
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

71 | P a g e

www.ijacsa.thesai.org

Ontology-Based Automatic Generation of Learning

Materials for Python Programming

Jawad Alshboul*, Erika Baksa-Varga

Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary

Abstract—Learning materials in programming education are

essential for effective instruction. This study introduces an

ontology-based approach for automatically generating learning

materials for Python programming. The method harnesses

ontologies to capture domain knowledge and semantic

relationships, enabling the creation of personalized, adaptive

content. The ontology serves as a knowledge base to identify key

concepts and resources and map them to learning objectives

aligned with user preferences. The study outlines the design of a

dual-module ontology: a general and a specific domain-specific

concepts module. This design supports enhanced, tailored

learning experiences, enhancing Python education by meeting

individual needs and learning styles. The approach also increases

the quality and uniformity of generated content, which can be

reused for educational reasons. The system ensures alignment

with reference materials by using BERT embeddings for a

semantic similarity measurement, achieving a quality accuracy of

98.5%. It can be applied to improve Python education by

providing personalized recommendations, hints, and problem-

solution generation. Future developments could further support

the functionality to strengthen teaching and learning outcomes in

programming education, and it could expand to automated

problem generation.

Keywords—Ontology; knowledge graph; learning material

generation; domain knowledge; python

I. INTRODUCTION

Recently, knowledge graphs (KGs), as structured forms of
knowledge representation, have attracted substantial research
interests both in academia and industry from modern ontology
views. Integrating educational technologies with KGs has an
impressive influence on teaching and learning activities,
especially in programming with Python. E-learning platforms
provide students with tools to easily engage and receive
ongoing feedback during the e-learning sessions [1].

KGs are crucial in optimizing the automation of ontology-
based learning material generation. They support the
organization, interrelation, and knowledge utilization in a
particular field [2]. In Python programming, KGs can provide a
definite delineation of the existing knowledge, relations, and
entities [2]. Additionally, ontology-driven systems support
more effective comprehension of the context and relations of
various concepts, thus enabling more precise and thorough
learning materials generation [2]. Adding KGs to the ontology-
based automatic generation of educational materials improves
the relevance of contents, personalization, interoperability,
content reuse, and efficient knowledge capture [3]. KGs can
efficiently organize and manage structural knowledge related
to the Python programming language [3].

In the information age, one's programming capability is
required in many professions, as accentuated by the availability
of resources aimed at teaching and training in programming
[4]. Designing high-quality learning materials for programming
languages is difficult and requires substantial resources
because of fragmentation in educational programming design,
instructional programming expertise, and difficulty in adaptive
personalization [5]. Nevertheless, computer-based automatic
generation of instructional materials, especially ones based on
ontological frameworks, can simplify this task significantly.
This is done through the ALMG, which stands for automatic
learning materials generation (ALMG), a relatively recent
expansion in the most advanced educational technology [6].
Quizzes, study guides, and practice exercises, among other
educational content, are now automatically generated with the
help of artificial intelligence and machine learning algorithms
[6]. This technology will assist educators in saving time and
costs by generating particular and appealing materials for
students [6]. Calmon et al. [7] describe the concept of an
automated system of curriculum selection tailored to the
student's requirements and preferences. This is done by
utilizing machine learning concepts and data analysis
techniques to enhance the effectiveness of educational content
and formative processes of the student. It also encourages the
idea of implementing automated curriculum generation to help
educational institutions deliver and personalize learning while
increasing student performance significantly. In their study,
Xia et al. [8] propose a method for delivering adaptive
networking learning material that meets these needs and
preferences. The system itself is also based on machine
learning algorithms and data analytics and uses them to
determine the effectiveness of the educational content and
activities. The study demonstrates how the concept of
automated curriculum generation can help in the management
of learning processes, as well as increase students' results in
networking education.

One of the methods to represent domain models is through
ontology-based representation [9]. Ontology offers a
standardized vocabulary for domain modeling, including
describing concepts in the domain, their properties, and their
relationships [10]. Semantic understanding and knowledge
representation enable ontology-based automatic learning
materials generation for Python programming that produces
resources like tutorials, code examples, exercises, and
assessments. The development of an ontology for capturing
Python programming concepts, relationships, and properties is
used in this approach. It attempts to create learning materials
based on the pedagogical requirements and learning objectives.
The ontology-based approach further enables continuously

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

72 | P a g e

www.ijacsa.thesai.org

updating and refining the learning materials so they are in sync
with Python programming environment changes [11].

Ontology-based automatic learning materials generation for
Python programming is a highly efficient and scalable
approach using structured knowledge presentation for
automating educational content creation [5]. With this method,
its learning materials remain consistent, high quality, and
personalized, all while allowing for the efficient creation of
various resources. Likewise, the existence of the ontologies
makes the routines adaptable to changes in Python
programming [12], i.e., updating the ontologies and
automatically regenerating learning materials. Ontologies'
automation saves educators and content creators time and
effort and improves a deep semantic understanding of the
Python programming domain for a better generation of
learning materials [13].

Learning materials for Python programming education
presents difficulties in providing scalable, high-quality, and
personalized materials [14]. Creating them manually is time-
consuming and may require catching up with the Python
ecosystem. To resolve these, an automated approach requiring
ontologies is needed. This work aims to develop a
comprehensive ontology for Python programming, and design
an ontology-based automatic learning materials generation
system for Python education. However, this methodology can
greatly improve Python programming learners' exposure and
efficiency to educational resources. The authors also explain
how the presented ontology-based system was designed and
implemented and offer possible further development and
implications of such a system.

Automated generation of learning materials in the context
of Python programming education is critical for scalability,
adaptation, personalization, consistency, efficiency,
accessibility, research, and innovation [15]. It can help meet
the growing demand for diverse, high-quality resources, adapt
to ecosystem changes, and deliver personalized learning
experiences. The ontology-based approach guarantees
consistency in different educational materials, keeping them
high quality. It reduces the time taken to create content for
educators to be concerned with the pedagogical part. This also
makes accessibility easier for a variety of learners with varying
backgrounds and learning styles. Moreover, it can serve as
research in educational technology artificial intelligence as
well as semantic understanding for programming education,
driving innovation in programming education.

This study discusses the potential benefits and limitations
of ontology-based automatic learning materials generation in
the context of programming languages. This approach takes
advantage of the use of technologies like natural language
processing, machine learning, and automated code generation
in the ontologies framework that can potentially transform how
tailored learning materials for programming languages are
generated.

Then, the study will focus on the underlying technologies
and methodologies of ontology-based automatic learning
materials generation and information on how ontologies can be
utilized to represent domain knowledge and the automated
generation of educational content is presented. Furthermore,

the study builds up on the implications of ontology-based
automatic learning materials generation for education and
training to discuss to what extent such systems could improve
the access to and efficiency of programming language
instruction. This will also review the challenges and limitations
of this approach and future directions in research and
development in this emerging field. This exploration serves to
help understand the possibilities of generating ontology-based
automatic learning materials on programming languages and
how it may shape how we teach Programming education and
training.

The main objectives of this study are to design a new
ontology-based framework that illustrates Python programming
concepts and their interconnections and to develop a system
capable of automatically generating learning materials—
specifically quizzes—that reflect those Python programming
concepts and their relationships. The study is organized as
follows: an introduction is provided in Section I, and Section II
presents the related work. Section III shows an ontology-based
approach to producing learning material, while the Section IV
shows the allied knowledge model for the domain-specific
concepts. Section V implements the proposed model, followed
by Section VI, which validates and evaluates the proposed
ontology-based model. Results and discussion are presented in
VII and VIII sections, followed by a conclusion in the Section
IX, emphasizing the practical implications of the proposed
model.

II. RELATED WORK

Effective instruction in programming education requires
learning materials. They include textual and visual content,
interactive exercises, tutorials, real-world examples,
assessment tools, and personalized adaptation. The textual
content includes explanations, code examples, and problems to
solve. Interactive exercises provide hands-on experience and
reinforce learning. Tutorials provide step-by-step guidance,
while real-world examples demonstrate practical application.
Assessment tools gauge students' understanding and progress.
The aim is to offer comprehensive, accessible, and engaging
resources that enable different learning methods, involve much
hands-on practice, and be connected with real-world
applications. One major area of study in computer science and
software development is programming languages. Methods for
programming concept teaching need to be effective. Interest
development question generation techniques for programming
languages can provide a promising avenue, creating a large
number of practice questions. These can help to reiterate the
learner's understanding and assess his or her knowledge [16].
In [14], the author applied ontology to develop a question-
generation approach for programming concepts.

Several studies have investigated the possibility of
automatic generation of learning materials and their positive
impact on enhancing student engagement and learning
outcomes. Vergara et al. [17] demonstrated that AI-generated
personalized learning materials increased students' motivation
and performance in mathematics courses. Liu et al. [4] also
pointed out how AI-powered content creation tools can assist
educators in saving time and resources by automating the task
of creating quizzes and associated worksheets, for example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

73 | P a g e

www.ijacsa.thesai.org

Generating automatic learning materials allows students with
varied learning requirements to have personalized learning
experiences served to them. Lin et al. [18] extend the literature
by examining if there is a relationship between student
engagement and learning outcomes in a cyber-flipped course. It
examines the effects of engagement (measured as online
activities) on academic performance. The study also finds a
positive direction correlation between the student's engagement
and final grades, highlighting the value of active participation
and interaction of the students with the course materials in an
environment set for blended learning.

Over the years, countless researchers have attempted to
draw insights from generating learning materials and using
ontologies in the educational domain to automatically create
and present learning materials and knowledge frameworks.
Although educational settings utilize ontologies to improve the
personalization of learning experiences, they are not
sufficiently advanced. Content is organized into ontologies,
and the learner profiles and learning material interoperability
are enabled [5]. Dynamic adaptation is provided by integrating
them with learning management systems [5]. In [19], the
authors propose an intelligent system based on ontology to
automate tasks like course scheduling, student enrolment, and
academic advising. This system is intended to provide the
benefits of better efficiency and accuracy by capturing and
representing said domain knowledge in a structured format. It
automates tasks like personalized schedule of course schedules,
matching students to advisors, and updating real-time course
availability. This is beneficial in improving decision-making,
reducing administrative burden, and enhancing the student
experience. William and Joselin [5] discuss how ontologies can
be leveraged to enhance the personalization of learning in
educational environments. They are saying that traditional one-
size-fits-all is not working for every learner and that
personalized learning is improving the engagement and
performance of the students. Ontology-based knowledge
representation is discussed, and potential challenges and
limitations are presented, which will help guide future research.

In [13], the authors introduces a method of constructing
structured knowledge graphs based on word embeddings. To
extract and represent educational concepts from textual
resources, the authors employ natural language processing and
machine learning methods. This method automatically captures
semantic relationships between concepts, extracts unstructured
data, and helps define references such as prerequisite,
hierarchy, and relatedness. Finally, the study addresses the
effectiveness of the method to build educational knowledge
graphs and the potential benefits for use in educational content
with structured and interconnected content. As Stephen [1]
discussed, they use large language models such as GPT-3 to
automatically generate computer science (CS) learning
materials. The technique produces content related to various
CS topics, such as programming languages, algorithms, and
data structures. It can be tailored to cater to different learning
levels as well as styles. The study also assesses the quality,
relevance, and coherence of the generated materials. This could
provide innovative approaches to improve computer science
learning and educational resources. Flanagan et al. [20]
propose using natural language processing and machine

learning to extract and structure content from educational
resources such as textbooks, lecture notes, or online articles. In
order to define the content elements and link them to different
levels of learning objectives, machine learning algorithms are
used to categorize and link content elements. The study also
evaluates the accuracy, completeness, and appropriateness of
the generated content models for digital learning environments.
In [21], the author discusses the construction of a knowledge
graph for an Australian school science course. The study
focuses on the construction of the graph, its fit in a related
course agenda, and the application of semantic representation
techniques. The graph is also studied with respect to practical
applications, namely personalized learning and adaptive
tutoring systems. Finally, the authors also give some ideas for
evaluating and validating the graph's accuracy and relevance.

Despite the relatively wide use of automatic learning
materials in the programming domain, notable limitations
remain, which should be addressed for the technology to reach
its full potential in the most current applications. They include
lack of knowledge representation, knowledge structure,
flexibility, context awareness, content reusability, and depth of
understanding. Current systems often require human oversight
to ensure quality and still lack the interactivity, personalization,
and problem-solving skills that come with human instruction.
Continued AI development, especially contextual
understanding, adaptability, and soft skill integration, will be
crucial for overcoming these limitations. Table I compares the
current approaches (traditional approaches) and ontology-based
approaches to automatic learning materials generation in the
programming domain. Traditional approaches are generally
linear and less flexible and can struggle with scalability and
personalization. They tend to rely on static content structures.
However, ontology-based approaches leverage semantic
relationships to create more dynamic, adaptable, and
personalized learning experiences. The main thing they provide
is enhanced interoperability and support of collaborative
learning.

III. ONTOLOGY-BASED APPROACH FOR LEARNING

MATERIALS GENERATION

Formal knowledge representation is used in an ontology-
based approach that captures domain-specific concepts,
relations, and properties and uses such information to generate
learning materials. The method involves an ontology for the
target domain's concepts, relationships, and properties, such as
programming languages. Semantic understanding is captured
through ontology, meaning it results in inferring relationships
and categorizing concepts. Learners' needs and preferences are
analyzed based on educational objectives and learner profiles.
The ontology is used to generate content that is coherent and
contextually relevant. The materials are presented using natural
language processing techniques to make the explanation as
clear and understandable as possible. Because it is based on
ontology, it allows for continuous updating and refinement as
the domain knowledge changes. The benefits include
scalability, adaptability, personalization, consistency,
efficiency, and accessibility. The ontology-based approach can
create adaptive, personalized, high-quality educational content
for various domains, such as programming education.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

74 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARISON BETWEEN THE TRADITIONAL APPROACHES AND

ONTOLOGY-BASED APPROACHES

Feature/Aspect
Traditional

Approaches

Ontology-based

Approaches
References

Knowledge

Structure

linear and

hierarchical

semantic and

interconnected
[16], [19]

Flexibility

limited

adaptability to
new topics

highly adaptable to

new knowledge
and domains

[6], [13]

Context

Awareness

minimal context
consideration

rich context

understanding
through

relationships

[22], [23]

Content

Reusability

low reusability of

materials

high reusability
due to modular

components

[10], [14]

Personalization

basic

customization,

often static

dynamic

personalization
based on learner

profiles

[5], [24]

Scalability

difficult to scale

with growing

content

easily scalable with

ontological

frameworks

[7], [25]

Interoperability
often siloed

systems

enhanced

interoperability
across platforms

[17], [26]

Knowledge

Representation

simple data
structures (e.g.,

text, images)

rich semantic

representation
using classes,

properties, and

relationships

[9], [27]

Maintenance

time-consuming

updates and
revisions

more accessible
updates due to

modular ontology

design

[28], [29]

Collaboration

Support

limited
collaboration

features

facilitates

collaboration

through shared
ontologies

[1], [10]

Learning

Pathways

predefined and

rigid learning
paths

dynamic learning

pathways based on
learner needs

[4], [17]

Assessment

Tools

basic quizzes and
tests

adaptive

assessments based

on learner progress

[8], [15]

Feedback

Mechanism

limited feedback

based on

performance

contextual

feedback based on

semantic analysis

[20], [30]

The ontology-based approach for generating learning
materials involves structured knowledge representations on a
domain to automatically create the learning materials.
Ontologies are leveraged in this process to map the
relationships between different concepts in the subject of a
knowledge domain, providing generated materials that are
pedagogically sound and contextually relevant. The primary
process of generating learning materials using an ontology-
based approach can be demonstrated in several steps as
follows:

1) Ontology development, which includes domain

analysis, is to identify the key concepts, relationships, and

rules within the subject area, and ontology construction to

define the concepts (classes), properties (relationships), and

instances (individuals) within the domain, and validation and

refinement ensure that the ontology accurately represents the

domain knowledge through validation and iterative

refinement.

2) Knowledge representation involves formalizing the

ontology. This formal language provides precise semantics for

the concepts and relationships, axioms, and rules to define

axioms and inference rules to capture the logical constraints

and derivations within the domain.

3) Learning materials generation, which contains the

content extraction for identifying relevant content from the

ontology based on the learning objectives, content structuring

to organize the extracted content into a coherent structure,

following educational best practices (e.g., Bloom's taxonomy),

and template application to apply predefined templates to

format the content into various types of learning materials

(e.g., textbooks, task assessments, interactive modules).

4) Automated generation algorithms include the input

processing to accept inputs such as learning objectives, target

audience, and preferred content format; ontology querying,

which uses description logic (DL) queries to retrieve relevant

concepts, relationships, and instances from the ontology,

material assembly to assemble the retrieved information into

structured learning materials using the defined templates, and

output generation for producing the final learning materials in

the desired format (e.g., HTML, e-learning platform).

Automatically generating learning materials involves a
complex pipeline integrating natural language processing
(NLP), machine learning, and educational technology. The
following is an algorithmic approach to automatically
generating learning materials from an ontology. Automatically
generating learning materials in the programming domain
involves several tailored steps. The following is a proposed
algorithm for automatic learning material generation in the
programming domain:

Inputs:

 Programming Language: The specific language
(Python).

 Learning Objectives: Skills or concepts to be covered
(e.g., syntax, data structures, algorithms).

 Content Sources: Online tutorials, documentation,
coding.

 Format Preferences: Desired output formats (e.g., code
snippets, quizzes, video tutorials).

 Target Audience: Beginner, intermediate, or advanced
learners.

Steps:

1) Content retrieval:

 Query content sources using APIs or web scraping to
gather relevant programming resources.

 Use NLP techniques to filter and categorize content
based on relevance and complexity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

75 | P a g e

www.ijacsa.thesai.org

2) Content analysis:

 Analyze the retrieved content for key programming
concepts, syntax rules, common pitfalls, and best
practices.

 Identify gaps in the content that need to be addressed to
fulfill the learning objectives.

3) Content structuring:

 Organize the content into a logical flow, such as:

 Introduction to the language

 Basic syntax and constructs

 Control structures (loops, conditionals)

 Data structures (arrays, lists, dictionaries)

 Functions and modules

 Advanced topics (e.g., OOP, frameworks)

 Create outlines or flowcharts to visualize the structure.

4) Material creation:

 Generate text explanations for each section using NLP
techniques.

 Create code examples and snippets that illustrate each
concept.

 Develop quizzes or coding challenges based on the key
concepts identified.

 Design multimedia elements (like screencasts or
infographics) if applicable.

5) Customization:

 Tailor the generated materials to fit the target audience's
skill level.

 Adjust complexity by simplifying explanations or
introducing advanced topics as needed.

6) Interactive elements:

 Integrate coding environments (like Jupyter Notebooks
or online IDEs), where learners can practice coding
directly within the material.

 Include live coding demonstrations or interactive
simulations.

7) Feedback loop:

 Incorporate user feedback mechanisms (like quizzes and
surveys) to evaluate understanding and engagement.

 Use machine learning to refine content generation based
on user performance data.

8) Output generation:

 Compile all materials into a cohesive format (e.g.,
HTML pages, PDF documents, online course modules).

 Ensure accessibility standards are met (e.g., code
readability, alt text for images).

9) Review and iteration:

 Implement a review process, where educators or
experienced programmers can evaluate the generated
materials.

 Iterate on the content based on feedback and updates in
programming language features or best practices.

Outputs:

 Comprehensive learning materials tailored to
programming topics and audiences.

 Code snippets and examples for hands-on practice.

 Quizzes and coding challenges to reinforce learning.

Considerations:

 Ethics and Copyright: Ensure all content respects
copyright laws and ethical guidelines.

 Diversity and Inclusion: Include diverse perspectives
and examples in the programming context.

 Technology Integration: Consider integrating learning
management systems (LMS) or coding platforms for
easy distribution and tracking.

Example Use Case:

1) Input:

 Programming Language: "Python"

 Learning Objectives: Understand basic syntax,
functions, and data structures.

 Format Preferences: Text explanations, code examples,
quizzes.

 Target Audience: Beginners.

2) Output:

 A structured document explaining Python basics with
annotated code snippets.

 A set of quizzes covering key points about Python
syntax and functions.

 Links to interactive coding environments for practice.

Fig. 1 shows a summary flowchart of creating and
managing Python learning materials. After processing several
inputs, such as learning objectives and content sources, through
steps including content retrieval and structure, it produces
learning materials that are accessible, interactive, and
customizable.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

76 | P a g e

www.ijacsa.thesai.org

Fig. 1. Creating and managing learning materials for Python.

IV. PROPOSED KNOWLEDGE MODEL FOR THE DOMAIN-

SPECIFIC CONCEPTS

The domain-specific concept is the system's knowledge
module, organizing the domain knowledge structure, including
its central concepts and their relationships. This model
facilitates the automatic generation of learning materials for the
educational process. It focuses on constructing and organizing
domain-specific concepts and their interrelations [29]. A
knowledge module consists of guidelines to identify all
vocabulary concepts to illustrate or solve problems. It is purely
declarative and does not provide instructions on how learners
can utilize it to address practical issues [31]. Two categories of
ontology modules have been developed based on the
characteristics of the learning materials: general domain-
specific concepts ontology and specific domain-specific
concepts knowledge module ontology. These modules
represent the knowledge concepts needed for learning, provide
input to the knowledge module, offer particular feedback,
select problems, create learning materials, and support the
student model. A domain-specific concepts knowledge module
has been proposed based on current research, as illustrated in
Fig. 2. This model is fundamentally based on domain concepts,
properties, task assessments, material resources, learning
objectives, learning rules, learning levels, and their

interrelationships. To generate learning materials and reuse the
knowledge module in the learning process, ontologies organize
and represent the domain-specific concepts knowledge module.
The advantage of this model is its ability to personalize and
automatically generate learning materials for learners. Based
on the general domain-specific concepts ontology shown in
Fig. 2, domain concepts, domain properties, task assessments,
material resources, learning objectives, learning rules, and
learning levels terminologies refer to the following:

 Domain concepts present domain-specific knowledge or
a comprehensive learning material or course overview.

 Domain properties represent a learning material or
domain-specific properties within a domain knowledge
model.

 Task assessments explain how the application system
can assess or measure the required learner activities
within a specific period.

 Material resources are physical or digital items used in
educational settings to support and facilitate learning.
They include textbooks, web resources, software,
multimedia tools, and laboratory equipment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

77 | P a g e

www.ijacsa.thesai.org

 Learning objectives are clear, measurable goals that
outline students' expected learning outcomes. They
guide teachers in planning instruction, designing
assessments, and evaluating progress. Aligned with
curriculum and instructional standards, they provide a
framework for effective teaching and assessment.

 Learning rules are principles or guidelines that describe
how learning occurs and how new information is
acquired and processed. These rules help educators
understand student learning and inform instructional
strategies while helping students become more effective
learners by optimizing their learning processes.

 Learning levels are the stages of proficiency and
understanding individuals progress through as they
acquire new knowledge, skills, and competencies. They
are crucial in education and instructional design, as they
help educators tailor teaching methods and materials to
support students at different stages of their learning
journey.

Fig. 3 displays the design and structure of a selected
ontology knowledge module for the domain-specific concepts
case study for the Python programming domain. Several
relationships are applied to the domain-specific concepts
selected in case examples. The relationships are generalization
or specialization, dependency, and containment. Containment
indicates that a specific domain concept within a given domain
contains various concepts (has-a). The generalization or
specialization shows particular topics or domains with specific
concepts (is-a). Based on Fig. 2 and Fig. 3, the following
displays a temporary explanation of a domain concept:

 Domain concepts: Class, Function.

 Domain properties: syntax.

 Task assessments: program, code review, project.

 Material resources: textbooks, web resources.

Fig. 2. Knowledge model for the domain-specific concepts.

Fig. 3. Specific knowledge model for the domain-specific concepts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

78 | P a g e

www.ijacsa.thesai.org

V. PROPOSED MODEL IMPLEMENTATION

Computer Science and Information Technology disciplines
offer numerous language modules and packages for developing
and managing ontology models. Python is one of the most
widely used and favored languages for implementing an
ontology for domain-specific concept models. This interpreted,
object-oriented, and extensible programming language is
known for its exceptional clarity and versatility across various
fields [22]. In [23], the authors used Python and Owlready2 to
create the ontology and implement the domain knowledge. In
this work, the domain-specific concept explored is the "Basics
of Computer Programming", the ontology is constructed using
the "Python Programming Language." The Python and
Owlready2 modules implement domain-specific concepts
within the ontology. Owlready2 facilitates transparent access to
ontologies, allowing for the manipulation of classes,
individuals, object properties, data properties, annotations,
property domains, ranges, constrained datatypes, disjoints, and
class expressions, including intersections, unions, property
value restrictions, and more. Python offers some functions and
modules for managing ontology to implement, create, and
modify ontologies. The get_ontology() function allows
building an empty ontology from its IRI using the Owlready2
module. Owlready2 uses the syntax "with ontology: ..." to
demonstrate the ontology that will receive the new RDF triples.
For creating an ontology, the following short code is used:

from owlready2 import *

ontology = get_ontology()

with ontology: <Python code>

Concerning the implementation of the domain-specific
concepts and the construction of its components: the domain
concepts, learning objectives, domain properties, task
assessments, learning rules, material resources, and learning
levels. Fig. 4 shows a code dealing with the design of the core
classes of the presented model. Fig. 5 corresponds with some
of the object property relationships defined for the constructed
components of the selected model. Several tools are available
to display the ontology graph. The tools are Synaptica,
OWLGrEd, and Protégé. Protégé is the most commonly used
tool to display the ontology graph of domain-specific concepts,
as shown in Fig. 6. The circular relationship lines in Fig. 6
mean that each topic can depend on another topic and contain
subtopics. For example, the iterative loop depends on variables,
logical operators, and relational operators. Control sentences
contain conditional sentences and iterative sentences. Fig. 7
presents a SPARQL query as an example of visualizing all the
domain concepts in the selected ontology domain-specific
concepts regarding retrieving the domain concept and its
description.

Fig. 4. Core classes of the presented model.

Fig. 5. Object property relationships.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

79 | P a g e

www.ijacsa.thesai.org

Fig. 6. Domain-specific concepts ontology graph.

Fig. 7. A SPARQL query for retrieving the concept "python class" and its description.

We use natural language processing for automatic learning
material generation, applying the spacy module in Python and
the rdflib module. Fig. 8 and Fig. 9 present the code that
controls the ontology of domain-specific concepts. Fig. 10 and
Fig. 11 display snapshots of SPARQL for generating task
assessment and query results according to SPARQL selecting
concepts. The results are domain concepts, task assessment,
and ask questions in the form of multiple-choice questions.

Regarding automatic learning materials generation, the system
randomly generates task assessments as multiple-choice
questions for the learner. The learner is asked to answer the
question, and according to the answer, whether it is correct or
not, the system will automatically generate learning materials
for further reading. Fig. 12 shows a snapshot of a task
assessment question, whether the answer is correct, and the
suggested learning material for the selected task.

Fig. 8. Controlling the ontology of domain-specific concepts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

80 | P a g e

www.ijacsa.thesai.org

Fig. 9. The result of the ontology of domain-specific concepts.

Fig. 10. Task assessment generation.

Fig. 11. MCQs task assessment.

Fig. 12. Task assessment and result sample.

Fig. 13 shows a system that uses an ontology-based method
to generate adaptive learning materials and quizzes. It
illustrates how an ontology of concepts and relationships
guides the development of personalized quizzes and learning
paths suited to different competence levels. At the same time,
learner progress informs knowledge gap analysis and topic
selection. The Python programming ontology is a hierarchical
system that maps out Python concepts, relationships, and
learner progression. It includes fundamental concepts like
variables, data types, and functions. The system infers a
learner's proficiency level based on how they perform in
quizzes and assessments. The ontology can be modified
dynamically with performance-related data. In addition, it
provides data analytics on tracker progress, predictive
analytics, and content optimization. The ontology-based quiz
creation process is dynamic and automatic, using Python
concepts and learning objectives. It integrates with the learning

path generator that selects the questions depending on the
learner's progress. The system can accommodate questions
such as multiple choice, true or false, fill-in blanks, code
snippets, and coding challenges for promoting knowledge
retention and skill development. The traditional way of
producing materials and questions is to establish the scope and
topic sets, acquire information and resources, structure the
content, build learning materials, build assessment questions,
and create specific examples. The instructor could use book
texts, online resources, or even their teaching notes to
extensively deal with functions, parameters, return values, and
scope. The content is divided into an introduction to the
function, a function definition, parameters and arguments,
return value, and function scope. There are text-based learning
materials, code-based learning materials, visuals, and exercises.
Assessment questions can be multiple choice, code analysis, or
code writing. Table II shows a comparison between traditional

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

81 | P a g e

www.ijacsa.thesai.org

versus ontology-based learning material creation. Examples
include defining functions using the “return” statement and
questioning about parameters in a function. This approach
emphasizes the reliance on the instructor's knowledge and the
step-by-step process of translating that knowledge into learning
resources. The following is a case study considering the
following code:

def add_numbers(x, y):

 result = x + y

 return result

sum = add_numbers(5, 3)

print(sum)

What is the purpose of parameters in a function?

a) To give the function a name.

b) To allow the function to accept input values.

c) To specify the data type of the return value.

d) To control the order in which code is executed.

Fig. 13. Ontology-based method to generate adaptive learning materials and quizzes.

VI. PROPOSED ONTOLOGY-BASED MODEL VALIDATION

AND EVALUATION

For ontology-based model validation and evaluation,
various tools can be utilized to ensure the ontology's accuracy,
consistency, completeness, and pedagogical effectiveness.
Using these tools, you can comprehensively validate and
evaluate ontology-based models to ensure high-quality,
effective learning materials. A robust continuous improvement
framework is based on combining automated tools with expert
reviews.

1) Ontology evaluation: Ontology evaluation tools are

important in assessing ontology's quality, reliability, and

utility in many domains [30]. Ontology quality is measured

with several metrics and methods, including quality metrics,

consistency checkers, structural analysis tools, domain-

specific evaluation tools, and usability evaluation tools [30].

Moreover, these tools also maintain the integrity and

usefulness of ontologies across different domains.

Automation, usability, interoperability, domain-specific

adaptations, and capabilities for dynamic evaluation can be

improved [30]. IRI_Debug is an ontology evaluation tool that

enables the detection and correcting of issues in the

Internationalized Resource Identifiers (IRIs) [28]. It provides

IRI validation, validation of errors, consistency checking,

namespace control, and an easy-to-use interface [28].

However, it is unsatisfactory due to the effectiveness of

ontology complexity and IRI usage patterns in ontology

development, maintenance, and educational use. Continuous

updates are necessary for evolving standards [28]. Owlready2

offers many reasoners for manipulating the domain ontology,

such as Pellet, ELK, and HermiT. The HermiT reasoner is

used, as shown in Fig. 14, to check that the constructed

ontology is consistent and allows the classification, instance

checking class satisfiability, and conjunctive query answering

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

82 | P a g e

www.ijacsa.thesai.org

of the developed domain ontology for the selected model. It is

most commonly used in ontology engineering.

TABLE II. COMPARISON BETWEEN THE TRADITIONAL APPROACHES AND

ONTOLOGY-BASED APPROACHES

Feature
Traditional Learning

Material Creation

Ontology-Based Learning

Material Creation

Content

Organization

Linear and structured

manually

Hierarchical and dynamically

structured using ontology

Customization
Limited

personalization

Highly personalized based on

learners' needs

Content

Reusability

Low content created
from scratch

High, modular content reuse
across different topics

Automation Mostly manual work
AI-assisted generation and

annotation

Content

Consistency

It can be inconsistent
across materials

Ensures uniform structure and
terminology

Adaptability
Hard to update and

adapt

Easily adaptable to new

knowledge and learning trends

Efficiency Time-consuming
Faster and more efficient due to

automation

Interactivity Mostly static content
Dynamic and interactive
learning experiences

Scalability Difficult to scale
Easily scalable across different

subjects and learners

2) Ontology validation: Ontology validation tools ensure

ontologies' quality, reliability, and usability [32]. They

identify issues related to consistency, completeness,

correctness, and adherence to best practices [32]. Popular tools

include OOPS!, OntoQA, OQuaRE, Pellet and Hermit,

OntoMetric, BioPortal and AgroPortal, and OntoClean.

OOPS! is a tool that helps ontology developers identify and

address common pitfalls in ontology design [33]. It uses a set

of pitfalls from best practices and expert recommendations,

covering naming conventions, ontology structure, and logical

inconsistencies [33]. The tool generates detailed reports

detailing pitfalls, severity, and affected elements and provides

recommendations for correcting each [33]. It can be integrated

into ontology environments like Protégé, enhancing usability

and promoting best practices [33]. Fig. 15 shows the

OntOlogy Pitfall Scanner tool for ontology validation, which

is used for the validation process. The input values for this

tool can be ontology URL or RDF file code. Fig. 16 shows the

OntOlogy Pitfall Scanner tool validation results.

Fig. 14. Consistency of the domain-specific concepts ontology.

Fig. 15. Ontology pitfall scanner tool.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

83 | P a g e

www.ijacsa.thesai.org

Fig. 16. Ontology pitfall scanner tool results.

VII. RESULTS

The ontology-based automatic generation of learning
materials in the Python programming domain as a solution
provides a more sophisticated system for generating learning
materials. Assessing their quality accuracy, 98.5%, makes it a
valuable tool in educational technology and content generation.
The dataset used in this experiment is Python programming
language ontology [34]. To generate the learning materials, we
used BERT embeddings to measure the semantic similarity of
generated learning materials to predefined reference materials.
It also generates an evaluation table, Table III, summarizing
the results for each domain concept, as explained in the
following steps:

1) Ontology and learning materials: We define an

ontology for various domain concepts (e.g., Python

Programming, Data Structures) and generate learning

materials for each domain concept using predefined content.

2) BERT-based accuracy calculation: We use the BERT

model from the sentence-transformers library to compute

embeddings for the generated learning materials and

predefined reference materials. We then calculate the cosine

similarity between these embeddings to determine the

semantic accuracy of the generated content.

3) MCQ Generation: We generate multiple choice

questions (MCQs) for each domain concept and assess how

much the learner understands it.

4) Evaluation table: Table III shows how the

create_evaluation_table function collected generated learning

materials, accuracy scores, MCQs, and a brief description of

results from the results set into a structured evaluation table

with the help of pandas. Descriptions of the accuracy are

offered as a categorical measure based upon the thresholds,

"Excellent alignment" being the case when the accuracy is

greater than 90%, "Good alignment" for anything from 70% to

90%, and "Moderate alignment" for a value that is less than

70%.

Table IV compares the ontology-based model's
performance across numerous samples of the Python
programming topic: Data Types, Control Flow, Functions,
Error Handling, and OOP (Object-Oriented Programming)
respectively. It proves how effectively the system can generate
learning materials and assessments for each topic. As shown in
Table V, the ontology-based model's performance also changes
according to the dataset size when presented with the task of
generating Python programming learning materials. It shows
accuracy and other improvements as the model processes more
datasets and proves its scalability. Using the following
formulas, we have calculated the evaluation metrics such as
accuracy, precision, recall, and F1-Score:

 Accuracy = (True Positives + True Negatives) / (Total
Instances)

 Precision = True Positives / (True Positives + False
Positives)

 Recall = True Positives / (True Positives + False
Negatives)

 F1-Score = 2 * (Precision * Recall) / (Precision +
Recall)

Data is split into training (80%), and testing (20%) sets
using the train_test_split function from
sklearn.model_selection. The final parameter is the split with
test_size=0.2, and random_state=42 ensures reproducibility.
Using dataset size, the training and testing percentages are
calculated. The values for these datasets are explicitly defined
and printed in the run_evaluation function to make it clear for
model training and evaluation dataset distribution. In this case,
the accuracy calculation was measured using the BERT-based

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

84 | P a g e

www.ijacsa.thesai.org

semantic similarity. A pre-trained BERT model was used to
transform the generated and reference texts into vector
embeddings. These embeddings were computed into cosine
similarity values measuring their semantic closeness. A

predefined threshold was set to verify if the generated content
was accurate (e.g., 0.8 or 0.9). The accuracy was calculated as
the percentage of the correctly matched samples over the total
number of samples.

TABLE III. EVALUATION TABLE SAMPLE

Domain

Concept

Generated

Learning Material

Accuracy

Score (%)
MCQs Description

Python

Programming

Python is a versatile programming language known for
its simplicity and readability. It supports multiple

programming paradigms, including procedural, object-

oriented, and functional programming.

98.50%

Q: What keyword is used to define a

function in Python?
- def - function - func - define Answer: def

Excellent alignment

with reference material.

Data

Structures

Common data structures in Python include lists,
dictionaries, sets, and tuples. Each structure has unique

properties and use cases.

95.85%

Q: Which of the following is an unordered

collection in Python?

- List - Tuple - Dictionary - String
Answer: Dictionary

Excellent alignment

with reference material.

Algorithms

Algorithms are step-by-step procedures for solving

problems. In Python, you can implement algorithms for

sorting, searching, and manipulating data in Python.

92.30%

Q: What is the time complexity of binary

search? \n - O(n) \n - O(log n) \n - O(n log
n)

Answer: O(log n)

Excellent alignment
with reference material.

TABLE IV. ONTOLOGY-BASED MODEL EVALUATION: PYTHON PROGRAMMING TOPICS SAMPLE

Python Topic Number of examples Percentage Accuracy Precision Recall F1-Score

Data Types (int, float, str) 390 39% 0.95 0.93 0.96 0.94

Control Flow (if, else, loops) 170 17% 0.91 0.89 0.92 0.90

Functions (def, arguments, return) 70 7% 0.93 0.91 0.94 0.92

Error Handling (try, except) 70 7% 0.89 0.86 0.91 0.88

Object-Oriented Programming (OOP) 360 36% 0.90 0.87 0.92 0.89

TABLE V. ONTOLOGY-BASED MODEL EVALUATION PERFORMANCE BY DATASET SIZE

Dataset Size (Records) Accuracy Precision Recall F1-Score

Small (500) 0.88 0.85 0.89 0.87

Medium (1500) 0.91 0.89 0.92 0.90

Large (5000) 0.985 0.92 0.95 0.93

VIII. DISCUSSION

Ontology-based automatic learning material generation is a
technology that has the potential to enhance learning
experiences in almost any educational environment greatly.
From an instructor's point of view, it operates as an adaptive
tool that can initiate customized tests based on the students'
diagnostic results. In this way, it enables the emergence of
personalized learning materials directed to certain weak spots
and saves quiz creation and grading time.

This tech can provide a personalized learning path for
learners, particularly Python programming students. An
independent learner might start with a diagnostic test that
covers basic topics such as data types, control flow, and
functions. It can create debug tasks, discussions, and
interactive lessons personalized to the student's needs based on
their performance. The system also generates automatic
feedback to highlight task errors, syntax errors, and possible
solutions for student advancement. The instructor can use the
same feedback to identify challenges faced by students and
correspondingly grade the difficulty level of exercises so that
support may be made more specific.

This technology is excellent for use in both self-paced and
instructor-led learning environments. In a blended learning
model, for example, a self-paced learner could work through
the function modules, and an instructor could give the
diagnostic quizzes to track progress. The system provides real-
time performance data, which allows educators to monitor
student advancement and uncover the need to focus, once
necessary, on the individual. In addition, it is beneficial to
advanced learners who are learning Pandas for data
manipulation. Real-world datasets have complex tasks that are
tough enough for expert programmers. This ontology-based
approach allows instructors to customize the learning content
to particular learning goals to improve the learning experience.

Automatic generation of learning material based on
ontology can enhance personalized learning, including adaptive
content generation, real-time feedback, and performance
analytics. However, integration into Learning Management
Systems such as Moodle, Canvas, and Google Classroom can
be challenging. It incorporates key steps for improving
integration, such as API development, interoperability
standards, plug-ins, and a user-friendly interface. Teachers can
adopt the system as they become familiar with it and can add
some advanced features. The system can be used in blended

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

85 | P a g e

www.ijacsa.thesai.org

learning environments and traditional teaching methods to
personalize practice and feedback.

IX. CONCLUSION

In the digital age, programming skills have become a
requisite for practice in almost every professional sphere,
increasing the need for the most effective learning materials in
programming study and training. Generating educational
resources of computer programming based on ontology is a
promising way to improve the quality and efficiency of
educational resources of computer programming.

This study aims to develop a framework based on ontology
to represent the Python programming concepts and
relationships among them and implement a system for
automatically generating the learning materials in the form of
quizzes using the developed framework. In this study, we
discuss the potential benefits and limitations of the current state
of ontology-based automatic learning materials generation,
specifically in programming languages. An ontology-based
approach can potentially revolutionize the creation of tailored
learning materials for programming education.

The system achieved a high accuracy rate of 98.5%,
calculated using BERT-based semantic similarity,
demonstrating its effectiveness in producing relevant and
accurate learning materials. The novelty of this work lies in
leveraging ontologies to automate quiz generation in
programming education, offering a structured and scalable
solution for personalized content creation.

Despite these contributions, certain limitations should be
acknowledged. The study primarily focused on Python
programming, which may impact the generalizability of the
findings. Future research can address these limitations by
implementing multi-programming language ontology. More
research using controlled trials is needed. We recommend
conducting a study comparing ontology-based learning
materials to traditional, manually created materials using a
controlled experiment. Students are divided into two groups:
the control group receiving traditional materials and the
experimental group receiving ontology-based materials. Post-
tests measure retention, understanding, and satisfaction.
Metrics include test scores, time to mastery, engagement time,
and learning quality. The study would aim to assess the
effectiveness of ontology-based learning materials in
improving educational outcomes.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial assistance
from the Institute of Information Science, Faculty of
Mechanical Engineering and Informatics, University of
Miskolc.

REFERENCES

[1] S. MacNeil, Automatically Generating CS Learning Materials with
Large Language Models, vol. 1, no. 1. Association for Computing
Machinery, 2022.

[2] B. Abu-Salih and S. Alotaibi, “A systematic literature review of
knowledge graph construction and application in education,” Heliyon,
vol. 10, no. 3, p. 25383, 2024, doi: 10.1016/j.heliyon.2024.e25383.

[3] E. Rajabi and K. Etminani, “Knowledge-graph-based explainable AI: A
systematic review,” J. Inf. Sci, 2022, doi: 10.1177/01655515221112844.

[4] M. Liu, Y. Ren, L. M. Nyagoga, F. Stonier, Z. Wu, and L. Yu, “Future
of education in the era of generative artificial intelligence: Consensus
among Chinese scholars on applications of ChatGPT in schools,” Futur.
Educ. Res, vol. 1, no. 1, pp. 72-101, 2023, doi: 10.1002/fer3.10.

[5] W. Villegas-Ch and J. García-Ortiz, “Enhancing Learning
Personalization in Educational Environments through Ontology-Based
Knowledge Representation,” Computers, vol. 12, no. 10, 2023, doi:
10.3390/computers12100199.

[6] C. Diwan, S. Srinivasa, G. Suri, S. Agarwal, and P. Ram, “AI-based
learning content generation and learning pathway augmentation to
increase learner engagement,” Comput. Educ. Artif. Intell, vol. 4, no.
February, p. 100110, 2022, doi: 10.1016/j.caeai.2022.100110.

[7] F. D. Calmon, R. Kokku, and A. Vempaty, “Automatic learning
curriculum generation,” Google Patents, 2019.

[8] Z. Xia, Y. Zhou, F. Y. Yan, and J. Jiang, “Automatic curriculum
generation for learning adaptation in networking.” 2022.

[9] J. Alshboul and E. Baksáné-Varga, A Survey of Domain Model
Representations in Intelligent Tutoring Systems. Miskolc, Hungary:
Faculty of Mechanical Engineering and Informatics University of
Miskolc, 2021.

[10] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga, “Semantic
Modeling for Learning Materials in E-Tutor Systems,” Journal of
Software Engineering and Intelligent Systems, vol. 6, no. 2, pp. 85–91,
Aug. 2021.

[11] L. N. Nongkhai, J. Wang, and T. Mendori, “Developing An Ontology of
Multiple Programming Languages from The Perspective of
Computational Thinking Education,” in Proceeedings of the 19th
International Conference on Cognition and Exploratory Learning in the
Digital Age (CELDA 2022), Lisbon, Portugal: International Association
for Development of the Information Society (IADIS), 2022, pp. 66–72.
doi: 10.33965/celda2022_202207l009.

[12] W. Nie, K. Vita, and T. Masood, “An ontology for defining and
characterizing demonstration environments,” J. Intell. Manuf, 2023, doi:
10.1007/s10845-023-02213-1.

[13] Q. U. Ain, M. A. Chatti, K. G. C. Bakar, S. Joarder, and R. Alatrash,
“Automatic Construction of Educational Knowledge Graphs: A Word
Embedding-Based Approach,” Inf, vol. 14, no. 10, 2023, doi:
10.3390/info14100526.

[14] J. Alshboul and E. Baksa-Varga, “A Hybrid Approach for Automatic
Question Generation from Program Codes,” International Journal of
Advanced Computer Science and Applications, vol. 15, no. 1, 2024, doi:
10.14569/IJACSA.2024.0150102.

[15] P. Brusilovsky, B. J. Ericson, C. Zilles, C. S. Horstmann, C. Servin, and
F. Vahid, “The Future of Computing Education Materials,” Comput. Sci.
Curricula, Curricula Pract, vol. 1, no. 1, pp. 1-8, 2023.

[16] J. Alshboul and E. Baksa-Varga, “A Review of Automatic Question
Generation in Teaching Programming,” International Journal of
Advanced Computer Science and Applications, vol. 13, no. 10, 2022,
doi: 10.14569/IJACSA.2022.0131006.

[17] D. Vergara, M. L. Fernández, and M. Lorenzo, “Enhancing student
motivation in secondary school mathematics courses: A methodological
approach,” Educ. Sci, vol. 9, no. 2, 2019, doi: 10.3390/educsci9020083.

[18] L.-C. Lin, I.-C. Hung, Kinshuk, and N.-S. Chen, “The impact of student
engagement on learning outcomes in a cyber-flipped course,” Educ.
Technol. Res. Dev, vol. 67, pp. 1573-1591, 2019.

[19] N. A. Alrehaili, M. A. Aslam, D. H. Alahmadi, D. A. Alrehaili, M. Asif,
and M. S. A. Malik, “Ontology-Based Smart System to Automate
Higher Education Activities,” Complexity, vol. 2021, 2021, doi:
10.1155/2021/5588381.

[20] B. Flanagan, G. Akçapinar, R. Majumdar, and H. Ogata, “Automatic
generation of contents models for digital learning materials,” in ICCE
2018 - 26th Int. Conf. Comput. Educ. Main Conf. Proc, 2018, pp. 804–
806.

[21] K. Zhuang, “The Knowledge Graph Construction in the Educational
Domain : Take an Australian School Science Course as an Example The
Knowledge Graph Construction in the Educational Domain : Take an
Australian School Science Course as an Example.” 2023.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

86 | P a g e

www.ijacsa.thesai.org

[22] C. Pierrakeas, G. Solomou, and A. Kameas, “An ontology-based
approach in learning programming languages,” Proc, pp. 393-398, 2012,
doi: 10.1109/PCi.2012.78.

[23] H. A. A. Ghanim, J. Alshboul, and L. Kovacs, “Development of
Ontology-based Domain Knowledge Model for IT Domain in e-Tutor
Systems,” International Journal of Advanced Computer Science and
Applications, vol. 13, no. 5, 2022, doi:
10.14569/IJACSA.2022.0130505.

[24] N. A. Anindyaputri, R. A. Yuana, and P. Hatta, “Enhancing Students’
Ability in Learning Process of Programming Language using Adaptive
Learning Systems: A Literature Review,” Open Eng, vol. 10, no. 1, pp.
820-829, 2020, doi: 10.1515/eng-2020-0092.

[25] T. Guber, “A translational approach to portable ontologies,” Knowl.
Acquis, vol. 5, no. 2, pp. 199-229, 1993.

[26] K. Chen, Q. Huang, H. Palangi, P. Smolensky, K. Forbus, and J. Gao,
“Mapping natural-language problems to formal-language solutions using
structured neural representations,” in International Conference on
Machine Learning, 2020, pp. 1566–1575.

[27] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to
description logic. Cambridge University Press, 2017.

[28] V. Lama, A. Patel, N. C. Debnath, and S. Jain, “IRI_Debug: An
Ontology Evaluation Tool,” New Gener. Comput, vol. 42, no. 1, pp.
177-197, 2024, doi: 10.1007/s00354-024-00246-5.

[29] A. Ramírez-Noriega, “Towards the Automatic Construction of an
Intelligent Tutoring System: Domain Module,” Adv. Intell. Syst.
Comput, vol. 930, no. 3, pp. 293-302, 2019, doi: 10.1007/978-3-030-
16181-1_28.

[30] N. C. Debnath and A. Patel, “Ontology Evaluation Tools: Current and
Future Research,” Recent Adv. Comput. Sci. Commun, 2022, [Online].
Available: https://api.semanticscholar.org/CorpusID:248138690.

[31] W. Yathongchai, J. Angskun, and C. C. Fung, “An Ontology Model for
Developing a SQL Personalized Intelligent Tutoring System,” Naresuan
Univ. J. Sci. Technol, vol. 25, no. 4, pp. 88-96, 2017.

[32] A. Fernández-Izquierdo and R. García-Castro, “Themis: A tool for
validating ontologies through requirements,” in Proc. Int. Conf. Softw.
Eng. Knowl. Eng. SEKE, 2019, pp. 573-578,.

[33] M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez,
“Validating Ontologies with OOPS ! State of the Art,” Knowl. Eng.
Knowl. Manag, pp. 267-281, 2012.

[34] “Ontology Generation and Ontology Data Set.” Accessed: Apr. 24,
2025. [Online]. Available: https://github.com/jalshboul/Python-
Ontology-GLM

