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Abstract—Learning materials in programming education are 

essential for effective instruction. This study introduces an 

ontology-based approach for automatically generating learning 

materials for Python programming. The method harnesses 

ontologies to capture domain knowledge and semantic 

relationships, enabling the creation of personalized, adaptive 

content. The ontology serves as a knowledge base to identify key 

concepts and resources and map them to learning objectives 

aligned with user preferences. The study outlines the design of a 

dual-module ontology: a general and a specific domain-specific 

concepts module. This design supports enhanced, tailored 

learning experiences, enhancing Python education by meeting 

individual needs and learning styles. The approach also increases 

the quality and uniformity of generated content, which can be 

reused for educational reasons. The system ensures alignment 

with reference materials by using BERT embeddings for a 

semantic similarity measurement, achieving a quality accuracy of 

98.5%. It can be applied to improve Python education by 

providing personalized recommendations, hints, and problem-

solution generation. Future developments could further support 

the functionality to strengthen teaching and learning outcomes in 

programming education, and it could expand to automated 

problem generation. 
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I. INTRODUCTION 

Recently, knowledge graphs (KGs), as structured forms of 
knowledge representation, have attracted substantial research 
interests both in academia and industry from modern ontology 
views. Integrating educational technologies with KGs has an 
impressive influence on teaching and learning activities, 
especially in programming with Python. E-learning platforms 
provide students with tools to easily engage and receive 
ongoing feedback during the e-learning sessions [1]. 

KGs are crucial in optimizing the automation of ontology-
based learning material generation. They support the 
organization, interrelation, and knowledge utilization in a 
particular field [2]. In Python programming, KGs can provide a 
definite delineation of the existing knowledge, relations, and 
entities [2]. Additionally, ontology-driven systems support 
more effective comprehension of the context and relations of 
various concepts, thus enabling more precise and thorough 
learning materials generation [2]. Adding KGs to the ontology-
based automatic generation of educational materials improves 
the relevance of contents, personalization, interoperability, 
content reuse, and efficient knowledge capture [3]. KGs can 
efficiently organize and manage structural knowledge related 
to the Python programming language [3]. 

In the information age, one's programming capability is 
required in many professions, as accentuated by the availability 
of resources aimed at teaching and training in programming 
[4]. Designing high-quality learning materials for programming 
languages is difficult and requires substantial resources 
because of fragmentation in educational programming design, 
instructional programming expertise, and difficulty in adaptive 
personalization [5]. Nevertheless, computer-based automatic 
generation of instructional materials, especially ones based on 
ontological frameworks, can simplify this task significantly. 
This is done through the ALMG, which stands for automatic 
learning materials generation (ALMG), a relatively recent 
expansion in the most advanced educational technology [6]. 
Quizzes, study guides, and practice exercises, among other 
educational content, are now automatically generated with the 
help of artificial intelligence and machine learning algorithms 
[6]. This technology will assist educators in saving time and 
costs by generating particular and appealing materials for 
students [6]. Calmon et al. [7] describe the concept of an 
automated system of curriculum selection tailored to the 
student's requirements and preferences. This is done by 
utilizing machine learning concepts and data analysis 
techniques to enhance the effectiveness of educational content 
and formative processes of the student. It also encourages the 
idea of implementing automated curriculum generation to help 
educational institutions deliver and personalize learning while 
increasing student performance significantly. In their study, 
Xia et al. [8] propose a method for delivering adaptive 
networking learning material that meets these needs and 
preferences. The system itself is also based on machine 
learning algorithms and data analytics and uses them to 
determine the effectiveness of the educational content and 
activities. The study demonstrates how the concept of 
automated curriculum generation can help in the management 
of learning processes, as well as increase students' results in 
networking education. 

One of the methods to represent domain models is through 
ontology-based representation [9]. Ontology offers a 
standardized vocabulary for domain modeling, including 
describing concepts in the domain, their properties, and their 
relationships [10]. Semantic understanding and knowledge 
representation enable ontology-based automatic learning 
materials generation for Python programming that produces 
resources like tutorials, code examples, exercises, and 
assessments. The development of an ontology for capturing 
Python programming concepts, relationships, and properties is 
used in this approach. It attempts to create learning materials 
based on the pedagogical requirements and learning objectives. 
The ontology-based approach further enables continuously 
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updating and refining the learning materials so they are in sync 
with Python programming environment changes [11]. 

Ontology-based automatic learning materials generation for 
Python programming is a highly efficient and scalable 
approach using structured knowledge presentation for 
automating educational content creation [5]. With this method, 
its learning materials remain consistent, high quality, and 
personalized, all while allowing for the efficient creation of 
various resources. Likewise, the existence of the ontologies 
makes the routines adaptable to changes in Python 
programming [12], i.e., updating the ontologies and 
automatically regenerating learning materials. Ontologies' 
automation saves educators and content creators time and 
effort and improves a deep semantic understanding of the 
Python programming domain for a better generation of 
learning materials [13]. 

Learning materials for Python programming education 
presents difficulties in providing scalable, high-quality, and 
personalized materials [14]. Creating them manually is time-
consuming and may require catching up with the Python 
ecosystem. To resolve these, an automated approach requiring 
ontologies is needed. This work aims to develop a 
comprehensive ontology for Python programming, and design 
an ontology-based automatic learning materials generation 
system for Python education. However, this methodology can 
greatly improve Python programming learners' exposure and 
efficiency to educational resources. The authors also explain 
how the presented ontology-based system was designed and 
implemented and offer possible further development and 
implications of such a system. 

Automated generation of learning materials in the context 
of Python programming education is critical for scalability, 
adaptation, personalization, consistency, efficiency, 
accessibility, research, and innovation [15]. It can help meet 
the growing demand for diverse, high-quality resources, adapt 
to ecosystem changes, and deliver personalized learning 
experiences. The ontology-based approach guarantees 
consistency in different educational materials, keeping them 
high quality. It reduces the time taken to create content for 
educators to be concerned with the pedagogical part. This also 
makes accessibility easier for a variety of learners with varying 
backgrounds and learning styles. Moreover, it can serve as 
research in educational technology artificial intelligence as 
well as semantic understanding for programming education, 
driving innovation in programming education. 

This study discusses the potential benefits and limitations 
of ontology-based automatic learning materials generation in 
the context of programming languages. This approach takes 
advantage of the use of technologies like natural language 
processing, machine learning, and automated code generation 
in the ontologies framework that can potentially transform how 
tailored learning materials for programming languages are 
generated. 

Then, the study will focus on the underlying technologies 
and methodologies of ontology-based automatic learning 
materials generation and information on how ontologies can be 
utilized to represent domain knowledge and the automated 
generation of educational content is presented. Furthermore, 

the study builds up on the implications of ontology-based 
automatic learning materials generation for education and 
training to discuss to what extent such systems could improve 
the access to and efficiency of programming language 
instruction. This will also review the challenges and limitations 
of this approach and future directions in research and 
development in this emerging field. This exploration serves to 
help understand the possibilities of generating ontology-based 
automatic learning materials on programming languages and 
how it may shape how we teach Programming education and 
training. 

The main objectives of this study are to design a new 
ontology-based framework that illustrates Python programming 
concepts and their interconnections and to develop a system 
capable of automatically generating learning materials—
specifically quizzes—that reflect those Python programming 
concepts and their relationships. The study is organized as 
follows: an introduction is provided in Section I, and Section II 
presents the related work. Section III shows an ontology-based 
approach to producing learning material, while the Section IV 
shows the allied knowledge model for the domain-specific 
concepts. Section V implements the proposed model, followed 
by Section VI, which validates and evaluates the proposed 
ontology-based model. Results and discussion are presented in 
VII and VIII sections, followed by a conclusion in the Section 
IX, emphasizing the practical implications of the proposed 
model. 

II. RELATED WORK 

Effective instruction in programming education requires 
learning materials. They include textual and visual content, 
interactive exercises, tutorials, real-world examples, 
assessment tools, and personalized adaptation. The textual 
content includes explanations, code examples, and problems to 
solve. Interactive exercises provide hands-on experience and 
reinforce learning. Tutorials provide step-by-step guidance, 
while real-world examples demonstrate practical application. 
Assessment tools gauge students' understanding and progress. 
The aim is to offer comprehensive, accessible, and engaging 
resources that enable different learning methods, involve much 
hands-on practice, and be connected with real-world 
applications. One major area of study in computer science and 
software development is programming languages. Methods for 
programming concept teaching need to be effective. Interest 
development question generation techniques for programming 
languages can provide a promising avenue, creating a large 
number of practice questions. These can help to reiterate the 
learner's understanding and assess his or her knowledge [16]. 
In [14], the author applied ontology to develop a question-
generation approach for programming concepts. 

Several studies have investigated the possibility of 
automatic generation of learning materials and their positive 
impact on enhancing student engagement and learning 
outcomes. Vergara et al. [17] demonstrated that AI-generated 
personalized learning materials increased students' motivation 
and performance in mathematics courses. Liu et al. [4] also 
pointed out how AI-powered content creation tools can assist 
educators in saving time and resources by automating the task 
of creating quizzes and associated worksheets, for example. 
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Generating automatic learning materials allows students with 
varied learning requirements to have personalized learning 
experiences served to them. Lin et al. [18] extend the literature 
by examining if there is a relationship between student 
engagement and learning outcomes in a cyber-flipped course. It 
examines the effects of engagement (measured as online 
activities) on academic performance. The study also finds a 
positive direction correlation between the student's engagement 
and final grades, highlighting the value of active participation 
and interaction of the students with the course materials in an 
environment set for blended learning. 

Over the years, countless researchers have attempted to 
draw insights from generating learning materials and using 
ontologies in the educational domain to automatically create 
and present learning materials and knowledge frameworks. 
Although educational settings utilize ontologies to improve the 
personalization of learning experiences, they are not 
sufficiently advanced. Content is organized into ontologies, 
and the learner profiles and learning material interoperability 
are enabled [5]. Dynamic adaptation is provided by integrating 
them with learning management systems [5]. In [19], the 
authors propose an intelligent system based on ontology to 
automate tasks like course scheduling, student enrolment, and 
academic advising. This system is intended to provide the 
benefits of better efficiency and accuracy by capturing and 
representing said domain knowledge in a structured format. It 
automates tasks like personalized schedule of course schedules, 
matching students to advisors, and updating real-time course 
availability. This is beneficial in improving decision-making, 
reducing administrative burden, and enhancing the student 
experience. William and Joselin [5] discuss how ontologies can 
be leveraged to enhance the personalization of learning in 
educational environments. They are saying that traditional one-
size-fits-all is not working for every learner and that 
personalized learning is improving the engagement and 
performance of the students. Ontology-based knowledge 
representation is discussed, and potential challenges and 
limitations are presented, which will help guide future research. 

In [13], the authors introduces a method of constructing 
structured knowledge graphs based on word embeddings. To 
extract and represent educational concepts from textual 
resources, the authors employ natural language processing and 
machine learning methods. This method automatically captures 
semantic relationships between concepts, extracts unstructured 
data, and helps define references such as prerequisite, 
hierarchy, and relatedness. Finally, the study addresses the 
effectiveness of the method to build educational knowledge 
graphs and the potential benefits for use in educational content 
with structured and interconnected content. As Stephen [1] 
discussed, they use large language models such as GPT-3 to 
automatically generate computer science (CS) learning 
materials. The technique produces content related to various 
CS topics, such as programming languages, algorithms, and 
data structures. It can be tailored to cater to different learning 
levels as well as styles. The study also assesses the quality, 
relevance, and coherence of the generated materials. This could 
provide innovative approaches to improve computer science 
learning and educational resources. Flanagan et al. [20] 
propose using natural language processing and machine 

learning to extract and structure content from educational 
resources such as textbooks, lecture notes, or online articles. In 
order to define the content elements and link them to different 
levels of learning objectives, machine learning algorithms are 
used to categorize and link content elements. The study also 
evaluates the accuracy, completeness, and appropriateness of 
the generated content models for digital learning environments. 
In [21], the author discusses the construction of a knowledge 
graph for an Australian school science course. The study 
focuses on the construction of the graph, its fit in a related 
course agenda, and the application of semantic representation 
techniques. The graph is also studied with respect to practical 
applications, namely personalized learning and adaptive 
tutoring systems. Finally, the authors also give some ideas for 
evaluating and validating the graph's accuracy and relevance. 

Despite the relatively wide use of automatic learning 
materials in the programming domain, notable limitations 
remain, which should be addressed for the technology to reach 
its full potential in the most current applications. They include 
lack of knowledge representation, knowledge structure, 
flexibility, context awareness, content reusability, and depth of 
understanding. Current systems often require human oversight 
to ensure quality and still lack the interactivity, personalization, 
and problem-solving skills that come with human instruction. 
Continued AI development, especially contextual 
understanding, adaptability, and soft skill integration, will be 
crucial for overcoming these limitations. Table I compares the 
current approaches (traditional approaches) and ontology-based 
approaches to automatic learning materials generation in the 
programming domain. Traditional approaches are generally 
linear and less flexible and can struggle with scalability and 
personalization. They tend to rely on static content structures. 
However, ontology-based approaches leverage semantic 
relationships to create more dynamic, adaptable, and 
personalized learning experiences. The main thing they provide 
is enhanced interoperability and support of collaborative 
learning. 

III. ONTOLOGY-BASED APPROACH FOR LEARNING 

MATERIALS GENERATION 

Formal knowledge representation is used in an ontology-
based approach that captures domain-specific concepts, 
relations, and properties and uses such information to generate 
learning materials. The method involves an ontology for the 
target domain's concepts, relationships, and properties, such as 
programming languages. Semantic understanding is captured 
through ontology, meaning it results in inferring relationships 
and categorizing concepts. Learners' needs and preferences are 
analyzed based on educational objectives and learner profiles. 
The ontology is used to generate content that is coherent and 
contextually relevant. The materials are presented using natural 
language processing techniques to make the explanation as 
clear and understandable as possible. Because it is based on 
ontology, it allows for continuous updating and refinement as 
the domain knowledge changes. The benefits include 
scalability, adaptability, personalization, consistency, 
efficiency, and accessibility. The ontology-based approach can 
create adaptive, personalized, high-quality educational content 
for various domains, such as programming education. 
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TABLE I.  COMPARISON BETWEEN THE TRADITIONAL APPROACHES AND 

ONTOLOGY-BASED APPROACHES 

Feature/Aspect 
Traditional 

Approaches 

Ontology-based 

Approaches 
References 

Knowledge 

Structure 

linear and 

hierarchical 

semantic and 

interconnected 
[16], [19] 

Flexibility 

limited 

adaptability to 
new topics 

highly adaptable to 

new knowledge 
and domains 

[6], [13] 

Context 

Awareness 

minimal context 
consideration 

rich context 

understanding 
through 

relationships 

[22], [23] 

Content 

Reusability 

low reusability of 

materials 

high reusability 
due to modular 

components 

[10], [14] 

Personalization 

basic 

customization, 

often static 

dynamic 

personalization 
based on learner 

profiles 

[5], [24] 

Scalability 

difficult to scale 

with growing 

content 

easily scalable with 

ontological 

frameworks 

[7], [25] 

Interoperability 
often siloed 

systems 

enhanced 

interoperability 
across platforms 

[17], [26] 

Knowledge 

Representation 

simple data 
structures (e.g., 

text, images) 

rich semantic 

representation 
using classes, 

properties, and 

relationships 

[9], [27] 

Maintenance 

time-consuming 

updates and 
revisions 

more accessible 
updates due to 

modular ontology 

design 

[28], [29] 

Collaboration 

Support 

limited 
collaboration 

features 

facilitates 

collaboration 

through shared 
ontologies 

[1], [10] 

Learning 

Pathways 

predefined and 

rigid learning 
paths 

dynamic learning 

pathways based on 
learner needs 

[4], [17] 

Assessment 

Tools 

basic quizzes and 
tests 

adaptive 

assessments based 

on learner progress 

[8], [15] 

Feedback 

Mechanism 

limited feedback 

based on 

performance 

contextual 

feedback based on 

semantic analysis 

[20], [30] 

The ontology-based approach for generating learning 
materials involves structured knowledge representations on a 
domain to automatically create the learning materials. 
Ontologies are leveraged in this process to map the 
relationships between different concepts in the subject of a 
knowledge domain, providing generated materials that are 
pedagogically sound and contextually relevant. The primary 
process of generating learning materials using an ontology-
based approach can be demonstrated in several steps as 
follows: 

1) Ontology development, which includes domain 

analysis, is to identify the key concepts, relationships, and 

rules within the subject area, and ontology construction to 

define the concepts (classes), properties (relationships), and 

instances (individuals) within the domain, and validation and 

refinement ensure that the ontology accurately represents the 

domain knowledge through validation and iterative 

refinement. 

2) Knowledge representation involves formalizing the 

ontology. This formal language provides precise semantics for 

the concepts and relationships, axioms, and rules to define 

axioms and inference rules to capture the logical constraints 

and derivations within the domain. 

3) Learning materials generation, which contains the 

content extraction for identifying relevant content from the 

ontology based on the learning objectives, content structuring 

to organize the extracted content into a coherent structure, 

following educational best practices (e.g., Bloom's taxonomy), 

and template application to apply predefined templates to 

format the content into various types of learning materials 

(e.g., textbooks, task assessments, interactive modules). 

4) Automated generation algorithms include the input 

processing to accept inputs such as learning objectives, target 

audience, and preferred content format; ontology querying, 

which uses description logic (DL) queries to retrieve relevant 

concepts, relationships, and instances from the ontology, 

material assembly to assemble the retrieved information into 

structured learning materials using the defined templates, and 

output generation for producing the final learning materials in 

the desired format (e.g., HTML, e-learning platform). 

Automatically generating learning materials involves a 
complex pipeline integrating natural language processing 
(NLP), machine learning, and educational technology. The 
following is an algorithmic approach to automatically 
generating learning materials from an ontology. Automatically 
generating learning materials in the programming domain 
involves several tailored steps. The following is a proposed 
algorithm for automatic learning material generation in the 
programming domain: 

Inputs: 

 Programming Language: The specific language 
(Python). 

 Learning Objectives: Skills or concepts to be covered 
(e.g., syntax, data structures, algorithms). 

 Content Sources: Online tutorials, documentation, 
coding. 

 Format Preferences: Desired output formats (e.g., code 
snippets, quizzes, video tutorials). 

 Target Audience: Beginner, intermediate, or advanced 
learners. 

Steps: 

1) Content retrieval: 

 Query content sources using APIs or web scraping to 
gather relevant programming resources. 

 Use NLP techniques to filter and categorize content 
based on relevance and complexity. 
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2) Content analysis: 

 Analyze the retrieved content for key programming 
concepts, syntax rules, common pitfalls, and best 
practices. 

 Identify gaps in the content that need to be addressed to 
fulfill the learning objectives. 

3) Content structuring: 

 Organize the content into a logical flow, such as: 

 Introduction to the language 

 Basic syntax and constructs 

 Control structures (loops, conditionals) 

 Data structures (arrays, lists, dictionaries) 

 Functions and modules 

 Advanced topics (e.g., OOP, frameworks) 

 Create outlines or flowcharts to visualize the structure. 

4) Material creation: 

 Generate text explanations for each section using NLP 
techniques. 

 Create code examples and snippets that illustrate each 
concept. 

 Develop quizzes or coding challenges based on the key 
concepts identified. 

 Design multimedia elements (like screencasts or 
infographics) if applicable. 

5) Customization: 

 Tailor the generated materials to fit the target audience's 
skill level. 

 Adjust complexity by simplifying explanations or 
introducing advanced topics as needed. 

6) Interactive elements: 

 Integrate coding environments (like Jupyter Notebooks 
or online IDEs), where learners can practice coding 
directly within the material. 

 Include live coding demonstrations or interactive 
simulations. 

7) Feedback loop: 

 Incorporate user feedback mechanisms (like quizzes and 
surveys) to evaluate understanding and engagement. 

 Use machine learning to refine content generation based 
on user performance data. 

8) Output generation: 

 Compile all materials into a cohesive format (e.g., 
HTML pages, PDF documents, online course modules). 

 Ensure accessibility standards are met (e.g., code 
readability, alt text for images). 

9) Review and iteration: 

 Implement a review process, where educators or 
experienced programmers can evaluate the generated 
materials. 

 Iterate on the content based on feedback and updates in 
programming language features or best practices. 

Outputs: 

 Comprehensive learning materials tailored to 
programming topics and audiences. 

 Code snippets and examples for hands-on practice. 

 Quizzes and coding challenges to reinforce learning. 

Considerations: 

 Ethics and Copyright: Ensure all content respects 
copyright laws and ethical guidelines. 

 Diversity and Inclusion: Include diverse perspectives 
and examples in the programming context. 

 Technology Integration: Consider integrating learning 
management systems (LMS) or coding platforms for 
easy distribution and tracking. 

Example Use Case: 

1) Input: 

 Programming Language: "Python" 

 Learning Objectives: Understand basic syntax, 
functions, and data structures. 

 Format Preferences: Text explanations, code examples, 
quizzes. 

 Target Audience: Beginners. 

2) Output: 

 A structured document explaining Python basics with 
annotated code snippets. 

 A set of quizzes covering key points about Python 
syntax and functions. 

 Links to interactive coding environments for practice. 

Fig. 1 shows a summary flowchart of creating and 
managing Python learning materials. After processing several 
inputs, such as learning objectives and content sources, through 
steps including content retrieval and structure, it produces 
learning materials that are accessible, interactive, and 
customizable. 
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Fig. 1. Creating and managing learning materials for Python. 

IV. PROPOSED KNOWLEDGE MODEL FOR THE DOMAIN-

SPECIFIC CONCEPTS 

The domain-specific concept is the system's knowledge 
module, organizing the domain knowledge structure, including 
its central concepts and their relationships. This model 
facilitates the automatic generation of learning materials for the 
educational process. It focuses on constructing and organizing 
domain-specific concepts and their interrelations [29]. A 
knowledge module consists of guidelines to identify all 
vocabulary concepts to illustrate or solve problems. It is purely 
declarative and does not provide instructions on how learners 
can utilize it to address practical issues [31]. Two categories of 
ontology modules have been developed based on the 
characteristics of the learning materials: general domain-
specific concepts ontology and specific domain-specific 
concepts knowledge module ontology. These modules 
represent the knowledge concepts needed for learning, provide 
input to the knowledge module, offer particular feedback, 
select problems, create learning materials, and support the 
student model. A domain-specific concepts knowledge module 
has been proposed based on current research, as illustrated in 
Fig. 2. This model is fundamentally based on domain concepts, 
properties, task assessments, material resources, learning 
objectives, learning rules, learning levels, and their 

interrelationships. To generate learning materials and reuse the 
knowledge module in the learning process, ontologies organize 
and represent the domain-specific concepts knowledge module. 
The advantage of this model is its ability to personalize and 
automatically generate learning materials for learners. Based 
on the general domain-specific concepts ontology shown in 
Fig. 2, domain concepts, domain properties, task assessments, 
material resources, learning objectives, learning rules, and 
learning levels terminologies refer to the following: 

 Domain concepts present domain-specific knowledge or 
a comprehensive learning material or course overview. 

 Domain properties represent a learning material or 
domain-specific properties within a domain knowledge 
model. 

 Task assessments explain how the application system 
can assess or measure the required learner activities 
within a specific period. 

 Material resources are physical or digital items used in 
educational settings to support and facilitate learning. 
They include textbooks, web resources, software, 
multimedia tools, and laboratory equipment. 
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 Learning objectives are clear, measurable goals that 
outline students' expected learning outcomes. They 
guide teachers in planning instruction, designing 
assessments, and evaluating progress. Aligned with 
curriculum and instructional standards, they provide a 
framework for effective teaching and assessment. 

 Learning rules are principles or guidelines that describe 
how learning occurs and how new information is 
acquired and processed. These rules help educators 
understand student learning and inform instructional 
strategies while helping students become more effective 
learners by optimizing their learning processes. 

 Learning levels are the stages of proficiency and 
understanding individuals progress through as they 
acquire new knowledge, skills, and competencies. They 
are crucial in education and instructional design, as they 
help educators tailor teaching methods and materials to 
support students at different stages of their learning 
journey. 

Fig. 3 displays the design and structure of a selected 
ontology knowledge module for the domain-specific concepts 
case study for the Python programming domain. Several 
relationships are applied to the domain-specific concepts 
selected in case examples. The relationships are generalization 
or specialization, dependency, and containment. Containment 
indicates that a specific domain concept within a given domain 
contains various concepts (has-a). The generalization or 
specialization shows particular topics or domains with specific 
concepts (is-a). Based on Fig. 2 and Fig. 3, the following 
displays a temporary explanation of a domain concept: 

 Domain concepts: Class, Function. 

 Domain properties: syntax. 

 Task assessments: program, code review, project. 

 Material resources: textbooks, web resources. 

 
Fig. 2. Knowledge model for the domain-specific concepts. 

 
Fig. 3. Specific knowledge model for the domain-specific concepts. 
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V. PROPOSED MODEL IMPLEMENTATION 

Computer Science and Information Technology disciplines 
offer numerous language modules and packages for developing 
and managing ontology models. Python is one of the most 
widely used and favored languages for implementing an 
ontology for domain-specific concept models. This interpreted, 
object-oriented, and extensible programming language is 
known for its exceptional clarity and versatility across various 
fields [22]. In [23], the authors used Python and Owlready2 to 
create the ontology and implement the domain knowledge. In 
this work, the domain-specific concept explored is the "Basics 
of Computer Programming", the ontology is constructed using 
the "Python Programming Language." The Python and 
Owlready2 modules implement domain-specific concepts 
within the ontology. Owlready2 facilitates transparent access to 
ontologies, allowing for the manipulation of classes, 
individuals, object properties, data properties, annotations, 
property domains, ranges, constrained datatypes, disjoints, and 
class expressions, including intersections, unions, property 
value restrictions, and more. Python offers some functions and 
modules for managing ontology to implement, create, and 
modify ontologies. The get_ontology() function allows 
building an empty ontology from its IRI using the Owlready2 
module. Owlready2 uses the syntax "with ontology: ..." to 
demonstrate the ontology that will receive the new RDF triples. 
For creating an ontology, the following short code is used: 

from owlready2 import * 

ontology = get_ontology() 

with ontology: <Python code> 

Concerning the implementation of the domain-specific 
concepts and the construction of its components: the domain 
concepts, learning objectives, domain properties, task 
assessments, learning rules, material resources, and learning 
levels. Fig. 4 shows a code dealing with the design of the core 
classes of the presented model. Fig. 5 corresponds with some 
of the object property relationships defined for the constructed 
components of the selected model. Several tools are available 
to display the ontology graph. The tools are Synaptica, 
OWLGrEd, and Protégé. Protégé is the most commonly used 
tool to display the ontology graph of domain-specific concepts, 
as shown in Fig. 6. The circular relationship lines in Fig. 6 
mean that each topic can depend on another topic and contain 
subtopics. For example, the iterative loop depends on variables, 
logical operators, and relational operators. Control sentences 
contain conditional sentences and iterative sentences. Fig. 7 
presents a SPARQL query as an example of visualizing all the 
domain concepts in the selected ontology domain-specific 
concepts regarding retrieving the domain concept and its 
description. 

 
Fig. 4. Core classes of the presented model. 

 
Fig. 5. Object property relationships. 
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Fig. 6. Domain-specific concepts ontology graph. 

 

Fig. 7. A SPARQL query for retrieving the concept "python class" and its description. 

We use natural language processing for automatic learning 
material generation, applying the spacy module in Python and 
the rdflib module. Fig. 8 and Fig. 9 present the code that 
controls the ontology of domain-specific concepts. Fig. 10 and 
Fig. 11 display snapshots of SPARQL for generating task 
assessment and query results according to SPARQL selecting 
concepts. The results are domain concepts, task assessment, 
and ask questions in the form of multiple-choice questions. 

Regarding automatic learning materials generation, the system 
randomly generates task assessments as multiple-choice 
questions for the learner. The learner is asked to answer the 
question, and according to the answer, whether it is correct or 
not, the system will automatically generate learning materials 
for further reading. Fig. 12 shows a snapshot of a task 
assessment question, whether the answer is correct, and the 
suggested learning material for the selected task. 

 
Fig. 8. Controlling the ontology of domain-specific concepts. 
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Fig. 9. The result of the ontology of domain-specific concepts. 

 
Fig. 10. Task assessment generation. 

 
Fig. 11. MCQs task assessment. 

 
Fig. 12. Task assessment and result sample. 

Fig. 13 shows a system that uses an ontology-based method 
to generate adaptive learning materials and quizzes. It 
illustrates how an ontology of concepts and relationships 
guides the development of personalized quizzes and learning 
paths suited to different competence levels. At the same time, 
learner progress informs knowledge gap analysis and topic 
selection. The Python programming ontology is a hierarchical 
system that maps out Python concepts, relationships, and 
learner progression. It includes fundamental concepts like 
variables, data types, and functions. The system infers a 
learner's proficiency level based on how they perform in 
quizzes and assessments. The ontology can be modified 
dynamically with performance-related data. In addition, it 
provides data analytics on tracker progress, predictive 
analytics, and content optimization. The ontology-based quiz 
creation process is dynamic and automatic, using Python 
concepts and learning objectives. It integrates with the learning 

path generator that selects the questions depending on the 
learner's progress. The system can accommodate questions 
such as multiple choice, true or false, fill-in blanks, code 
snippets, and coding challenges for promoting knowledge 
retention and skill development. The traditional way of 
producing materials and questions is to establish the scope and 
topic sets, acquire information and resources, structure the 
content, build learning materials, build assessment questions, 
and create specific examples. The instructor could use book 
texts, online resources, or even their teaching notes to 
extensively deal with functions, parameters, return values, and 
scope. The content is divided into an introduction to the 
function, a function definition, parameters and arguments, 
return value, and function scope. There are text-based learning 
materials, code-based learning materials, visuals, and exercises. 
Assessment questions can be multiple choice, code analysis, or 
code writing. Table II shows a comparison between traditional 
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versus ontology-based learning material creation. Examples 
include defining functions using the “return” statement and 
questioning about parameters in a function. This approach 
emphasizes the reliance on the instructor's knowledge and the 
step-by-step process of translating that knowledge into learning 
resources. The following is a case study considering the 
following code: 

def add_numbers(x, y): 

      result = x + y 

      return result 

sum = add_numbers(5, 3)  

print(sum) 

What is the purpose of parameters in a function? 

a) To give the function a name. 

b) To allow the function to accept input values. 

c) To specify the data type of the return value. 

d) To control the order in which code is executed. 

 

Fig. 13. Ontology-based method to generate adaptive learning materials and quizzes. 

VI. PROPOSED ONTOLOGY-BASED MODEL VALIDATION 

AND EVALUATION  

For ontology-based model validation and evaluation, 
various tools can be utilized to ensure the ontology's accuracy, 
consistency, completeness, and pedagogical effectiveness. 
Using these tools, you can comprehensively validate and 
evaluate ontology-based models to ensure high-quality, 
effective learning materials. A robust continuous improvement 
framework is based on combining automated tools with expert 
reviews. 

1) Ontology evaluation: Ontology evaluation tools are 

important in assessing ontology's quality, reliability, and 

utility in many domains [30]. Ontology quality is measured 

with several metrics and methods, including quality metrics, 

consistency checkers, structural analysis tools, domain-

specific evaluation tools, and usability evaluation tools [30]. 

Moreover, these tools also maintain the integrity and 

usefulness of ontologies across different domains. 

Automation, usability, interoperability, domain-specific 

adaptations, and capabilities for dynamic evaluation can be 

improved [30]. IRI_Debug is an ontology evaluation tool that 

enables the detection and correcting of issues in the 

Internationalized Resource Identifiers (IRIs) [28]. It provides 

IRI validation, validation of errors, consistency checking, 

namespace control, and an easy-to-use interface [28]. 

However, it is unsatisfactory due to the effectiveness of 

ontology complexity and IRI usage patterns in ontology 

development, maintenance, and educational use. Continuous 

updates are necessary for evolving standards [28]. Owlready2 

offers many reasoners for manipulating the domain ontology, 

such as Pellet, ELK, and HermiT. The HermiT reasoner is 

used, as shown in Fig. 14, to check that the constructed 

ontology is consistent and allows the classification, instance 

checking class satisfiability, and conjunctive query answering 
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of the developed domain ontology for the selected model. It is 

most commonly used in ontology engineering. 

TABLE II.  COMPARISON BETWEEN THE TRADITIONAL APPROACHES AND 

ONTOLOGY-BASED APPROACHES 

Feature 
Traditional Learning 

Material Creation 

Ontology-Based Learning 

Material Creation 

Content 

Organization 

Linear and structured 

manually 

Hierarchical and dynamically 

structured using ontology 

Customization 
Limited 

personalization 

Highly personalized based on 

learners' needs 

Content 

Reusability 

Low content created 
from scratch 

High, modular content reuse 
across different topics 

Automation Mostly manual work 
AI-assisted generation and 

annotation 

Content 

Consistency 

It can be inconsistent 
across materials 

Ensures uniform structure and 
terminology 

Adaptability 
Hard to update and 

adapt 

Easily adaptable to new 

knowledge and learning trends 

Efficiency Time-consuming 
Faster and more efficient due to 

automation 

Interactivity Mostly static content 
Dynamic and interactive 
learning experiences 

Scalability Difficult to scale 
Easily scalable across different 

subjects and learners 

2) Ontology validation: Ontology validation tools ensure 

ontologies' quality, reliability, and usability [32]. They 

identify issues related to consistency, completeness, 

correctness, and adherence to best practices [32]. Popular tools 

include OOPS!, OntoQA, OQuaRE, Pellet and Hermit, 

OntoMetric, BioPortal and AgroPortal, and OntoClean. 

OOPS! is a tool that helps ontology developers identify and 

address common pitfalls in ontology design [33]. It uses a set 

of pitfalls from best practices and expert recommendations, 

covering naming conventions, ontology structure, and logical 

inconsistencies [33]. The tool generates detailed reports 

detailing pitfalls, severity, and affected elements and provides 

recommendations for correcting each [33]. It can be integrated 

into ontology environments like Protégé, enhancing usability 

and promoting best practices [33]. Fig. 15 shows the 

OntOlogy Pitfall Scanner tool for ontology validation, which 

is used for the validation process. The input values for this 

tool can be ontology URL or RDF file code. Fig. 16 shows the 

OntOlogy Pitfall Scanner tool validation results. 

 
Fig. 14. Consistency of the domain-specific concepts ontology. 

 

Fig. 15. Ontology pitfall scanner tool. 
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Fig. 16. Ontology pitfall scanner tool results. 

VII. RESULTS 

The ontology-based automatic generation of learning 
materials in the Python programming domain as a solution 
provides a more sophisticated system for generating learning 
materials. Assessing their quality accuracy, 98.5%, makes it a 
valuable tool in educational technology and content generation. 
The dataset used in this experiment is Python programming 
language ontology [34]. To generate the learning materials, we 
used BERT embeddings to measure the semantic similarity of 
generated learning materials to predefined reference materials. 
It also generates an evaluation table, Table III, summarizing 
the results for each domain concept, as explained in the 
following steps: 

1) Ontology and learning materials: We define an 

ontology for various domain concepts (e.g., Python 

Programming, Data Structures) and generate learning 

materials for each domain concept using predefined content. 

2) BERT-based accuracy calculation: We use the BERT 

model from the sentence-transformers library to compute 

embeddings for the generated learning materials and 

predefined reference materials. We then calculate the cosine 

similarity between these embeddings to determine the 

semantic accuracy of the generated content. 

3) MCQ Generation: We generate multiple choice 

questions (MCQs) for each domain concept and assess how 

much the learner understands it. 

4) Evaluation table: Table III shows how the 

create_evaluation_table function collected generated learning 

materials, accuracy scores, MCQs, and a brief description of 

results from the results set into a structured evaluation table 

with the help of pandas. Descriptions of the accuracy are 

offered as a categorical measure based upon the thresholds, 

"Excellent alignment" being the case when the accuracy is 

greater than 90%, "Good alignment" for anything from 70% to 

90%, and "Moderate alignment" for a value that is less than 

70%. 

Table IV compares the ontology-based model's 
performance across numerous samples of the Python 
programming topic: Data Types, Control Flow, Functions, 
Error Handling, and OOP (Object-Oriented Programming) 
respectively. It proves how effectively the system can generate 
learning materials and assessments for each topic. As shown in 
Table V, the ontology-based model's performance also changes 
according to the dataset size when presented with the task of 
generating Python programming learning materials. It shows 
accuracy and other improvements as the model processes more 
datasets and proves its scalability. Using the following 
formulas, we have calculated the evaluation metrics such as 
accuracy, precision, recall, and F1-Score: 

 Accuracy = (True Positives + True Negatives) / (Total 
Instances) 

 Precision = True Positives / (True Positives + False 
Positives) 

 Recall = True Positives / (True Positives + False 
Negatives) 

 F1-Score = 2 * (Precision * Recall) / (Precision + 
Recall) 

Data is split into training (80%), and testing (20%) sets 
using the train_test_split function from 
sklearn.model_selection. The final parameter is the split with 
test_size=0.2, and random_state=42 ensures reproducibility. 
Using dataset size, the training and testing percentages are 
calculated. The values for these datasets are explicitly defined 
and printed in the run_evaluation function to make it clear for 
model training and evaluation dataset distribution. In this case, 
the accuracy calculation was measured using the BERT-based 
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semantic similarity. A pre-trained BERT model was used to 
transform the generated and reference texts into vector 
embeddings. These embeddings were computed into cosine 
similarity values measuring their semantic closeness. A 

predefined threshold was set to verify if the generated content 
was accurate (e.g., 0.8 or 0.9). The accuracy was calculated as 
the percentage of the correctly matched samples over the total 
number of samples. 

TABLE III.  EVALUATION TABLE SAMPLE 

Domain 

Concept 

Generated 

Learning Material 

Accuracy 

Score (%) 
MCQs Description 

Python 

Programming 

Python is a versatile programming language known for 
its simplicity and readability. It supports multiple 

programming paradigms, including procedural, object-

oriented, and functional programming. 

98.50% 

Q: What keyword is used to define a 

function in Python? 
- def - function - func - define Answer: def 

Excellent alignment 

with reference material. 

Data 

Structures 

Common data structures in Python include lists, 
dictionaries, sets, and tuples. Each structure has unique 

properties and use cases. 

95.85% 

Q: Which of the following is an unordered 

collection in Python? 

- List - Tuple - Dictionary - String 
Answer: Dictionary 

Excellent alignment 

with reference material. 

Algorithms 

Algorithms are step-by-step procedures for solving 

problems. In Python, you can implement algorithms for 

sorting, searching, and manipulating data in Python. 

92.30% 

Q: What is the time complexity of binary 

search? \n - O(n) \n - O(log n) \n - O(n log 
n) 

Answer: O(log n) 

Excellent alignment 
with reference material. 

TABLE IV.  ONTOLOGY-BASED MODEL EVALUATION: PYTHON PROGRAMMING TOPICS SAMPLE 

Python Topic Number of examples Percentage Accuracy Precision Recall F1-Score 

Data Types (int, float, str) 390 39% 0.95 0.93 0.96 0.94 

Control Flow (if, else, loops) 170 17% 0.91 0.89 0.92 0.90 

Functions (def, arguments, return) 70 7% 0.93 0.91 0.94 0.92 

Error Handling (try, except) 70 7% 0.89 0.86 0.91 0.88 

Object-Oriented Programming (OOP) 360 36% 0.90 0.87 0.92 0.89 

TABLE V.  ONTOLOGY-BASED MODEL EVALUATION PERFORMANCE BY DATASET SIZE 

Dataset Size (Records) Accuracy Precision Recall F1-Score 

Small (500) 0.88 0.85 0.89 0.87 

Medium (1500) 0.91 0.89 0.92 0.90 

Large (5000) 0.985 0.92 0.95 0.93 

VIII. DISCUSSION 

Ontology-based automatic learning material generation is a 
technology that has the potential to enhance learning 
experiences in almost any educational environment greatly. 
From an instructor's point of view, it operates as an adaptive 
tool that can initiate customized tests based on the students' 
diagnostic results. In this way, it enables the emergence of 
personalized learning materials directed to certain weak spots 
and saves quiz creation and grading time.  

This tech can provide a personalized learning path for 
learners, particularly Python programming students. An 
independent learner might start with a diagnostic test that 
covers basic topics such as data types, control flow, and 
functions. It can create debug tasks, discussions, and 
interactive lessons personalized to the student's needs based on 
their performance. The system also generates automatic 
feedback to highlight task errors, syntax errors, and possible 
solutions for student advancement. The instructor can use the 
same feedback to identify challenges faced by students and 
correspondingly grade the difficulty level of exercises so that 
support may be made more specific.  

This technology is excellent for use in both self-paced and 
instructor-led learning environments. In a blended learning 
model, for example, a self-paced learner could work through 
the function modules, and an instructor could give the 
diagnostic quizzes to track progress. The system provides real-
time performance data, which allows educators to monitor 
student advancement and uncover the need to focus, once 
necessary, on the individual. In addition, it is beneficial to 
advanced learners who are learning Pandas for data 
manipulation. Real-world datasets have complex tasks that are 
tough enough for expert programmers. This ontology-based 
approach allows instructors to customize the learning content 
to particular learning goals to improve the learning experience. 

Automatic generation of learning material based on 
ontology can enhance personalized learning, including adaptive 
content generation, real-time feedback, and performance 
analytics. However, integration into Learning Management 
Systems such as Moodle, Canvas, and Google Classroom can 
be challenging. It incorporates key steps for improving 
integration, such as API development, interoperability 
standards, plug-ins, and a user-friendly interface. Teachers can 
adopt the system as they become familiar with it and can add 
some advanced features. The system can be used in blended 
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learning environments and traditional teaching methods to 
personalize practice and feedback. 

IX. CONCLUSION 

In the digital age, programming skills have become a 
requisite for practice in almost every professional sphere, 
increasing the need for the most effective learning materials in 
programming study and training. Generating educational 
resources of computer programming based on ontology is a 
promising way to improve the quality and efficiency of 
educational resources of computer programming. 

This study aims to develop a framework based on ontology 
to represent the Python programming concepts and 
relationships among them and implement a system for 
automatically generating the learning materials in the form of 
quizzes using the developed framework. In this study, we 
discuss the potential benefits and limitations of the current state 
of ontology-based automatic learning materials generation, 
specifically in programming languages. An ontology-based 
approach can potentially revolutionize the creation of tailored 
learning materials for programming education. 

The system achieved a high accuracy rate of 98.5%, 
calculated using BERT-based semantic similarity, 
demonstrating its effectiveness in producing relevant and 
accurate learning materials. The novelty of this work lies in 
leveraging ontologies to automate quiz generation in 
programming education, offering a structured and scalable 
solution for personalized content creation. 

Despite these contributions, certain limitations should be 
acknowledged. The study primarily focused on Python 
programming, which may impact the generalizability of the 
findings. Future research can address these limitations by 
implementing multi-programming language ontology. More 
research using controlled trials is needed. We recommend 
conducting a study comparing ontology-based learning 
materials to traditional, manually created materials using a 
controlled experiment. Students are divided into two groups: 
the control group receiving traditional materials and the 
experimental group receiving ontology-based materials. Post-
tests measure retention, understanding, and satisfaction. 
Metrics include test scores, time to mastery, engagement time, 
and learning quality. The study would aim to assess the 
effectiveness of ontology-based learning materials in 
improving educational outcomes. 
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