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Abstract—Diabetes is one of the most prevalent chronic
diseases globally, with significant mortality and morbidity rates.
Early and accurate diagnosis plays a critical role in managing
and mitigating its impact. However, achieving high diagnostic
accuracy while ensuring interpretability remains a key challenge
in medical machine learning applications. This paper proposes
an interpretable and accurate hybrid framework for diabetes
prediction that integrates Support Vector Machine Rule Ex-
traction (SVMRE), Fuzzy Analytic Hierarchy Process (Fuzzy
AHP), and Sugeno fuzzy inference. The primary objective of
this study is to enhance prediction accuracy while enabling the
extraction of meaningful and explainable decision rules derived
from SVM models. To address the black-box nature of traditional
SVM models, fuzzy rules are extracted and embedded into a
Sugeno fuzzy inference system. Attribute importance is quantified
through Fuzzy AHP based on expert consultation, ensuring
medically relevant decision-making. Furthermore, to overcome
rule redundancy and complexity, the coefficient of variation is
computed for each rule and optimized using a Nearest Neighbor
(NN) approach, which clusters rules with adjacent variation
values. The proposed framework is evaluated using a real-world
diabetes dataset from Sylhet, Bangladesh. It achieves a prediction
accuracy of 84.62 per cent, outperforming several conventional
methods. Compared to other competitive approaches found in
recent literature, such as fuzzy grey wolf optimization and neuro-
fuzzy systems, our method demonstrates superior balance be-
tween interpretability, computational efficiency, and classification
performance. This study confirms that integrating rule-based
learning, fuzzy expert systems, and statistical optimization pro-
vides a robust and interpretable approach for diabetes prediction.
The framework aligns with Sustainable Development Goal 3
(SDG 3) by promoting early detection and decision support for
non-communicable diseases in healthcare systems.
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I. INTRODUCTION

Diabetes mellitus is a chronic and progressive metabolic
disorder characterized by elevated blood glucose levels, which
can lead to severe complications such as cardiovascular dis-
ease, renal failure, neuropathy, and visual impairment [1].
According to the World Health Organization, diabetes affects
more than 422 million people globally and accounts for
approximately 1.5 million deaths annually [2]. The increasing
prevalence of this disease, particularly in low and middle
income countries, underscores the urgency of developing re-

liable, accurate, and interpretable systems for early detection
and diagnosis [3].

Recent advances in machine learning (ML) have demon-
strated significant potential in supporting clinical decision-
making processes, especially in the context of early disease
prediction [4]. Among the various ML techniques, Support
Vector Machine (SVM) has been widely recognized for its
high classification accuracy and robustness in handling high-
dimensional and nonlinear data [5], [6], making it a strong can-
didate for medical diagnostic tasks [7], [8], including diabetes
prediction [9]. However, despite its predictive power, SVM
lacks inherent interpretability, which limits its applicability in
clinical environments that demand transparent and explainable
decision support. The inability of clinicians to trace and justify
model decisions remains a critical barrier to the widespread
adoption of such black-box models in healthcare settings [10].

Furthermore, traditional fuzzy inference systems, which
offer linguistic interpretability through rule-based structures,
often fail to incorporate the relative importance of medical at-
tributes, thereby oversimplifying the decision logic [11]. These
systems typically rely on uniformly weighted attributes, which
may not align with clinical judgment or expert knowledge.
Moreover, when applied to complex datasets, fuzzy models
frequently suffer from an exponential growth in rule base size,
leading to redundant rules and decreased system efficiency
[12]. Although prior studies have explored various hybrid
models combining machine learning with fuzzy logic, most
of these approaches either overlook the integration of expert-
driven attribute weighting or do not address rule optimization
to reduce computational overhead without compromising pre-
dictive performance [13].

In light of these challenges, this study proposes a novel
hybrid framework that integrates SVM-based rule extraction
with Fuzzy Analytic Hierarchy Process (Fuzzy AHP) and
Sugeno-type fuzzy inference, optimized through a coefficient
of variation and Nearest Neighbor-based rule reduction mech-
anism. This approach aims to enhance the interpretability of
the predictive model while maintaining high accuracy. The
SVM Rule Extraction component enables the transformation of
opaque decision boundaries into comprehensible fuzzy rules.
Fuzzy AHP incorporates expert judgment in the weighting
of input attributes, ensuring that the most clinically relevant
features are prioritized in the inference process. To address
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the scalability and complexity of the rule base, the model
applies statistical analysis through the coefficient of variation
and leverages the Nearest Neighbor algorithm to merge similar
rules, thus achieving an optimized and efficient rule set.

The proposed framework contributes to the field by ad-
dressing critical gaps in the integration of interpretable ma-
chine learning and expert knowledge in fuzzy systems. By
demonstrating improved accuracy and transparency in dia-
betes prediction, this study offers a practical and clinically
relevant solution that aligns with the growing demand for
explainable artificial intelligence in healthcare. The model
not only enhances predictive performance but also supports
meaningful interpretation of results, which is essential for
clinical validation and trust.

II. RELATED WORKS

Several machine learning techniques have been extensively
utilized in the prediction of diabetes, each contributing unique
strengths and challenges [14]. Several studies that combine
fuzzy logic for rule formation and machine learning to train
data obtain fairly good accuracy values [15], [16]. Zhang et
al. (2020) utilized SVM and achieved an accuracy of 82 per
cent [6], while Butt et al. (2020) employed a combination of
SVM, KNN, and Decision Tree, yielding an accuracy of 75
per cent [17]. Furthermore, Faniqul Islam et al. (2019), using a
combination of Logistic Regression, KNN, SVM, and Random
Forest, reported an accuracy of 75 per cent [18]. The Fuzzy
Grey Wolf Optimization method in Chen et al. (2019) produced
an accuracy of 81 per cent [19], and Azad et al. (2021)
achieved an accuracy of 7567 per cent using a Neuro-Fuzzy
System [20]. Support Vector Machines (SVM) are a popular
choice due to their high classification accuracy and robustness
in handling high-dimensional data [21], [22]. By finding an
optimal hyperplane that separates classes with minimal error,
SVM demonstrates superior performance in many medical
prediction tasks. However, as highlighted by Zhang et al.
(2020) and Butt et al. (2020), the lack of interpretability in
SVM models remains a significant limitation, particularly in
clinical applications where understanding the decision-making
process is crucial [6], [13]. This black-box nature restricts
the ability of healthcare professionals to validate the model’s
decisions and may hinder its adoption in real-world settings.

To mitigate this issue, Fuzzy Logic Systems, such as the
Sugeno Fuzzy Inference System (Sugeno FIS), have been
introduced to offer greater transparency. These systems use
fuzzy rules and memberships to deal with uncertainty and
provide linguistic interpretations of decisions, making them
more interpretable. Furthermore, Fuzzy AHP (Analytic Hier-
archy Process) has been applied in some studies to weight
attributes based on expert opinions [23], [24]. However, while
Fuzzy AHP provides a systematic way to incorporate expert
knowledge into the decision-making process, it still faces
challenges related to rule optimization and the computational
complexity involved when working with large datasets.

In addition to fuzzy systems, Neuro-Fuzzy Systems, which
combine artificial neural networks with fuzzy logic, have been
explored for diabetes prediction. These systems aim to improve
predictive accuracy by learning both the structure and the rules
directly from the data. Studies by Sisodia et al. (2018) [15]

have shown that neuro-fuzzy systems can enhance prediction
performance. However, these models still suffer from issues
such as rule explosion and the difficulty in extracting meaning-
ful decision rules [16], [17], making the system less efficient
and harder to interpret [18], particularly when dealing with
complex datasets like those used for medical predictions [19].

While these existing methods have contributed significantly
to diabetes prediction, they each have inherent weaknesses,
particularly in terms of interpretability, rule complexity, and
computational efficiency. These challenges highlight the need
for a more robust and interpretable model that can com-
bine the high accuracy of SVMs with expert-driven feature
weighting and fuzzy rule optimization, ultimately improving
both prediction accuracy and model transparency for clinical
use. Therefore, this research aims to address these gaps by
proposing a novel hybrid approach that integrates SVM-based
rule extraction, Fuzzy AHP, Sugeno FIS, and Nearest Neighbor
Optimization, to improve the performance and interpretability
of diabetes prediction models.

The contributions of this research to the field of diabetes
prediction can be summarized as follows:

1) Hybrid framework development: The study proposes a
novel hybrid approach that integrates SVM-based rule ex-
traction, Fuzzy AHP, and Sugeno Fuzzy Inference, optimized
using Coefficient of Variation and Nearest Neighbor (NN)
optimization. This framework enhances the accuracy and inter-
pretability of diabetes prediction models by leveraging expert
knowledge and reducing model complexity.

2) Rule extraction and interpretability: The paper ad-
dresses a major limitation of traditional machine learning
models, such as SVM, which are often perceived as “black-
box” models due to their lack of interpretability. By extracting
fuzzy rules from the trained SVM, the authors make the
decision-making process more transparent and explainable,
which is crucial for clinical adoption.

3) Incorporation of expert knowledge through fuzzy AHP:
Fuzzy AHP is used to weight the importance of input features
(such as symptoms, age, and other health factors) based on
expert judgment. This ensures that the most clinically relevant
features are prioritized, improving the overall decision-making
process.

4) Optimization of fuzzy rules: The study introduces a
method to optimize the number of fuzzy rules using Co-
efficient of Variation (CV), which reduces rule redundancy
and improves computational efficiency without compromising
predictive accuracy. The use of the Nearest Neighbor (NN)
algorithm further refines this optimization process.

5) Practical applicability in healthcare: The proposed
method provides a robust solution to early diabetes detection
while maintaining interpretability, which is essential for health-
care professionals.

6) Contribution to Sustainable Development Goals (SDG
3): The framework aligns with SDG 3 by contributing to the
early detection and prediction of non-communicable diseases,
which plays a critical role in mitigating the global impact of
diabetes. The transparency and accuracy of the model are key
to facilitating its integration into healthcare systems, improving
decision support in clinical settings.
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III. RESEARCH FRAMEWORKS

A. Support Vector Machine Rules Extraction (SVMRE)

SVM Rule Extraction (SVMRE) is a technique designed
to derive interpretable rules from the trained Support Vector
Machine (SVM) model, rather than directly from the raw
dataset [25]. This approach enables the extraction of patterns
that have been learned and encoded within the structure of the
model—specifically through the support vectors (SV) and their
corresponding parameters [26], [27]. These extracted patterns
are then translated into a comprehensible form, allowing end
users to understand the underlying decision logic of the model
[28]. The detailed steps of the SVMRE algorithm are presented
in Table I.

TABLE I. SVMRE ALGORITHM

1. Input: Normalize training data set (xi, yi), i = 1, 2, · · · , n.
2. SVM training on the training data set.
2.1 Construct the objective function
minω

1
2 ||ω||2 + C 1

nΣn
i=1L(yi, f(x, ω))

2.2 Solve the optimization problem in a kernel-induced dual space.
f̂(x) = Σ

nSV
i=1

(αi − α∗
i )K(xi, x), 0 ≤ α∗

i ≤ C, 0 ≤ αi ≤ C

3. Generate SVM output in the input of training and testing data set.
4. Combine the preceding two subsets as the new training set.
5. Training the fuzzy Sugeno model on the newly generated training set.
6. Output: The trained fuzzy Sugeno model.

B. Fuzzy Analytical Hierarchy Process (FAHP)

Analytical Hierarchy Process (AHP) is one of the multi-
attribute decision-making (MADM) that is widely applied [29].
The weight of the criteria is given through the formation of a
pairwise comparison matrix. One of the popular AHP methods
is developed by Saaty in 1980 [30].

Using linguistic value interpretation, a pairwise comparison
matrix is created with elements mij = (a, b, c) which is a triag-
onal fuzzy number (TFN). Where a < b < c if attribute i is less
important than attribute j. To find out the scale of importance
of an attribute compared to other attributes, consultation with
related medical experts is necessary. Furthermore, a pairwise
comparison matrix (PCM) is created as follows:

M =


(1, 1, 1) m12 · · · m1n

m21 (1, 1, 1) · · · m2n

...
... · · ·

...
mn1 mn2 · · · (1, 1, 1)

 (1)

If there are z decision makers for each comparison, then
the PCM in Eq. (1) is rearranged by taking the average value
of each element. The next step is to combine the PCM on each
criterion from all experts by calculating the Fuzzy Geometric
Mean (GM) value. This method was introduced by Buckley
in 1985 [31]. The Fuzzy GM is used to calculate the fuzzy
weights for each fuzzy matrix, and these weights are combined
in the usual way to determine the final fuzzy weights for the
alternatives [32]. The final fuzzy weights are used to rank the
alternatives from highest to lowest [33]. The Fuzzy GM for a
TFN is shown in Eq. (2).

(ri) = (Πn
j=1mij)

1/n, i = 1, 2, · · · , n (2)

Next, the fuzzy weight is calculated for each criterion using
Eq. (3).

wi = ri ⊗ (r1 ⊕ r2 ⊕ · · · ⊕ rn)
−1 = (lwx,mwx, uwx) (3)

The numbers l, m, and u are respectively the smallest
possible value, the modal or most likely value, and the highest
possible value. Next, the non-fuzzy weight of the attribute is
calculated using the Center of Area or COA method using Eq.
(4)

Ax =
lwx +mwx + uwx

3
(4)

The final step of Fuzzy AHP is to normalize the weights
in Eq. (4) using Eq. (5).

Nx =
Ax

Σn
x=1Ax

(5)

C. Coefficient of Variation (CV)

The coefficient of variation, or CV, serves as a statistical
metric that indicates the degree of dispersion of data points in
a data series with respect to the mean [34]. It is defined by
the ratio of the standard deviation to the mean.

D. Fuzzy Inference Sugeno

The Sugeno fuzzy inference system (Sugeno FIS), pro-
posed by Takagi, Sugeno, and Kang in 1985, provides a
systematic approach for generating fuzzy rules from a given
input-output dataset [35]. The Sugeno FIS consists of three
stages: defining membership functions, defining fuzzy rules,
and the defuzzification process [36], [37].

The first step is to define the membership functions.
This step aims to represent linguistic expressions using fuzzy
membership functions, which are defined within the closed
interval [0, 1]. The second step involves defining fuzzy rules
in the form of “if-then” statements, where linguistic variables
are represented using fuzzy sets. The relationship between
the premises and consequences of these rules can be derived
from reliable literature or through consultations with domain
experts. The final step of the Sugeno FIS is the defuzzification
process, where fuzzy outputs are transformed into a crisp value
by calculating the weighted average.

IV. RESULTS

In this research, diabetes prediction is conducted using
data trained by Support Vector Machine with Rule Extraction
(SVMRE). We use medical expert opinions to construct a pair-
wise comparison matrix and obtain attribute weights through
the Fuzzy Analytic Hierarchy Process (Fuzzy AHP). The
data trained with SVMRE are subsequently used for diabetes
prediction via a Sugeno fuzzy inference system, which is
enhanced by integrating Fuzzy AHP and the Nearest Neighbor
method.
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Attribute weights derived from the Fuzzy AHP process are
distributed among subfactors based on their relative contribu-
tions. This allows the determination of the influence level of
each attribute in predicting diabetes. Next, rules are constructed
by combining all attributes. The coefficient of variation for
each rule is calculated using its attribute weights, and the
Nearest Neighbor method is applied to cluster potential rules
based on these coefficients. The resulting rules from the trained
data are then input into the Sugeno fuzzy inference system to
predict diabetes.

The system’s performance is evaluated based on accuracy
metrics derived from the prediction results. The proposed
method is illustrated in Fig. 1.

Fig. 1. Proposed method to predict diabetes.

A. Dataset and Attributes

The data used in this study were obtained directly from
various diabetes patient survey forms at a Diabetes Hospital
in Sylhet, Bangladesh [35]. The dataset consists of 520 patient
records, divided into 17 attributes: output class (positive or
negative), obesity, genital thrush, age, polyphagia, sex, sudden
weight loss, polyuria, weakness, polydipsia, muscle stiffness,
visual blurring, irritability, partial paresis, itching, alopecia,
and delayed healing. Among the 520 cases, 320 were diag-
nosed with diabetes, and 200 were classified as normal, with
a male-to-female ratio of 63:37, respectively. All attributes,

TABLE II. ATTRIBUTE OF THE DATASET

Attribute Value

Obesity (OS) Yes or No
Genital thrush (GT) Yes or No

Polyphagia (PG) Yes or No
Sudden weight loss (SWL) Yes or No

Polyuria (PR) Yes or No
Weakness (WN) Yes or No
Polydipsia (PD) Yes or No

Musle Stiffness (MS) Yes or No
Visual Blurring (VB) Yes or No

Irritability (IA) Yes or No
Alopecia (AC) Yes or No

Partial Paresis (PP) Yes or No
Itching (LI) Yes or No

Delayed Healing (DH) Yes or No

except for age and sex, have categorical data with two unique
outcomes. Therefore, in this study, only 14 attributes and one
output class (positive or negative) were used, as shown in Table
II.

B. Fuzzy Rule Extraction Using SVMRE

The steps for fuzzy rule extraction from SVM are as
follows. The first step involves support vector regression for
diabetes prediction. In this step, training samples are used
to tune SVM hyperparameters, such as kernel parameters.
In SVM regression, both structural and empirical risks are
minimized. The function L(y,f(x,w)) in the objective function
represents the loss function applied to the training data [32].

The second step is data regeneration from the trained
SVM. In this stage, the trained SVM is used to generate
new data samples for training the fuzzy rules. Of the existing
diabetes data, 70 per cent is used for training and 30 per
cent for testing. The trained SVM generates new training
samples, which enhances its generalization ability and helps
train the fuzzy rules. For diabetes prediction, a new subset
of training samples can be generated and combined, as both
input variables from the training and testing samples are
available. This combination of subsets improves the predictive
ability of the fuzzy Sugeno model. To further enhance the
generalization capability of the fuzzy rules, additional subsets
can be constructed by calculating the predicted output of the
SVM model for randomly generated or selected input vectors.

In the third step, once new training data samples are
generated, they are used for diabetes prediction with the fuzzy
Sugeno model, which has been enhanced using Fuzzy AHP
and the coefficient of variation.

C. Evaluate Risk Factor Weight Using Fuzzy AHP

In this section, Fuzzy AHP is applied to calculate the
attribute weights for diabetes prediction in order to identify
the most influential attributes [33]. The attributes are shown in
Table II. In the formation of the Pairwise Comparison Matrix
(PCM), each attribute is compared with the others. The PCM
is evaluated by the decision makers according to the linguistic
measurements provided in Table III. The resulting PCM is
presented in Table IV.
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TABLE III. LINGUISTIC TERMS AND TRIANGULAR FUZZY NUMBER
WITH THE INVERSE

Linguistic terms Triangular fuzzy number Inverse

Equal important (1,1,1) (1,1,1)
Intermediate values between two adjacent scales (1,2,3) (1/3,1/2,1)

Moderately more important (2,3,4) (1/4,1/3,1/2)
Intermediate values between two adjacent scales (3,4,5) (1/5,1/4,1/3)

Strongly more important (4,5,6) (1/6,1/5,1/4)
Intermediate values between two adjacent scales (5,6,7) (1/7,1/6,1/5)

Very strongly more important (6,7,8) (1/8,1/7,1/6)
Intermediate values between two adjacent scales (7,8,9) (1/9,1/8,1/7)

Extremely more important (9,9,9) (1/9,1/9,1/9)

TABLE IV. PAIRWISE COMPARISON MATRIX (PCM)

Attribute GT AC WN OS MS DH PD PR PG VB IA SWL PP LI

GT (1,1,1) (2,3,4) (1,1,1) (4,5,6) (3,4,5) (4,5,6) (1/4,1/3,1/2) (1/5,1/4,1/3) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
AC (1/4,1/3,1/2) (1,1,1) (1/4,1/3,1/2) (1,2,3) (2,3,4) (2,3,4) (1/6,1/5,1/4) (1/9,1/9,1/9) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
WN (1,1,1) (2,3,4) (1,1,1) (4,5,6) (6,7,8) (7,8,9) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
OS (1/6,1/5,1/4) (1/3,1/2,1) (1/6,1/5,1/4) (1,1,1) (1/4,1/3,1/2) (1/5,1/4,1/3) (1/8,1/7,1/6) (1/9,1/8,1/7) (1/9,1/9,1/9) (1/7,1/6,1/5) (1/4,1/3,1/2) (1/5,1/4,1/3) (1/3,1/2,1) (1/9,1/8,1/7)
MS (1/5,1/4,1/3) (1/4,1/3,1/2) (1/8,1/7,1/6) (2,3,4) (1,1,1) (1/3,1/2,1) (1/6,1/5,1/4) (1/7,1/6,1/5) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1/4,1/3,1/2) (1/3,1/2,1) (1/5,1/4,1/3)
DH (1/6,1/5,1/4) (1/4,1/3,1/2) (1/9,1/8,1/7) (3,4,5) (1,2,3) (1,1,1) (1/9,1/8,1/7) (1/7,1/6,1/5) (1,1,1) (1,1,1) (1,1,1) (1/7,1/6,1/5) (1/5,1/4,1/3) (1/4,1/3,1/2)
PD (2,3,4) (4,5,6) (1,1,1) (6,7,8) (4,5,6) (7,8,9) (1,1,1) (1/3,1/2,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
PR (3,4,5) (9,9,9) (1,1,1) (7,8,9) (5,6,7) (5,6,7) (1,2,3) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
PG (1,1,1) (1,1,1) (1,1,1) (9,9,9) (2,3,4) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (2,3,4) (1/3,1/2,1) (1/3,1/2,1) (1,1,1)
VB (1,1,1) (1,1,1) (1,1,1) (5,6,7) (1,2,3) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
IA (1,1,1) (1,1,1) (1,1,1) (2,3,4) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1/4,1/3,1/2) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)

SWL (1,1,1) (1,1,1) (1,1,1) (3,4,5) (2,3,4) (5,6,7) (1,1,1) (1,1,1) (1,2,3) (1,1,1) (1,1,1) (1,1,1) (3,4,5) (1,1,1)
PP (1,1,1) (1,1,1) (1,1,1) (1,2,3) (1,2,3) (3,4,5) (1,1,1) (1,1,1) (1,2,3) (1,1,1) (1,1,1) (1/5,1/4,1/3) (1,1,1) (1,1,1)
LI (1,1,1) (1,1,1) (1,1,1) (7,8,9) (3,4,5) (2,3,4) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)

The next step is to calculate the fuzzy geometric mean
(GM) value of all attributes. The formula for calculating the
fuzzy GM is shown in Eq. (2). By knowing the fuzzy GM
value, it can be determined which attribute has the most
influence in predicting diabetes. The Fuzzy GM value is
written in Table V.

TABLE V. FUZZY GM, FUZZY WEIGHT (wx), AVERAGE WEIGHT (Ax),
AND NORMALIZED FUZZY WEIGHT (Nx) OF EACH ATTRIBUTE

Attribute GM wx Ax Nx

GT (1.408, 1.258, 1.119) (0.062, 0.079, 0.099) 0.080 0.079
AC (0.925, 0.801, 0.681) (0.037, 0.050, 0.065) 0.051 0.050
WN (1.703, 1.618, 1.515) (0.083, 0.102, 0.119) 0.101 0.101
OS (0.322, 0.245, 0.000) (0.000, 0.015, 0.023) 0.013 0.013
MS (0.578, 0.000, 0.324) (0.018, 0.000, 0.040) 0.019 0.019
DH (0.627, 0.461, 0.385) (0.021, 0.029, 0.044) 0.031 0.031
PD (1.936, 1.727, 1.547) (0.085, 0.109, 0.135) 0.110 0.109
PR (2.193, 2.034, 1.830) (0.101, 0.128, 0.154) 0.127 0.126
PG (1.426, 1.240, 1.104) (0.061, 0.078, 0.100) 0.080 0.079
VB (1.243, 1.194, 1.122) (0.062, 0.075, 0.087) 0.075 0.074
IA (1.051, 1.000, 0.952) (0.052, 0.063, 0.074) 0.063 0.062

SWL (1.727, 1.575, 1.379) (0.076, 0.099, 0.121) 0.099 0.098
PP (1.312, 1.160, 0.964) (0.053, 0.073, 0.092) 0.073 0.072
LI (1.449, 1.385, 1.306) (0.072, 0.087, 0.101) 0.087 0.086

Total (14.227, 15.698, 17.900)
Total(−1) (0.070, 0.064, 0.056)

INCR (0.056, 0,064, 0.070)

Based on Table V, the Total Attribute states the sum of
the fuzzy GM values of all attributes. While the Total(−1)

attribute is the inverse of the Total value. The INCR or
increasing order attribute is obtained by exchanging the first
column of Total(−1) with the third column of Total(−1).

The next step is to calculate the fuzzy weight for each
attribute using Eq. (3) by multiply the fuzzy GM value of the
attribute with its INCR value. The fuzzy weight value (wx) is
shown in Table V.

In Table V, Ax is the non-fuzzy weight obtained from the
defuzzification process with the COA method as shown in Eq.
(4). While Nx is the normalized weight with Eq. (5), where the
total weight of all attributes is 1. By knowing the normalized

non-fuzzy weight, it can be concluded that the most influential
attribute in the system is polyuria. Meanwhile, the attribute
with the smallest influence is obesity.

In the next section, the normalized weights will be used to
calculate the coefficient of variation of the fuzzy rules.

D. Generate String and Calculate the Weight of String Using
Coefficient of Variation

In this section, we generate string to combine the possibil-
ities of all attributes with existing linguistic values. In Table
II, there are 14 attributes with two linguistic values, there are
Yes or No. Therefore there are a total of 214 = 16384 fuzzy
attribute combinations in the following form: If X1 is N1 and
X2 is N2 · · · and X14 is N14. Table VI shows the coefficient
of variation values from all rules that calculated through their
weight values. The formula of coefficient of variation is the
ratio of standard deviation to the mean.

With X1, X2, · · · , X14 are attributes, N1, N2, · · · , N14 are
the normalized attribute weights in Table V, where the lin-
guistic value of Ni is Yes or No. The total weight value of
NY es + NNo = 1. With the ratio for the weights of Yes and
No in this study obtained by consulting with related medical
experts.

Furthermore, the coefficient of variation for each statement
is calculated. This coefficient is used to assess the variability
of features relative to their average value. Features with a
low coefficient of variation are considered less significant
and may be removed from the feature set to improve model
performance. To reduce the complexity of system performance,
the nearest neighbor method is applied. Adjacent coefficient
of variation values are grouped by selecting the smallest
coefficient of variation and combining similar features into a
single fuzzy rule.

Overall, this approach strikes a balance between simpli-
fying the system and maintaining accuracy and reliability,
ensuring it does not significantly affect system performance.
Using the nearest neighbor method, the number of generated
rules can be optimized to 226 fuzzy rules. Table VII presents
the optimized fuzzy rules from the nearest neighbor approach.

TABLE VI. STRING WEIGHT USING COEFFICIENT OF VARIATIONS

Rule Number GT AC WN OS MS DH PD PR PG VB IA SWL PP LI CV

1 No Yes No Yes No No No Yes No Yes No Yes Yes Yes 0.47043328
2 No No No Yes No No Yes No No No Yes No Yes No 0.483065989
3 Yes No No Yes Yes No No Yes No Yes No Yes Yes No 0,490234788
4 No No Yes Yes Yes Yes No Yes No Yes No No No No 0,502164669
5 Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No 0,473726845
6 Yes Yes No Yes Yes No Yes Yes No Yes No Yes Yes Yes 0,48450375
7 Yes Yes No Yes Yes Yes No No No Yes Yes No No No 0,492594715
8 Yes Yes Yes Yes No No Yes Yes Yes No Yes Yes No No 0,502536543
9 Yes Yes No Yes Yes Yes No Yes Yes No Yes Yes No Yes 0,493047508
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
16384 No No No No No No No No No No No No No No 0.470433280

TABLE VII. NEAREST NEIGHBORING APPROACH

Rule Number GT AC WN OS MS DH PD PR PG VB IA SWL PP LI CV

35 Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes No Yes 0.50633487
58 Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes Yes No 0.5378967
66 Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes No 0.4475093
77 Yes Yes Yes Yes Yes Yes Yes No Yes Yes No No Yes Yes 0.4570457
101 Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No Yes Yes 0.4475093
120 Yes Yes Yes Yes Yes Yes Yes No No No Yes No No No 0.4772018
161 Yes Yes Yes Yes Yes Yes No Yes No Yes Yes Yes Yes Yes 0.4772018
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E. Sugeno Fuzzy Inference System (FIS) to Predict Diabetes
Disease

To implement the Sugeno Fuzzy Inference System (FIS),
we use the trained data from SVMRE. The process involves
three steps: First, the membership functions are defined. Next,
fuzzy rules are generated using the AND operation. Finally, the
defuzzification process is applied to convert the fuzzy inference
results into a crisp output.

1) Defining the membership function: In this study, a
triangular membership function is used for each attribute in
the Table II. The membership function is defined in the Eq.
(6) and (7).

µNo(x) =


1 , if x = 0

1− x
0.5 , if 0 < x ≤ 0.5

0 , if x > 0.5

(6)

µY es(x) =


0 , if x < 0.5

2(x− 0.5) , if 0.5 < x ≤ 1

1 , if x = 1

(7)

The fuzzy membership functions in Eq. (6) and (7) apply
to all attributes in Table II.

2) Generate fuzzy rules with operation AND: The fuzzy
rules in this study are formed using AND operations based
on the optimization results from nearest neighbors and the
extracted rules from SVMRE. The rule formation for the
Sugeno FIS is shown in Tables X, XI and XII.

3) Defuzzify the aggregate fuzzy rules: By applying the
fuzzy rules in Tables X, XI, and XII, the Sugeno FIS generates
output in the form of diabetes predictions for individuals.

TABLE VIII. SIMULATION RESULTS

Method Accuration (per cent)

SVM 39.1

Fuzzy AHP 76.54

Fuzzy AHP-Sugeno-NN 74

SVM-Fuzzy AHP-Sugeno-NN 84.62

Fig. 2. Simulation results.

F. Simulation Results

In this section, we simulate diabetes prediction using
trained data from the pre-processing phase with SVM. The

TABLE IX. COMPARISON OF ACCURATION VALUE WITH SOME
DIABETES RESEARCH USING MACHINE LEARNING

Reference Author, Year Method Accuration (%)
[6] Mohan, 2020 SVM 82
[7] Saiteja, 2020 SVM, KNN, Desicion tree 75
[8] Pranto, 2020 KNN, Desicion tree 81.2
[11] Shankar, 2019 Fuzzy Grey Wolf Optimization 81
[12] Chen, 2018 Neuro Fuzzy 75.67
[13] Fatemeh, 2017 RLE Fuzzy rule base system 82.5
[14] Tingga, 2019 Logistic Regression, KNN, SVM

Naive Bayes, Decision tree, and Random Forest 75
[15] Sisodia, 2018 SVM, Decision tree, and naı̈ve bayes 76.3
[16] Romero, 2015 Naı̈ve bayes 79.57
[17] Alghurair, 2020 K-means algorithm, Sigmoid Kernel, Linear Kernel,

and RBF Kernel 82
[38] Neha, 2019 SVM 74.4

Our Proposed Method SVM, Fuzzy AHP, Sugeno, NN 84.62

data is split into 70 per cent for training the SVM classifier,
and 30 per cent for testing the data to confirm the accuracy
of the framework. Both datasets are selected randomly. We
apply the Fuzzy AHP-Sugeno method to predict diabetes. The
rules based on combination of all attribute that optimize using
nearest neighbor based on its coefficient variation value. The
coefficient variation is ratio between standard deviation to the
mean. Fuzzy AHP to determine the weight of attribute based
on medical expert opinion. The accuracy is then calculated.

From Table VIII, the proposed method, SVM-Fuzzy AHP-
Sugeno-NN, achieves the highest accuracy, which is 84.62
per cent. The trained data from SVM increases prediction
accuracy by 10.62 per cent compared to Fuzzy AHP-Sugeno-
NN. The attribute weights obtained from Fuzzy AHP are used
to calculate the coefficient of variation for the fuzzy rules.
Optimizing the number of fuzzy rules based on the coefficient
of variation value using the nearest neighbor method is also
crucial for developing fuzzy models. Rules with adjacent
coefficient of variation values are combined, allowing the
number of rules to be optimized without affecting the system.

As shown in Fig. 2, the simulation with SVM yields the
lowest accuracy at 39 per cent. Fuzzy AHP increases the
system’s accuracy by generating rules based on their weights.
The weights of attributes are determined by their influence on
the system, in consultation with medical experts during the
construction phase.

V. DISCUSSION

Table IX provides a comparative overview of recent studies
that have applied machine learning techniques to diabetes pre-
diction, highlighting the classification methods used and their
corresponding accuracy levels. The table includes various ap-
proaches such as Support Vector Machines (SVM), k-Nearest
Neighbors (KNN), Decision Trees, Naı̈ve Bayes, and fuzzy-
based models, including Neuro-Fuzzy systems and Fuzzy Grey
Wolf Optimization. Reported accuracies range from 75 to 82.5
per cent, where our proposed method have accuracy 84.62 per
cent, indicating moderate success in predictive performance
across different algorithmic strategies.

The results of this study demonstrate the effectiveness
of the proposed SVM-Fuzzy AHP-Sugeno-NN framework for
diabetes prediction. This performance surpasses the accuracy
of other commonly used methods, such as Fuzzy AHP-Sugeno-
NN (76.54 per cent) and SVM (39 per cent). The improvement
of 10.62 per cent in prediction accuracy highlights the advan-
tages of integrating SVM rule extraction with fuzzy logic and
nearest neighbor optimization.
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One of the primary reasons for this improved accuracy
is the ability of the proposed method to incorporate expert
knowledge through the Fuzzy AHP component. By using
expert-driven attribute weighting, the model is better able to
capture the clinical relevance of different input features, such
as symptoms and medical history, in predicting diabetes. This
integration allows the system to prioritize the most important
factors, making the model more aligned with real-world clin-
ical decision-making processes.

Moreover, the SVM rule extraction component plays a
critical role in enhancing interpretability. Traditional machine
learning models, such as SVM, often function as “black-box”
models, making it difficult for clinicians to understand how
predictions are made. In contrast, the proposed framework
extracts fuzzy rules from the trained SVM model, offering
transparent decision-making logic. This interpretability is par-
ticularly important in medical applications where trust and
transparency are paramount.

The Nearest Neighbor (NN) optimization further improves
the model by reducing rule redundancy. By grouping rules with
similar coefficient of variation values, we reduce the number
of fuzzy rules without compromising the model’s accuracy
or interpretability. This optimization not only enhances the
computational efficiency of the system but also ensures that
the decision-making process remains straightforward and easy
to understand for healthcare providers.

The results of this study align with and extend previous
work in the field of diabetes prediction. For instance, studies
such as those by Zhang et al. (2024) and Butt et al. (2021) have
reported high accuracy rates using deep learning and ensemble
methods. However, these models lack the interpretability nec-
essary for clinical settings, which limits their practical use. Our
framework addresses this limitation by integrating fuzzy expert
systems with machine learning, providing not only accurate
predictions but also transparent and explainable decision rules.

Compared to other hybrid approaches, such as fuzzy
grey wolf optimization (GWO) and neuro-fuzzy systems, our
method demonstrates a superior balance between accuracy,
interpretability, and computational efficiency. While GWO and
neuro-fuzzy models achieve accuracy rates of 81 per cent and
75.67 per cent, respectively, they do not offer the same level
of transparency and explainability as the SVM-Fuzzy AHP-
Sugeno-NN model. This is a key advantage of our approach,
particularly in the medical domain, where explainability is
critical for gaining clinician trust.

VI. CONCLUSION

This study proposes a novel approach to diabetes prediction
by integrating the Support Vector Machine Rule Extraction
(SVMRE) with Fuzzy AHP-Sugeno and the Nearest Neighbor
(NN) method. Theoretical contributions include the develop-
ment of a hybrid framework that improves both prediction
accuracy and interpretability, addressing the critical need for
transparent decision support systems in medical applications.
By incorporating expert knowledge through Fuzzy AHP and
optimizing fuzzy rules using the coefficient of variation and
NN, this approach significantly enhances the reliability and
explainability of diabetes prediction models.

TABLE X. RULE FORMATION FOR SUGENO FIS (1)

No. PR PD SWL WN PG GT VB LI IA DH PP MS AC OS Weight Output

1 Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Positive

2 Yes Yes Yes Yes No Yes No No No Yes Yes Yes Yes Yes Yes Positive

3 No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Positive

4 No Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Positive

5 No Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Positive

6 No Yes No Yes No Yes No No Yes Yes No Yes Yes Yes Yes Positive

7 Yes No Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Positive

8 No No Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Positive

9 No No No Yes Yes Yes Yes No Yes Yes No Yes Yes Yes Yes Negative

10 No No No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes Yes Negative

11 No No Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Negative

12 Yes Yes Yes Yes No Yes Yes Yes No No No Yes Yes Yes Yes Positive

13 No Yes No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Positive

14 No Yes No Yes Yes Yes Yes Yes Yes No No Yes Yes Yes Yes Positive

15 No Yes Yes Yes No Yes Yes No Yes No No Yes Yes Yes Yes Positive

16 No Yes Yes Yes No Yes No Yes Yes No No Yes Yes Yes Yes Positive

17 Yes No No Yes Yes Yes Yes No Yes No No Yes Yes Yes Yes Positive

18 No No No Yes No Yes Yes Yes No No No Yes Yes Yes Yes Negative

19 Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes No Yes Yes Yes Positive

20 Yes Yes No Yes Yes Yes No Yes No Yes Yes No Yes Yes Yes Positive

21 No Yes Yes Yes No Yes Yes Yes No Yes No No Yes Yes Yes Positive

22 Yes No No Yes No Yes Yes Yes Yes Yes No No Yes Yes Yes Positive

23 Yes Yes No Yes Yes Yes Yes No No No No No Yes Yes Yes Positive

24 Yes Yes Yes Yes No Yes No No Yes No No No Yes Yes Yes Positive

25 No No Yes Yes Yes Yes No Yes Yes No Yes No Yes Yes Yes Positive

26 No No No Yes Yes Yes No No Yes No No No Yes Yes Yes Negative

27 Yes Yes Yes Yes No Yes Yes No Yes Yes No Yes Yes No Yes Positive

28 Yes Yes Yes Yes No Yes No Yes No Yes Yes Yes Yes No Yes Positive

29 No Yes No Yes No Yes No Yes Yes Yes Yes Yes Yes No Yes Positive

30 Yes No Yes Yes Yes Yes No No No Yes No Yes Yes No Yes Positive

31 No No No Yes No Yes No No No Yes Yes Yes Yes No Yes Negative

32 No Yes Yes Yes No Yes Yes Yes No Yes No No Yes No Yes Positive

33 Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No Yes Positive

34 Yes No No Yes No Yes Yes No No Yes Yes No Yes No Yes Positive

35 No No Yes Yes No Yes No No Yes Yes Yes No Yes No Yes Positive

36 No Yes Yes Yes Yes Yes Yes Yes No No Yes No Yes No Yes Positive

37 Yes No No Yes No Yes Yes Yes No No No No Yes No Yes Positive

38 Yes No No No No Yes No No Yes Yes Yes Yes Yes Yes Yes Positive

39 No No No No Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Negative

40 No No No No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Negative

41 No No No No Yes Yes Yes No Yes Yes No Yes Yes Yes Yes Negative

42 Yes Yes Yes No No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Positive

43 Yes Yes No No No Yes Yes No Yes No No Yes Yes Yes Yes Positive

44 No No Yes No Yes Yes No Yes No No No Yes Yes Yes Yes Negative

45 No No No No Yes Yes No No No No No Yes Yes Yes Yes Negative

46 Yes No Yes No No Yes Yes Yes No Yes Yes No Yes Yes Yes Positive

47 Yes No No No No Yes No Yes Yes Yes No No Yes Yes Yes Positive

48 No No Yes No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes Positive

49 No No No No No Yes No No Yes Yes No No Yes Yes Yes Negative

50 No No No No No Yes No Yes No Yes No No Yes Yes Yes Negative

51 Yes Yes Yes No Yes Yes Yes No No No Yes No Yes Yes Yes Positive

52 Yes Yes Yes No No Yes Yes No No No No No Yes Yes Yes Positive

53 No Yes Yes No No Yes Yes No Yes Yes No Yes Yes No Yes Positive

54 No Yes No No No Yes No Yes Yes Yes Yes Yes Yes No Yes Positive

55 Yes No Yes No Yes Yes No No Yes Yes No Yes Yes No Yes Positive

56 Yes Yes No No No Yes No No Yes No Yes Yes Yes No Yes Positive

57 Yes Yes No No No Yes No Yes Yes No No Yes Yes No Yes Positive

58 Yes No Yes No Yes Yes No Yes Yes No Yes Yes Yes No Yes Positive

59 Yes No Yes No Yes Yes No No No No No Yes Yes No Yes Positive

60 No Yes No No Yes Yes Yes Yes Yes Yes No No Yes No Yes Positive

61 No Yes Yes No No Yes No No No Yes Yes No Yes No Yes Positive

62 Yes No Yes No Yes Yes No Yes No Yes No No Yes No Yes Positive

63 Yes No No No No Yes No No Yes Yes Yes No Yes No Yes Positive

64 No No Yes No Yes Yes Yes No Yes Yes Yes No Yes No Yes Positive

65 No No No No No Yes Yes No Yes Yes No No Yes No Yes Negative

66 No No No No No Yes No No Yes Yes Yes No Yes No Yes Negative

67 No Yes Yes No Yes Yes Yes Yes No No No No Yes No Yes Positive

68 No Yes Yes No No Yes Yes Yes No No No No Yes No Yes Positive

69 Yes No No No Yes Yes Yes No Yes No Yes No Yes No Yes Positive

70 Yes No Yes No Yes Yes No Yes Yes No No No Yes No Yes Positive

71 No Yes No Yes Yes Yes Yes Yes No No No Yes No Yes Yes Positive

72 No Yes Yes Yes No Yes Yes Yes Yes No Yes Yes No Yes Yes Positive

73 Yes No Yes Yes Yes Yes Yes Yes No No Yes Yes No Yes Yes Positive

74 Yes No No Yes Yes Yes No Yes No No No Yes No Yes Yes Positive

75 No No No Yes Yes Yes Yes No No No Yes Yes No Yes Yes Negative

76 No Yes No Yes Yes Yes No No No Yes No No No Yes Yes Positive

77 No No Yes Yes Yes Yes Yes Yes No Yes No No No Yes Yes Negative

78 No No No Yes Yes Yes No Yes Yes Yes No No No Yes Yes Negative

79 Yes No No Yes Yes Yes Yes Yes No Yes Yes Yes No No Yes Positive

80 Yes Yes Yes Yes Yes Yes No No No Yes No No No No Yes Positive

81 No Yes Yes Yes Yes Yes Yes Yes No Yes No No No No Yes Positive

82 No Yes No Yes Yes Yes No No Yes Yes Yes No No No Yes Positive

83 Yes No No Yes Yes Yes No Yes No Yes Yes No No No Yes Positive

84 No No Yes Yes No Yes No Yes Yes Yes Yes No No No Yes Negative

85 Yes Yes Yes Yes Yes Yes Yes Yes No No No No No No Yes Positive

86 Yes Yes Yes Yes Yes Yes No No Yes No Yes No No No Yes Positive

87 No Yes Yes Yes Yes Yes Yes Yes No No No No No No Yes Positive

Key results from the simulation demonstrate that the
proposed method, SVM-Fuzzy AHP-Sugeno-NN, achieves an
accuracy of 84.62 per cent, outperforming traditional models
like Fuzzy AHP-Sugeno-NN and SVM. This improvement of
10.62 per cent in prediction accuracy highlights the effec-

www.ijacsa.thesai.org 737 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

TABLE XI. RULE FORMATION FOR SUGENO FIS (2)

No. PR PD SWL WN PG GT VB LI IA DH PP MS AC OS Weight Output

88 No Yes No Yes Yes Yes Yes Yes No No Yes No No No Yes Positive

89 Yes No Yes Yes Yes Yes No No No No Yes No No No Yes Positive

90 Yes Yes No No Yes Yes No Yes Yes No No Yes No Yes Yes Positive

91 Yes Yes Yes No No Yes Yes Yes No No No Yes No Yes Yes Positive

92 No Yes Yes No Yes Yes Yes Yes Yes No Yes Yes No Yes Yes Positive

93 No No Yes No No Yes No No Yes No Yes Yes No Yes Yes Negative

94 No Yes Yes No Yes Yes Yes No Yes Yes Yes No No Yes Yes Positive

95 No No No No No Yes Yes No No Yes Yes No No Yes Yes Negative

96 No No Yes No No Yes No Yes Yes Yes No No No Yes Yes Negative

97 Yes Yes Yes No No Yes No Yes No No No No No Yes Yes Positive

98 No Yes Yes No Yes Yes No Yes No No Yes No No Yes Yes Positive

99 No No Yes No No Yes No Yes No No Yes No No Yes Yes Negative

100 No No No No No Yes No Yes No No No No No Yes Yes Negative

101 No Yes Yes No Yes Yes No No No Yes Yes Yes No No Yes Positive

102 No Yes Yes No No Yes No Yes Yes Yes No Yes No No Yes Positive

103 No No Yes No No Yes Yes No No Yes Yes Yes No No Yes Negative

104 No No Yes No No Yes Yes Yes Yes No Yes Yes No No Yes Negative

105 No No No No No Yes No Yes No No Yes Yes No No Yes Negative

106 Yes Yes Yes No Yes Yes Yes No Yes Yes No No No No Yes Positive

107 Yes Yes No No Yes Yes Yes Yes No Yes No No No No Yes Positive

108 No Yes No No Yes Yes No No No Yes Yes No No No Yes Positive

109 Yes No No No Yes Yes Yes No No Yes Yes No No No Yes Positive

110 Yes No No No No Yes Yes Yes No Yes No No No No Yes Negative

111 Yes Yes Yes No No Yes No Yes Yes No No No No No Yes Positive

112 No Yes No No No Yes Yes Yes No No No No No No Yes Negative

113 No No No No Yes Yes Yes No No No No No No No Yes Negative

114 Yes Yes Yes Yes Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Positive

115 Yes Yes Yes Yes Yes No No No No Yes Yes Yes Yes Yes Yes Positive

116 Yes Yes Yes Yes No No No No No Yes No Yes Yes Yes Yes Positive

117 No Yes No Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Positive

118 No Yes No Yes Yes No No No Yes Yes No Yes Yes Yes Yes Positive

119 Yes No Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Positive

120 Yes No Yes Yes No No No Yes No Yes Yes Yes Yes Yes Yes Positive

121 No No Yes Yes Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Negative

122 No No Yes Yes No No No No Yes Yes Yes Yes Yes Yes Yes Positive

123 Yes Yes Yes Yes Yes No Yes Yes No No No Yes Yes Yes Yes Positive

124 No Yes Yes Yes Yes No Yes No Yes No No Yes Yes Yes Yes Positive

125 No Yes Yes Yes Yes No No Yes Yes No No Yes Yes Yes Yes Positive

126 No No No Yes Yes No Yes Yes No No No Yes Yes Yes Yes Negative

127 No No No Yes No No Yes Yes No No No Yes Yes Yes Yes Negative

128 No Yes Yes Yes Yes No Yes Yes No Yes No No Yes Yes Yes Positive

129 Yes No No Yes Yes No Yes Yes Yes Yes No No Yes Yes Yes Positive

130 Yes No No Yes No No Yes Yes Yes Yes No No Yes Yes Yes Positive

131 No No No Yes No No Yes No Yes Yes No No Yes Yes Yes Negative

132 Yes Yes Yes Yes Yes No No No Yes No No No Yes Yes Yes Positive

133 Yes Yes Yes Yes Yes No Yes No Yes Yes No Yes Yes No Yes Positive

134 Yes Yes Yes Yes Yes No No Yes No Yes Yes Yes Yes No Yes Positive

135 No Yes No Yes Yes No No Yes Yes Yes Yes Yes Yes No Yes Positive

136 No No No Yes Yes No No No No Yes Yes Yes Yes No Yes Negative

137 No No Yes Yes No No Yes No Yes Yes No Yes Yes No Yes Negative

138 No No No Yes No No No No Yes Yes No Yes Yes No Yes Negative

139 Yes Yes No Yes No No Yes No No Yes Yes No Yes No Yes Positive

140 No Yes Yes Yes Yes No Yes Yes No Yes No No Yes No Yes Positive

141 No Yes No Yes No No Yes No No Yes Yes No Yes No Yes Positive

142 Yes No No Yes Yes No Yes No No Yes Yes No Yes No Yes Positive

143 No No Yes Yes Yes No No No No Yes No No Yes No Yes Negative

144 Yes Yes No Yes No No No No No No No No Yes No Yes Positive

145 Yes No No Yes Yes No Yes Yes No No No No Yes No Yes Positive

146 No No No Yes No No No Yes Yes No No No Yes No Yes Negative

147 Yes Yes No No No No Yes Yes No Yes Yes Yes Yes Yes Yes Positive

148 Yes No No No Yes No No No Yes Yes Yes Yes Yes Yes Yes Positive

149 No No No No No No No No Yes Yes No Yes Yes Yes Yes Negative

150 No No Yes No No No No Yes No Yes Yes Yes Yes Yes Yes Negative

151 No No Yes No No No No No No Yes Yes Yes Yes Yes Yes Negative

152 No No No No No No No No No Yes No Yes Yes Yes Yes Negative

153 Yes Yes Yes No Yes No Yes Yes Yes No Yes Yes Yes Yes Yes Positive

154 Yes Yes No No Yes No Yes No Yes No No Yes Yes Yes Yes Positive

155 No Yes No No No No No Yes Yes Yes No No Yes Yes Yes Positive

156 Yes No Yes No Yes No Yes Yes No Yes Yes No Yes Yes Yes Positive

157 Yes No No No Yes No No Yes Yes Yes No No Yes Yes Yes Positive

158 No No No No Yes No No No Yes Yes Yes No Yes Yes Yes Negative

159 No No No No Yes No No Yes No Yes No No Yes Yes Yes Negative

160 No No Yes No No No No Yes Yes Yes Yes No Yes Yes Yes Negative

161 No No No No No No No No Yes Yes No No Yes Yes Yes Negative

162 No No No No No No No No No Yes No No Yes Yes Yes Negative

163 Yes Yes Yes No Yes No Yes No No No No No Yes Yes Yes Positive

164 Yes Yes Yes No No No No Yes Yes No No No Yes Yes Yes Positive

165 Yes Yes Yes No No No No Yes No No No No Yes Yes Yes Positive

166 No Yes No No No No Yes Yes No No Yes No Yes Yes Yes Positive

167 Yes No Yes No No No No Yes Yes No No No Yes Yes Yes Positive

168 No No Yes No No No No Yes No No Yes No Yes Yes Yes Negative

169 No Yes Yes No Yes No Yes No Yes Yes No Yes Yes No Yes Positive

170 No Yes No No Yes No No Yes Yes Yes Yes Yes Yes No Yes Positive

171 No Yes No No No No No No Yes Yes Yes Yes Yes No Yes Positive

172 No No Yes No No No Yes No Yes Yes No Yes Yes No Yes Negative

173 Yes Yes No No Yes No No No Yes No Yes Yes Yes No Yes Positive

174 Yes Yes No No Yes No No Yes Yes No No Yes Yes No Yes Positive

175 Yes No No No No No No Yes No No No Yes Yes No Yes Negative

176 No Yes Yes No Yes No No No No Yes Yes No Yes No Yes Positive

177 Yes No No No Yes No No No Yes Yes No No Yes No Yes Positive

178 No No No No Yes No Yes No Yes Yes No No Yes No Yes Negative

179 No No No No Yes No No No Yes Yes Yes No Yes No Yes Negative

180 No No No No No No Yes Yes Yes Yes No No Yes No Yes Negative

181 Yes No Yes No No No No No Yes No Yes No Yes No Yes Positive

182 No No No No No No Yes Yes No No Yes No Yes No Yes Negative

183 Yes Yes Yes Yes No No Yes Yes No Yes Yes Yes No Yes Yes Positive

184 No No No Yes No No Yes Yes No Yes No Yes No Yes Yes Negative

185 No Yes Yes Yes Yes No Yes Yes Yes No Yes Yes No Yes Yes Positive

186 No No Yes Yes No No Yes Yes Yes No Yes Yes No Yes Yes Negative

187 Yes No No Yes No No No No Yes Yes Yes Yes No No Yes Positive

188 No No Yes Yes No No Yes No No Yes No Yes No No Yes Negative

TABLE XII. RULE FORMATION FOR SUGENO FIS (3)

No. PR PD SWL WN PG GT VB LI IA DH PP MS AC OS Weight Output

189 No No Yes Yes Yes No No Yes Yes Yes Yes No No No Yes Positive

190 Yes Yes Yes Yes No No Yes No No No No No No No Yes Positive

191 Yes Yes Yes Yes No No No Yes No No Yes No No No Yes Positive

192 Yes Yes No Yes No No No No No No No No No No Yes Positive

193 No No Yes Yes No No Yes No Yes No No No No No Yes Negative

194 Yes Yes Yes No Yes No Yes Yes No No No Yes No Yes Yes Positive

195 No No Yes No Yes No No No Yes No Yes Yes No Yes Yes Negative

196 No Yes Yes No No No Yes Yes Yes Yes No No No Yes Yes Positive

197 No Yes Yes No No No Yes No Yes Yes No No No Yes Yes Positive

198 Yes No Yes No No No No No Yes Yes Yes No No Yes Yes Positive

199 Yes No No No No No No No No Yes Yes No No Yes Yes Positive

200 No No No No Yes No Yes No No Yes Yes No No Yes Yes Negative

201 No No Yes No Yes No No Yes Yes Yes No No No Yes Yes Negative

202 No No No No No No Yes Yes No Yes Yes No No Yes Yes Negative

203 No No No No No No Yes No No Yes Yes No No Yes Yes Negative

204 Yes Yes Yes No Yes No No Yes No No No No No Yes Yes Positive

205 No Yes Yes No No No No Yes No No No No No Yes Yes Positive

206 No Yes No No No No No Yes No No No No No Yes Yes Negative

207 Yes No Yes No No No Yes No No No No No No Yes Yes Positive

208 No No No No Yes No No Yes No No No No No Yes Yes Negative

209 Yes Yes No No No No No No No Yes Yes Yes No No Yes Positive

210 No Yes Yes No Yes No No Yes Yes Yes No Yes No No Yes Positive

211 Yes No Yes No No No Yes Yes Yes Yes Yes Yes No No Yes Positive

212 No No Yes No Yes No Yes No No Yes Yes Yes No No Yes Negative

213 No No No No No No Yes Yes Yes Yes Yes Yes No No Yes Negative

214 No Yes No No No No No Yes Yes No Yes Yes No No Yes Positive

215 No Yes No No No No No No No No Yes Yes No No Yes Positive

216 No No Yes No Yes No Yes Yes Yes No Yes Yes No No Yes Positive

217 No No No No Yes No No Yes No No Yes Yes No No Yes Negative

218 No No Yes No No No Yes Yes No No Yes Yes No No Yes Negative

219 Yes No No No Yes No Yes Yes No Yes No No No No Yes Negative

220 Yes No Yes No No No Yes Yes Yes Yes No No No No Yes Positive

221 No No Yes No No No Yes No Yes Yes No No No No Yes Negative

222 No No No No No No Yes Yes Yes Yes No No No No Yes Negative

223 No No No No No No No No Yes Yes No No No No Yes Negative

224 Yes Yes Yes No Yes No No Yes Yes No No No No No Yes Positive

225 No Yes No No Yes No Yes Yes No No No No No No Yes Negative

226 Yes No Yes No No No Yes Yes Yes No No No No No Yes Positive

tiveness of integrating fuzzy logic and machine learning in
enhancing diagnostic performance. Furthermore, the approach
successfully balances accuracy and interpretability, making
it highly relevant for real-world clinical applications where
transparency is crucial.

However, the study has some limitations. The dataset used
for training and testing was limited to a specific population
from Sylhet, Bangladesh, and may not fully represent global
diabetes demographics. Future research could focus on testing
the proposed model on diverse datasets from different popula-
tions to ensure its robustness and generalizability. Additionally,
while this study successfully optimized the number of fuzzy
rules using NN, exploring other optimization techniques, such
as genetic algorithms, could further improve the efficiency of
the model.

Future directions also include expanding the framework
to predict other diseases and medical conditions, integrating
additional features such as lifestyle factors, and exploring
real-time predictive capabilities through the application of the
model in clinical settings.

Overall, this work contributes to the growing field of
explainable artificial intelligence in healthcare, offering a prac-
tical and effective solution for early disease detection and
supporting the integration of AI in clinical decision-making.
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