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Abstract—Deep learning-based predictive maintenance is a
key strategy in industry to prevent unexpected failures, reduce
downtime, and improve operational safety. This study presents an
advanced approach for early fault detection in heavy machinery
components using image analysis, focusing on four critical defect
types: hose wear, piston failure, corrosion, and moisture. To this
end, three state-of-the-art object detection models were imple-
mented and compared: YOLOv11, RT-DETR, and YOLO-World.
The dataset consists of images captured in real-life industrial
environments exhibiting variations in lighting, texture, and mate-
rial degradation. A manual preprocessing and annotation process
was applied to improve training quality. Model performance was
evaluated using key metrics such as the precision-recall (PR)
curve and the confusion matrix to determine the most efficient
technique for real-time fault detection. Experimental results show
that YOLOv11 achieves the highest overall accuracy, with an
mAP@0.5 of 83.8%, followed by YOLO-World at 82.4% and
RT-DETR at 80.3%. In terms of efficiency, YOLO-World offers
a balance between accuracy and detection speed, while RT-DETR
shows stable performance but lower accuracy for certain defect
types. These findings confirm that deep learning-based detection
models enable the rapid and accurate identification of industrial
defects, facilitating the implementation of predictive maintenance
strategies.
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I. INTRODUCTION

Maintenance of heavy machinery is a critical issue in
industry, as unexpected failures can lead to high operating
costs, downtime and safety risks. Traditionally, corrective and
preventive maintenance strategies have been used. Corrective
maintenance consists of repairing a machine only when it fails,
which can cause costly interruptions. Preventive maintenance,
on the other hand, involves scheduled inspections and repairs,
even if they are not always necessary, which can increase costs
without ensuring efficiency [1]. In this context, deep learning-
based predictive maintenance has emerged as an innovative
solution that enables early detection of failures through real-
time data analysis [2]. This methodology not only optimizes
intervention planning, but also reduces operating costs, min-
imizes downtime, and improves the efficiency of industrial
inspections, contributing to greater productivity and safety in
working environments [3].

Recent advances in computer vision have facilitated the
automation of fault detection in mechanical components, en-
abling accurate defect identification through image analy-
sis [4]. In particular, object detection models have demon-
strated high performance in visual inspection tasks, providing

scalable and efficient solutions for industrial maintenance [5].
However, most existing studies focus on general-purpose
datasets, operate under controlled laboratory conditions, or
focus on isolated defect types, which limits their applicability
in real-life industrial settings. Furthermore, many models pri-
oritize accuracy over inference speed, making them unsuitable
for real-time applications where immediate fault detection is
crucial.

Therefore, there is a clear gap in the literature regarding
the implementation of fast, accurate, and generalizable object
detection models in real-life industrial settings, specifically
for the detection of multiple simultaneous faults in heavy
machinery components. This work addresses this gap by inte-
grating state-of-the-art object detection architectures capable of
managing visual variability, complex backgrounds, and diverse
fault types under operating conditions.

In this study, three state-of-the-art models are evaluated:
YOLOv11, RT-DETR, and YOLO-World. These were selected
for their advanced capabilities in balancing speed and accuracy,
their adaptability to diverse visual inputs, and their proven
performance in object detection benchmarks. YOLOv11 offers
a strong balance between real-time performance and detection
accuracy. RT-DETR incorporates transformer-based attention
mechanisms that improve the recognition of small or occluded
defects. YOLO-World offers greater flexibility in managing
open vocabulary detection, which is essential when defect
categories evolve or are refined over time.

The primary objective of this research is to develop an auto-
matic visual inspection system for detecting defects in heavy
machinery components based on deep learning. The system
focuses on four recurring industrial defects: hose wear, piston
failure, moisture, and corrosion. To achieve this goal, a specific
dataset of high-resolution images captured under real-world
working conditions was created and manually annotated. The
models are trained and evaluated to compare their accuracy,
processing speed, and generalization capabilities in realistic
scenarios.

The paper is organized as follows: Section II provides a
review of related work, Section III details the methodology,
Section IV presents the experiments and results, and Section
V presents conclusions.

II. RELATED WORK

This study [6] proposes an improved version of the VGG19
convolutional neural network, named Multipath VGG19
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(MVGG19), for the detection of defects and the recognition
of industrial objects. Six public data sets with images of
mechanical parts and defective materials were used. MVGG19
improves feature extraction using a multi-path scheme and
concatenation fusion. The experiments showed that MVGG19
outperforms VGG19 in five of the six datasets, with an average
improvement of 6.95% in the classification accuracy.

This paper in [7] presents a deep learning-based approach
to identify defects in images, exploring segmentation and
unsupervised detection methods. For evaluation, the MVTec
Anomaly Detection (MVTec AD) dataset is used, which
provides images with more than 70 types of anomalies and
accurate pixel-level annotations. Different approaches based
on deep neural networks, such as autoencoders and genera-
tive models, are compared with traditional computer vision
techniques. The results obtained show the performance of the
evaluated methods and highlight improvement opportunities
for applications in real environments.

The objective of the research [8] is the development of
a multi-phase Convolutional Neural Network (CNN) model
to detect and analyze corrosion in metallic materials. The
model employs binary classification, multiclass classification
and patch distribution to identify affected areas. It was trained
with 600 images, achieving 94.87% accuracy in binary classi-
fication, 92.1% in multiclass classification and up to 96.5% in
patch distribution. In addition, it achieved 91.5% accuracy in
region segmentation at the image level and 89.2% at the pixel
level. This approach is useful for experts in critical industries
such as aerospace and manufacturing and can be applied in
other areas beyond corrosion.

In this paper [9], PatchCore is presented for anomaly
detection in industrial manufacturing using a representative
memory pool of nominal local features, achieving a balance
between inference times and performance. In the MVTec AD
benchmark, it achieves an AUROC of up to 99.6%, halving
the error rate compared to the best competitor. Furthermore,
it offers competitive results on other datasets and in scenarios
with few samples.

In this study [10], a comprehensive review of deep
learning-based anomaly detection techniques is presented, an-
alyzing neural network architectures, supervision levels, loss
functions, metrics and datasets. In addition, a framework based
on industrial environments is proposed and current approaches
are evaluated under this context. Open challenges in image
anomaly detection are also highlighted and the advantages
and limitations of various architectures depending on their
supervision level are analyzed.

The objective of this research [11] is to analyze the use
of convolutional neural networks (CNN) for the automated
detection of corrosion on metallic surfaces. For this purpose,
different CNN architectures are compared, including pre-
trained models and specific designs adapted to this problem.
The results show that CNNs outperform traditional methods
based on texture and color analysis, improving both the ac-
curacy and efficiency of the inspection process. In addition,
one of the proposed architectures significantly optimizes the
computational time, maintaining a performance comparable to
that of the most advanced models.

This study [12] proposes a method based on artificial neural

networks to detect internal leakage in hydraulic cylinders by
analyzing pressure signals. Key features such as location,
height and width of the peaks are extracted, reducing di-
mensionality and optimizing processing. The neural network
classifies the system into three states: optimal, mild failure and
severe failure. This approach improves the detection of leaks
caused by wear and seal damage, increasing the reliability and
efficiency of hydraulic systems in heavy machinery, reducing
costs and maintenance times in industrial environments.

This research [13] analyzes the current challenges and
provides a review of the most recent unsupervised approaches,
organized into five categories. In addition, public datasets used
in this area are presented and different methods are compared
to identify their advantages and disadvantages. Finally, un-
solved problems are highlighted and future lines of research
are proposed to foster the development of more efficient and
applicable solutions in different industrial sectors.

This study [14] presents a semi-orthogonal embedding-
based approach for unsupervised anomaly segmentation by
optimizing the use of multi-scale features of pre-trained CNNs
along with Mahalanobis distance. It aims to mitigate the high
computational cost associated with multidimensional covari-
ance tensor inversion, a key limitation for scalability in deep
networks. To this end, random feature selection is generalized
using semi-orthogonal embedding, which allows for a more
efficient and robust approach, cubically reducing the com-
putational cost without affecting performance. Experiments
on standard datasets, such as MVTec AD, KolektorSDD,
KolektorSDD2 and mSTC, show that this method outperforms
the state of the art, achieving significant improvements in
accuracy and efficiency. These results validate its applicability
in large-scale anomaly detection.

The research proposes [15] a new framework called PaDiM
for image anomaly detection and localization within a single-
class learning environment. PaDiM employs a pre-trained
convolutional neural network (CNN) for patch-level feature
extraction and models the normal class distribution using mul-
tivariate Gaussian distributions. In addition, it takes advantage
of correlations between different semantic levels of the CNN
to improve anomaly localization. The proposal outperforms
current methods on MVTec AD and STC datasets, and ex-
tends the evaluation protocol to measure its performance on
unaligned datasets, getting closer to real industrial inspection
scenarios. Thanks to its low computational complexity and
high performance, PaDiM is presented as a viable alternative
for various industrial applications.

The study [16] proposes Abyss Fabric, an automated
system for corrosion detection and monitoring on offshore
platforms, improving maintenance efficiency. Using computer
vision and a Convolutional Neural Network (CNN), it seg-
ments inspection images and integrates the results into a digital
twin to identify corrosion and its severity. Evaluated on an
oil platform, it achieves 91.83% accuracy, processing large
volumes of data automatically and optimizing maintenance
planning, reducing costs and operational risks.

The research proposes [17] an unsupervised deep learning
model for anomaly detection in temporal data of manufacturing
processes, with the aim of improving the interpretability and
scalability of these systems in industrial environments. Its ap-
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plication in the assembly tightening process in the automotive
industry demonstrates a significant improvement in anomaly
identification, facilitating its implementation and overcoming
the limitations of conventional approaches.

This study [18] proposes a crash response testing method
and frequency-domain analysis to detect defects in shock
absorber rods and steering racks on an automotive production
line. Machine and deep learning were used to build a discrim-
ination model based on features extracted from the measured
signals. The results indicate that frequency analysis accurately
identifies the location and presence of defects, improving
quality control and facilitating the implementation of smart
factories.

III. METHODOLOGY

The proposed methodology, illustrated in Fig. 1, focuses on
detecting faults in heavy machinery components using deep
learning. The objective is to identify signs of deterioration
in real time, enabling the implementation of predictive main-
tenance strategies. The methodology consists of four main
phases: data collection, preprocessing, model training, and
model evaluation.

Fig. 1. Proposed methodology.

A. Data Collection

The dataset used in this study was developed from scratch
and consists of images captured in real industrial environments,
with the goal of ensuring representative and relevant samples.
The images were taken with a high-resolution camera, allowing
for an adequate level of detail for visual fault identification.
During the capture process, specific criteria related to image
quality are determined, such as good resolution and lighting
conditions that ensure clear visibility of critical areas of the
machinery. Furthermore, efforts were made to include images
under different operating conditions to increase the variability
and robustness of the dataset.

The dataset covers four main types of failures in heavy
machinery: hose wear, piston failure, moisture, and corro-
sion. Hose wear includes cracks, abrasions, and deformations
in hydraulic and pneumatic systems due to prolonged use
or extreme conditions. Piston failure manifests as oil leaks,
cracks, or loss of displacement efficiency. Moisture refers to
the presence of water or oil, which can indicate leaks or
condensation. Finally, corrosion refers to the deterioration of
metallic components due to exposure to moisture, chemicals,
or aggressive environments. This unique dataset forms the
basis for the development of an automated fault detection sys-
tem, focused on improving predictive maintenance strategies
in industrial settings. Representative images of each type of
fault are presented in the Fig. 2.

Fig. 2. Component failure dataset.

Table I presents the four defect classes used for training,
along with the number of labeled instances in the component
failure dataset. These classes represent common failure types
in heavy machinery, where accurate detection is essential for
predictive maintenance.

B. Preprocessing

To optimize the performance of the fault detection system
for heavy machinery components, the dataset underwent a pre-
processing process that included two key stages: data augmen-
tation and detection annotation. These techniques improved the
model’s ability to identify faults under a variety of conditions,
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TABLE I. DATASET CLASSES AND LABELS

Classes Labels

Hose wear 324
Piston failure 268

Moisture 234
Corrosion 638

ensuring better generalization and reducing the impact of a
limited dataset.

1) Data augmentation: Given the challenges of collecting
large quantities of defect images in industrial environments,
common data augmentation techniques, such as rotation, flip-
ping, brightness adjustments, and contrast modifications, are
employed to simulate various real-world conditions. These
transformations were applied using standard libraries such as
Albumentations and OpenCV, widely used in computer
vision. This approach improves the robustness and general-
ization capabilities of deep learning models, increasing their
accuracy under different lighting, orientation, and perspective
conditions [19].

2) Annotation: Each image in the dataset was manually
annotated using bounding boxes to accurately identify the
faults present. To ensure labeling consistency and quality,
an annotation protocol was applied that included: a clear
definition of each fault type supported by visual examples,
precise delineation of the affected areas, and expert cross-
review to validate each annotation.

This rigorous annotation process is crucial, as label ac-
curacy and consistency directly affect the model’s ability to
learn useful representations. In industrial applications, where
fault detection can entail significant costs, labeling quality
is a determining factor for the effectiveness of predictive
maintenance systems [20].

C. Model Training

For early detection of faults in heavy machinery compo-
nents, three advanced models are selected: YOLOv11, opti-
mized for real-time detection and capable of rapid response to
anomalies during operation; RT-DETR, based on transformer
architectures, which stands out for its high accuracy in identify-
ing complex defects through contextual and spatial analysis of
images; and YOLO-World, which integrates vision-language
modeling for open vocabulary detection. This combination
ensures an optimal balance between speed, accuracy, and
flexibility for continuous industrial monitoring.

1) YOLOv11: It is an advanced real-time detection model
that improves feature extraction using C3k2, SPPF, and C2PSA
blocks, achieving greater accuracy (mAP) and computational
efficiency [21]. Its high speed and ability to detect small
defects make it ideal for predictive maintenance, allowing
anomalies in industrial components to be identified before
critical failures occur. Its scalable design facilitates deployment
on both edge devices and high-performance environments,
optimizing early detection and reducing downtime. Fig. 3
illustrates the architecture of YOLOv11.

Fig. 3. Architecture of YOLOv11.

2) RT-DETR: This is a Vision Transformer-based detection
model designed to operate in real time without the need
for non-maximum suppression (NMS), which improves its
efficiency [22]. Its architecture, illustrated in Fig. 4, optimizes
multi-scale feature fusion using a hybrid encoder and IoU-
based query selection, enabling higher detection accuracy. This
balance of speed and accuracy makes it particularly suitable
for applications such as surveillance, autonomous driving, and
predictive maintenance in industrial environments.

Fig. 4. Architecture of RT-DETR.

3) YOLO-World: It is an extension of the YOLO se-
ries that introduces open vocabulary detection capabili-
ties through vision-language modeling and pre-training on
large datasets [23]. To this end, it incorporates the Re-
parameterizable Vision-Language Path Aggregation Network
(RepVL-PAN) and a region-text contrastive loss, which im-
proves the interaction between visual and linguistic informa-
tion. This approach enables object detection in a zero-shot
scenario with high efficiency. The architecture of the model
is illustrated in Fig. 5. In addition, its tuned version exhibits
outstanding performance in tasks such as object detection and
instance segmentation with open vocabulary.

Fig. 5. Architecture of YOLO-World.
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IV. EXPERIMENTS AND RESULTS

To evaluate the performance of the selected object detection
models YOLOv11, RT-DETR, and YOLO-World a compre-
hensive set of experiments was conducted using the proprietary
Component Failure Dataset, specifically designed for detecting
faults in heavy machinery components. This section details the
evaluation methodology, performance metrics, and experimen-
tal results, providing a thorough assessment of each model’s
effectiveness in real-world industrial applications.

A. Model Performance Evaluation

The selected models were trained and validated under
industry-relevant conditions, ensuring a realistic assessment of
their detection accuracy, computational efficiency, and real-
time applicability. The evaluation framework incorporated key
performance metrics to provide a holistic analysis of each
model’s strengths and limitations:

1) Precision-Recall (PR) curve: Provides insights into the
trade-off between precision and recall, helping assess detection
reliability across different defect types.

2) Confusion matrix: Analyzes classification accuracy,
highlighting correct detections and common misclassifications
to identify areas for improvement.

3) Inference speed (FPS - Frames Per Second): Determines
the efficiency of the model processing, which is critical for
real-time fault detection in industrial environments.

This structured evaluation ensures that models are evalu-
ated not only in terms of accuracy, but also in terms of de-
ployment feasibility, computational efficiency, and their ability
to minimize false detections in an real setting.

B. YOLOv11

To evaluate YOLOv11 performance in detecting compo-
nent failures, we present the precision-recall (PR) curve and
the confusion matrix, which provide insight into its detection
capabilities.

Fig. 6. PR curve YOLOv11.

Fig. 6 shows the precision-recall (PR) curve of YOLOv11,
highlighting its performance in detecting four types of defects:

corrosion, hose wear, piston failure, and moisture. The model
achieves an overall average precision (mAP@0.5) of 83.8%,
with its best performance in detecting piston failures 95.8%,
followed by hose wear 83.4% and moisture 82.1%. However,
corrosion has the lowest performance 73.9%, suggesting po-
tential challenges in its identification.

Together, these results demonstrate the robustness of
YOLOv11 for industrial fault detection, while highlighting
opportunities for improvement, particularly in corrosion de-
tection.

Fig. 7. Confusion matrix YOLOv11.

In Fig. 7, the confusion matrix provides a detailed eval-
uation of YOLOv11 classification performance in detecting
defects in heavy machinery. The correct predictions are con-
centrated on the main diagonal, demonstrating high precision
for most categories, including corrosion, hose wear, piston fail-
ures, and moisture. The model achieves excellent performance
in identifying piston failures and hose wear, with minimal
misclassifications.

However, some misclassifications are observed, especially
in corrosion, where they are incorrectly classified as back-
ground. Similarly, some moisture cases are also misclassified
as background, suggesting that the model may have difficulty
distinguishing these defects under certain conditions. These
results highlight the robustness of YOLOv11 in defect de-
tection while also indicating potential areas for improvement,
especially in reducing misclassifications with the background
category.

C. RT-DETR

The performance of the RT-DETR model in detecting
defects in heavy machinery is evaluated using the PR curve
and the confusion matrix, allowing a detailed analysis of its
detection accuracy.

Fig. 8 shows the precision-recall (PR) curve obtained with
the RT-DETR model for the detection of different types of
faults in heavy machinery components. Individual curves are
presented for each evaluated class: Corrosion 73.4%, Hose
Wear 84.4%, Piston Failure 91.8% and Moisture 71.6%. In
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addition, the overall performance curve of the model for
all classes is included, obtaining an (mAP@0.5) of 80.3%.
These results indicate good performance of the model in fault
detection, with the “Piston Failure” class presenting the highest
precision compared to the others.

Fig. 8. PR curve RT-DETR.

Fig. 9 presents the confusion matrix, which allows a
detailed analysis of the RT-DETR model performance in iden-
tifying faults in heavy machinery.The model performs solidly
in detecting piston faults and hose wear, with a low number of
misclassifications. However, some confusions were identified,
especially in the corrosion category. Similarly, certain exam-
ples of moisture were misclassified, suggesting that the model
may have difficulty differentiating these faults under specific
conditions.

These findings demonstrate the effectiveness of the RT-
DETR model in detecting industrial defects, although they also
highlight areas for improvement, primarily in reducing false
negatives in the classification of corrosion and moisture.

Fig. 9. Confusion matrix RT-DETR.

D. YOLO-World

To evaluate the performance of the YOLO-World model
in industrial fault detection. In particular, the Precision-Recall
(PR) curve and the confusion matrix allow analyzing the
model’s ability to differentiate between different classes of
defects.

Fig. 10. PR curve YOLO-World.

Fig. 10 presents YOLO-World PR curve, with an over-
all mAP@0.5 of 82.4%. The highest detection accuracy is
achieved for piston failure 93.8%, followed by hose wear
85.5%, moisture 76.1%, and corrosion 74.0%. While the
model performs well, corrosion detection remains the most
challenging category.

Fig. 11. Confusion matrix YOLO-World.

The confusion matrix Fig. 11 shows that YOLO-World
achieves high accuracy, with most correct predictions aligned
on the diagonal. However, corrosion and moisture exhibit
higher misclassification rates, indicating potential difficulties
in distinguishing these defects from background noise. Further
refinement in feature extraction could improve the model’s
accuracy in these categories.
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In general, YOLO-World demonstrates competitive per-
formance, although improvements in corrosion and wetting
detection could further improve its reliability.

E. Comparison and Discussion

The performance of the three selected object detection
models, YOLOv11, RT-DETR, and YOLO-World, was ana-
lyzed based on their detection accuracy and computational
efficiency. This section provides a comparative discussion of
the models’ strengths, limitations, and potential improvements
in detecting faults in heavy machinery components.

Table II shows a comparison of the performance of the
YOLOv11, RT-DETR, and YOLO-World models in fault de-
tection, evaluated by overall accuracy, mAP@0.5, and infer-
ence time. Among them, YOLOv11 stands out as the most
accurate model, achieving an mAP@0.5 of 83.4%, indicating
its high ability to accurately identify defects. Furthermore, its
inference time of 32.6 ms positions it as an efficient option
for real-time applications [21].

On the other hand, RT-DETR achieved the highest overall
accuracy 94.6%, but its mAP@0.5 of 80.3% was the lowest,
suggesting that its detection may be less reliable compared to
the other models [22]. Furthermore, its high inference time
45.7 ms makes it less suitable for speed-critical environments.
In contrast, YOLO-World offers the best balance between
accuracy and efficiency [23], with a mAP@0.5 of 82.4%
and the lowest inference time 29.7 ms, making it the best
alternative for real-time detection tasks, although with a slight
reduction in accuracy compared to YOLOv11.

TABLE II. COMPARISON OF RESULTS

Model Results

Model Accuracy(%) mAP@0.5(%) infer(ms)

YOLOv11 89.1% 83.4% 32.6

RT-DETR 94.6% 80.3% 45.7

YOLO-World 90.2% 82.4% 29.7

The images in Fig. 12 illustrate detection examples for the
three models. These images show how each model identifies
component defects, highlighting the differences in accuracy
and misdetection. This visual comparison reinforces the find-
ings in the table, providing a clear representation of each
model’s strengths and weaknesses in detecting faults in heavy
machinery components.

V. CONCLUSION

The study demonstrates that computer vision and deep
learning models, such as YOLO-World, YOLOv11, and RT-
DETR, are highly effective for fault detection in industrial
environments, combining accuracy and operational efficiency.
Among them, YOLOv11 achieved the highest overall accuracy,
with an (mAP@0.5) of 83.8%, outperforming YOLO-World
82.4% and RT-DETR 80.3%. However, YOLO-World stood
out for its balance between accuracy and inference speed,
making it particularly suitable for real-time applications. These
results underscore the importance of selecting models that are

Fig. 12. Detection result of the three models.

not only accurate but also adaptable to real-world conditions,
ensuring efficient and reliable performance.

Furthermore, the study identifies that certain classes of
defects, such as corrosion and moisture, exhibit lower accuracy
compared to other detected faults. To address this limitation,
it is proposed that future work include a larger number of
images of these defects, thereby improving the representation
of these classes in the dataset. This strategy, along with other
techniques such as data augmentation and model fine-tuning,
will contribute to increasing the system’s accuracy and ro-
bustness, optimizing its performance in predictive maintenance
applications.
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