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Abstract—The constant threat of malware makes studying
its behavior an ongoing task. Malware identification and clas-
sification challenges can be solved better by analyzing software
behaviorally rather than using conventional hashcode-based sig-
natures. API sequence represents the behavior of any program
when collected during its execution. Considering API sequences
gathered while the malware was being executed in controlled
conditions, this report addresses the issue of choosing influential
APIs for malware. The suggested feature selection method Selec-
tAPI in this research selects key features, i.e., significant APIs,
that can better classify malware using TF-IDF API embeddings.
Two machine learning models, Random Forest, which ensemble
several estimators implicitly, and Support Vector Classifier, a
standard non-linear model, are trained and evaluated to validate
the importance of the chosen APIs. The proposed API selection
methodology, called SelectAPI, has shown promising results. It
achieves accuracy, macro-avg precision-score, macro-avg recall-
score, and macro-avg Fl-score of 0.76, 0.77, 0.76, and 0.76,
respectively. This method focuses on selecting influential APIs and
has resulted in significantly improved performance on the open-
benchmark multiclass dynamic-API-Sequence based malware
dataset, MAL-API-2019. These results surpass the previously
best-known accuracy value of 0.60 and reported ' -Score of 0.61.

Keywords—Malware analysis; behavioural analysis; API se-
quence; multiclass malware; TF-IDF; API embeddings

I. INTRODUCTION

Every person uses a variety of devices and apps over the
internet to fulfil their everyday requirements related to banking,
e-commerce, and many others. The most significant threat
to these devices and apps is malware, a computer software.
Malware is designed to perform various detrimental actions
on the devices and applications of its victims. Attachments
in electronic mails, ads, potentially unwanted softwares, and
open utility applications are some ways the malware reaches
a compromised device or application. The annual threat report
for the FY-2022-23 [1] published by Quick Heal reveals
that more than 163 million instances of new and known
malware were identified in 2021-22. The identified malware
samples are of the following families: Trojan, Infector, Ran-
somware, Cryptojacking, Potentially Unwanted Application
(PUA), Adware, and Worm. The detection of malware with
respect to their family for 2021 and 2022 are displayed in
Fig. [I] Although malware detection is a computationally hard
problem, undetected propagation can be limited by applying
statistical techniques [2]]. Malware analysis is done in two basic

ways: static and dynamic. Static analysis involves examin-
ing some of the malware’s essential characteristics, such as
opcode sequences, readable strings, etc., without running the
malware. On the other hand, dynamic analysis, also known as
behavioural analysis, allows the virus to run in a controlled
environment while gathering execution time information such
as system call graphs, API sequences, registry file contents, etc.
It has been observed that the obfuscation process of generating
malicious code is not more effective in dynamic API call
analysis in contrast to static type [3]]. Researchers continually
seek new and improved behavioral analysis methods to identify
and categorize malware.
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Fig. 1. Quick-heal threat report FY-2022-23 [1].

In this work, the focus has been given to the preprocessing
of API sequences to classify malware concerning their fami-
lies. The open dataset MAI-API-2019 released by Catak [4] is
used to train and test machine learning models to demonstrate
the preprocessing technique’s efficacy in the multiclass mal-
ware classification problem. The objectives addressed in this
work are:

e  Using TF-IDF weight vectors to select influential API
as a feature selection technique in the API sequences.

e Ensuring the improvements made using the above
feature selection method by considering SVC as a
standard non-linear machine learning model and RF as
one of the implicit ensemble machine learning models.

Section II of this article lists the literature on malware clas-
sification. Section III covers the description of the dataset and
the proposed feature selection method, followed by the training
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of the aforementioned machine learning models. Section IV
lists the findings of the experiment. The final portion highlights
the conclusion.

II. RELATED WORK

Malware detection techniques that utilize machine learning
have seen significant advancements in recent years. The three
fundamental principles, confidentiality, integrity, and availabil-
ity, of computer security are compromised by malware, which
impacts the computer system. By taking advantage of the
system’s flaws, they get into the computer system without the
user or administrator noticing. Malware classification has been
the subject of extensive investigation. Various techniques and
characteristics are used to categorize new malware into well-
known malware categories, identify outliers, and accurately
evaluate such abnormalities. The API call sequence is widely
used in malware detection techniques to represent the be-
haviour of malware accurately. Ye et al. gathered the set of API
calls from Portable Executables (PE) files for generating the set
of feature that was verifiable and comprehensible. A classifier
has been trained using these features to identify unknown
malware [S]. Geng et al. [6] provided a thorough overview
of obfuscated malware and developments in obfuscation tech-
niques, outlining a strategy-based principle from the viewpoint
of malcoders. With an emphasis on Windows malware, the
authors reviewed a variety of evasion approaches and demon-
strated how evasion techniques might be combined to create
malware with potent self-defense capabilities. In an experiment
comparing adversarial malware generators, Louthdnova et al.
[7] showed that a combination of methods can efficiently
produce new instances that escape detection and automate the
generation of malicious activity works more more effectively
against detection models that are different from the ones that
produced them.

Kong and Yan integrated several malware properties, in-
cluding opcodes, registers, and API calls, to categorize mal-
ware into 11 families. They used pairwise graph matching,
ensembled classification, and discriminant distance metric
learning to create an efficient system that could identify
samples that had not been detected before [§]]. In order to
remove infrequent elements from the API sequences, Ding
et al. proposed an association mining technique based on
APIs. To improve detection accuracy, they chose and applied
association rules with strong classification capabilities [9]].

Recent research on malware analysis has shown that su-
pervised and unsupervised machine learning approaches and
deep neural networks are widely used to identify malicious
activity with better efficiency, accuracy, and a low rate of false
positives. Feature extraction and automatic detection are the
most common methods used for malware detection with the
help of machine learning [10].

Machine learning methods, such as LR, RF, SVM, KNN,
etc., are often used to find and classify unknown samples
of different malware families because of their scalability,
speed, and flexibility. Han et al. [11]] studied the behavior
and characteristics of the malicious API call sequence. The
analysis reveals a significant correlation between the static
and dynamic API calls of the malicious applications. The
authors have suggested a model known as MalDAE that can
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explain the detection of malicious activity by extracting the
sequence of API calls from the PE files and cuckoo sandbox,
which correlates the dynamic and static API call sequences
into a hybrid sequence via semantic mapping. For the most
common malware, it can offer a clear explanation and predic-
tive assistance. They outperformed the previous studies with
detection and classification accuracy of 97.89% and 94.39%,
respectively.

Panda et al. [12] have proposed a host-specific in-memory
detection system for malicious programs or software with the
help of the TF-IDF API embedding method, particularly on
the Windows API call sequences. The authors have prepared
a knowledge base for the trusted application and their corre-
sponding behaviour. The cross-validation technique predicts
the class of trusted or untrusted applications in the host-
specific systems. Mathew and Kumara [13]] utilized N-grams
and TF-IDF to extract and select features for their research.
They proposed an LSTM model for the binary classification of
applications as either benign or malicious based on API call
sequences. The authors achieved an impressive accuracy score
of 0.92 when evaluating the model on previously unseen test
API call sequences. Huda et al. [14] have developed a hybrid
framework for detecting malicious programs that combines
SVM techniques with heuristics derived from the Maximum
Relevance and Minimum Redundancy (Mr-MR) filter. This
approach employs statistics from API call sequences as feature
vectors. The method effectively integrates the ranking score
from the filter into the wrapper’s selection process. Ultimately,
it leverages the strengths of the wrapper, the filter, and the se-
quences of API calls to efficiently identify malicious activities.

A harmful program may be obfuscated as a new program
wrongly classified as benign while maintaining the original
behavior and its effects. It may be easy to circumvent the
detection procedure for this new program [/15].

An ensemble model was presented by Panda et al. [16]
for the classification of the imbalanced multiclass malware
dataset known as MAL-API-2019. It has been investigated
how the API calls relate to one another through the API
sequences. They prepared the feature vector for the 1D-CNN
using the Skip-gram approach of Word2Vec embedding model.
This 1D-CNN model is trained for every class using the one-
vs-rest (OvR) technique. To increase classification accuracy,
they suggested an ensemble model using ModifiedSoftVoting,
a unique soft-voting technique that combines all the class-
wise classifiers. The MAL-API-2019 dataset is also used in
the training to classify the multiclass malware using REF,
DT, SVM, KNN, two-layer LSTM, and single-layer LSTM.
They employed single-layer LSTM and obtained a recall and
precision of 0.47 compared to all other models [4].

Li and Zheng classified malware types utilizing long-
sequence API calls using the GRU and LSTM with the
multiclass dataset MAL-API-2019. In LSTM and GRU, the
achieved precision is 0.56, and recall is 0.58 and 0.59, re-
spectively [17]. Demirkiran et al. have used a transformer
based model with a single layer of transformer block for the
classification of malware families. It is found that the suggested
transformer-based RTF model outperforms when tested on four
benchmark datasets (MAL-API-2019, Olivera, VirusShare, and
VirusSample), had F}-scores-0.61, 0.51, 0.56, and 0.59 and
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AUC scores-0.88, 0.83, 0.83, and 0.87 for the three models
they compared: Transformer, CANINE-S, and BERT [18].

Gali et al. [19] have combined an Al-based malware
detection procedure with the eXplainable Artificial Intelligence
(XAI) technology. With precision-54.89%, recall-53.99%, F3-
score-54.31% and accuracy-52.88%, the authors of study [20]
obtained the best classification result by evaluating multiple
deep-learning models with standard imbalanced multiclass
dataset MAL-API-2019 using Binary-LSTM. Quan et al. pro-
posed CAFTrans, a framework that uses CNN and LSTM
networks to parse API sequences [20]. When the framework
was tested on the MAL-API-2019 dataset, the F1 score was
0.65. They claimed that CAFTrans increases accuracy by
detecting malware threats in their respective family more
precisely than in other families using the same dataset. By
linking Advanced Persistent Threat (APT) malware to the
threat actors responsible for it, such as APT groups, Ahmad et
al. [21]] have improved the analysis of APT malware. APT mal-
ware is a serious threat, and averting cyber mishaps requires
an awareness of the adversaries behind these attacks. This
technique helps cybersecurity researchers and professionals
with actionable insight by connecting APT software to threat
actors for further analysis of the malware.

Multiclass malware classification problems suffer from
class imbalance issues and feature imbalance issues. Without
disturbing the class-wise samples, the feature imbalance prob-
lem concerning API sequences can be reduced using various
techniques. This work applies the TF-IDF word embedding
method to API sequences to identify influential APIs and better
classify malware to their family.

III. METHODOLOGY

API sequences are considered the most important feature
in the dynamic analysis of malware. The proposed framework
in Fig. 2] illustrates the selection of influential or critical APIs
having significance in API sequences concerning the multiclass
malware classification problem. This study finds influential
APIs by calculating the TF-IDF API embedding for each
distinct API during the preprocessing of API sequences to
identify malware based on their families. The effectiveness
of the API sequences consisting of influential APIs and the
efficacy of the models through the proposed feature selection
technique is tested using the open dataset MAI-API-2019
published by Catak [4].

A. Dataset Description and Preprocessing

Mal-API-2019 is a multiclass malware dataset on dynami-
cally collected API sequences of eight different classes of mal-
ware. This highly imbalanced dataset contains variable-length
API sequence records for 7107 pieces of malware from eight
different classes. A multiclass dataset is either imbalanced
vertically or horizontally. In a vertically imbalanced dataset,
the number of samples for each class varies significantly, as
depicted in Fig. 3] Meanwhile, in a horizontally imbalanced
dataset, the number of features in each sample varies signif-
icantly, as depicted in Fig. @] This approach mitigates the
horizontal imbalance issue during feature selection, or API
selection, thereby preserving the vertical imbalance issue.
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Fig. 4. Horizontally imbalanced API sequences.

Algorithm 1 PreserveFirstAPI

Require: APIg., (API Sequence)
Ensure: RAPIg., (Reduced API Sequence)
1: APIpit =9} > Dictionary to track distinct API

2: RAPIgeq = ¢

3: for each API € APIg., do

4: if APIp;ci.hashKey(API)! = True then
5: RAPIg.,.append(API)

6 APIpict|API] = True

7 end if

8: end for

9: return RAPIgeq

Repeated API calls in the API call sequence evade the
malware’s potential detection, making it a major runtime
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behavior. Every API request performs a distinct machine-level
function. The sequence of malware’s machine-level tasks is
described by maintaining the first call of each unique API
in the provided API sequence. By removing duplicate API
calls, the algorithm PreserveFirstAPI outlines how to protect
each unique API call’s initial occurrence. To demonstrate how
PreserveFirstAPI works, consider the encoded API sequence
with repeated API calls be [A, A, A, C, C, A, A, C, K, K,
A, A C A C K, K D, D, A A A C K K, K, K, D,
D,D, T, T, A, A, D, D, A, A, A C, C K, K, K, D, D,
D, T, K, K, D, T, K, A]. After removing the redundant API
by preserving the first occurrence, the encoded API record
becomes [A, C, K, D, T]. For each APIg., in the dataset, the
Algorithm PreserveFirstAPI finds the reduced API sequence
as RAPIg.,. The reduced API-sequence dataset is further
used by SelectAPI as outlined in Algorithm [2] for selecting
influential, i.e., critical APIs having semantic significance over
others from each reduced API sequence.

B. Feature Selection

Following the application of PreserveFirstAPI as described
in Algorithm |1} TF-IDF (Term Frequency-Inverse Document
Frequency) is a statistical technique that guarantees the cal-
culation of the weightage of a distinct-API (i.e., a word) to
an API-call-sequence (i.e., a document) in the collection of
sequences of API-calls in the dataset (i.e., the collection of
documents). In collecting API sequences, TF-IDF reduces the
influence of very frequent APIs, which are empirically less
informative than less frequent APIs. As mentioned in Eq.
(Ip, TF-IDF assigns weight to an API by multiplying the
APT’s term frequency (TF) with its inverse document frequency
(IDF). TF of an API is calculated as mentioned in Eq. (2)
considering the number of times the API appears in an API
sequence compared to the total number of APIs in the API
sequence. The IDF of an API reflects the proportion of API
sequences in the dataset that contain the API and is calculated
as mentioned in Eq. (3).

TF—IDFAPIZTFAP[ XIDFAPI (1)

Number of occurrences of the API
TF B in the API Sequence )
APT = Total number of APIs

in the API sequence

Total number of
API sequences in the dataset

IDFspr = log 3

Number of API sequences ]
in the dataset contain the API *

The TF-IDF weight matrix for APIs in API sequences of
the reduced dataset from PreserveFirstAPI plays a significant
role in selecting influential APIs. The steps of SelectAPI
outlined in Algorithm [2|say the selection of influential APIs in
each API sequence of the updated dataset. A threshold weight
£ will be decided during experimentation to select influential
APIs. During the feature selection, not to disturb the class size
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distribution of the dataset, an API sequence gets restored to its
original form when none of the APIs in the sequence qualifies
B. Using the chosen API sequences from SelectAPI, the
Word2vec [22]] model is used to generate vector representations
of various APIs. These vectors capture information about the
APT’s semantics based on the surrounding APIs in the API
sequences. These API vectors are further used to train and
evaluate machine learning models.

Algorithm 2 SelectAPI

Require: RAPIg., (The Reduced API Sequence) , TF —
IDF4pr weight matrix and Weight threshold 5 to select
influential API

Ensure: SelAPIgs., (API Sequence of APIs qualifying [3)

1: SelAPlgeq = ¢

2: for each AP € RAPIg., do

3 if TF — IDFapr > [3 then

4 SelAPIg.q.append(API)

5: end if

6

7

8

9

: end for

. if Number of termsin Sel APIg.q = 0 then

: SelAPIgeq = APIgeq > Restore the API-Seq

. end if > If all APIs are deselected
10: return SelAPIgeq

IV. EXPERIMENTAL SETUP AND RESULTS

An eight-core “Intel-Corei5-1035G1-CPU @ 1.00GHz ”
personal computer equipped with 16 Gigabytes of RAM is
used during the research to conduct experiments. The computer
runs the operating system “Ubuntu-22.04-LTS” and is installed
with Anaconda, which has a kernel of Python-3.9 and Jupyter
Notebook to conduct experiments. Using the benchmark im-
balanced multiclass malware dataset, MAL-API-2019 [4], two
machine learning models, SVC, a non-linear model and RF, an
implicit ensemble model, are trained and assessed to make sure
the proposed feature selection method is effective in classifying
malware into the appropriate classes.

ence length after s
®
3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Original Length Distribution of MAL-API-2019 1e6

Fig. 5. API-Sequence length variation by SelectAPI with 5 = 0.13.

To mitigate the dataset problem concerning API sequence
length as depicted in Fig. [] the suggested feature selection
method SelectAPI considered several [ values during the
experiment to remove insignificant APIs from API sequences.
Fig. 3] illustrates the change in API sequence length using
SelectAPI against its original length with the best-found value
of 3 as 0.13.

Word2vec [22] model is used with (window size: ‘10°,
minimum count: ‘1’, Skip-Gram Selector: ‘1’, and vector
size: ‘100’) to generate API embeddings of all the significant
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TABLE I. PERFORMANCE: SVC vS. RF WITHOUT SELECTAPI FEATURE

SELECTION
Precision Recall F1-Score
Accuracy (Macro-Avg) (Macro-Avg) (Macro-Avg) Mcc
SvC 0.64 0.66 0.65 0.65 0.58
RF 0.65 0.67 0.65 0.66 0.59

TABLE II. PERFORMANCE: SVC Vs. RF WITH SELECTAPI FEATURE

SELECTION
Precision Recall F1-Score
Accuracy (Macro-Avg) (Macro-Avg) (Macro-Avg) Mcc
SvC 0.76 0.77 0.76 0.76 0.74
RF 0.73 0.75 0.73 0.74 0.71

APIs for finalized API sequences of SelectAPI. The API
embeddings are used to supply the expected weight matrix
to train the SVC model with parameters (probability: “True’,
kernel: ‘RBF’, gamma: ‘auto’, C: ‘10’, and maximum iteration:
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‘1000’) and RF model with parameters (number of estimators:
‘100°, criterion: ‘entropy’, bootstrap: ‘True’, and maximum
depth: ‘150°).

TABLE III. SVC USING SELECTAPI AGAINST OTHERS

Aceurs Precision Recall Fl1-score
ceuracy (Macro-Avg) (Macro-Avg) (Macro-Avg)

LSTM [4]

(Single-Layer) - 0.50 0.47 0.47
GRU [17]

(Case2) 0.55 0.56 0.59 0.57
RTF Model [18] 0.60 - - 0.61
SvC

(SelectAPT) 0.76 0.77 0.76 0.76
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During experimentation, performance metrics for both the
model’s RF and SVC were recorded to have a conclusion about
the significance of the suggested feature selection technique.
Table [I] represents the accuracy, macro average precision,
recall, and Fl-score of the model’s RF and SVC without
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using the feature selection SelectAPI. Furthermore, Table
highlights the performance metrics of both models with the
feature selection SelectAPI. The SVC model’s performance
can be visually studied, referring to the following figures.
The confusion matrix is in Fig. [6] the precision-recall curve
is plotted in Fig. [7] and the ROC-AUC curve is plotted in
Fig. [§]. The RF model’s performance can be visually studied
using the following figures. The confusion matrix is in Fig.
O the precision-recall curve is plotted in Fig. [I0] and the
ROC-AUC curve is plotted in Fig.[T1]. A comparison between
performance scores mentioned in Table [[] and Table [[] reveals
the significance of the feature selection technique SelectAPI.
The Support Vector Classifier (SVC) obtained a detection
accuracy of 0.76, according to the data, with overall average
precision, recall, and F1-score values of 0.77, 0.76, and 0.76,
respectively. The Random Forest (RF) model, in contrast, had
overall average precision, recall, and Fl-score values of 0.75,
0.73, and 0.74, respectively, and a detection accuracy of 0.73.
As shown in Table [II} the support value of 1422 is considered
to evaluate all performance metrics. The Matthews correlation
coefficient (MCC) score is also calculated to support the
statistical significance of both models. All of the data clearly
shows that SVC has performed better than RF in terms
of classification abilities. This finding indicates a significant
improvement over previous research that indicated a maximum
macro average ‘F1” score of 0.61 (see Table [ITI).

V. CONCLUSION

This work has shown a method of selecting influential
APIs from the collected API sequences for better malware
classification. The significance of the suggested feature selec-
tion method, SelectAPI, is illustrated by applying it to the
extremely unbalanced open benchmark variable-length API-
sequence multiclass malware dataset MAL-API-2019. Select-
ing influential APIs from API call sequences improves the clas-
sification capability of malware to their classes even though the
dataset is imbalanced class-wise and feature sequence length-
wise. The SVC model demonstrated improved performance
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measures compared to RF as outlined in TABLE [lI} achieving
an accuracy of 0.76 with a macro-avg. Fl-score of 0.76 and
a macro-avg. AUC-score of 0.94 across eight malware classes
in the dataset using the feature section technique SelectAPI.
These encouraging results highly support the effectiveness of
the suggested feature section technique. Compared to previous
studies by other researchers on the used dataset, as shown in
Table [T, which reported a maximum macro average F1 score
of 0.61, the result obtained in this work shows a considerable
performance improvement. Investigating other techniques to
select influential APIs on such imbalanced dynamic API
sequence-based malware datasets can give better classification
capabilities to machine learning models.
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