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Abstract—Automatic detection of hate speech in low-resource
languages presents a persistent challenge in natural language
processing, particularly with the rise of toxic discourse on social
media platforms. Arabic, characterized by its rich morphology,
dialectal variation, and limited annotated datasets, is underrep-
resented in hate speech research, especially regarding content
targeting marginalized and protected groups. This study proposes
a zero-shot learning approach that leverages Natural Language
Inference (NLI) models guided by carefully engineered hypotheses
in native Arabic to detect hate speech against protected groups,
such as women, immigrants, Jews, Black people, transgender
individuals, gay people, and people with disabilities. We formu-
lated nine different Arabic hypothesis groups and employed a
zero-shot XNLI model with a baseline embedding-based model,
incorporating preprocessing techniques on the HateEval Arabic
dataset. The results indicate that the XNLI model achieves up to
80% accuracy in detecting targeted hate speech, significantly out-
performing baseline models. Furthermore, a real-world validation
using GPT-3 via the ChatGPT interface achieved 54% accuracy
in zero-shot conversational settings. These findings highlight the
importance of hypothesis design and linguistic preprocessing in
zero-shot hate speech detection, particularly in low-resource and
culturally nuanced languages offering a scalable and culturally
aware solution for moderating harmful content in Arabic online
spaces.
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I. INTRODUCTION

The proliferation of hate speech on digital platforms, par-
ticularly social networks, has raised serious social concerns due
to the harm it causes marginalized communities. Hate speech
refers to any type of expression that involves discrimination
against individuals or groups based on their identity, such as
race, ethnicity, religion, gender, sexual orientation, and other
factors [1]. It can range from offensive discourse targeting
inherent traits to speech, gestures, or physical expressions that
threaten individuals or groups. However, distinguishing be-
tween hate speech and merely offensive or controversial opin-
ions remains complex, especially in contexts where freedom of
expression is a sensitive issue [2]. In response, researchers have
increasingly turned to Natural Language Processing (NLP)
techniques to automate the detection and classification of hate
speech.

Despite advancements in NLP and Machine Learning, hate
speech detection continues to present significant challenges [3],
particularly in low-resource languages Arabic, which presents

unique complexities due to its linguistic characteristics, in-
cluding the complex morphology of the language, and the
wide array of dialects spoken across different regions [4], [5].
Recently, Many scientific studies have used machine learning
and deep learning to automatically detect hate speech [6],
However Traditional supervised learning approaches depend
heavily on annotated datasets, which are often scarce or nonex-
istent for languages such as Arabic [7], [8]. Additionally, these
approaches need help to adapt to the dynamic and context-
dependent nature of hate speech, resulting in suboptimal per-
formance in real-world situations. Therefore, there is an urgent
need to develop efficient methods to address this problem.
One promising approach involves reusing natural language
inference (NLI) models for text classification, which has shown
promising results in zero- and few-shot classification tasks
[9]. Recent research by Goldzycher and Schneider [10] has
also highlighted the potential for zero-shot NLI-based settings
to outperform traditional few-shot fine-tuning approaches in
English. While prior studies have explored the identification
of hate speech in several languages, such as English, there
remains a need for specialized approaches that target protected
groups within these languages. This highlights the importance
of investigating novel methodologies, such as hypothesis en-
gineering for zero-shot learning, to address these challenges
and advance hate speech detection capabilities across diverse
linguistic contexts.

The objective of this study is multifaceted, aiming to
address several key challenges in hate speech detection within
the context of low-resource languages. Firstly, we propose
to develop a set of hypotheses tailored to the characteristics
of hate speech targeting protected groups in low-resource
languages, such as Arabic. These hypotheses will serve as
the basis for our zero-shot learning approach, facilitating
the model’s ability to generalize to unseen instances of hate
speech. Secondly, we seek to create a scenario-based frame-
work for hate speech detection, wherein the model is trained
to recognize nuanced forms of hate speech directed towards
specific protected groups, including women, minorities, and
marginalized communities. By incorporating scenario-based
training data, we aim to enhance the model’s sensitivity to
context and improve its performance in real-world applica-
tions. Additionally, we plan to conduct ground validation
experiments using a chat-based interface, such as GPT, to
assess the practical effectiveness of our proposed approach.
This iterative validation process will provide insights into the
model’s performance in natural language interactions, further
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validating its utility in real-world settings.

In addition to the contribution of this study to detecting hate
speech in low-resource languages, it also conducts in-depth
experiments on carefully selected hypotheses that fit the rich
nature of the Arabic language, which is characterized by an
abundance of synonyms and extensive linguistic dictionaries.
Furthermore, we explore these hypotheses in scenarios in
which hate speech is directed toward protected groups in Arab
societies. These contributions can be summarized as follows:

• We developed a comprehensive set of hypotheses in
Arabic specifically tailored to detect hate speech.

• We proposed a novel approach using zero-shot learn-
ing to detect hate speech in low-resource Arabic set-
tings, guided by meticulously formulated hypotheses
considering contextual and linguistic challenges.

• Our study presents an enhanced methodology employ-
ing zero-shot learning for detecting hate speech in
Arabic, targeting protected groups such as women, im-
migrants, Jews, Black people, transgender individuals,
gay people, and disabled people.

• Through ground validation using ChatGPT, we
demonstrated the practical usability of our hypotheses
in real-time conversations, verifying their potential for
proactive moderation.

The organization of this paper is as follows: Section II
presents an overview of previous research conducted in identi-
fying hate speech. Section III provides a detailed explanation
of the technique used in this study, while Section IV presents
the experimental setup, which includes the building of the
model, the division of the data, and the metrics used for
evaluation. Section V outlines the methods utilized in our
investigation, Our results are presented in Section VI, while
Section VII provides the discussion of the findings. In Section
VIII we analyze the top errors of our study, conclude the work,
and suggest possible directions for future research in Section
IX.

II. RELATED WORK

Current developments in automated hate speech detection
move from machine learning models to the use of deep
learning and transformer-based models, a comprehensive re-
view by Abdelsamie et al. [11] discuss the latest techniques
in natural language processing for hate speech detection in
Arabic, including Lexicon-based, ML, DL, and transformer-
based models. Each of these approaches addresses the com-
plexity of the Arabic language in a different way. ML models
like Support Vector Machines (SVM) combined with word
embeddings have shown high accuracy in classifying offensive
content in Arabic tweets [12], [13]. Convolutional neural net-
works (CNNs) and their hybrid models, such as CNN-LSTM
and BiLSTM-CNN, have been effective in binary, ternary,
and multi-class classification tasks for hate speech detection
[8], [14]. Lexicon-based approaches, which involve creating
specialized lexicons of offensive terms, have been employed
to identify and classify hate speech, especially in the context
of religious hatred [15]. The impact of tokenization strategies
and vocabulary sizes on the performance of Arabic language
models in downstream natural language processing tasks has

also been examined [16]. Sentiment analysis techniques are
also utilized to capture the meaning of Arabic words and
classify tweets as hateful or non-hateful. The integration of
genetic algorithms with classifiers like XGBoost and SVM has
been used to optimize hyperparameters and improve detection
accuracy [12].

Pre-trained word embedding models like AraVec and fast-
Text, fine-tuned on specific datasets, have proven beneficial in
capturing the semantic nuances of Arabic hate speech [17].
Additionally, Elmadany et al. explore the use of affective
bidirectional transformers for offensive language detection
in Arabic, demonstrating the utility of training models on
sentiment and emotion data to enhance performance [18].
Daouadi et al. introduce an ensemble approach that combines
pre-trained language models and data augmentation to im-
prove hate speech detection from Arabic tweets, achieving
encouraging results. Their methodology addresses the issues of
limited performance and imbalanced data, common challenges
in Arabic hate speech detection [19].

A. Zero-Shot Learning Approaches

Zero-shot learning has emerged as a promising approach
for hate speech detection, particularly in scenarios with lim-
ited labeled data and high variability across languages and
contexts. Research indicates that ZSL can effectively leverage
large language models, such as T5 and BLOOM, to achieve
performance comparable to traditional fine-tuned models, even
in under-resourced languages [20], [21]. Techniques like hy-
pothesis engineering enhance ZSL by combining multiple
predictions to improve accuracy, demonstrating significant
gains over standard models [10]. Furthermore, Goldzycher
et al. [22] employed fine-tuned models based on the XNLI
dataset to evaluate the effectiveness of NLI models in detecting
hate speech across languages. Experiments were conducted
in Arabic, Hindi, Italian, Portuguese, and Spanish, with mul-
tilingual models initially adapted for detecting hate speech
in English and further refined using language-specific data.
Further research by Zia et al. explores zero-shot cross-lingual
hate speech detection, highlighting the effectiveness of pseudo-
label fine-tuning of transformer language models in improving
detection performance across different languages [23]. These
advancements highlight the potential of ZSL to address the
challenges of hate speech detection across diverse linguistic
landscapes.

B. Research Gap

Despite significant advancements in hate speech detec-
tion, several critical gaps persist, particularly concerning low-
resource languages like Arabic. The complexity of Arabic,
characterized by diverse dialects and rich vocabulary, poses
substantial challenges for traditional supervised learning ap-
proaches that rely heavily on large annotated datasets. More-
over, existing research predominantly focuses on resource-rich
languages, leaving a significant void in developing effective
detection models tailored for Arabic.

Traditional deep learning and transformer-based models,
while powerful, often require extensive labeled data for train-
ing, which is scarce for Arabic [24]. This scarcity hampers
the development of robust hate speech detection systems for
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Arabic-speaking communities. Furthermore, there is a notice-
able lack of research on hypothesis engineering specifically
tailored to zero-shot learning frameworks for Arabic hate
speech detection. Previous studies have also insufficiently
addressed hate speech targeting protected groups within the
Arabic-speaking community, such as women, immigrants, and
religious minorities.

ZSL emerges as a promising alternative, enabling models
to generalize to new tasks without task-specific training data.
By leveraging ZSL, it’s possible to overcome the limitations
posed by data scarcity, allowing for the development of hate
speech detection models that are both accurate and adaptable
to the nuances of the Arabic language and its dialects. This
approach not only reduces the dependency on large annotated
datasets but also facilitates the rapid deployment of detection
systems across different contexts and communities.

III. METHODOLOGY

The methodology adopted in this study follows a struc-
tured, systematic approach to detect hate speech targeting
protected groups in the Arabic language utilizing zero-shot
learning techniques, presented in Fig. 1. The process is ini-
tiated by formulating hypotheses specifically tailored to the
Arabic language. These hypotheses are designed to encapsulate
various facets of hate speech, making them suitable for a
zero-shot learning approach. Subsequently, these hypotheses
are subjected to initial experiments using the XNLI model,
which employs zero-shot learning, and several preprocessing
techniques are applied to the Arabic text data, ensuring the
text is clean, consistent, and ready for analysis. Following
the initial experiments, the best-performing hypotheses are
selected and refined to improve their effectiveness in detecting
hate speech. This step is crucial for tailoring the detection
system to the specific linguistic and cultural nuances of Arabic.
A comparative analysis is then conducted to evaluate the
performance of the XNLI model with the zero-shot learning
approach against the embedding baseline model. Finally, the
refined hypotheses are tested in real-life conversations using a
chat-based interface with GPT-3.

A. Zero-Shot Learning in Hate Speech Detection

Traditional zero-shot learning methods rely on providing
a descriptor or information about an unseen class [25]. This
descriptor can be in the form of visual attributes, the name
of the class, or any other relevant information. By providing
this descriptor, the model can make predictions for the unseen
class even without having any training data specifically for that
class. In other words, the model uses the provided information
to generalize and recognize the characteristics of the unseen
class. This approach enables the model to extend its knowledge
beyond the classes it has been trained on and make accurate
predictions for new and previously unseen classes.

The objective of Zero-Shot Learning is to learn a model (f)
that maps instances (x) and auxiliary information (a) to class
labels (y). Mathematically, this can be expressed as:

f : (x, a)ßy (1)

where x represents an input instance from the dataset, a
represents the auxiliary information associated with each class,
and y represents the class label.

To train the Zero-Shot Learning model, a loss function (L)
is defined to measure the discrepancy between the predicted
class labels and the ground truth labels. The loss function
guides the model to minimize the classification error during
training. Mathematically, the loss function can be represent
as:

L(f(x, a), y) (2)

where L represents the loss function, f(x, a) represents
the predicted class label for instance x based on the auxiliary
information a, and y represents the ground truth class label
for instance x.

The key aspect of Zero-Shot Learning is its ability to
generalize to unseen classes. During inference, the model can
predict the class labels for instances belonging to new classes
that were not present in the training data. This is achieved by
using the learned relationships between the auxiliary informa-
tion and the class labels. Mathematically, the generalization
can be expressed in Eq. 3.

f(x new, a new)ßy new (3)

where x new represents a new instance from an unseen
class, a new represents the auxiliary information associated
with the new class, and y new represents the predicted class
label for the new instance.

 Formulate Hypotheses 

(Tailored in Arabic language to check hate speech in zero-shot approach)

 Initial Experiments

 (XNLI model employing zero learning approach) 

Preprocessing

 (Normalization, Standardization,  Lemmatization) 

Hypotheses Refinement for Detection 

(Choosing Best Hypotheses based on result of initial experments) 

Comparative Analysis 

 (Comparing the results of XNLI model employing zero learning approach with the results of the 

Embedding baseline model) 

Ground Validation 

  (Testing Hypotheses in real-life conversations)

Arabic Hate Speech 

Dataset

Arabic Hate Speech 

Dataset

Fig. 1. An Illustration of the methodology used in this study to detect hate
speech targeting protected groups in Arabic highlights the essential steps.

B. HateCheck Dataset

The HateCheck [2] is a meticulously curated resource
designed to evaluate the performance of hate speech detection
models. It encompasses a wide variety of hate speech exam-
ples, targeting diverse protected groups, and is structured to
test models across multiple dimensions of hate speech. This
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includes explicit and implicit hate speech, different types of
hate (e.g. racism, sexism, homophobia), and varying intensities
and forms of hateful expressions. The dataset is notable
for its comprehensive coverage, which aims to mimic the
complexity and variability of hate speech encountered in real-
world settings. In this study, we utilized a subset of HateCheck
specifically adapted for Arabic, known as HateCheck Arabic,
which was instrumental in validating the effectiveness of
our zero-shot learning methodology for detecting hate speech
in Arabic. This dataset has been painstakingly annotated to
identify hate speech and provides valuable insights into the
prevalence and nature of offensive content in the Arabic-
speaking context. Table I contains details of the Hatecheck-
Arabic dataset statistics in terms of size, sub-groups targeted
by hate speech, and hate statements percentages.

TABLE I. STATISTIC OF HEATCHECK-ARABIC DATASET

Class/Target Size Hate statements (%) Not hate statements (%)
Women 534 406 (76%) 128 (24%)
immigrants 437 333 (76%) 104 (24%)
Jews 437 333 (76%) 104 (24%)
black people 485 369 (76%) 116 (24%)
trans people 437 333 (76%) 104 (24%)
gay people 509 387 (76%) 122 (24%)
disabled people 437 333 (76%) 104 (24%)
No Class 294 0 (0%) 294 (100%)
HateCheck-arabic 3570 2494 (70%) 1076 (30%)

IV. EXPERIMENTAL SETUP

In this section, we provide an overview of the experimental
setup, detailing the model employed, the split of the Arabic
HateCheck dataset, and the performance metrics used to assess
the model’s efficacy.

A. Model Selection

Within the model selection, we systematically explored
our zero-shot learning approach’s effectiveness in the Arabic
language context. To achieve this, we employed two distinct
models to evaluate a set of hypotheses meticulously formulated
for our experiments. The first model entailed leveraging an
embeddings-based approach, while the second model involved
harnessing the XNLI model, tailored for hate speech classi-
fication. After comprehensive experimentation, we identified
the most promising hypothesis that yielded the highest per-
formance in hate speech detection using our methodology.
Subsequently, we conducted an additional validation step using
chatGPT, which we employed to test the accuracy of the best-
performing hypothesis. This validation procedure allowed us
to gauge our zero-shot learning approach’s real-world applica-
bility and robustness when integrated with advanced language
models. The following is an explanation of the architecture of
these models.

1) NLI Model: NLI (Natural Language Inference) models
have gained prominence in various natural language processing
tasks, including zero-shot topic classification [26]. NLI models
are designed to determine the relationship between two given
sentences: whether the second sentence contradicts, entails, or
is neutral concerning the first sentence. Leveraging the capa-
bilities of NLI models, zero-shot topic classification enables
the classification of text into predefined topics or categories

without explicitly training on labeled examples from those
topics. By encoding the topic description as a premise and
the input text as a hypothesis, NLI models can infer the topic
relevance or compatibility. This approach proves particularly
useful in scenarios where labeled data for all target topics is
limited or unavailable. The NLI model’s ability to generalize
across topics makes it a promising choice for zero-shot topic
classification tasks, including hate speech detection.

NLI is a task where the model is given a premise (P) and
a hypothesis (H) and is required to predict the relationship
between them, typically as entailment, contradiction, or neutral
[27]. This can be represented mathematically in Eq. 4.

NLI(P,H)− > {entailment, contradiction, neutral} (4)

XNLI is a specific variant of the NLI trained on the XNLI
dataset, which is a multilingual natural language inference
dataset. The methodology of XNLI involves fine-tuning the
pre-trained XLM-RoBERTa-Large model on the XNLI task. It
takes the premise (P) and hypothesis (H) as inputs and predicts
the relationship between them.

Both NLI and XNLI methodologies involve training a
model to understand the relationships between premises and
hypotheses. The models are trained on large amounts of data
to learn the semantic representations and context required for
accurate inference. These methodologies enable the models
to generalize well to new instances and perform effectively
in various natural language understanding tasks, including
textual entailment and inference-based classifications. For our
experiment, we utilized the XNLI1 model as the base model.

2) Embeddings: Embeddings play a critical role in NLP in
numerically representing textual data while retaining semantic
relationships and contextual information [28]. They convert
words or phrases into high-dimensional vectors, making ma-
chine learning models more capable of grasping linguistic
meanings and patterns. Mathematically, an embedding for a
word wi can be denoted as:

E(wi) (5)

where E represents the embedding function. For a given
text S, it can be represented as a sequence of word embed-
dings:

S = [E(w1), E(w2), ..., E(wn)] (6)

where n signifies the length of the text. Zero-shot learn-
ing is used in conjunction with embeddings to improve the
detection of hate speech. Because zero-shot learning allows
models to generalize to previously unseen classes, it is useful
for classifying hate speech directed at protected groups. The
model learns to associate embeddings with specific hate speech
categories by leveraging auxiliary information or hypotheses.
For example, hypothesizing “this text contains hate speech
targeting immigrants” directs the model to recognize instances
of hate speech directed at immigrants. A similar approach for

1https://huggingface.co/joeddav/xlm-roberta-large-xnli

www.ijacsa.thesai.org 799 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

zero-shot topic classification was demonstrated by Yin et al.
[9].

In our experimental approach, we used embeddings as a
critical component of our analysis. We fine-tuned the Embed-
ding model of OpenAI to classifying hate speech, specifically
the text-embedding-ada-002I2 version. We used embeddings
to increase the depth of our investigation after developing
and testing hypotheses using the XNLI model. By passing
these hypotheses to the embedding model, we aimed to con-
duct a comprehensive comparative analysis between the two
models. This approach enabled us to delve into the intricate
nuances of hate speech detection, leveraging both the semantic
relationships captured by embeddings and the cross-lingual
understanding facilitated by the XNLI model. We hoped to
select the most effective model for detecting hate speech
directed at protected groups using this two-pronged approach.

3) GPT-3: Developed by OpenAI, represents a ground-
breaking achievement in natural language processing (NLP).
This state-of-the-art language model has garnered significant
attention for its exceptional ability to generate coherent and
contextually relevant human-like text across a wide array
of tasks. Its advanced capabilities stem from extensive pre-
training on vast datasets, allowing it to capture intricate lan-
guage patterns and subtleties [29]. GPT-3 utilizes a transformer
architecture featuring multiple attention mechanisms, enhanc-
ing the model’s understanding of long-term dependencies in
textual data. The self-attention mechanism, fundamental to its
architecture, can be mathematically expressed as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (7)

Where, Q,K, and V are the query, key, and value matrices
respectively, and dk is the dimension of the key vectors. The
softmax function scales the dot product of the query and
key vectors by the square root of dk. The resulting attention
scores are then used to weight the value vectors, producing the
attended representation.

The Attention function takes in three inputs: the query
matrix (Q), the key matrix (K), and the value matrix (V ).
It also considers the dimension of the key vectors, represented
as (d k). The function first calculates the dot product of the
query and key matrices, and then scales this result by the
square root of the dimension of the key vectors. The softmax
function is then applied to these scaled values, resulting in
what are known as attention scores. These attention scores are
subsequently used to weight the value vectors, yielding the
final output, which is the attended representation. This process
essentially allows the model to focus on different parts of the
input sequence when producing the output.

B. Data Split

Our data was sourced from the Arabic HateCheck as we
mentioned in Section III-B , which is composed of a wide
variety of text samples that include hate speech directed at
different protected groups. In order to enhance the resilience
of our model, we executed a stratified split of the data, taking

2https://platform.openai.com/docs/models/embeddings

into account the groups targeted. Table I provides a detailed
breakdown of these groups.

C. Model Performance Metrics

To comprehensively evaluate our hate speech detection
system, we employed four widely recognized metrics that
collectively assess different facets of model performance.

1) Accuracy (ACC): quantifies the model’s overall correct-
ness by calculating the percentage of all predictions that align
with the true labels.

ACC =
TPostive + TNegative

TPostive + TNegative + FPostive + FNegative
(8)

2) Precision (Pre): evaluates the reliability of positive
predictions, emphasizing the model’s ability to minimize false
alarms.

Pre =
TPostive

(TPostive + FPostive)
(9)

3) Recall (Rec): measures how effectively the model iden-
tifies all instances of hate speech within the dataset, prioritizing
the detection of true positives.

Rec =
TPostive

(TPostive + FNegative)
(10)

4) F1-score (F1-s): harmonizes precision and recall into a
single metric, ensuring a balanced assessment of the model’s
performance even when class distributions are uneven.

F1− s =
2 ∗ (Pre ∗Rec)

(Pre+Rec)
(11)

V. METHODS

We describe the methods employed in our experiments,
organized into the following three subsections that outline the
key steps of our experimentation.

A. Hypothesis Generation, Initial Experiments, and Prepro-
cessing

Guided by the hypothesis engineering proposed by Goldzy-
cher et al. [10], We formulated our hypotheses in Arabic ac-
cording to the proposed method in Fig. 2, where we formulated
the hypotheses in the form of “It is / That text is / This example
is / This example contains / This text is / This text contains /
This is / Containing / Contains + hate speech / hate-inciting
speech / provocative hate speech / hateful”. Table II presents
the hypotheses formulated in Arabic and their corresponding
literal translations in English. The translations were generated
using the chatGPT model.3

Following the development of these hypotheses, we con-
ducted initial experiments using embeddings as a baseline
in conjunction with the XNLI model. We utilized the XNLI

3https://chat.openai.com/
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Algorithm 1 Hate Speech Detection in Arabic

Ensure: Labels for each text sample in D′

1: Input: Dataset D, Hypotheses H , NLI Model XNLI,
Threshold θ

2: Output: Labels for each text sample in D′

3: Preprocessing Steps:
4: D ← Normalize(D) ▷ Convert text to a canonical form

(e.g.,Unified number format, removing diacritics)
5: D ← RemoveNoise(D) ▷ Remove unnecessary

characters (e.g., punctuation, stop words)
6: D ← Lemmatize(D) ▷ Reduce words to their base or

root form
7: D′ ← D ▷ Final preprocessed dataset
8: for all t ∈ D′ do ▷ For each text sample t in the

preprocessed dataset
9: for all h ∈ H do ▷ For each hypothesis h

10: S(t, h)← XNLI(t, h) ▷ Calculate the semantic
similarity score

11: if S(t, h) ≥ θ then
12: Label(t)← Hate Speech
13: else
14: Label(t)← Non-Hate Speech
15: end if
16: end for
17: end for
18: Return Labels for each text sample in D′

model on the HatCheck dataset, inputting the formulated
premises and hypotheses. This stage allowed us to evaluate
the performance of the generated hypotheses and to compare
the embeddings-based approach to the XNLI model.

Continuing from the initial experiments, the hypothe-
ses showing promising results underwent further refinement
through preprocessing using the Kurdish Language Processing
Toolkit (KLT)4 to preprocess the data. The toolkit served as a
valuable resource for performing various language processing
tasks specific to the Kurdish and Arabic languages. It offered
a range of functionalities, including tokenization, stemming,
and morphological analysis [30], which helped us effectively
preprocess and prepare the data for further analysis, As shown
in Fig. 2 Where we took the following steps on the dataset
before sending it to model:

1) Normalization: involves handling diverse encodings and
merging characters based on dialects and scripts

2) Standardization: takes a normalized text and produces
a standardized version according to Arabic orthographies

3) Lemmatization: It involves determining the root form of
a word and applying various morphological transformations,
such as removing prefixes and suffixes, to obtain the lemma.

To improve data quality and consistency, techniques such as
normalization and lemmatization were used. This preprocess-
ing step aimed to alleviate the impact of dialectal variations and
improve the overall performance of the model. As detailed in
Algorithm 1, we systematically applied various preprocessing
techniques to the dataset, which included tokenization, nor-
malization, noise removal, and lemmatization. Following that

4https://github.com/sinaahmadi/klpt

TABLE II. THE HYPOTHESES FORMULATED IN ARABIC AND THEIR
CORRESPONDING LITERAL TRANSLATIONS IN ENGLISH

hypothesis literal translation
P1-1 �

éJ
ë@Q»
�
IK
Yg é

	
K @


It is hate speech

P1-2 �
éJ
ë@Q» úÎ«

	
�m�'


�
IK
Yg é

	
K @


It is hate-inciting speech

P1-3 �
éJ
ë@QºÊË

Q�

�
JÓ H. A¢

	
k é

	
K @ It is provocative hate speech

P1-4 �
éJ
ë@Q» é

	
K @ It is hateful

P2-1 �
éJ
ë@Q»

�
IK
Yg �

	
JË @ ½Ë

	
X That text is hate speech

P2-2 �
éJ
ë@QºË@ úÎ«

	
�m�'


�
IK
Yg �

	
JË @ ½Ë

	
X That text is hate-inciting speech

P2-3 �
éJ
ë@QºÊË

Q�

�
JÓ H. A¢

	
k �

	
JË @ ½Ë

	
X That text is provocative hate speech

P2-4 �
éJ
ë@Q» �

	
JË @ ½Ë

	
X That text is hateful

P3-1 �
éJ
ë@Q»

�
IK
Yg éK. ÈA

�
JÖÏ @ @

	
Yë This example is hate speech

P3-2 �
éJ
ë@Q» úÎ«

	
�m�'


�
IK
Yg éK. ÈA

�
JÖÏ @ @

	
Yë This example is hate-inciting speech

P3-3 �
éJ
ë@Q»

Q�

�
JÓ H. A¢

	
k éK. ÈA

�
JÖÏ @ @

	
Yë This example is provocative hate

speech
P3-4 �

éJ
ë@Q» éK. ÈA
�
JÖÏ @ @

	
Yë This example is hateful

P4-1 �
éJ
ë@Q»

�
IK
Yg úÎ« ø



ñ
�
Jm�'
 ÈA

�
JÖÏ @ @

	
Yë This example contains hate speech

P4-2 �
éJ
ë@Q» úÎ«

	
�m�'


�
IK
Yg úÎ« ø
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we re-evaluated the refined hypotheses after preprocessing, en-
abling us to quantitatively measure the improvement achieved
through these preprocessing techniques.

B. Hypothesis Refinement and Subsetting by Protected Groups

To narrow down our focus and enhance the model’s ability
to detect hate speech targeting specific protected groups, we
selected the two best-performing hypotheses from the refined
pool. These selected hypotheses were then subjected to further
experimentation. Experiments were conducted for each subset
of the dataset representing protected groups, such as women,
disabled people, trans people, etc. The same models, namely
embeddings and XNLI, were utilized in these subsequent ex-
periments as they were in the initial experiments. This enabled
us to examine the effectiveness of the selected hypotheses
in detecting hate speech that was directed toward specific
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Fig. 2. Methodological framework for hate speech detection in Arabic targeting protected groups.

protected groups within the Arabic language.

C. Ground Validation Using GPT Chat

In the third phase of our methodology, detailed in Algo-
rithm 2, we validated the effectiveness of the refined hypothe-
ses in real-world conversational scenarios using the GPT-3.5
turbo model and the GPT chat interface from OpenAI. We in-
put the hypotheses into the GPT chat interface to evaluate their
practical relevance in detecting hate speech targeting protected
groups in real-life conversations. The validation results were
then compared to the outcomes from the initial experimental
phase and the revised hypotheses following preprocessing.
This comprehensive assessment facilitated the evaluation of
performance enhancement achieved through hypothesis refine-
ment and preprocessing techniques in the context of Zero-
Shot Learning for hate speech detection. The comparison
underscored the practical applicability and robustness of our
approach in real-world settings.

VI. RESULTS

A. Initial Experiments and Hypothesis Performance

Our initial experiment aimed to comprehensively assess
the effectiveness of various hypotheses in the detection of

hate speech. The hypotheses that are included in our study
are presented in Table II. This table contains a total of nine
main hypotheses, each of which is further divided into four
sub-hypotheses. The hypotheses were carefully constructed to
encompass the intricate features of hate speech. To assess the
efficacy of these hypotheses, we utilized the XNLI model as
our analytical instrument. The utilization of this model enabled
the assessment of the efficacy of each hypothesis in accurately
identifying hate speech within the particular context of our
research. The results obtained from these experiments provide
significant insight into the effectiveness of each hypothesis in
comprehensively capturing the various manifestations of hate
speech.

B. Impact of Preprocessing Techniques

Our systematic application of preprocessing techniques
resulted in significant improvements in both data quality and
model performance, albeit with notable differences between
architectures. As shown in Table III, the embedding model
showed a big increase in accuracy for detecting hate speech
after preprocessing, indicating that normalizing features was
crucial for improving its ability to recognize patterns. The
performance data for the XNLI model in Table IV showed
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Algorithm 2 Real-World Validation with GPT-3

Require: Preprocessed Dataset D′, Hypotheses H , GPT-3
Model GPT-3

Ensure: Real-World Validation Accuracy AGPT3

1: Input: Preprocessed Dataset D′, Hypotheses H , GPT-3
Model GPT-3

2: Output: Real-World Validation Accuracy AGPT3

3: Initialize: Correct Detections C ← 0, Total Validations
T ← 0

4: for all t ∈ D′ do
5: for all h ∈ H do
6: prompt← ConstructPrompt(t, h)
7: response← GPT-3(prompt)
8: if response = Hate Speech then
9: Label(t)← Hate Speech

10: else
11: Label(t)← Non-Hate Speech
12: end if
13: T ← T + 1
14: if Label(t) = Ground Truth Label(t) then
15: C ← C + 1
16: end if
17: end for
18: end for
19: AGPT3 ← C

T ▷ Calculate the real-world validation
accuracy

20: Return Real-World Validation Accuracy AGPT3

TABLE III. PERFORMANCE METRICS OF EMBEDDING MODEL BEFORE
AND AFTER PREPROCESSING

Experiment before preprocessing Experiment after applying KLT
Hypothesis Pre Rec F1-S Acc Pre Rec F1-S Acc
P1-1 0.56 0.55 0.55 0.71 0.65 0.52 0.49 0.76
P1-2 0.54 0.55 0.5 0.53 0.53 0.52 0.52 0.69
P1-3 0.54 0.52 0.51 0.72 0.72 0.52 0.48 0.77
P1-4 0.57 0.55 0.55 0.71 0.65 0.52 0.49 0.76
P2-1 0.54 0.54 0.54 0.67 0.62 0.53 0.52 0.76
P2-2 0.56 0.56 0.56 0.67 0.61 0.54 0.53 0.75
P2-3 0.53 0.53 0.52 0.59 0.55 0.53 0.53 0.71
P2-4 0.54 0.55 0.51 0.55 0.55 0.54 0.54 0.7
P3-1 0.53 0.54 0.49 0.53 0.53 0.51 0.5 0.71
P3-2 0.55 0.57 0.51 0.53 0.53 0.52 0.52 0.7
P3-3 0.54 0.54 0.54 0.65 0.61 0.54 0.53 0.75
P3-4 0.53 0.55 0.49 0.51 0.54 0.53 0.52 0.71
P4-1 0.5 0.5 0.36 0.36 0.49 0.49 0.45 0.49
P4-2 0.5 0.5 0.4 0.41 0.5 0.5 0.47 0.51
P4-3 0.53 0.54 0.52 0.58 0.52 0.52 0.52 0.64
P4-4 0.5 0.5 0.38 0.38 0.51 0.51 0.49 0.54
P5-1 0.53 0.54 0.53 0.61 0.56 0.53 0.51 0.74
P5-2 0.55 0.56 0.54 0.61 0.57 0.53 0.53 0.74
P5-3 0.53 0.54 0.53 0.63 0.57 0.54 0.53 0.73
P5-4 0.54 0.55 0.53 0.6 0.53 0.52 0.52 0.71
P6-1 0.5 0.5 0.34 0.34 0.49 0.49 0.43 0.45
P6-2 0.49 0.49 0.32 0.32 0.49 0.48 0.38 0.38
P6-3 0.52 0.53 0.5 0.56 0.52 0.52 0.51 0.61
P6-4 0.48 0.49 0.25 0.27 0.51 0.51 0.44 0.46
P7-1 0.54 0.53 0.53 0.7 0.62 0.53 0.5 0.76
P7-2 0.55 0.57 0.54 0.59 0.56 0.53 0.53 0.72
P7-3 0.57 0.54 0.53 0.73 0.71 0.53 0.5 0.77
P7-4 0.57 0.58 0.57 0.67 0.58 0.53 0.53 0.74
P8-1 0.5 0.5 0.32 0.33 0.51 0.51 0.41 0.41
P8-2 0.53 0.51 0.23 0.26 0.49 0.49 0.32 0.32
P8-3 0.49 0.48 0.41 0.43 0.5 0.49 0.46 0.49
P8-4 0.49 0.49 0.39 0.4 0.5 0.5 0.47 0.51
P9-1 0.52 0.51 0.32 0.32 0.52 0.53 0.47 0.49
P9-2 0.55 0.51 0.23 0.27 0.49 0.49 0.32 0.32
P9-3 0.51 0.52 0.41 0.42 0.52 0.52 0.52 0.64
P9-4 0.53 0.54 0.46 0.48 0.52 0.53 0.52 0.64

TABLE IV. PERFORMANCE METRICS OF THE XNLI MODEL BEFORE AND
AFTER PREPROCESSING

Experiment before preprocessing Experiment after applying KLT
Hypothesis Pre Rec F1-S Acc Pre Rec F1-S Acc
P1-1 0.72 0.66 0.59 0.58 0.72 0.57 0.56 0.54
P1-2 0.73 0.69 0.6 0.6 0.72 0.6 0.57 0.55
P1-3 0.7 0.95 0.6 0.68 0.7 0.97 0.59 0.69
P1-4 0.72 0.47 0.52 0.5 0.72 0.37 0.47 0.46
P2-1 0.71 0.57 0.55 0.54 0.71 0.49 0.53 0.51
P2-2 0.71 0.5 0.53 0.51 0.71 0.43 0.5 0.48
P2-3 0.71 0.71 0.59 0.59 0.7 0.79 0.6 0.62
P2-4 0.71 0.66 0.6 0.59 0.72 0.57 0.57 0.55
P3-1 0.72 0.68 0.6 0.6 0.72 0.58 0.56 0.54
P3-2 0.72 0.62 0.58 0.57 0.72 0.54 0.55 0.53
P3-3 0.72 0.62 0.58 0.57 0.7 0.98 0.59 0.69
P3-4 0.72 0.63 0.59 0.57 0.74 0.53 0.56 0.54
P4-1 0.72 0.83 0.64 0.66 0.72 0.73 0.6 0.6
P4-2 0.73 0.73 0.62 0.62 0.72 0.63 0.58 0.57
P4-3 0.7 0.96 0.6 0.69 0.7 0.99 0.59 0.7
P4-4 0.73 0.79 0.63 0.65 0.72 0.71 0.61 0.61
P5-1 0.7 0.48 0.51 0.49 0.71 0.69 0.59 0.58
P5-2 0.69 0.39 0.47 0.45 0.71 0.58 0.55 0.54
P5-3 0.7 0.67 0.58 0.57 0.7 0.96 0.6 0.69
P5-4 0.71 0.55 0.55 0.53 0.71 0.6 0.57 0.55
P6-1 0.72 0.79 0.63 0.64 0.7 0.38 0.56 0.45
P6-2 0.72 0.67 0.6 0.59 0.7 0.33 0.44 0.43
P6-3 0.7 0.93 0.6 0.68 0.7 0.75 0.59 0.6
P6-4 0.72 0.71 0.61 0.6 0.72 0.45 0.51 0.49
P7-1 0.72 0.55 0.55 0.53 0.72 0.59 0.57 0.55
P7-2 0.72 0.63 0.59 0.57 0.71 0.5 0.53 0.51
P7-3 0.7 0.94 0.59 0.67 0.7 0.97 0.6 0.69
P7-4 0.71 0.51 0.54 0.52 0.72 0.4 0.49 0.47
P8-1 0.72 0.92 0.64 0.69 0.71 0.93 0.62 0.69
P8-2 0.72 0.76 0.62 0.63 0.71 0.8 0.62 0.64
P8-3 0.7 0.97 0.58 0.68 0.71 0.99 0.58 0.7
P8-4 0.72 0.87 0.64 0.68 0.71 0.92 0.62 0.68
P9-1 0.72 0.9 0.64 0.69 0.71 0.68 0.59 0.59
P9-2 0.72 0.79 0.62 0.64 0.71 0.74 0.54 0.52
P9-3 0.7 0.97 0.58 0.68 0.7 0.97 0.6 0.69
P9-4 0.72 0.85 0.64 0.67 0.72 0.58 0.57 0.55

more detailed improvements, with some language features
being less affected by standardization. Fig. 3 shows important
details about these different results, illustrating how changes
from preprocessing affected the evaluation metrics in different
ways. The distribution patterns especially show that while
most hypotheses improved with preprocessing, some only
had slight improvements or even got worse, highlighting the
complicated link between Arabic language features and how
well preprocessing works.

Furthermore, we conducted a statistical comparison using
the Wilcoxon signed-rank test for both the XNLI and Embed-
dings models across four key metrics. Our analysis indicates
that the effect of preprocessing was different for each model
and hypothesis, as shown in Table V and Fig. 4. The accuracy
of the embedding model went up a lot by 10.9%, p < 0.001,
showing that preprocessing can improve structured metrics,
while the XNLI model only had a small drop in recall of
4.5%, p = 0.028, with precision staying the same. Fig. 4 show
this variation: Many hypotheses are close to the “no change”
line, like P1-1, but outliers such as P5-2 with +48.7% recall
and P6-2 with -50.7% recall reveal that preprocessing can both
enhance some patterns and hide others.

Cohen’s d values in Table V show these trade-offs: the
Embedding Model had a big increase in accuracy with d
= 2.17 but a notable drop in recall with d = -0.68, while
the XNLI Model’s F1 score went down with d = -0.51
because it had trouble balancing precision and recall. These
results emphasize that preprocessing is not always beneficial;
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its efficacy hinges on both model architecture and linguistic
nuances. For instance, dialect-specific hate speech (e.g. P6-2)
resisted standardization, while context-dependent patterns (e.g.
P7-3’s +24.6% Precision) thrived.

These findings suggest that we should customize our
methods: we need to check each preprocessing idea one by
one, paying close attention to the balance between differ-
ent measurements and the complexity of the language. As
Fig. 4 vividly illustrates, preprocessing acts as a selective
lens—enhancing clarity in some contexts while unintentionally
blurring others.

TABLE V. STATISTICAL COMPARISON OF MODEL PERFORMANCE
METRICS BEFORE VERSUS AFTER PREPROCESSING. RESULTS SHOW
WILCOXON SIGNED-RANK TEST STATISTICS, SIGNIFICANCE LEVELS

(ASTERISKS INDICATING SIGNIFICANCE PF P-VALUE), MEAN
DIFFERENCES (AFTER - BEFORE), AND EFFECT SIZES (COHEN’S D)

Model Metric Wilcoxon p-value Sig Diff Cohen’s d

XNLI

Precision 64.0 0.189 -0.002 -0.232
Recall 181.0 0.028 * -0.045 -0.287
F1 111.0 0.001 ** -0.023 -0.513
Accuracy 159.0 0.018 * -0.026 -0.369

Embedding

Precision 111.5 0.007 ** 0.023 0.478
Recall 62.0 0.001 *** -0.012 -0.675
F1 159.0 0.018 * 0.030 0.502
Accuracy 0.0 0.000 *** 0.109 2.171

C. Hate Speech Detection Targeting Protected Groups

In the final phase of our experimental framework, we
extended our zero-shot hate speech detection approach to
specifically target protected groups within Arabic discourse.
To tailor our model for this scenario, we identified and
employed the two most promising hypotheses based on our
earlier experiments, including P7-3 for the Embeddings model
and P8-3 for the XNLI model. We carefully crafted these
hypotheses to accurately represent targeted hate speech ex-
pressions in Arabic, ensuring semantic generality for zero-shot
classification. Using these refined hypotheses, we evaluated the
performance of both models across seven protected groups:
women, immigrants, Jews, Black people, transgender people,
gay people, and disabled people.

The results from this detailed evaluation are displayed
in Table VI, which shows the precision, recall, F1-score,
and accuracy of both models for each group. In parallel,
Fig. 5 provides a visual overview of the model performance
per metric, facilitating a clearer comparison of strengths and
weaknesses.

Our results indicate that the XNLI model is better than the
Embeddings model, particularly with hypothesis P8-3, reach-
ing an average accuracy of up to 80% for protected groups.
For example, the XNLI model showed remarkable robustness
in detecting hate speech targeting Jews, black people, and
disabled individuals, groups that often experience nuanced
and implicit forms of discrimination. On the other hand, the
Embeddings model performed okay with hypothesis P7-3,
but its results were less consistent and affected by the way
language was used. These outcomes underscore two important
insights: First, hypothesis engineering plays a crucial role in
adapting zero-shot models to detect group-specific hate speech.
Second, semantically informed models like XNLI, when paired
with well-formulated hypotheses, can serve as powerful tools

for hate speech detection in low-resource and linguistically
diverse settings such as Arabic.

TABLE VI. COMPARISON OF HATE SPEECH DETECTION RESULTS
TARGETING PROTECTED GROUPS USING DIFFERENT MODELS AND

HYPOTHESES

Embedding XNLI
Target hypoth Pre Rec F1-S Acc Pre Rec F1-S Acc

Women P7-3 0.64 0.54 0.53 0.76 0.81 0.87 0.63 0.75
P8-3 0.58 0.54 0.54 0.74 0.81 0.9 0.74 0.76

immigrants P7-3 0.62 0.54 0.53 0.76 0.84 0.74 0.71 0.7
P8-3 0.59 0.57 0.58 0.73 0.84 0.8 0.74 0.73

Jews P7-3 0.47 0.47 0.36 0.36 0.83 0.92 0.78 0.8
P8-3 0.47 0.46 0.41 0.42 0.82 0.95 0.77 0.8

black people P7-3 0.59 0.5 0.55 0.73 0.8 0.9 0.73 0.74
P8-3 0.53 0.53 0.52 0.61 0.8 0.95 0.74 0.78

trans people P7-3 0.62 0.54 0.53 0.76 0.84 0.71 0.69 0.68
P8-3 0.55 0.54 0.54 0.7 0.84 0.83 0.75 0.75

gay people P7-3 0.59 0.54 0.54 0.74 0.81 0.79 0.69 0.69
P8-3 0.54 0.54 0.54 0.66 0.81 0.9 0.75 0.77

disabled people P7-3 0.55 0.54 0.54 0.7 0.84 0.89 0.77 0.78
P8-3 0.52 0.52 0.52 0.65 0.84 0.9 0.78 0.79

D. Ground Validation Using GPT-3

To meticulously validate the real-world feasibility of our
carefully enhanced hypotheses, we adeptly harnessed the ca-
pabilities of the GPT-3 model via the GPT chat interface. To
streamline the validation process, we devised an innovative
strategy by formulating a Hypothesis (P8-3) as a singular
prompt in form of Q�
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in English; The following text contains hate speech against
[group], text: [text]. The responses provided by the model
were subsequently examined to determine to what extent
they aligned with our hypotheses. Remarkably encouraging
results emerged from this validation endeavor, particularly
in the context of complex and low-resource languages like
Arabic, The results of this ground validation are meticulously
detailed in Table VII. The GPT chat interactions served as
a robust testament to the effectiveness of our methodology
in quickly and accurately determining hate speech directed at
protected groups, thus solidifying the pragmatic utility of our
methodology in real-world conversational scenarios.

TABLE VII. THE RESULTS GROUND VALIDATION USING GPT-3

Target Precision Recall F1-Score Accuracy
Women 0.77 0.43 0.45 0.47
immigrants 0.78 0.30 0.42 0.40
Jews 0.81 0.51 0.51 0.54
black people 0.77 0.53 0.48 0.52
trans people 0.79 0.31 0.43 0.41
gay people 0.77 0.34 0.42 0.42
disabled people 0.84 0.29 0.41 0.42

VII. DISCUSSION

Our results underscore the importance of hypothesis design
and preprocessing. While preprocessing boosted embedding
model accuracy, its impact on XNLI was nuanced, revealing
trade-offs between precision and recall. As shown in Fig. 3
and Fig. 4, some hypotheses, like P5-2, demonstrated ex-
ceptional improvement, while others, such as P6-2, declined.
This suggests that preprocessing may enhance or suppress
specific linguistic cues depending on the model and hypothesis
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Fig. 3. Distribution of metric changes (After – Before preprocessing) for Precision, Recall, F1-score, and Accuracy across XNLI and embedding models.
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Fig. 4. Comparison of model performance metrics before versus after preprocessing. Each point represents a single hypothesis, plotted by its preprocessed
(y-axis) versus original (x-axis) scores.

structure. Furthermore, Cohen’s d metrics further confirmed
that these improvements are statistically significant, especially
in the case of structured models like embeddings. However, the
decrease in XNLI’s recall emphasizes that overly aggressive
normalization can reduce the sensitivity needed to detect more
subtle forms of hate speech.

A. Protected Group Detection and Model Robustness

The experiment targeting protected groups reinforces the
critical role of hypothesis engineering. Our choice of P8-3
with the XNLI model resulted in robust performance across
all groups, particularly for subtle, implicit hate speech such
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Fig. 5. Comparative performance of embeddings and XNLI models across protected groups (P7-3 vs. P8-3 hypotheses).

as against Jews or disabled individuals. In contrast, the Em-
bedding model showed greater sensitivity to language usage
patterns but lacked the consistency needed for generalization.

B. Validation and Practical Implications

GPT-3 validation confirmed the real-world applicability of
our hypotheses in a zero-shot conversational setting, partic-
ularly for Arabic’s informal communication. This bridges a
critical gap in hate speech detection, where most studies lack
conversational validation. Our framework’s success in low-
resource settings suggests its potential for ethical AI deploy-
ment in multilingual platforms. As shown in Table VII, our
research results showed clear convergence across all categories,
confirming the consistency of our hypotheses and opening the
way for future research to improve these results based on this
research.

C. Comparison with Previous Studies

Our results show meaningful progress in detecting hate
speech for Arabic, a language often overlooked in AI research.
Table VIII offers a comparative overview of performance
across related studies that utilize zero-shot and few-shot learn-
ing techniques for hate speech detection. Notably, many prior
works have focused on general hate speech detection in English
using supervised transformer-based models or multilingual
adaptations without tailoring hypothesis design or model eval-
uation to Arabic linguistic contexts.

As seen in Table VIII, our approach using the XNLI
model achieved up to 80% accuracy on our expirements, out-
performing earlier Arabic-focused studies (61%) and nearing
the performance of top English models (75%). Furthermore,
our study incorporates a real-world validation step using the
GPT-3 model, providing evidence of its practical applicability
in conversational contexts. While previous studies rarely go
beyond benchmark datasets or synthetic stimuli, our approach
bridges this gap, combining quantitative performance with
qualitative validation in natural conversational settings.

These comparative results demonstrate the robustness of
our proposed framework and its ability to overcome the lim-
itations of experimental learning in resource-limited language
environments. The improvements in precision, recall, and F1
score across multiple protected corpora demonstrate that well-
designed hypotheses and language-specific preprocessing are
vital for achieving accurate and ethical hate speech detection.

TABLE VIII. COMPARISON OF OUR RESULTS WITH PREVIOUS STUDIES
USING HATE SPEECH DETECTION IN THE ARABIC LANGUAGE TARGETING

PROTECTED GROUPS

Study Model Used Dataset Acc(%)
Röttger et al. (2020) [2] BERT fine-tuned on [31] HateCheck-en 0.63
Goldzycher et al. (2022) [10] NLI HateCheck-en 0.75
Ggoldzycher et. al (2023) [22] NLI HateCheck-Ar 0.61
Our Study (Baseline) Embeddings HateCheck-Ar 0.76
Our Study (XNLI) XNLI HateCheck-Ar 0.80
Our Ground Validation GPT-3.5 HateCheck-Ar 0.54

VIII. ERROR ANALYSIS

Our error analysis reveals critical linguistic challenges in
detecting Arabic hate speech targeting protected groups. Three
main factors emerged, as shown in Table IX, contributing to
the misclassification. Each is rooted in the dynamic nature of
informal Arabic communication on social media platforms.

First, the prevalence of Arabizi introduces unique com-
plexities. The term “Arabizi” itself is a generic combination
of the words “Arabi” (Arabic) and “engliszi” (English) [31].
It’s a hybrid writing system combining English letters and
numbers to approximate Arabic sounds. Commonly used in
online spaces, as in example 1, “Allah ya5od kol el mthlyoon”
[May God take (kill) all the gays], this practice forces models
to navigate non-standard spellings where numbers like “5”
replace Arabic letters like “p” Such substitutions create lexical
ambiguities, such as when automated character replacement
systems struggle to restore the original Arabic script without
context.

Secondly, separated letters—intentional spacing between
normally connected Arabic characters—serve as an evasion
tactic to evade automatic hate speech detection systems. This
tactic is used to circumvent detection because the Arabic
language is primarily composed of connected letters. As illus-
trated in Examples 3 and 4, words like “È �

H
�
� @” instead

of “É�J�¯@” [kill] fracture word structures, bypassing pattern-
matching algorithms trained on conventional text. These de-
liberate distortions require specialized preprocessing to recon-
struct meaningful words, a step our initial pipeline lacked.

Finally, dialectal diversity profoundly impacts model per-
formance. The Arabic language includes multiple dialects,
resulting in differences in word usage and sentence structure
across regions. Some words may be specific to certain dialects,
making the intent of a sentence unclear to machine learning
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TABLE IX. ILLUSTRATIVE EXAMPLES OF MISCLASSIFICATION SENTENCES

Example Sentence Group Label gold Predicted Error category
Example 1 Allah ya5od kol el mthlyoon. Gays hateful non-hateful Arabizi

May God take (kill) all the gays.
Example 2 ø



XñîD
Ë @

	áÓ Z@ñ�@
�
ék. @7 �

��

	
¯ AÓ Jews hateful non-hateful Arabizi

There is no one worse than the Jews.
Example 3 . ÈðX

	á�
Ê
�
JÖÏ @ ú




	
¯ ¨ È ð ø



Yg Ð 	PB Gays hateful non-hateful Separated Letters

Someone needs to set (fire) to these gay people.
Example 4 .

	á�


Jk. CË@ É¿ È

�
H

�
� @ 	PðA« A

	
K @ immigrants hateful non-hateful Separated Letters

I want to kill all the refugees.
Example 5 .

	á�
J

�
¯AªÖÏ @ 	áÓ Q�


�
J»

�
�

	
Q̄ªJ.Ó A

	
K @ disabled non-hateful hateful Dialectal confusion

I don’t know many disabled people. people
Example 6 . ùÔ«@ èQ» èX é

	
K @

�
�Qº

�
J
	
®
�
JÓð

	á�

	
Q̄
�
®Ó ZA�

	
�Ë @ Èñ

�
®
�
JK. ø


	P@ women non-hateful hateful Dialectal confusion
How do you say women are disgusting and
don’t think that this is blind hatred?

models. Regional variations, such as the Egyptian phrase
in example 5, “ �

�
	
Q̄ªJ.Ó” (I don’t know)—a fusion of “ AÓ”,

“
	

¬QªK.”, and “ �
�” (“ma” and “ba’arf” with the Egyptian

suffix “sh”)—often defy standard grammatical rules. Models
trained primarily on Modern Standard Arabic misinterpret such
constructions, mistaking dialect-specific syntax for benign or
ambiguous content. These intertwined challenges underscore
a fundamental tension: the fluidity of informal Arabic com-
munication clashes with the rigid patterns detectors typically
recognize. While Arabizi and separated letters represent active
circumvention strategies, dialectal variations expose gaps in
linguistic coverage. Addressing these issues requires not just
improved algorithms but a paradigm shift—integrating dialec-
tal lexicons, adversarial training with manipulated text, and
context-aware transliteration systems.

IX. CONCLUSION

In this study, we address the complex and increasingly
important problem of detecting hate speech in Arabic, a
linguistically rich but resource-poor language. Focusing specif-
ically on hate speech targeting protected groups, we propose
a comprehensive methodology that leverages hypothesis en-
gineering and zero-shot learning through a Natural Language
Inference (NLI) framework.

We started by preparing a set of Arabic-based hypotheses,
written in pure Arabic, capable of capturing various expres-
sions of hate speech. We then evaluated these hypotheses
using two model architectures: a baseline embedding-based
model and an XNLI model. Our experiments demonstrated that
hypothesis engineering, especially when supported by prepro-
cessing techniques such as normalization and lemmatization,
significantly improves model performance in detecting hate
speech. The XNLI model, in particular, demonstrated high
accuracy results, achieving up to 80% accuracy in detecting
targeted hate speech.

Furthermore, we validated our hypotheses using the GPT-3
model in real-time conversational scenarios via the ChatGPT
interface. This step showed that we could successfully use our
methodology on real-world systems that users interact with,
achieving an accuracy of 54%, offering promising results for
real-world moderation tools.

Future directions could focus on developing semi-
automated hypothesis generation frameworks that could reduce

reliance on manual curation, and adversarial training with
synthetic Arabizi/text manipulation samples may enhance ro-
bustness. Cross-lingual adaptations of the methodology could
benefit other low-resource languages, complemented by collab-
orative annotation efforts with affected communities to ensure
ethical and culturally informed detection systems.
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