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Abstract—Data are “gold mines” that must be processed and
interpreted quickly and efficiently to be useful. Thus, flexible
queries continue to attract considerable attention. Several works
have been proposed that allow users to perform flexible queries
on relational databases. Most are related to fuzzy logic, which
showed its performance in handling fuzziness in scalar values,
but non-scalar values are still a more complex task. To solve
this drawback of fuzzy logic, we propose using ontologies to
establish the semantic relationships between the domain elements
of a queried attribute. Moreover, we present the architecture of
a new system that combines both techniques to allow users to
write and execute queries in a flexible way where the criteria are
not only exact but can also be fuzzy or semantic, and they may
also include accomplishment degrees. Furthermore, the proposed
system uses a new fast methodology for handling fuzzy queries,
which has shown its great efficiency in accelerating the execution
of fuzzy queries. Data mining techniques are used to assist users
in defining their fuzzy understanding. The developed system has
a user-friendly interface to assist users in managing their fuzzy
preferences and semantic preferences. Finally, we have proven the
performance of our system by conducting a set of experiments
in different areas. We have also provided a qualitative and
quantitative comparison with flexible query systems, which are
documented in the literature.

Keywords—Relational databases; fuzzy logic; ontologies; flexi-
ble queries; user interface

I. INTRODUCTION

In this paper, we suggest a new proposal for flexible
querying relational databases where answer results are not
limited to the searched object but also similar information to
this object. It is based on fuzzy logic and ontology. Numerous
approaches have been proposed in the literature to enable
flexible querying in relational databases, with most relying
on fuzzy logic as an effective tool for managing imprecision.
In terms of scalar values, we can simply define any fuzzy
set according to the domain of the queried attribute, for
example, we can use a trapezoid function to represent the
“young people” fuzzy set as shown in Fig. 1, to compute the
search in the query “Return young people”. However, handling
non-scalar attributes using fuzzy logic, such as “attitude”,
“qualification”, or “hair color”, which are closer to natural
language representations, is a complex task, as it requires
explicitly defining relationships between each pair of domain
values to establish a similar relationship among them. This is
the case, for example, when querying: “Return blond people”.
In such situations, similarity relationships among all domain
values of the hair color attribute must be defined during the
design phase, as illustrated in Table I. Such definitions are a

difficult task because they depend on the subjective perception
of the designer who evaluates this degree of similarity, as
well as the application domain of the non-scalar attribute. To
solve this drawback of fuzzy logic, we propose the use of a
new technology that has appeared in the past decade to make
semantic queries. It consists of using ontologies to define the
semantic relationships among the domain elements of a queried
attribute.
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Fig. 1. Fuzzy set represents the human age.

TABLE I. A HUMAN HAIR COLOR SIMILARITY

Hair colour Red Brown Blond
Dark 0.2 0.7 0.1
Red 0.6 0.5
Brown 0.3

Despite significant progress in developing flexible query
systems, most existing systems struggle to efficiently support
the combination of fuzzy predicates (which handle imprecise
or vague information) with ontology-based predicates (which
leverage semantic reasoning). Current approaches often treat
these paradigms in isolation, leading to inefficiencies, limited
expressiveness, or the inability to process hybrid queries in-
volving fuzzy logic and ontological knowledge. This paper
addresses this gap by proposing a novel query processing
framework that seamlessly integrates fuzzy and ontology pred-
icates within a unified and flexible query system.

The main contribution of our proposal is to provide a
solution for answering flexible queries, such as the following:
“return all the new action movies” where the concept action is
not included in any database, and the term “new” is fuzzy,
representing recent films. Or, like this, “return all vintage
books about life sciences” that is, old books on Biology,
Botany, Zoology, etc. Generally, any query contains fuzzy
terms, semantic terms, or both, with preferences if specified.

In this approach, when executing a flexible query, the
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system evaluates the query, identifies conditions, and handles
each non-Boolean condition based on the domain of the
queried attribute. If the domain is scalar, the system applies
fuzzy logic techniques; however, if the domain is non-scalar,
it employs semantic techniques. We have described the sys-
tem architecture and the development process for processing
flexible queries. In addition, as proof of the behavior and
performance of the system, we conducted three experiments,
including a detailed example of the behavior of our system as
a proof of concept.

The remainder of the paper is organized as follows. Section
II surveys and reviews related works, classifying them into
two taxonomies. Section III details the system architecture and
development details. In Section IV, the results of experiments
are presented, and the main features of this proposal are com-
pared with existing approaches. Finally, Section V concludes
the paper.

II. RELATED WORK

Several research efforts have focused on addressing fuzzi-
ness in database systems, with most of them remaining largely
theoretical [1], [2], [3], [4], [5], [6]. The integration of fuzzi-
ness into database systems has been a longstanding research
focus [7], [8]. Fuzzy logic, designed to manage uncertainty and
imprecision, has been explored to enhance traditional database
systems. While theoretical work has laid the foundation for
understanding and representing fuzzy information in databases,
practical implementations have been limited. To highlight the
important proposed flexible query systems, we propose two
taxonomies: the first focuses on flexible query systems for crisp
relational databases, while the second addresses flexible query
systems for fuzzy relational databases.

In crisp relational databases, various models incorporating
fuzzy terms have been explored to enable flexible queries,
with SQLf standing out as a notable achievement [9], [10].
Based on their architecture, these proposed systems can be cat-
egorized into weakly integrated, semi-integrated, and strongly
integrated. Each category offers different approaches to in-
corporating fuzzy logic into traditional database systems, e.g.
VAGUE [11], SQLf3 [12], iSQLf [13], SQLf-pl [14], ReqFlex
[15], and PostgreSQLf [16].

Different models have been proposed for fuzzy relational
databases to build a database that can involve imprecision and
vagueness represented by fuzzy or possibilistic elements and to
support the handling of imprecise queries. Noteworthy models
include the GEFRED model, which stands out as the most
generalized model of fuzzy relational databases, it constitutes
an eclectic synthesis of the various published models aimed
at addressing the representation and treatment of fuzzy infor-
mation for relational databases [17], [18]. Additionally, fuzzy
database management systems, such as FREEDOM-O and a
fuzzy interface called FIRST, have been developed to address
these challenges [19], [20].

However, in the above works, the proposed solutions to
similarity management in non-scalar values are still inappro-
priate and have several disadvantages. Such a definition of
an explicit relationship between each pair of the domain of
a non-scalar attribute is a hard task because it depends on
the application domain and the subjective perception of the

designer. Similarly, the attribute domain is limited to the initial
domain data set.

To solve these issues, we propose an alternative that
consists of using ontologies to formally represent the semantics
of a domain. The basic goal of our research is to develop
a complete system that allows users to write and execute
flexible queries in conventional databases where criteria can
be classical, fuzzy, or semantic.

III. DESCRIPTION OF THE SYSTEM

In our proposal, two technologies—fuzzy logic and on-
tology—are integrated into a single system to enable flexible
querying of the relational database. On the one hand, fuzzy
logic has been used to process fuzzy queries by defining
fuzzy sets (linguistic variables) and associating them with
selected attributes, according to the same strategy presented
in our recently published proposal [21]. Fuzzy sets can be
defined using any kind of membership function, e.g. triangular,
trapezoidal, or Gaussian. On the other hand, semantic queries
rely on ontology-based semantic similarity to return tuples
containing information that is semantically similar to the
concepts mentioned in the query.

Fuzzy query processing is done with the same methodology
that we have presented in [21]. We employed fuzzy views to
manage the satisfaction degrees associated with user-defined
fuzzy predicates. This simple and intelligent technique allows
us to write and execute fuzzy queries as classical SQL, which
induces an important verified performance.

Semantic query processing is performed by utilizing a
chosen ontology to define the semantic relationships among
terms within the same domain of the queried attribute. A
semantic query returns an ordered result dataset by comparing
the contents of the database using a selected similarity measure
to the ontology that represents the domain of the queried
attribute.

In the following subsections, we present the architecture of
the proposed system and the development process that enables
flexible querying of relational databases.

A. System Architecture

The proposed system architecture, shown in Fig. 2, has two
principal parts:

● A database that stores data and the attribute domains,
which can be defined by fuzzy sets or ontologies, and
will be stored in the database catalog.

● A three-module functional part that defines the
system’s behavior:

○ Flexible query process module (FQM): this
module is divided into two sub-modules, and
it is responsible for performing three basic
operations (see Fig. 3):

The input processing stage extracts query
conditions and classifies them into three
types. Each condition is then routed to the
appropriate process module based on the
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domain of the query attributes, with the
exception of Boolean conditions, which
are retained as they are directly supported
by the DBMS.

Replaces each non-exact condition with
its corresponding Boolean one in the
original query.

Building an ordinary query and sending it
to the database and getting results.

○ Fuzzy condition process module (FzzCM):
The aim of this module is only to change the
syntax of the fuzzy condition to an SQL syntax
that we proposed in [21] and will be explained
in detail in the next section. Therefore the
fuzzy condition becomes a classical one that
applies to the virtual column of the fuzzy
view associated with the concerned table.

○ Semantic condition process module (SemCM):
This process executes an algorithm that returns
a set of database terms semantically similar
to the searched term in the input semantic
condition, by assessing the similarity degree
between the database content and the searched
term, along with their relationships in a
selected ontology. Finally, this process
generates an SQL IN condition by using this
result set.

A list of attributes and modules that can be involved in
each kind of condition is shown in Table II. It is worth noting
that all the conditions involve the flexible query module to
analyze the input.

TABLE II. TYPE OF ATTRIBUTES AND THEIR CORRESPONDING PROCESS
MODULES

Kinds of attributes Module Accomplishment degree
Ordinary attribute Ordinary DB 1 or 0
Fuzzy attribute FzzCM Membership degree
Semantic attribute SemCM Similarity degree

B. Development

A Database Server running an Oracle instance and a
Java-based client application are required for the system ar-
chitecture. The database server provides data services and
manages fuzzy queries. Also, it provides the informational
needs (metadata and data) of semantic queries, fuzzy queries,
and I/O processing. It is worth noting that the database
must be prepared thanks to the implementation of a set of
stored procedures in PL/SQL, which allows for example the
management of fuzzy query metadata (DFC), semantic query
metadata (DSC), and the generation of fuzzy views.

A Java web-based application has been developed to im-
plement the principal operational functionalities described in
the previous section. It features a user-friendly interface that
simplifies tasks for users, such as preparing fuzzy and seman-
tic queries. Additionally, it performs operations not directly

Fig. 2. System architecture.

Fig. 3. Flexible query process module behavior description.

supported by the database, including ontology-based semantic
similarity computation.

We used data mining techniques to assist users in ex-
pressing and refining their fuzzy understanding of complex
datasets. The web version of this application has been designed
for universal accessibility, irrespective of the user’s operating
system. This decision ensures a flexible system that accommo-
dates users with internet connectivity, enabling remote access
from any location. For those interested, a working version of
our system and its description can be found on the following
website: https://github.com/mathmama/FQSFO.
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This section provides an analysis and description of the
system’s behavior and implementation details.

1) Fuzzy queries: To manage fuzzy queries that contain
fuzzy conditions, we have used our published approach [21],
which extends the SQL language to allow us to write fuzzy
conditions in our queries without the need for a transla-
tion/parser. His main principle is to use views (called fuzzy
views) to manipulate the membership degrees related to user-
defined fuzzy predicates rather than calculating them at run-
time using user functions built into the query. As a result, the
response time for executing a fuzzy query will be reduced.

When the database is intended to be fuzzily queried, it must
be prepared and initialized by user preferences. For example,
if we are querying: “Return young employee”, we have to
associate the Age attribute to the linguistic variable Age that
contains a fuzzy set ( linguistic value) called Young as part of
its domain as shown in Fig. 1, in this time we have defined
a fuzzy predicate. Then, a fuzzy view will be generated auto-
matically that contains a virtual column named “age.young” to
manipulate the membership degrees. Consequently, the above
fuzzy query can be expressed with SQL as:

select emp from FEMP

where “age.young” > 0
(1)

where FEMP is the fuzzy view generated from the initial
table (see the example given in Table III, which is generated
based on the definition of the term “young” identified in
Fig. 1). Note that this new strategy allows the user can also
define thresholds on his fuzzy conditions and easily integrate
most fuzzy query characters such as fuzzy quantifiers, fuzzy
modifiers, fuzzy joins, etc. [21].

TABLE III. GENERATED FUZZY VIEW FEMP

emp e-name age age.young
12 Martin 29 1
10 Smith 46 0.4
20 Marc 38 1
30 Aline 18 0.9
5 Jean 56 0

In this proposal, we have changed the syntax of fuzzy
queries to be easier for the user. These changes concern the
syntax of fuzzy conditions and the name of the queried table,
with no requirement for specifying the fuzzy view’s name. The
new syntax is:

select [distinct] < attributes >
from < tables >

where (attribut name =′ fuzzy term′)

comparison operator threshold

(2)

For example, the previous query will be expressed as:

select emp from EMP

where (age =′ young′) > 0
(3)

So, due to these changes, the fuzzy query will not be
processed directly by the DB. This is the role of the fuzzy
conditions processing module; this involves changing the syn-
tax of the fuzzy conditions to the supported one, as well as
the name of the queried table.

2) Semantic queries: To perform semantic queries, a se-
mantic predicate must be created. This involves associating an
attribute in the database with an ontology that represents its
domain, similar to the preparation of fuzzy queries.

It is worth mentioning that the chosen ontology must
contain the semantic term that will be searched in the database,
but not all database values for this attribute. For example,
suppose we want to search semantically for “Action movies”
in the content of the movie genre attribute. In that case, it is
not necessary to include all movie genres in the ontology, but
only those we are interested in.

a) Semantic condition process module: The semantic
condition process module consists of converting a semantic
condition into a Boolean one by executing an algorithm that
searches the database content the terms that are semantically
similar to the searched term with the desired threshold based
on the domain ontology associated with the queried attribute
and chosen semantic similarity measure. And then return a list
of these terms that will be used to build a simple SQL IN
condition.

In our system, we opted to use a recent ontology-based
semantic similarity measure library, HESML V1R5 [22], [23]
to calculate the semantic similarity measure between two
terms. Is a scalable and real-time semantic measures library
that includes several of the most significant semantic similarity
measures, supports importing ontology file formats such as
OWL or RDF files, and implements the most significant
biomedical ontologies, such as MeSH, SNOMED-CT, and GO
(for more detail, and support, we refer to the HESML web
site1).

Via a user-friendly interface, a user can easily create a ref-
erence on an existing ontology (WordNet, YAGO, Go, etc.) or
on an ontology file (OWL, RDF(S)), then create his semantic
predicate by associating this reference with an attribute of a
selected table and a chosen ontology-based semantic similarity
measure. All this information will be organized and stored in
the Semantic Metaknowledge Base (DFC), which is envisaged
as an extension of the catalog of the system (Data Dictionary).

To evaluate the database content with the searched term and
its relationship in the ontology, Algorithm 1 is implemented
in the semantic condition process module to return a set of
found terms. This algorithm takes as parameters this searched
term, threshold, a comparison operator, and the information
contained in the DFC concerning this queried attribute.

3) Flexible queries: The flexible queries module is re-
sponsible for receiving and analyzing a query, extracting
query conditions, and sending each non-exact condition to the
corresponding module as depicted in Fig. 4. This module is
implemented in Java and establishes a database connection to
access the catalog of the DB system.

1http://hesml.lsi.uned.es/
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Algorithm 1 Semantic Similarity Search
Input: tableId, attributeId, evalvalue,
[threshold], [cndOpr], ontologyType,
ontologyRef,SMeasureId
Output: ResSet ∶ set
Data: ResSet ∶ set(value),
AttrV alSet ∶ set(value),
SMC ∶ SMComp,

RestSet← ””
AttrValSet ← get Attr Vals(tableId, attributeId)
SMC← SMComp(ontologyType, ontologyRef, SMeasureId)
for value ∈ AttrV alSet do

SM degree ← SMC.getSM degree(evalvalue, value)
if Comparison(cnOpr, sm degree, threshold) then
add(ResSet, value)

end if
end for

Also, this module is responsible for building an ordinary
query after replacing each non-exact condition with its cor-
responding Boolean one in the original query and getting
execution results. The input processing of this module iden-
tifies inexact conditions just from its syntax, which will be
presented in the next section. However, to distinguish between
semantic and fuzzy conditions, a search in the database catalog
is required.

When a query involves multiple conditions, the calculation
of the final degree of satisfaction is performed only if the
user specifies it in the query. Each returned row includes
the calculated degree of accomplishment using Zadeh’s set
of operations, which involves Union (Max) and Intersection
(Min):

● Union: µA∪B(t) =max(µA(t), µB(t))

● Intersection: µA∩B(t) =min(µA(t), µB(t))

Note that, after processing, each condition attribute is
assigned a membership or similarity degree based on its type,
as indicated in Table II.

Fig. 4. The General flow of control in the flexible query module.

4) SQLf extension: The SQLf syntax has been slightly
modified. We have changed the syntax of fuzzy queries to
make it more user-friendly and to support new features. The
new syntax is as follows:

select [distinct] < attributes >
from < tables >

where (attribut name =′ fuzzy or semantic term′)

comparison operator threshold

(4)

The semantic query syntax is the same as that of the fuzzy
query. If a query is performed on semantic attributes, such as
“Return action movies”, this query would be expressed as:

select movieid from movie

where (genre =′ Action′) > 0
(5)

where genre attribute has associated a movie ontology that
includes the term “Action” in it. We mention that the user can
use a comparison operator, e.g. =,>,<,≥, or ≤.

The latter must be enclosed within parentheses to accel-
erate input processing time and facilitate clear differentiation
between Boolean and non-Boolean conditions. For example,
the query “Return the new action movies whose budget is over
30 million $” would be expressed as:

select movieid from movie

where (ReleaseDate =′ new′) > 0

and (genre =′ Action′) > 0 and budget > 30

(6)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Though the proposed system has been previously pre-
sented, we understand the need to support that by showing the
system’s behavior and its performance through some experi-
ments in different datasets. Accordingly, this section describes
the test environment, the experiments conducted, the results
reported, and the necessary validation. The first experiment
is proposed to analyze in detail the system behavior, and to
measure the efficiency and the scalability of the system, two
additional experiments were carried out that vary according to
the ontology type and size. Moreover, quantitative comparison
and qualitative one are included to highlight the strengths and
drawbacks of our contribution.

A. Testing Environment

The developed flexible relational database query system
can be used as a front-end to any relational database, provided
it is prepared beforehand. This is true because all the developed
procedures can be adapted to other DBMSs. Also, semantic
query processing is implemented in application clients, so
it is independent of DBMS. We used Oracle Database 19c
Enterprise as a database server in the testing. The reason to use
Oracle is that it is the most widely used commercial relational
database management system. It processes data faster and takes
up less space [24].

www.ijacsa.thesai.org 813 ∣ P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

A Java web application has been developed to facilitate
tasks for users and to compute all the operations that are not
provided by the database. Technical details are shown in Table
IV.

TABLE IV. TECHNICAL DETAILS OF THE DEVELOPED SYSTEM

Database Server Flexible Queries Application
Intel(R) Core(TM) i7-4790k CPU @ 4GHz intel(R) Core(TM) i5-2.40Ghz
Mem 16GB Mem 8GB
CentOS release 7 Windows 10 Pro
Oracle Database 19c Java 8 (JEE)

B. Experimentation #1: Movie Ontology

In this experimentation, we employed a small movie
database to thoroughly analyze the system’s behavior when
executing a flexible query. An example of data is shown in
Table V. The flexible query “Return all the new action movies”
requires the definition of two attribute domains in the database:

● ReleaseDate: A virtual column named “ElapsedPe-
riod” has been calculated and added to the table,
representing the elapsed years since the movie was
released. This attribute has been associated with a
fuzzy set named “New”, represented by the member-
ship function shown in Fig. 5.

● Genre: This attribute represents the genre of the
movie, and we have associated it with an ontology
about movie genres2.

TABLE V. EXAMPLE OF DATA

MovieID Title Genre ReleaseDate
1 Avatar SciFi and Fantasy 17/12/2009
2 Titanic Love 18/11/1997
3 The jungle Book Family 7/04/2016
4 The Hobbit Kids 14/09/2012
5 APOLLO 11 Documentarial Information 01/03/2019
6 Furious 7 Entertainment 02/04/2015
7 Spectre Action 26/10/2015
8 The Tomorrow War War 02/07/2021
9 Monsters University Animation 20/06/2013
10 Cinderella Romance 12/12/2015
11 Alone Zombie 16/09/2020
. . . . . . . . . . . .

Fig. 5. Calculation process of “New Movies” membership degree.

The query introduced in the system will be expressed in
SQLf as:

select ∗ from movie

where (ReleaseDate =′ new′) > 0

and (Genre =′ Action′) > 0

(7)

2https://www.kaggle.com/datasets/hijest/genre-classification-dataset-imdb

TABLE VI. A PREVIEW OF FMOVIE FUZZY VIEW

MovieID ... ReleaseDate ... ReleaseDate.new
1 ... 17/12/2009 ... 0
2 ... 18/11/1997 ... 0
3 ... 7/04/2016 ... 0.66
4 ... 14/09/2012 ... 0
5 ... 01/03/2019 .. 1
6 ... 02/04/2015 ... 0.33
7 ... 26/10/2015 ... 0.33
8 ... 02/07/2021 ... 1
9 ... 20/06/2013 ... 0
10 ... 12/12/2015 ... 0.33
11 ... 16/09/2020 ... 1
... ... ... ... ...

TABLE VII. SOME CALCULATED SEMANTIC SIMILARITY DEGREES WITH
THE “ACTION” TERM

MovieID Genre
Similarity

degree MovieID Genre
Similarity

degree
1 SciFi and Fantasy 0.43 7 Action 1
2 Love 0.42 8 War 0.9
3 Family 0.41 9 Animation 0.41
4 Kids 0.42 10 Romance 0.40
5 Documentarial Information 0.26 11 Zombie 0
6 Entertainment 0.58 ... ... ...

The database searching process starts when the query is
analyzed and converted to SQL. The FQ process module
analyses this query and extracts query conditions to send each
one of them to the corresponding process module. There are
two conditions in this query:

● The first one is a fuzzy condition that will be sent
to the FzzCm module to just change their syntax
to “ReleaseDate.new” > 0, which is a Boolean
condition that will be applied to a virtual column
named “ReleaseDate.new” of a previously generated
fuzzy view associated with the movie table. This
virtual column contains the membership degree of
each release date to the “New Movie” fuzzy set shown
in Fig. 5. A preview of the generated fuzzy view is
represented in Table VI.

● The second one is a semantic condition that is sent
to the SemCM module. The semantic value “Action”
will be compared semantically with all values of the
Genre column using a pre-selected semantic similarity
measure. In this experimentation, we have used the
semantic similarity measure proposed by Sanchez et
al. [25]. That relies on the exploitation of taxonomical
features. This measure is efficient, easy to calculate,
and can be used in a variety of ontologies.

The Table VII shows some calculated semantic similarity
degrees. The obtained similarity degree is equal to 1 only if
the searched value “Action” matches with a database register
and 0 if the searched value is not in the ontology (e.g. Movie
11 (Zombie)). Otherwise, the degrees of similarity decrease
according to the distance between the searched value and the
race of the movie found in the queried column content. It
should be noted that for better results, the threshold must be
initialized. Based on these obtained results, SemCM generates
an SQL condition like:

genre IN (‘SciFi and Fantasy’,‘Love’,‘Family’,
‘Kids’, ‘Documentarial Information’,‘Entertainment’,
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‘Action’,‘War’, ‘Animation’,‘Romance’,‘Adventure’,
‘News’,‘Biography’)

As you can see, we have obtained all the movie genres
except those not included in the ontology, as we haven’t set a
threshold in this semantic condition.

Both original conditions will be replaced by their
corresponding Boolean equivalents in the original query.
Consequently, the resulting flexible query will be expressed
in SQL as:

select * from movie
where “ReleaseDate.new”¿0
and genre IN (‘SciFi and Fantasy’,‘Love’,‘Family’,
‘Kids’, ‘Documentarial Information’,‘Entertainment’,
‘Action’,‘War’, ‘Animation’,‘Romance’,‘Adventure’,
‘News’,‘Biography’)

Resulting data are shown in Table VIII.

TABLE VIII. RESULTS OF QUERY: “RETURN ALL THE NEW ACTION
MOVIES”

MovieID Title Genre ReleaseDate Accomp. deg.
3 The jungle Book Family 7/04/2016 0.41
5 APOLLO 11 Documentarial Information 01/03/2019 0.26
6 Furious 7 Entertainment 02/04/2015 0.33
7 Spectre Action 26/10/2015 0.33
8 The Tomorrow War War 02/07/2021 0.9
10 Cinderella Romance 12/12/2015 0.33
. . . . . . . . . . . . . . . . . .

C. Experimentation #2: Book Ontology

Various tests to measure the system’s efficiency were
conducted on a database of books. A partial example of it,
with fuzzy data definitions, is shown in Fig. 6. For brevity, we
will describe only the attributes utilized in our experimentation:

● Bookage: This is a NUMBER-type attribute that char-
acterizes the age of the book. It is calculated from
the book’s publish date and expressed in years. The
associated fuzzy sets ([new, classic, vintage]) are il-
lustrated in Fig. 6.

● Genre: is a VARCHAR type attribute that describes the
book genre. His semantic definition is represented by
a Book ontology3 employed by the Canadian Writing
Research Collaboratory to assign genres to different
types of cultural objects. The similarity is estimated
using Lin’s measure [26].

We have used a dataset containing 25 variables and 52478
records that have been collected in the frame of the Prac1 of
the subject Topology and Data Life in the Universitat Oberta of
Catalunya.4 To analyze the efficiency of our system, we have
varied two parameters: query complexity from simple to more
complex (see Table IX), and to analyze the system scalability
we have varied the number of tuples computed on the same
query (see Table X). The results have been illustrated in Fig.
7.

3https://sparql.cwrc.ca/ontologies/genre-2020-07-14.html
4https://zenodo.org/record/4265096

Fig. 6. Partial example of book database with fuzzy data definitions.
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Fig. 7. Execution times of the performed queries.

D. Experimentation #3: Medical Subject Headings Ontology
(MeSH)

In this experiment, we propose an example of the use of our
system in the medical field. A medical database about charac-
teristics of patients likely to be infected by the coronavirus has
been flexibly queried to select patients with symptoms of a type
of coronavirus.We have used MeSH5 ontology version 2024 to
define a semantic definition of virus type. MeSH is a thesaurus
produced by the National Library of Medicine that is used for
indexing, cataloging, and searching for biomedical and health-
related information. Table XI presents a set of different queries
that have been designed to measure the performance of the
system.

E. Discussion

To evaluate the system’s efficiency and demonstrate its
adaptability, we conducted a series of tests by varying the
complexity of the queries, changing the number of tuples
computed on the same query, and varying the ontology.

5https://www.nlm.nih.gov/databases/download/mesh.html

www.ijacsa.thesai.org 815 ∣ P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

TABLE IX. SET OF FLEXIBLE QUERIES

ID Query SQLf Rows Time(ms)

1 Find the new books select bookid from book where (bookage=“new”)> 0.5 72 15

2 Find new or vintage books select bookid from book where (bookage=“new”)> 0.5 or (bookage=“vintage”)> 0.5 228 33

3 Find the historical books select bookid from book where (genre=“historical”)> 0.5 194 71

4 Find the fictional books select bookid from book where (genre=“fictional”)> 0.5 177 73

5 Find the historical vintage books select bookid from book
where (bookage=“vintage”)> 0.5 and (genre=“historical”)> 0.5

63 74

6 Find the historical or fictional books select bookid from book where (genre=“historical”)> 0.5 or (genre=“fictional”)> 0.5 371 161

0 Reference query to measure network latency select bookid from book 500 2

TABLE X. EXECUTION TIMES VARYING NUMBER OF TUPLES

N. tuples Q1 Q2 Q3 Q4 Q5 Q6

100 8 13 52 50 52 92
300 12 22 56 60 63 119
500 15 33 71 73 74 161
800 22 52 82 92 97 180
1000 23 65 92 97 100 193
2000 36 100 133 132 140 249

We can see in Fig. 7a in experimentation 2 how the
execution time increases as the number of attributes or the
query complexity increases. Also, we can see in Fig. 7b how
the scalability increases depending on the number of computed
rows in complex queries. However, varying the number of
rows is insufficient to distinguish the delay caused by network
latency or changes in the number of rows computed.

In addition, we can see from these experiments how the
execution time increases when we use a large ontology as in
experimentation 3 in which we used the MeSH thesaurus that
contains several concepts. Consequently, the system perfor-
mance degrades depending on the size of the chosen ontology.
So, since the user is the one who chooses the ontology, then
it does not have to be very large to get good results.

F. Comparison to the Other Approaches

A qualitative comparison between the most relevant char-
acteristics in fuzzy query systems of relational databases in the
literature and our proposal is shown in Table XII. We conclude
that none of the proposals in the literature is complete. Most of
them give a partial version of the representation and processing
of imprecise information. Our approach appears to be most
complete for fuzzy querying classical relational databases
because it supports most features.

Many query systems use ontologies to perform flexible
queries on relational databases, cf., e.g. [33], [34], [35]. Most
of these systems need a preprocessing stage that executes a
mapping process between the ontology and the RDB, contrary
to our system, which only needs to establish the relationship
between the ontology and the queried attribute. However, this
strategy could lead us to decrease the performance when the
chosen ontology is large. The ontology size must be small to

get good results. In Table XIII, we consider the systems that
combine fuzzy and semantic queries. In this context, we refer
to a recent system proposed by Martinez [29] that performs
flexible queries on a fuzzy relational database using fuzzy
logic and ontology. This proposal does not support all types of
ontologies and implements only one semantic similarity mea-
sure, unlike our system, which implements several semantic
similarity measures and supports most types of ontologies.

A quantitative comparison between our system and the
system proposed by Martinez is shown in Fig. 8. We con-
sidered experimentation 2 with a dataset of 2000 tuples. The
graph clearly shows that our system outperforms the Martinez
system in terms of response speed by a substantial margin.
This is due to his principle that consists of splitting the flexible
query into subqueries and includes an aggregation phase that
needs to store the temporal results of each process module to
combine them at last, which induces an important overhead.
Moreover, this proposal is a modification of Medina’s one [17]
that requires browsing a large fuzzy catalog to translate fuzzy
query.

Our system implements the SQLf language, utilizing fuzzy
views to manage the satisfaction degrees of user-defined fuzzy
predicates, rather than calculating them at runtime through user
functions embedded in the query. Therefore, it doesn’t need an
analyzer or a translator because all fuzzy queries generated will
be compatible with standard SQL, which leads to significant
performance.

Q1 Q2 Q3 Q4 Q5 Q6
0

100

200

300

400

500

600

700

Queries

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e(
m

s)

Our System
Martinez System

Fig. 8. Execution times comparison between our and Martinez’s proposed
system.
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TABLE XI. SET OF FLEXIBLE QUERIES

ID Query SQLf Rows
Time
(ms)

1 Find the old patients select patientid from patient where (age=“old”)> 0.5 72 17

2 find the old patients that have high respiratory rate select patientid from patient where (age=“old”)> 0.5
and (respiratory rate=“high”)> 0.5

17 10

3 Find the patients that are probably affected by SARS virus select patientid from patient where (symptom=“D045473”)> 0.5 500 857

4 find the old patients that have high respiratory rate
and are probably affected by SARS virus

select patientid from patient where (age=“old”)> 0.5
and (respiratory rate=“high”)> 0.5 and (symptom=“D045473”)> 0.5

17 404

5 Find the patients that have Corona virus symptoms select patientid from patient where (symptom=“D017934”)> 0.5 500 655

6
Find the tired patients that have high respiratory
rate, dry cough, loss of taste, loss of smell, and are
probably affected by the Corona virus

select patientid from patient where (tiredness=“tired”)> 0.5
and (respiratory rate=”high”)> 0.5 and (dry cough=“yes”)> 0.5
and (loss of taste=“yes”)> 0.5 and (loss of smell=”yes”)> 0.5
and (symptom=“D017934”)> 0.5

72 441

0 Reference query to measure
network latency select patientid from patient 500 4

TABLE XII. COMPARISON OF MOST RELEVANT CHARACTERISTIC IN FUZZY QUERY SYSTEMS

Model
Medina

[17]
Bosc
[9]

Zemankova
[27]

Prade
[28]

Martinez
[29]

Umano
[30]

Kacprzky
[31]

Buckles
[32]

Our
proposal

Manage scalar data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Manage non-scalar data ✓ ✓ ✓ ✓ ✓ ✓

Similarity relationship ✓ ✓ ✓ ✓ ✓

Possibility distributions ✓ ✓ ✓ ✓ ✓ ✓ ✓

Degree in tuple level ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fuzzy modifiers ✓ ✓ ✓

Fuzzy quantifiers ✓ ✓ ✓

Fuzzy comparison operators ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fuzzy group by ✓ ✓

Fuzzy joins ✓ ✓ ✓ ✓ ✓

Nesting ✓ ✓ ✓

Store fuzzy data ✓ ✓ ✓ ✓ ✓

Fuzzy queries ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Extension SQL ✓ ✓ ✓ ✓ ✓ ✓

Portability ✓

TABLE XIII. COMPARISON OF MOST RELEVANT FEATURES IN RECENT
SEMANTIC QUERY SYSTEMS

Model Martinez [29] Our proposal
Query language ✓ ✓

Manage fuzziness ✓ ✓

Degree of similarity ✓ ✓

Enriched query ✓ ✓

semantic similarity measures 1 26
Ontology
MeSH ✓

SNOMED ✓

WordNet ✓

OBO file format ✓

Gene Ontology ✓

OWL file format ✓ ✓

RDF triples files ✓

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a flexible relational database
query system based on fuzzy logic and ontology that provides
a mechanism to perform flexible queries where the criteria are
not only exact but also can be fuzzy or semantic, and they
may also include an accomplishment degree. One of the main
goals of this proposal is to solve the fuzzy logic drawback of
handling non-scalar data. We have presented the architecture of
this novel system and a detailed description of all methods and
algorithms involved in the handling process of flexible queries.

As a proof of concept, the proposal has been tested on three
different databases and three ontologies with a quantitative
study on the behavior and efficiency of the system. We showed
that the execution time increases according to the number of
tuples, the query’s complexity, and the chosen ontology’s size.
In addition, we have addressed the strengths and drawbacks of
our system through a quantitative and qualitative comparison
of the most relevant features of flexible query systems in the
literature.

Finally, since this approach supports all ontology types and
provides a rich set of semantic similarity measures, it can be
used in many other fields such as geography, biology, health,
and genomics. Most importantly, this approach laid the basis
for implementing in an alternative database model a less rigid
query frame.

As forthcoming activities, we plan to enrich the flexibility
of our system by extending it to support bipolar queries
that can accommodate the users’ intentions and preferences
involving some sort of required and desired, mandatory and
optional, etc. conditions. Additionally, our goal is to exploit our
approach to develop a natural language interface for relational
databases. This interface will allow users to flexibly query
and manipulate databases using everyday language rather than
requiring them to use formal query languages like SQL.
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