algorithm, has shown great potential in power 
line fault detection due to its fast detection speed and high 
accuracy. Compared to traditional convolutional neural 
networks, it can handle more complex background 
environments and detect a larger range of targets. However, it 
still faces difficulties in dealing with small targets and complex 
scenarios, and precise positioning of fault areas is also 
challenging. At present, digital twin (DT) models are gradually 
receiving attention in the field of electricity. DTs can reflect the 
state and behavior of physical systems in real time by 
constructing virtual models that correspond to physical entities. 
They use data collected by sensors to analyze the operating 
status of power lines, thereby more accurately locating fault 
points. Consequently, to achieve efficient detection of power 
faults, the research has introduced an intelligent line fault 
diagnosis technology that integrates DT models with target-
detection algorithms, specifically YOLOv5. This technology 
boasts two notable innovations. Firstly, it focuses on optimizing 
the anchor box loss function. By doing so, it can effectively filter 
out irrelevant targets, thereby streamlining the diagnosis process 
and enhancing overall efficiency. Secondly, the research 
incorporates the GhostNet architecture and the Coordinate 
Attention (CA) mechanism into the YOLOv5 algorithm. This 
integration aims to refine the algorithm's capabilities, enabling 
it to deliver superior diagnostic performance even in complex 
operational scenarios. In summary, this study offers crucial 
technical support for the establishment of a stable and secure 
power system. 

This study is divided into six sections. The first section is the 
introduction, which analyzes the shortcomings of traditional 
power line detection methods and the application prospects of 
DL and DT technology. The second section is related work, 
which summarizes the current related research. The third section 
is the methodology section, which proposes a fault detection 
technique based on improved YOLOv5 and DT model, 
including optimizing the anchor box loss function, introducing 
GhostNet and CA mechanism, etc. The forth section is the 
analysis of experimental results, which verifies the performance 
advantages of improved loss functions (such as Focal IoU), and 
compares the accuracy, loss values, frame rates, and diagnostic 
time of different models in multi scenario fault detection. The 
fifth section is a discussion of the results, demonstrating the 
efficiency and superiority of the research model in fault 
detection. The sixth section is the conclusion of the study. 
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II. RELATED WORK 

Ensuring the secure and dependable functioning of power 
grid lines is essential for reliable power supply. Traditional 
detection methods rely on manual inspection, which suffers 
from issues like inefficiency and poor real-time performance [1]. 
The rise of DL technology has offered an alternative 
methodology for power grid line detection. It constructs a 
complex neural network model to automatically extract multi-
source data features such as images and signals, achieving 
efficient identification and localization of line faults [2]. 
Alexander Stonier et al. carried out a study on the problem of 
faults in solar photovoltaic microgrids. To improve the 
effectiveness of fault detection, it analyzed common faults in 
photovoltaic modules, inverters, batteries, and charging 
controllers. Techniques such as DL were introduced to analyze 
and classify fault types. The research results indicated that this 
technology could effectively detect fault problems. It provided 
strategies for the continuous operation of microgrids under fault 
conditions, but its shortcomings lied in insufficient depth in 
analysis of the implementation details of specific diagnostic 
techniques [3]. Shakiba et al. carried out study on the issue of 
insufficient fault detection in transmission lines. So research was 
conducted on machine learning-based transmission line fault 
detection technology, covering traditional methods such as 
Naive Bayes classifiers. A detection model was constructed 
using deep convolutional networks and fuzzy neural networks, 
and fault diagnosis was achieved through adaptive inference and 
other methods. The findings indicated that this study could 
significantly improve the accuracy of line detection and meet the 
safety requirements of the power grid. However, its 
shortcomings lied in the lack of in-depth validation of the 
model's generalization ability [4]. Li et al. studied the issue of 
insufficient accuracy in unmanned aerial vehicle (UAV) power 
inspection systems and designed a detection system based on 
intelligent UAVs. The technical process included autonomous 
planning of detection paths, sliding mode control algorithms, 
and motion detection schemes, which used advanced object 
detection algorithms to achieve problem analysis. The research 
results indicated that the system significantly enhanced the 
effectiveness and precision of power inspection, but its 
shortcomings lied in the need to further improve the endurance 
and flight stability of UAVs in complex environments [5]. Chen 
et al. studied the problem of insufficient diagnosis of intelligent 
distribution live working robots and proposed an intelligent 
distribution live working robot system based on stereo cameras 
to replace manual completion of high-risk distribution network 
maintenance tasks. This system combined dual robotic arms, 
wireless tools, visual perception systems, and path planning 
technology in virtual simulation environments. The research 
results indicated that technology could achieve problem 
diagnosis within a brief timeframe with higher efficiency. 
However, the technical limitation lied in its limited adaptability 
to complex job scenarios [6]. 

As the power system undergoes expansion and grows 
increasingly complex, conventional approaches to power fault 

detection are encountering numerous challenges. DT technology 
achieves precise monitoring and fault warning of power 
equipment by constructing virtual models and real-time 
mapping of physical entity states. Gómez Luna et al. conducted 
research on overcurrent protection caused by distributed energy 
access in distribution networks and proposed a new overcurrent 
protection scheme based on DTs. This scheme adopted 
coordinated protection standard settings and coordinated 
intelligent electronic devices, utilizing power hardware 
technology to connect real relays to the DT model of the analog 
network. The outcomes revealed that this method improved the 
coordination and adaptability of overcurrent protection, but 
there is still a problem of lack of coordination with different 
distributed energy sources [7]. Sinagra et al. conducted research 
on pressure regulation and energy recovery in water distribution 
networks and proposed an advanced real-time control logic 
based on DTs. This technology optimized the configuration of 
turbines and valves, dynamically updated network status using 
DT models, and achieved efficient hydroelectric power 
generation. The results indicated that this technology exhibited 
higher robustness and efficiency in different operational 
scenarios, but its adaptability to complex networks still needs 
further validation [8]. Sharma et al. conducted research on the 
bottleneck problem of electric vehicle battery assembly and 
proposed a three-stage DT design and analysis approach. This 
method developed robot assembly line configurations of 
different scales through DT design and simulation, and 
evaluated and optimized the speed and cost of the assembly 
system. The research results indicated that this method could 
quickly and economically assemble electric vehicle battery 
modules, but the implementation difficulty and cost control in 
actual production still need further exploration [9]. 

In summary, equipment failures in the power system will 
pose specific challenges to the operation and safety of the power 
grid. Currently, DL finds extensive application in the domain of 
power safety, providing technical support for power safety data 
analysis and fault diagnosis. In addition, DT technology adopts 
a physical virtual construction of power detection system, which 
can analyze the power grid status in real time and provide 
support for power system equipment failures. Therefore, to 
address the issues of slow and poor accuracy in current power 
line fault diagnosis, an intelligent line fault diagnosis technology 
is proposed by combining DT model and YOLOv5 algorithm. 

III. METHODS AND MATERIALS 

A. Modeling of Power Line Fault Detection Based on DL 

With the expansion of the power system, frequent line 
failures seriously affect the reliability of power supply. 
Traditional detection approaches have low efficiency and poor 
accuracy, making it hard to fulfill the requirements. Therefore, 
the research proposes an intelligent line fault detection 
technology based on improved YOLOv5 to enhance the safety 
operation of the power grid. The YOLOv5 network structure is 
in Fig. 1. 
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Fig. 1. YOLOv5 network structure.

According to Fig. 1, YOLOv5 mainly consists of input 
terminals, backbone, neck, and output terminals [10]. Among 
them, the input terminal inputs the power line image data that 
needs to be detected (collected by the DJI CS-SR1 UAV), and 
backbone is responsible for feature extraction. Through 
convolution and residual connections, image features are 
efficiently extracted to achieve the recognition and analysis of 
fault points in the image line. The YOLO series of target 
algorithms are all based on anchor box expansion for object 
detection [11]. Among them, the width and height of the anchor 

box are defined as wp
 and np

, and the offset of the X and Y 

axes in the upper left corner of the anchor diagram is set as xc
 

and yc
. When detecting the fault target point, the original 

anchor box is a dashed box, while the predicted box is a blue 
box. In the detection of power lines, the network needs to fine 

tune the anchor boxes based on four offsets yt
, xt , ht , and wt  

to achieve accurate prediction of the results. The border 
prediction is in Eq. (1) [12]. 
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In Eq. (1), xb
, yb

, hb
, and wb

 respectively represent the 
positions of the predicted border on the X and Y axes, as well as 

the height and width of the border, and   represents the 
activation function. The principle of adjusting the anchor target 
box is in Fig. 2. 
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Fig. 2. Schematic diagram of anchor box target adjustment. 

In Fig. 2, it is essential to adjust the parameters to make the 
prediction box detect the line fault point more accurately. 
However, in actual line fault detection, there are few fault points 
in aerial images. To enable the model to detect effective target 
points, the YOLOv5 bounding box (BB) regression function 
will be optimized to filter out useless anchor boxes and improve 
the detection efficiency of fault targets. The key area in 
Intersection over Union (IoU) is introduced to reflect the 

prediction of BB [13]. The loss function IoUL
 for predicting 

similarity with the real border is calculated as presented in Eq. 
(2). 

| |
1

| |
IoU

A B
L

A B


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
          (2) 

In Eq. (2), A  represents the predicted anchor box and B  
denotes the real anchor box. In graph fault detection, if the IoU 
value is set to 1 and the anchor box is a positive sample, it 
indicates that the similarity between the predicted and real target 
anchor boxes is high, and both contain the target to be 
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recognized. When the IoU value is below 0.5, the anchor boxes 
are negative samples and there is no intersection between the 

two anchor boxes. In addition, a loss function GIoUL
 was 

introduced in the study to analyze the bounding rectangle of two 
anchor boxes. The analysis of bounding rectangles can better 
solve the proportion of non-overlapping areas, which is 
beneficial for determining the overlap distance between two 

anchor boxes [14]. The calculation of GIoUL
 is in Eq. (3). 

| ( |
1

| |GIoU

C A B
L IoU

c

 
  

    (3) 

In addition, the study uses the d  variable in the DIoUL
 

function to represent the Euclidean distance between the two 
center coordinates within the anchor box (points A and B), with 

a diagonal distance of c . The penalty term in the DIoUL
 

function can avoid the occurrence of larger BB when two anchor 
boxes are far apart, which affects the network's detection of fault 

points. The calculation of DIoUL
 is in Eq. (4). 
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In Eq. (4), 


 represents the Euclidean distance parameter. 

In the DIoUL
 function, if the loss value is large, DIoUL

 is used 

for optimization, which is faster than the DIoUL
 function, but it 

is not applicable when the midline points coincide. Therefore, 
by combining the Euclidean distance of the center point, 

overlapping area, and the aspect ratio of the border, a CIouL
 

function is introduced, which is expressed as Eq. (5). 
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In Eq. (5), a  represents a comprehensive adjustment 

parameter and v  represents the width height difference 

parameter. Although the CIouL
 function can more accurately 

reflect the differences in anchor boxes, the width height 

difference parameter v  cannot specifically reflect the 
differences in height and width between the real and predicted 

borders, making the optimization process of function CIouL
 

unreasonable. Therefore, the research has incorporated a focus 
on high-quality anchor box attention mechanism, namely 

EloULoss
 function, which enhances the screening of high-

quality boxes based on function CIouL
, reducing the loss of 

width and height between the target box and anchor box [15]. Its 
expression is in Eq. (6). 
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In Eq. (6), 
gtw  and 

gth  represent the disparities in anchor 

frame width and height, aspL
 is the direction loss, wc

 and hc
 

represent the highest value of coverage width and height, and 

disL
 is the distance loss. In addition, to enable the network to 

only detect high-quality line fault images, the study used IoU 
weighted processing to obtain the target loss function filtered by 
anchor boxes, as shown in Eq. (7): 

Focal EloU EIoUL IoU L 
         (7) 

In Eq. (7),  represents the suppression quality sample 
parameter in the network. In this research section, the 
improvement of the anchor box part in YOLOv5 enhances the 
network's screening and recognition of fault samples in line 
images, improving the efficiency and quality of network 
detection. 

B. Line Fault Detection Modeling Based on YOLOv5 and DT 

Model 

In the previous section, the improved YOLOv5 algorithm 
was used to detect line faults. However, in large-scale multi-
objective power networks, this technology cannot quickly 
achieve efficient detection of multiple faulty lines, limiting its 
applicability. Therefore, the next step is to introduce DT 
technology to determine large-scale line fault points, while 
utilizing the improved YOLOv5 algorithm to achieve efficient 
detection of multi-target fault points. Among them, the power 
DT model is in Fig. 3. 

According to Fig. 3, the power DT model contains two main 
parts: the physical power grid and the virtual power grid. Among 
them, the physical part includes temperature, wind speed, visual 
detection, and other sensor parts, responsible for detecting the 
status of power grid transformers, lines, and various equipments 
in real scenes. The virtual part will map physical entity data to 
the geometric model of the power grid, and feedback the state 
information to the application layer through the twin data center, 
thereby achieving real-time monitoring of the power network 
[16]. Therefore, the study utilizes twin models to quickly 
determine the location of power line faults, while adopting an 
improved YOLOv5 algorithm to achieve rapid detection of 
multi-objective fault points. One notable aspect is that, within 
the DT model, it is of paramount importance to dynamically map 
physical spatial data onto the virtual space. This dynamic 
mapping is governed by the equation presented in Eq. (8). 

( ) ( ( ), ) ( ) { ( ), ( ), ( )}v pG t G t t T t W t V t     ò
(8) 
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Fig. 3. Diagrammatic representation of power DT model.

In Eq. (8), 
( )pG t

 represents the physical power grid line 

state, 
( )T t

 is the temperature state model, 
( )W t

 is the wind 

speed state model, and 
( )V t

 is the visual feature state model. 

( ) 
is a dynamic encoder based on Long Short-Term Memory 

(LSTM) network.  is the set of environmental parameters. 

( )tò
 is the Gaussian noise parameter. Next, through the 

monitoring data of the physical model, an anomaly detection 
mechanism is established in the virtual space to achieve rapid 
localization of the fault area. The localization equation is in Eq. 
(9). 

2

1 2
,

arg max ( , ) ( , ) ( , )

region

t t thermal
x y

F

H x y H x y S x y



   ‖ ‖
(9) 

In Eq. (9), tH
 is the thermal distribution matrix of the 

power grid at time t . thermalS
is the weight matrix for 

temperature anomalies. 
( , )x y

 is the coordinate system for the 
fault point. After determining the location of power line faults 
that need to be detected in the power grid system, the improved 

YOLOv5 algorithm is adopted as a multi-objective fault 
detection technique. Firstly, to enhance the training swiftness of 
the network and reduce the number of parameters, GhostNet is 
used to replace the Conv module and CSP Bottleneck with three 
convolutions (C3) in the YOLOv5 backbone network. The 
GhostNet structure is in Fig. 4 [17]. 
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Fig. 4. GhostNet structure. 

In Fig. 4, compared to the Conv module and C3 module in 
the traditional YOLOv5 backbone network, the GhostNet 
divides convolution into two processes: Identity operation and 
Concat operation, including using a small number of 
convolution operations first, followed by stepwise channel 
convolution operation. The output of the GhostNet is in Eq. (10). 
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1 2[ , ( )]Y X W X W # #
          (10) 

In Eq. (10), #  represents the convolution operation, and 

( ) 
 is depthwise separable convolution. X  is the input 

feature map. 1W
 and 2W

 represent the corresponding weights 
of standard convolution and depthwise separable convolution, 
respectively. In GhostNet feature extraction, the channel 
compression ratio is set to 1:3. Next, to better adaptively analyze 
the sudden changes in lighting and hotspots in the power grid, 
an adaptive activation function, Activate Or Not (ACON), was 
studied to replace the original Leaky ReLU function, which can 
dynamically adjust the activation threshold. The calculation of 
the activation function is in Eq. (11) [18]. 

1 2 2( ) ( ) ( )ACON x p p x x p x    
       (11) 

In Eq. (11), 1p
 and 2p

 are both trainable parameters. 


 is 

the adaptive adjustment activation threshold.   is the 
activation function. In addition, in multi-target power line fault 
detection, including scenes such as forests and buildings, the 
images extracted by UAVs contain complex background 
information, making it difficult to locate line faults such as 
insulator breakage and wire wear. Therefore, the study 
introduces a CA mechanism between the backbone network and 
the feature pyramid to enhance the extraction of key features in 
images. The process of changes in CA mechanism is in Eq. (12) 
[19]. 

1 1
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
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(12) 

In Eq. (12), cz
 represents the input of channel information 

and cx
 represents the corresponding channel information input. 

m  represents the location information of the region of interest 

processed by the 1×1 convolutional transformation function 
f

. 
hz  and 

wz  respectively represent the height and width of the 

position of interest. H  and W  represent the height and width 

of the feature map. 
AvgPool

 represents global average 

pooling. 
g

 represents spatial attention weight. The output of 
the CA machine is in Eq. (13). 

y X m g  
   (13) 

In Eq. (13), X  represents the given input feature 
information. In addition, to enhance the infrared imaging 
features and small target features, such as detecting loose bolts 

and other targets, the study used Bidirectional Feature Pyramid 
Network (BiFPN) to replace the original path aggregation 
network structure, and its weighted fusion expression is in Eq. 
(14) [20]. 
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l i

i j
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w
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w
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 (14) 

In Eq. (14), iw
 is the learnable weight parameter. 

in

iP
 

represents the input features of the i th level, which are 

composed of multiple features together. 
( )Resize 

 represents 

feature size alignment operation. ò  represents the minimum 

constant. jw
 represents fusion weight. Finally, based on the 

above analysis, the end-to-end joint line fault detection results 
are obtained, as shown in Eq. (15) [21]. 
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In Eq. (15), F  represents the multi-scale feature pyramid 

processed by GhostNet and BiFPN. D  represents the final set 

of detection results, where cls  represents the category, 

( , , , )x y w h
 represents the BB coordinates, and k  represents 

the corresponding four detection heads, namely 1P
, 2P

, 3P
, and 

4P
. kconf

 represents the confidence level of the detection head, 
which is weighted and calculated through the CA attention 

module. I  represents the fault area image provided by the DT 
system. Finally, the study adopted an improved k-loss function 
as the prediction output, and the results are shown in Eq. (16). 

ˆ(1 ) ( ) ( , )box cls t objIoU FL p BCE o o     L
(16) 

In Eq. (16), box
, box

, and obj
 represent the weight 

coefficients of BB loss, classification box loss, and target 

confidence loss, respectively.   is the focusing factor, which 
reduces the loss contribution of simple samples and focuses on 

difficult samples. 
( )tFL p

 is the classification loss, and tp
 

represents the probability of model category prediction. 

ˆ( , )BCE o o
 is the confidence loss, where o  is 0 indicating that 

the target is the background, 1 indicating that the target exists, 

and ô  is the confidence of the model target. The entire technical 
process is in Fig. 5.
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Fig. 5. Line fault diagnosis based on improved YOLOv5 and DT model.

Fig. 5 shows the process of fault diagnosis for power lines, 
in which a DT model is used to analyze the external environment 
of the power grid line and identify the location of the line fault 
point. Secondly, by using UAVs to obtain image information of 
fault line points, and improving the YOLOv5 algorithm training, 
the detection of multi-target point faults in power lines can be 
achieved. 

IV. RESULTS 

A. YOLOv5 BB Regression Loss Function Performance 

Experiment 

To test the application effect of the power fault diagnosis 
technology proposed by the research in practical scenarios, 
corresponding experimental analysis was carried out next. The 
training was conducted using Python version 3.8 and the DL 
framework was PyTorch. The training parameter settings of the 
improved YOLOv5 model was presented in Table Ⅰ. 

Comprehensive and Special Data (CSD) and self-made 
datasets were selected for the experiment. The CSD dataset 
includes UAV inspection images, wire and conductor loose 
strand detection datasets, and infrared image insulator detection 
datasets. It supports YOLO analysis format and has a total of 
about 30000 images. Meanwhile, the study used DJI CS-SR1 
(visible light+infrared dual-mode) to capture a total of 27200 
images of power lines, labeled in YOLO format, with an image 
size of 1024×1024. It covers data from different seasons, 
backgrounds, and lighting conditions. Next, the study 
investigated the anchor box performance of various optimized 
loss functions tested on the CSD dataset, where the default IoU 

function and Focal EIoU function were not used. In the anchor 
box, Focal EIoU is consistent with EIoU, as presented in Fig. 6. 

In Fig. 6, GIoU, CIoU, and EIoU loss functions were 
selected for testing in the study. At 10 iterations, all three loss 
functions were located at the anchor box position and remained 
basically consistent. After 150 iterations, the three loss functions 
showed significant differences, among which the GIoU function, 
although able to match the target box, covered both the target 
box and anchor box with average accuracy. The CIoU function 
outperformed GIoU in matching performance and could cover 
the target box more accurately, but the target box repetition was 
still relatively low. The best matching function was the EIoU 
function, which basically covered the target box completely and 
achieved an accuracy of 98.58%, showing the best performance. 
Next, the study compared the regression loss and IoU 
performance of five types of losses, as presented in Fig. 7. 

TABLE I.  MODEL PARAMETER SETTINGS 

Model indicators Parameter 

Image size 1024x1024 

Batch size 16 

Initial learning rate 1e-3 

Anchor frame size 
[12, 16], [20, 28], [24, 36], [36, 

48], [48, 64] 

Boundary box loss box 4.8 

Classification loss CLS 8.5 

Number of iterations 200 
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Fig. 6. Anchor box performance of different loss functions at 10 and 150 iterations. 
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Fig. 7. Comparison of regression loss and IoU ratio with different loss functions.

Fig. 7 indicates the comparison results of function regression 
losses. According to the test results, the five loss functions 
showed different performance during training. Among them, 
EIoU and Focal EIoU functions converged the best, and thanked 
to filtering the anchor boxes, Focal EIoU had the best regression 
loss performance, with a regression loss of 125 and EIoU 
function of 256 during convergence. Fig. 7(b) indicates the test 
results of the IoU ratio of different loss functions, whose values 
reflect the accuracy of BB matching. The higher the value, the 
greater the intersection between the anchor box and the target 
box. According to the test results, as the iteration count increased, 

the IOU values of the five loss functions gradually increased, 
and the optimal IOU value was obtained after 200 iterations. 
Among them, the best performing Focal EIoU had a mean of 
0.986 and a minimum value of 0.956, followed by EIoU with a 
mean of 0.926 and a minimum value of 0.796. The overall 
performance of other loss functions was average, although the 
maximum IOU value could reach 100%, the mean and minimum 
values were relatively low. Next, the study selected the self-
made data nest scene for detection and determined the 
confidence values of different loss functions, as presented in Fig. 
8.
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Fig. 8. Confidence level of object detection with various loss functions.

In Fig. 8, the selected route had a bird's nest scene for object 
detection. Among them, Fig. 8(a) to Fig. 8(e) are scene 1. In this 
scenario, the highest confidence level among the five loss 
functions was Focal IoU, which was 0.93. Next was EIoU, with 
a confidence level of 0.91, while CIoU, GIoU, and IOU had 
confidence levels of 0.90, 0.88, and 0.86, respectively. Figs. 8(f) 
to 8(k) show scene 2, which included two types of bird nests: 
large and small targets. Focal IoU performed the best overall, 
with confidence levels of 0.93 and 0.94, indicating the best 
performance. 

B. Multi-Scenario Fault Detection Test for Power Lines 

Next, Focal IoU was chosen as the loss function for the 
recognition model, and Faster R-CNN and YOLOv7 were 
introduced as testing benchmarks to compare their performance 
in detecting power line faults. Among them, the standard dataset 
CSD was selected for testing to compare the training accuracy 
and loss of different models, as presented in Fig. 9. 
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Fig. 9. Fault detection performance of different models.

Fig. 9(a) indicates the accuracy of fault detection. Among 
the four models, the research model achieved the fastest 
convergence with a maximum accuracy of 0.986, followed by 
YOLOv7 with a convergence of 0.95. YOLOv5 and Faster R-
CNN performed average, with convergence accuracies of 0.948 
and 0.902. Fig. 9(b) indicates the training loss results of different 

models. Among them, the Faster R-CNN table had a general 
convergence loss of 0.051. YOLOv5 performed similarly to 
YOLOv7, but YOLOv7 had better convergence with loss values 
of 0.025 and 0.024. The research model performed the best, with 
a convergence loss value of 0.0125. Next, the study selected 
different scenarios from the self-made dataset to compare the 
accuracy of technical fault diagnosis, as shown in Fig. 10.
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Fig. 10. Multi-scenario line fault diagnosis accuracy.

In Fig. 10, nine common circuit faults were selected for 
detection, including sudden changes in infrared scene lighting, 
abnormal light emission, etc. According to the test results, an 
increase in target data had a certain impact on the accuracy of 
model detection. Among them, the research model performed 
the best, with a relative error controlled within 1.2% in nine 
scenarios. Secondly, YOLOv7 had a relative error controlled 
within 2.7%. However, YOLOv5 and Faster R-CNN had 

significant overall detection errors. When the number of targets 
reached four in abnormal heat detection, the errors of all four 
models increased, but the relative error of the research model 
was the lowest at 0.86%, while YOLOv7 was 1.89%, and 
YOLOv5 and Faster R-CNN were 2.86% and 3.35%, 
respectively. Finally, the recognition frame rate and diagnostic 
time were tested on the self-made dataset, as presented in Fig. 
11. 
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Fig. 11. Recognition frame rate and diagnosis time.
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Fig. 11(a) indicates the results of the frame rate recognition 
test. Selected twelve fault scenarios for testing. The average 
frame rates of the research model, YOLOv7, YOLOv5, and 
Faster R-CNN were 41.2 frames, 39.5 frames, 35.8 frames, and 
37.86 frames, respectively. Fig. 11(b) shows the time-
consuming results of fault diagnosis, among which Faster R-
CNN performed the worst, taking over 1.8 seconds in multiple 
scenarios, with an average time of 2.05 seconds. YOLOv7 and 
YOLOv5 performed better, with average fault diagnosis times 
of 18.95 seconds and 18.64 seconds, respectively. The best 
performing model was the research model, with an average fault 
diagnosis time of 10.25 seconds. Finally, the study selected ten 
types of power line faults in real scenarios for on-site 
experimental analysis to test the detection effectiveness of four 
techniques for different line fault problems. The test results are 
shown in Table Ⅱ. 

TABLE II.  COMPARISON OF LINE FAULT DETECTION EFFECTS OF 

DIFFERENT TECHNOLOGIES IN REAL SCENARIOS 

Line fault type 

10 rounds of testing for fault detection 

accuracy 

Faster R-

CNN 
YOLOv5 YOLOv7 Ours 

Damaged insulator 90 90 100 100 

Wire breakage 70 90 90 100 

Loose fittings 40 50 70 100 

Corrosion of anti 

vibration hammer 
70 70 80 100 

Bird's Nest Construction 90 90 100 100 

Foreign object 

suspension 
90 100 100 100 

Tower tilt 70 80 100 100 

Insulator self explosion 50 60 70 100 

Wire wear and tear 90 90 90 100 

Deformation of metal 

fittings 
60 70 80 100 

Table Ⅱ shows the test results of different line faults in real 
scenarios. According to the test results, all four diagnostic 
models for conventional fault types could effectively diagnose, 
such as insulator damage and wire wear during bird nest 
construction. However, for fault types with small targets and 
complex backgrounds, except for the research model that could 
recognize 100%, all other models performed average. In the 
detection of loose fittings, the accuracy of Faster R-CNN was 
40%, while YOLOv5 and YOLOv7 were 50% and 70%, 
respectively. Only the research model achieved 100% in ten 
tests. In addition, in the summary of insulator self explosion 
detection, Faster R-CNN, YOLOv5, YOLOv7, and research 
model detection accuracies were 50%, 60%, 70%, and 100%, 
respectively. In practical scene detection, the research 
technology performed excellently. 

V. DISCUSSION 

Ensuring the secure and dependable functioning of power 
grid lines is essential for reliable power supply. Traditional 
detection methods rely on manual inspection, which suffers 
from issues like inefficiency and poor real-time performance. 
The rise of DL technology and DT technology provides new 
avenues for power grid line detection. To address these issues, a 

power line fault detection technique combining DL and DT 
models is raised. 

In the experiment, an improved YOLOv5 model was 
adopted and its anchor box loss function was optimized. 
Experimental data showed that the improved Focal IoU loss 
function performed well in terms of regression loss and IoU. 
Specifically, the regression loss value of Focal IoU was 125, and 
the mean IoU was 0.986, which was significantly better than 
other loss functions. In addition, the study introduced GhostNet 
and CA mechanism, further improving the detection capability 
of the model in complex scenes. The GhostNet reduced the 
number of parameters and improves training speed by dividing 
convolution into two processes: Identity operation and Concat. 
The CA mechanism enhanced the extraction of key features in 
images and improved the detection accuracy of the model in 
complex backgrounds. In multi-scenario fault detection, the 
accuracy of the research model reached 0.986, with a loss value 
of 0.0125, which was superior to models such as Faster R-CNN 
and YOLOv7. By comparison, Faster R-CNN was a two-stage 
detector that first generated region proposals, and then classified 
and regressed each proposal, resulting in higher computational 
complexity and poorer real-time performance [22]. Although 
YOLOv7 performed well in real-time, there is still room for 
improvement in detection accuracy when dealing with small 
targets [23]. Especially in complex background environments, 
there were issues such as detection omissions and errors, which 
resulted in lower overall accuracy compared to the improved 
YOLOv5. For example, in abnormal heat detection, when the 
number of targets was four, the relative error of the research 
model was only 0.86%, while the errors of other models were all 
higher than 1.89%. These results indicated that the improved 
YOLOv5 model combined with DT technology could 
effectively improve the accuracy and efficiency of power line 
fault detection. 

In addition, the research technology system also had 
excellent security and stability. Especially in the analysis and 

detection of power lines, DL and twinning techniques were 
utilized. To ensure that power data was not attacked and to avoid 
data leakage, the Advanced Encryption Standard (AES) was 
introduced in the research to encrypt all transmitted data, 
ensuring the confidentiality and integrity of the data during 
transmission [24]. In addition, potential external information 
attacks such as Denial of Service (DoS) and Distributed Denial 
of Service (DDoS) [25] should be addressed. In addition, from a 
hardware perspective, the research adopted the latest 64 bit 
ARM encryption processor, which had strong environmental 
adaptability and security, thus ensuring the effectiveness of the 
entire technology [26]. 

Overall, the improvement of YOLOv5 was more effective 
than YOLOv5 in power line fault diagnosis. Especially in 
complex and small target scenarios, the technology proposed by 
the research had higher overall accuracy, stronger adaptability, 
and better met the requirements of fault detection in power 
scenarios. In addition, the combination of research technology 
and DT technology further enhanced the application effect of 
technology in power scenarios, and provided important 
technical support for the construction and management of power 
informationization. 
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VI. CONCLUSION 

The safe and stable operation of power grid lines is crucial 
for power supply. Traditional detection methods rely on manual 
inspection, which has problems such as low efficiency and poor 
real-time performance. To solve the above problems, the 
research proposed an intelligent line fault detection technology 
based on improved YOLOv5. Firstly, the research optimized the 
BB regression loss function of YOLOv5 by introducing the 
Focal IoU loss function to filter out useless anchor boxes and 
improve the detection efficiency of fault targets. Secondly, the 
introduction of GhostNet network and CA attention mechanism 
further enhanced the diagnostic performance of YOLOv5 in 
complex scenes. In addition, the research also combined DT 
technology to construct virtual models and map physical entity 
states in real time, achieving accurate monitoring and fault 
warning of power equipment. The experimental results showed 
that the improved YOLOv5 model outperformed other loss 
functions in terms of BB regression loss and intersection to 
union ratio performance. The Focal IoU function had the lowest 
regression loss value and the highest average intersection to 
union ratio. In multi-scenario fault detection of power lines, the 
average accuracy of the improved model reached 98.6%, 
significantly higher than other models. Under the self-made 
dataset, the average fault diagnosis time of the improved model 
was 10.25 seconds, which was much lower than other models. 
From this, the intelligent line fault diagnosis technology 
proposed by the research, which combined the DT model with 
the improved YOLOv5 algorithm, could effectively improve the 
accuracy and real-time performance of power line fault 
detection. The research significantly improved the performance 
of power line fault detection by improving the YOLOv5 model. 
However, there are still some shortcomings in this study. For 
example, the adaptability of the model under extreme weather 
conditions needs further validation. In addition, researching how 
to use drones to obtain images to improve the perspective of 
drone image extraction is the key to diagnosis. Therefore, in 
future work, research needs to be conducted from three aspects. 
1) To improve the effectiveness of technology, it is necessary to 
enhance its adaptability to complex environments and optimize 
the process of drone image recognition. 2) Meanwhile, in future 
work research, the fusion analysis of multi-scale features can be 
considered to enhance the detection of complex backgrounds 
and small targets through technology. 3) In addition, the study 
also strengthened the integration of DTs and DL, for example, 

using virtual data generated by DT models to enhance the 
training dataset, improve the model's generalization ability, and 
optimize model training and updates through real-time feedback 
of fault diagnosis results from DT models. 
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