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Abstract—Background: Ocular Toxoplasmosis, a leading cause
of Posterior Uveitis, demands timely diagnosis to prevent vision
loss. Manual retinal image analysis is labor-intensive and variable,
while existing Deep Learning models often fail to balance local
details and global context in Medical Image Classification. Objec-
tive: I propose RetinaCoAt, a Hybrid Deep Learning Model based
on the CoAtNet Architecture, for Automated Diagnosis of Ocular
Toxoplasmosis, integrating local and global features in Retinal
Image Analysis. Methods: RetinaCoAt combines Convolutional
Neural Networks (CNNs) for local pathological pattern detection
with Transformer Models using multi-head self-attention for
global context. Enhanced by residual connections and optimized
tokenization, it was trained on 3,659 retinal images (healthy
vs. unhealthy) and benchmarked against VGG16, CNNs, and
ResNet. Results: RetinaCoAt achieved 98% accuracy in Medical
Image Classification, outperforming VGG16 (96.87%), CNNs
(95%), and ResNet (93.75%), due to its robust CNN-Transformer
synergy. Conclusion: RetinaCoAt advances Automated Diagnosis
of Ocular Toxoplasmosis and Posterior Uveitis, with potential for
broader retinal pathology detection.
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I. INTRODUCTION

Ocular Toxoplasmosis (OT) is a parasitic disease caused
by Toxoplasma gondii, leading to necrotizing retinochoroiditis,
the most common cause of posterior uveitis worldwide [1]. It
primarily results from reactivation of latent retinal tissue cysts,
though primary infection can also cause ocular involvement,
particularly in congenital cases. The disease arises from both
direct parasitic damage and the host’s immune-mediated in-
flammatory response.

Pathogenesis involves cyst rupture in the retina, releasing
bradyzoites that transform into tachyzoites, triggering a strong
local immune response. CD4+ and CD8+ T-cells and cy-
tokines like IFN-y mediates the inflammation, causing necrosis
of retinal and choroidal tissue. Clinically, this manifests as
sharply defined retinal lesions, often accompanied by a vitre-
ous haze described as a headlight in the fog. Recurrence is
common due to the parasite’s persistence, leading to cumula-
tive retinal damage and scarring.

Patients often present with unilateral vision changes such
as blurred vision, floaters, photophobia, and eye pain and
redness [2]. Macular or optic nerve involvement can result in

severe, sometimes irreversible, vision loss. Diagnosis is typi-
cally clinical, supported by ophthalmoscopy, fundoscopic find-
ings and serological tests showing T. gondii antibodies. PCR
(Polymerase Chain Reaction) of ocular fluids may confirm the
diagnosis in atypical cases but is difficult and complex [3],[4].
Imaging techniques like fundus photography, slit-lamp imag-
ing, OCT (Optical Coherence Tomography) and fluorescein
angiography provide detailed visualization of retinal lesions
[5]. The result can sometimes be misleading or misinterpreted
due to lab or several other conditions and can lead to mus-
cular damage, vision loss or unnecessary treatment [6],[7],[8].
Prevention emphasizes avoiding undercooked meat and con-
taminated environments, especially for pregnant women and
immunocompromised individuals. Despite advances, Ocular
Toxoplasmosis continues to cause significant visual morbidity,
necessitating further research into innovative therapies.

The complex and expensive clinical examination tests
prompt us to use AI in this field, too as depicted in Fig. 1.
Deep learning (DL), a specialized branch of machine learning,
leverages artificial neural networks (ANNs), a framework
inspired by the structure and function of the human brain.
Unlike traditional computer vision techniques that require
extensive feature engineering, DL models enable end-to-end
learning, streamlining the analysis process [9]. These models
have demonstrated remarkable success in automating image
classification tasks, achieving significant advancements in the
field [10].

In parasitology, DL-based networks have shown immense
potential when applied to diagnostic imaging. For instance,
CNNs have been used to detect and quantify parasitic in-
fections in tissue or blood smear images. Its’ potential to
autonomously detect, classify, and quantify pathological fea-
tures in ocular diseases holds significant promise for en-
hancing diagnostic ACC and enabling ophthalmologists to
deliver precise and personalized care in the near future. DL
is in use for the diagnosis of various eye diseases, analyzing
infected fundus images like diabetic retinopathy, cataracts,
and glaucoma [11],[12],[13],[14],[15],[16]. Additionally, these
models have been trained to recognize disease-specific lesions,
categorizing them by severity, a capability that can be extended
to parasite-related pathological features in microscopy images
[17].

For the first time (2019), Chakravarthy et al. designed an
automated deep CNN (VGG-16) model for the diagnosis of
OT [18]. They used heat mapping and patching as input to
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Fig. 1. Use of AI in the disease management [5].

a hybrid model. Hasanreisoglu et al. also employed a dual
input hybrid CNN-based approach for detection and achieved
an ACC of 92%, making it a helpful aid [19]. Hassan and his
team devised an automated machine learning model (without
coding) to distinguish the fundus images of healthy eyes from
the OT-infected eye images successfully [20]. Samira et al.
compared DL algorithms ANN and CNN classifying fundus
images using pre-trained VGG-16. The results indicated that
ANN had better ACC than CNN even after preprocessing of
three types of fundus images [21].

Alam et al. used the pre-trained models [22]. MobileNetV2
achieved better results for classification, followed by In-
ceptionV3 in terms of ACC, while DenseNet121 showed
the highest precision (PRI). In the case of segmentation,
MobileNetV2/U-Net outclassed ResNet34. Other than evalu-
ating the efficiency of models, they also analyzed the feature
extraction methods to find the most suitable ones for the
detection and segmentation of fundus images.

The automated detection of Ocular Toxoplasmosis presents
unique challenges due to the need for precise localization of
pathological features and the integration of global contextual
information in retinal images. While deep learning has shown
promise in medical image analysis, existing models often fall
short in addressing these challenges, limiting their diagnos-
tic ACC and clinical applicability. To bridge this gap, this
study introduces a novel hybrid deep learning architecture
that leverages the strengths of CNNs and transformer-based
attention mechanisms. The proposed model not only addresses
the limitations of current approaches but also sets a new
standard for performance and robustness in the detection of
Ocular Toxoplasmosis. The primary contributions of this study
are as follows:

1) Novel hybrid architecture: This study aims to develop
and evaluate a novel RetinaCoAt deep learning architecture
that integrates CNNs with transformer-based attention mecha-
nisms. This architecture is specifically designed to capture both
local pathological patterns and global contextual information in
retinal images, addressing the limitations of existing methods.

2) Pioneering work in Ocular Toxoplasmosis detection:
To the best of my knowledge, this is the first study to develop
an advanced deep-learning architecture specifically for the
automated detection of Ocular Toxoplasmosis. The proposed
model fills a critical gap in the literature and provides a
foundation for future research in this domain.

3) State-of-the-art performance: The proposed model
achieves an ACC of 98%, along with weighted PRI, recall
(REC), and F1-score (F1S) of 98% and a perfect ROC score
of 1.00. These results demonstrate its superior performance
compared to existing models such as VGG16, traditional
CNNs, and ResNet, setting a new benchmark for automated
detection of Ocular Toxoplasmosis.

The remainder of this paper is organized as follows:
Section II describes the materials and methods used in this
study, including the dataset, preprocessing techniques, and the
proposed RetinaCoAt hybrid architecture. Section III presents
the experimental results, along with a detailed discussion of
the model’s performance, comparative analysis with existing
methods, and an evaluation of its robustness and generalizabil-
ity. Finally, Section IV concludes the paper by summarizing
the key findings, highlighting the significance of the proposed
work, and suggesting directions for future research.

II. MATERIALS AND METHODS

This study presents an innovative approach to Ocular
Toxoplasmosis classification through the implementation of
a hybrid Convolutional Neural Network-Transformer architec-
ture. It harnesses the synergistic combination of convolutional
and transformer mechanisms to capture both local and global
features in ocular images, enabling robust discrimination be-
tween healthy and pathological cases, as shown in Fig. 2.

Fig. 2. Proposed architecture graphical representation.
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A. Dataset Description and Preprocessing

Vision impairment and blindness is a common disease
caused by Toxoplasma gondii. This research focuses on Oc-
ular Toxoplasmosis detection utilizing retinal fundus images.
The study involves two versions of the same dataset, where
Dataset 2 is derived from Dataset 1 through preprocessing and
augmentation to address class imbalance issues.

Dataset 1 (Original Dataset - Ocular Toxoplasmosis fundus
images dataset):

• Collected from two hospital centers:
◦ Hospital de Clı́nicas Medical Center (2018-

2020): 291 images
◦ Niños de Acosta Ñú General Pediatric Hospital

(2021): 121 images

• Original multi-class distribution (showing class imbal-
ance):

◦ Healthy Eye: 132 images
◦ Active: 33 images
◦ Inactive: 187 images
◦ Active-Active: 1 image
◦ Active-Inactive: 57 images
◦ Inactive-Inactive: 1 image

• Image specifications:
◦ Format: JPG
◦ Resolution: Varies (2124 x 2056 pixels or 1536

x 1152 pixels)

Dataset 2 (Processed and Augmented Version): To address
the limitations of Dataset 1, the following modifications were
made:

• Simplified Classification: Merged all disease cate-
gories into a single “Unhealthy” class

• Applied Data Augmentation: Increased the dataset size
to improve model generalization

The processed dataset is comprised of training and valida-
tion sets. The training set includes both original and augmented
images. The original training set contains 132 healthy images
and 234 unhealthy images, while the augmented training set
significantly expands these numbers to 1320 healthy images
and 2339 unhealthy images. The validation set consists of 27
healthy images and 56 unhealthy images.

This restructuring from Dataset 1 to Dataset 2 addresses
three key challenges:

• Class imbalance in the original dataset

• Complexity of multiple disease categories

• Limited sample size for deep learning applications

The resulting Dataset 2 provides a more balanced and
augmented collection of images specifically designed for bi-
nary classification tasks while maintaining the diversity of the
original patient demographics from multiple hospitals.

The dataset comprises ocular images categorized into
two classes (Fig. 3: healthy and unhealthy (Toxoplasmosis-
affected) samples. To ensure robust model training, a compre-
hensive data preparation pipeline is implemented. The dataset

was partitioned using a stratified sampling approach, with 85%
allocated for training and 15% for testing. The training set was
further subdivided, with 80% used for actual training and 20%
for validation, maintaining class distribution across all splits.

Fig. 3. Sample dataset images.

Image preprocessing was accomplished using TensorFlow’s
ImageDataGenerator, incorporating MobileNetV2’s prepro-
cessing function to normalize the input images. All images
were resized to a uniform dimension of 128×128 pixels with
RGB colour channels preserved. To enhance model general-
ization, data augmentation techniques employed through the
Image Data Generator framework. The images were processed
in batches of 32 samples, with shuffling enabled during training
to prevent learning sequence-dependent patterns.

B. Proposed Model Architecture

The proposed architecture implements a hierarchical struc-
ture that progressively increases in complexity and receptive
field size through multiple stages. The network architecture
consists of three primary stages containing varying numbers
of blocks (2, 2, 3) with corresponding channel dimensions
(64, 96, 192). This progressive scaling enables the model to
capture features at multiple levels of abstraction, from fine-
grained local patterns to complex global structures.

1) Initial feature extraction: The network’s initial stage
implements a sophisticated feature extraction mechanism that
serves as the foundation for all subsequent processing. This
stage begins with a carefully engineered convolutional layer
that processes the raw 128×128×3 RGB input images. The
layer employs 7×7 kernels, a deliberate choice that creates
a receptive field large enough to capture meaningful low-
level features while maintaining computational efficiency. This
kernel size represents an optimal balance between capturing
sufficient spatial context and managing computational com-
plexity, as smaller kernels might miss meaningful spatial
relationships. In comparison, larger kernels would introduce
unnecessary computational overhead.

The convolutional layer operates with a stride of 2, effec-
tively downsampling the spatial dimensions while producing
64 output channels. This strided convolution serves a dual pur-
pose: it reduces the spatial dimensions efficiently without re-
quiring a separate pooling layer and helps establish translation
invariance early in the network. The number of output channels
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(64) was carefully selected to provide sufficient capacity for
representing various low-level features such as edges, textures,
and basic shapes present in ocular images while maintaining
computational efficiency in subsequent layers.

Following the convolution, batch normalization implement
with a momentum of 0.9, which plays a crucial role in
stabilizing the training process. The batch normalization layer
normalizes the feature distributions across the batch dimension,
reducing internal covariate shifts and allowing for higher learn-
ing rates. This normalization process is critical in the initial
layers, where feature magnitudes can vary significantly due
to varying input image characteristics. The momentum value
of 0.9 was chosen to provide a good balance between stable
statistics and adaptability to changing feature distributions
during training.

The network’s initial stage implements a sophisticated
feature extraction mechanism through a carefully designed
convolutional layer. For an input image X ∈ R(HW3), where
H=W=128 represents the spatial dimensions, the initial convo-
lution operation can be expressed as Eq. (1):

F0(X) = σ(BN(W ·X + b)) (1)

Where W ∈ R7×7×3×64 represents the convolutional
kernels, * denotes the convolution operation with stride 2, b
represents the bias terms, BN denotes batch normalization, and
σ is the activation function. The batch normalization operation
normalizes the feature maps across the batch dimension B is
shown as Eq. (2):

BN(x) = γ

(
x− µa√
σ2
a + ϵ

)
+ β (2)

where µa and σ2
a are the running estimates of mean and

variance, γ and β are learnable parameters, and ϵ = 10−5

ensures numerical stability. This normalization significantly
improves training stability by maintaining consistent feature
distributions throughout the network.

2) MBConv block architecture: The Mobile Block Con-
volution (MBConv) blocks constitute a fundamental building
block of network’s early stages, implementing an efficient and
powerful feature transformation mechanism. Each MBConv
block follows a carefully designed expand-process-project pat-
tern that maximizes feature extraction capability while main-
taining computational efficiency. The expansion phase begins
with a 1×1 pointwise convolution that increases the channel
dimension by a factor of four. This expansion creates a higher-
dimensional feature space that allows the network to capture
more complex patterns and relationships. The expansion ratio
of four was determined through empirical testing, providing
an optimal balance between model capacity and computational
overhead.

The expanded features undergo batch normalization fol-
lowed by the SiLU (Swish) activation function, defined as
x ∗ σ(x), where σ represents the sigmoid function. The SiLU
activation was chosen over traditional ReLU due to its smooth
nature and non-monotonic characteristics, which allow for
better gradient flow and feature representation. The soft nature

of SiLU helps prevent the ”dying ReLU” problem while
providing stronger regularization through its bounded nature
at negative inputs.

The core processing stage employs a depthwise convolution
with 3×3 kernels, a crucial architectural choice that dramat-
ically reduces parameters while maintaining effective spa-
tial feature extraction. This depthwise convolution processes
each channel independently, applying spatial filtering without
cross-channel mixing. The 3×3 kernel size provides a local
receptive field that captures spatial relationships effectively
while keeping the parameter count manageable. The depthwise
convolution is followed by batch normalization and another
SiLU activation, maintaining consistent feature processing
throughout the block.

The projection phase implements another 1×1 pointwise
convolution that reduces the channel dimensions back to their
original size. This projection serves as a feature aggregation
mechanism, combining the processed features from different
channels into a more compact representation. The entire block
incorporates a residual connection when input and output di-
mensions match, implemented through element-wise addition.
This residual pathway serves multiple purposes: it facilitates
gradient flow during backpropagation, helps maintain feature
fidelity, and allows the network to learn residual mappings,
which are often easier to optimize than direct mappings.

The MBConv blocks implement an efficient feature trans-
formation pipeline that can be mathematically described
through a series of operations as shown in Eq. (3). For an
input tensor X ∈ R(HWC), the expansion phase first projects
the features to a higher dimension:

X1 = σ(BN(W1 ·X)) (3)

where W1 ∈ R(11C4C) represents the expansion convolu-
tion weights. The subsequent depthwise convolution operates
on each channel independently is expressed as Eq. (4):

X2(i, j, k) =
∑
m

∑
n

W2(m,n, k) ·X1(i+m, j + n, k) (4)

where W2 ∈ R(334C) are the depthwise convolution ker-
nels. The projection phase then reduces the dimensionality that
depicts as Eq. (5):

Y = σ(BN(W3 ·X2)) (5)

where W3 ∈ R(1·1·4CC) represents the projection weights.
The residual connection, when applicable, is implemented as:

Output = Y +X if shapes match Output = Y otherwise

The effectiveness of this architecture is demonstrated by the
reduction in computational complexity from O(H ·W ·C2) for
standard convolutions to O(H ·W ·C) for depthwise separable
convolutions while maintaining model expressiveness.

www.ijacsa.thesai.org 755 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

3) Transformer block design: The transformer blocks
in network implement a sophisticated attention mechanism
specifically adapted for image processing tasks, representing
a significant advancement over traditional convolutional ap-
proaches. Each transformer block begins with layer normaliza-
tion using a learned affine transformation, which standardizes
the input features across the channel dimension. This normal-
ization is crucial for stable training of the attention mechanism,
as it ensures that the input features have consistent statistics
regardless of their position in the network.

The core attention mechanism implements a multi-head rel-
ative attention approach, where the input features are processed
by multiple attention heads operating in parallel. Each head
processes a different subspace of the input features, allowing
the network to capture various types of relationships simultane-
ously. The number of attention heads increases progressively
through the network (1, 1, 2 in successive stages), allowing
for more complex feature interactions in deeper layers. The
relative attention mechanism incorporates spatial information
by considering the relative positions of features, which is
crucial for maintaining spatial awareness of the transformed
features.

The attention computation follows the scaled dot-product
formulation as expressed in Eq. (6):

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (6)

Where Q, K, and V represent the queries, keys, and values,
respectively, and dk is the dimension of the key vectors. The
scaling factor

√
dk prevents the dot products from growing too

large in magnitude, which could push the softmax function
into regions with minimal gradients. The queries, keys, and
values are computed through learned linear transformations of
the input features, allowing the network to adapt its attention
patterns during training.

Following the attention mechanism, a sophisticated feed-
forward network processes the attention output. This network
consists of two dense layers with an intermediate expansion
factor of four, chosen to provide sufficient capacity for com-
plex feature transformation while maintaining computational
efficiency. The GELU activation function is employed between
these layers, providing non-linearity while maintaining smooth
gradients. The GELU function approximates the expected
transformation of a neuron’s output under dropout regular-
ization, providing an implicit form of regularization during
training.

Transformer blocks implement a novel relative attention
mechanism adapted for image processing. Given an input
tensor X ∈ R(H·W ·C), the multi-head attention operation can
be expressed as Eq. (7):

Q = WQ ·X, K = WK ·X, V = WV ·X (7)

where, WQ,WK ,WV ∈ R(C·C) are learnable weight ma-
trices. The relative attention scores A for head h are computed
as Eq. (8):

Ah = softmax
(
Qh ·KT

h +Rh√
dk

)
(8)

where, Rh represents the relative position encodings and
dk is the dimension per head. The final attention output is
computed as Eq. (9):

MultiHead(X) = WO · concat(A1 · V1, ..., AH · VH) (9)

where, H is the number of attention heads and WO ∈
R(H·C·C) is the output projection matrix. The feed-forward
network applies two transformations as expressed in Eq. (10):

FFN(x) = W2 · GELU(W1 · x) (10)

where, W1 ∈ R(C·4·C) and W2 ∈ R(5·C). The GELU
activation is approximated as follows by Eq. (11):

GELU(x) ≈ 0.5x

(
1 + tanh

(√
2

π
(x+ 0.044715x3)

))
(11)

4) Classification architecture: The classification stage of
network implements a carefully designed sequence of opera-
tions that transform the high-level features into accurate class
predictions. The stage begins with global average pooling,
which reduces spatial dimensions while preserving channel
information by computing the mean value across each feature
map. This operation provides several advantages: it introduces
translation invariance to the network’s predictions, reduces the
number of parameters compared to fully connected layers, and
helps prevent overfitting by enforcing a structural regulariza-
tion on the feature representations.

Following the pooling operation, dropout regularization
implement with a carefully tuned rate of 0.2. This dropout rate
was determined through extensive experimentation to provide
optimal regularization without unnecessarily degrading model
performance. During training, randomly deactivating 20% of
the neurons helps prevent co-adaptation of feature detectors
and encourages the network to learn more robust and inde-
pendent features. The dropout mechanism also approximates
an ensemble of multiple networks, providing implicit model
averaging during inference.

The final classification layer consists of a dense layer
with two output units, corresponding to binary classification
task of distinguishing between healthy and unhealthy ocular
images. The weights of this layer are initialized using the
Glorot uniform initialization scheme, which helps maintain the
appropriate scale of gradients through the network. The layer
employs softmax activation to produce probability distributions
over the two classes, defined as Eq. eq12:

P (classi) =
exp(zi)∑
j exp(zj)

(12)

where, zi represents the logit for class i, the softmax
activation ensures that the output probabilities sum to one
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while providing a differentiable function that can be effectively
optimized during training.

To improve the calibration of the model’s predictions,
implement temperature scaling in the softmax computation.
The temperature parameter τ modifies the softmax function as
shown in Eq. (13):

P (classi) =
exp(zi/τ)∑
j exp(zj/τ)

(13)

where, τ is learned during training to optimize the cali-
bration of predicted probabilities, this calibration ensures that
the model’s confidence scores accurately reflect the actual
likelihood of correct classification, which is crucial for clinical
applications where uncertainty quantification is essential.

Training strategy employs the AdamW optimizer, which
extends the traditional Adam optimizer with decoupled weight
decay regularization. The optimizer is configured with an
initial learning rate of 1e-3 and a weight decay factor of
1e-4, providing a balance between effective optimization and
regularization. The beta parameters are set to 0.9 and 0.999
for the first and second moments, respectively, with an epsilon
value of 1e-8 for numerical stability.

The learning rate management strategy incorporates both
warmup and decay phases. During the initial five epochs,
a linear warmup schedule gradually increases the learning
rate to its maximum value, helping stabilize early training.
Subsequently, a reduce-on-plateau scheme monitors validation
loss and adjusts the learning rate when performance plateaus.
The learning rate is reduced by a factor of 0.2 when no
improvement is observed for five consecutive epochs, with a
minimum learning rate threshold of 1e− 6.

The training utilizes sparse categorical cross-entropy loss
with label smoothing (ϵ = 0.1) to prevent overconfident
predictions and improve generalization. The training process is
monitored through multiple metrics, including ACC, loss, and
AUC-ROC, with model checkpoints saved based on validation
ACC. Early stopping with a patience of 10 epochs prevents
overfitting by halting training when no further improvement is
observed. Additional regularization is achieved through weight
decay, dropout, and batch normalization, creating a robust
training framework that balances model performance with
generalization capability.

III. RESULTS AND DISCUSSION

The proposed RetinaCoAt model’s performance was eval-
uated across multiple metrics to comprehensively assess its ef-
fectiveness in classifying Ocular Toxoplasmosis into “Healthy”
and “Unhealthy” categories. These metrics include training vs
validation loss and ACC, a detailed classification report, a con-
fusion matrix, an ROC curve, correct and incorrect predictions,
and probability density distribution. Each metric provides
unique insights into the model’s performance, highlighting
its ACC, generalization ability, and areas for improvement.
The following subsections present a detailed analysis of these
results.

A. Classification Report Generated by Proposed Model

The proposed deep learning model demonstrated excellent
performance in classifying Ocular Toxoplasmosis images into
healthy and unhealthy categories, as shown in Table I. The
model achieved an overall ACC of 98% across the test set of
549 images. For healthy images (class 0), the model achieved
a PRI of 0.98 and a REC of 0.97, resulting in an F1 score
of 0.97. This indicates that the model was highly effective in
identifying healthy cases, with very few false positives. Out
of 219 healthy images in the test set, the model correctly
classified 97% of them.

The model performed slightly better in identifying un-
healthy images (class 1), achieving a PRI of 0.98 and REC of
0.98, with an F1-score of 0.98. From the 330 unhealthy images
in the test set, 98% were correctly identified, demonstrating
the model’s strong capability in detecting pathological cases.
The balanced performance across both classes is reflected in
the macro-average metrics (PRI: 0.98, REC: 0.98, F1S: 0.98),
indicating that the model performs consistently well regardless
of the class. The weighted averages match these values,
suggesting that the model maintains its high performance even
when accounting for the slight class imbalance in the dataset.

TABLE I. CLASSIFICATION REPORT FOR THE RETINACOAT MODEL

Classes PRI REC F1S support
0 0.98 0.97 0.97 219
1 0.98 0.98 0.98 330

ACC 0.98 549
macro avg 0.98 0.98 0.98 549

weighted avg 0.98 0.98 0.98 549

B. Training vs Validation Loss and Accuracy

In Fig. 4, the training and validation curves reveal the
learning progression of the model over 30 epochs. The loss
curves (left plot) show a desirable convergence pattern. The
training loss (red solid line) demonstrates a consistent decrease
from an initial value of approximately 1.2, steadily declining
and stabilizing around 0.02 by epoch 25. The validation loss
(blue dashed line), while showing more fluctuation, follows
a similar overall downward trend, ultimately converging to
approximately 0.1, indicating best generalization.

The ACC curves (right plot) corroborate this learning
behaviour. The training ACC (green solid line) shows steady
improvement, starting from around 67% and rapidly increasing
to over 80% within the first 5 epochs. It continues to improve
more gradually thereafter, reaching nearly 100% by epoch 20.
The validation ACC (orange dashed line), despite showing
some oscillation in the early epochs, particularly around epoch
5, demonstrates overall improvement and eventually stabilizes
above 95% after epoch 20.

The close alignment between training and validation met-
rics in the later epochs (20-30) suggests that the model has
achieved a good balance between fitting the training data
and generalizing to unseen examples. The minimal gap be-
tween final training and validation performance indicates that
overfitting is well-controlled, due to effective regularization
techniques employed in the model architecture.
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Fig. 4. Training and validation loss and accuracy curves.

C. Confusion Matrix of the Proposed Model

The confusion matrix (Fig. 5) reveals excellent classifi-
cation performance across both healthy and unhealthy cases.
Here’s a detailed breakdown:

For healthy cases:

• True Negatives (TN): 213 healthy images were cor-
rectly classified as healthy

• False Positives (FP): Only 6 unhealthy images were
incorrectly classified as healthy

• This represents a high specificity, with the model
rarely misclassifying unhealthy cases as healthy

For unhealthy cases:

• True Positives (TP): 325 unhealthy images were cor-
rectly classified as unhealthy

• False Negatives (FN): Only 5 healthy images were
incorrectly classified as unhealthy

• This demonstrates high sensitivity, with the model
successfully identifying the vast majority of unhealthy
cases

The model shows balanced performance with very few
misclassifications in either direction (5 FN and 6 FP), which is
particularly important in medical diagnosis applications. The
nearly symmetric error rates suggest that the model is not
biased toward either class despite the slight class imbalance
in the dataset (219 healthy vs 330 unhealthy images).

Fig. 5. Confusion matrix for Ocular Toxoplasmosis classification.

D. Probability Density Distribution

In the analysis of the proposed model’s prediction confi-
dence, the probability density distribution reveals compelling
insights into the model’s classification behaviour for Ocular

Toxoplasmosis cases, as shown in Fig. 6. The distribution
exhibits a distinctive bimodal pattern, characterized by two
prominent peaks that effectively separate healthy and un-
healthy predictions. The left peak centred approximately at 0.0
on the probability scale, predominantly represents the healthy
class predictions, displaying a higher density with a maximum
value of approximately 1.75. This indicates the model’s strong
confidence in identifying healthy cases. Conversely, the right
peak, positioned around 0.75-1.0 on the probability scale,
corresponds to unhealthy class predictions, showing a slightly
lower but still substantial density maximum of about 1.7. This
right-side distribution demonstrates the model’s robust confi-
dence in identifying unhealthy cases. Notably, the region be-
tween these two peaks, particularly around the 0.5 probability
mark, shows minimal density values, indicating that the model
rarely produces uncertain or ambiguous predictions. This clear
separation between the two classes’ probability distributions
strongly corroborates the model’s high-performance metrics,
with both classes showing well-defined, concentrated proba-
bility regions. The symmetrical nature of the peaks and their
similar heights suggest balanced prediction confidence across
both classes despite the slight class imbalance in the dataset.
This balanced confidence distribution aligns well with the
model’s high ACC and balanced PRI-REC metrics observed
in the classification report.

Fig. 6. Probability density distribution of predicted outputs.

E. Receiver Operating Characteristics

In Fig. 7, the Receiver Operating Characteristic (ROC)
curves for the proposed Ocular Toxoplasmosis classification
model demonstrate exceptional discriminative performance for
both healthy and unhealthy classes. The graph displays three
curves: ROC curves for healthy (blue line) and unhealthy
(orange line) classes, along with a random chance baseline
(black dashed line). Both classes achieve a perfect Area
Under the Curve (AUC) score of 1.00, indicating optimal
classification performance. The ROC curves for both classes
immediately rise to the top-left corner of the plot and maintain
a true positive rate of nearly 1.0 across all false positive rate
thresholds. This is in stark contrast to the random chance
baseline (diagonal dashed line), which represents an AUC of
0.50. The perfect AUC scores suggest that the model can
perfectly distinguish between healthy and unhealthy cases at
various classification thresholds, validating the model’s robust
decision-making capability. The identical performance across
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both classes, as shown by the overlapping ROC curves, further
confirms the model’s balanced predictive power, regardless
of the class imbalance in the dataset. This exceptional ROC
performance aligns perfectly with the previously observed high
ACC, PRI, and REC metrics, as well as the clear separation
seen in the probability density distributions.

Fig. 7. ROC curve for the RetinaCoAt model.

F. Correct and Incorrect Predictions

Fig. 8 illustrates examples of both correct and incorrect
predictions made by the proposed model in the classification
task. The rows show retinal fundus images categorized into
two groups: “Healthy” and “Unhealthy”.

The first and second rows demonstrate cases of correct
predictions where the model successfully identified the actual
label, as indicated by matching “True” and “Pred” anno-
tations. The third row showcases one instance where the
model misclassified images, with the discrepancy highlighted
in red text for easy identification (e.g. “True: Healthy Pred:
Unhealthy”). These results underline the model’s overall per-
formance, achieving a classification ACC of 98%. However,
the highlighted misclassifications emphasize the importance of
addressing edge cases or ambiguous features within the dataset
to improve robustness further.

Fig. 8. Correct and incorrect predictions by the RetinaCoAt model.

G. Comparison with Existing State-of-the Art Work

The experimental results demonstrate the superior perfor-
mance of the proposed RetinaCoAt architecture for Ocular
Toxoplasmosis classification, achieving 98% ACC compared
to existing approaches as depicted in Table II. This significant
improvement over traditional methods can be attributed to
RetinaCoAt’s innovative hybrid design, which combines con-
volution and self-attention mechanisms. While conventional
CNN-based approaches like VGG16 [23] achieved 96.87%
ACC, and basic CNNs [24] reached 95%, they lack the sophis-
ticated feature extraction capabilities of RetinaCoAt. The ar-
chitecture surpasses ResNet [25] implementations (93.75%) by
effectively addressing the limitations of purely convolutional
approaches through its attention mechanisms, which capture
complex spatial relationships in ocular images. Notably, the
proposed method also outperforms automated approaches, with
AutoML [26] models achieving 93.5% and Google Cloud
AutoML [27] reaching 84.8% ACC. This performance gap
highlights the advantage of a specially designed architecture
that leverages both local feature extraction through convolu-
tions and global context understanding through self-attention,
making it particularly effective for the nuanced task of identi-
fying Ocular Toxoplasmosis patterns in medical imaging.

TABLE II. COMPARISON WITH OTHER STUDIES

Reference Proposed Method Accuracy (%)
[23] VGG16 96.87
[24] Convolutional Neural Network 95
[25] Residual Neural Network 93.75
[26] AutoML model 93.5
[27] AutoML in Google Cloud 84.8
Proposed RetinaCoAt 98

IV. CONCLUSION

This study proposes a novel RetinaCoAt hybrid deep
learning architecture for the automated detection of Ocular
Toxoplasmosis in retinal images. The model, which integrates
CNNs with transformer-based attention mechanisms, demon-
strated exceptional performance, achieving an ACC of 98%,
along with a weighted average PRI, REC, and F1S of 98%.
Furthermore, the model achieved a perfect ROC score of 1.00,
underscoring its robustness and reliability in distinguishing
between healthy and infected cases.

To ensure the model’s generalizability, training and valida-
tion loss and ACC were meticulously monitored, confirming
that the model is not overfitted and is the best fit for the
task. The proposed architecture addresses the limitations of
existing methods by effectively capturing both local patho-
logical patterns and global contextual information, enabling
comprehensive multi-scale feature extraction.

A critical review of the literature reveals that no advanced
architecture has been specifically designed for the automated
detection of Ocular Toxoplasmosis, making this work a novel
contribution to the field. The proposed model sets a new bench-
mark by leveraging the strengths of CNNs and transformers,
offering a powerful tool for accurate and efficient diagnosis.

This study not only advances the development of auto-
mated diagnostic tools for Ocular Toxoplasmosis but also
holds significant potential for improving early detection and
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treatment outcomes. Future work could explore the application
of this architecture to other ocular diseases and the integration
of additional clinical data to further enhance its diagnostic
capabilities.

Future work will focus on expanding the RetinaCoAt
architecture to address additional challenges in ocular disease
detection. I plan to extend model to classify the severity
and progression stages of Ocular Toxoplasmosis, enabling
more nuanced clinical decision-making. Integration with com-
plementary imaging modalities such as Optical Coherence
Tomography (OCT) could provide depth analysis of retinal le-
sions and enhance diagnostic accuracy. Additionally, develop-
ing explainable AI components would increase clinical trust by
providing interpretable visualizations of the model’s decision-
making process. I also aim to investigate automated lesion
segmentation capabilities and longitudinal analysis features to
monitor treatment efficacy over time. Finally, clinical valida-
tion through prospective multi-center trials will be essential
to establish the model’s generalizability across diverse patient
populations and imaging equipment. These advancements will
collectively strengthen the clinical utility of proposed approach
and potentially extend its application to other ocular patholo-
gies with similar presentation patterns.
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