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Abstract—Brain MRI imaging revolutionizes tumor diagnosis,
yet noise frequently obscures the images, complicating precise
tumor identification and segmentation. This paper presents a
comprehensive pipeline for brain MRI enhancement and tumor
segmentation. The proposed method integrates Wavelet Packet
Transform (WPT) and Linear Minimum Mean Square Error
(LMMSE) filtering for effective noise reduction, combined with
morphological operations for contrast enhancement. For segmen-
tation, Fast C-Means clustering is employed, with the number
of clusters automatically determined from histogram peaks. The
tumor cluster is selected based on the highest centroid intensity
and further refined by morphological operations to accurately
delineate tumor borders. The approach is evaluated on the BraTS
2021 dataset, subject to Rician, Gaussian, and salt-and-pepper
noise with intensities from 6% to 14%. Results demonstrate
superior noise suppression compared to Denoising Convolutional
Neural Networks (DnCNN) and Non-Local Means (NLM), main-
taining structural integrity with a Structural Similarity Index
(SSIM) of 0.43 for Rician noise at σ = 6%. Segmentation
performance remains stable, achieving Dice coefficients above
0.70, precision over 90%, and sensitivity between 75% to 81%,
despite challenges posed by higher levels of salt-and-pepper noise.
Tumor characteristics such as position and size correspond closely
to ground truth, validating the effectiveness of the system in
automating tumor delineation and providing reliable diagnostic
assistance in neuro-oncology.

Keywords—Magnetic Resonance Imaging (MRI); brain tumor
segmentation; image denoising; Wavelet Packet Transforms (WPT);
Linear Minimum Mean Square Error (LMMSE); fast c-means
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I. INTRODUCTION

The brain governs essential physiological and cognitive
functions, making its health critical to overall well-being. Brain
tumors pose a serious threat, potentially leading to severe
neurological impairments or death if not diagnosed and treated
in time. Magnetic Resonance Imaging (MRI) is a widely used,
noninvasive imaging technique that plays a central role in
detecting and evaluating brain tumors. However, MRI images
are often affected by noise, which can obscure important
details and hinder accurate diagnosis.

Advanced noise reduction techniques are essential to im-
prove MRI image clarity, enhancing the visibility of critical
anatomical structures and assisting physicians in making pre-
cise clinical decisions. This work aims to improve brain MRI
images by means of efficient noise reduction, image contrast
enhancement, tumor segmentation, so enabling correct tumor
segmentation.

Our approach integrates the wavelet packet transform
(WPT) for noise reduction with linear minimum mean square

error (LMMSE) filtering and morphological operations. The
WPT decomposes the MRI images into subbands, enabling
noise attenuation through shrinkage thresholding. The pro-
cessed output then serves as input for both LMMSE filtering
[1], which is effective in handling Rician noise common in
MRI, and morphological operators [2] that enhance image con-
trast and structural details. The fusion of these outputs yields
a noise-reduced, contrast-enhanced image without altering the
original pixel distribution, making it suitable for subsequent
segmentation or classification tasks.

For tumor segmentation, we apply the Fast C-means clus-
tering algorithm, well-known for computational efficiency and
better performance than conventional clustering techniques [3],
for tumor segmentation. This method divides image intensities
into logical clusters to precisely locate tumor areas. Morpho-
logical operations improve these segmented regions even more
to precisely define tumor limits [4].

Though segmentation techniques and noise reduction have
made great progress, integrating approaches that handle several
noise types while maintaining image features essential for
clinical interpretation remains difficult. Furthermore important
factors for pragmatic uses are still computational efficiency
and accuracy. This paper addresses these issues by suggesting
a combined system for noise reduction and tumor segmentation
catered to brain MRI images. This system helps to create
Computer-Aided Detection (CADe) technologies, which have
advanced quickly in recent years and improve diagnosis accu-
racy and patient outcomes by means of their support.

II. RELATED WORK

Brain MRI denoising and tumor segmentation have at-
tracted considerable research attention because of their critical
roles in accurate diagnosis and treatment planning. Conven-
tional noise reduction methods such as Gaussian, median,
and anisotropic diffusion filters have been applied widely.
However, these linear or nonlinear filters often lead to blurring
or loss of important anatomical details, negatively impacting
diagnostic accuracy. Advanced methods have thus been created
to overcome these constraints.

Wavelet transform-based methods have shown significant
advantages for MRI noise reduction due to their ability to de-
compose images into multi-scale subbands, allowing selective
attenuation of noise while preserving edges and fine details.
While traditional wavelet thresholding methods successfully
lower noise, in complex MRI data they may cause incomplete
noise suppression or ringing artefacts. The Wavelet Packet
Transform (WPT), a generalized form of wavelet decompo-
sition, provides more flexible frequency band partitioning,
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leading to better adaptability for MRI denoising tasks. Kinani
et al. [1] proposed a combined approach that integrates WPT
with the Linear Minimum Mean Square Error (LMMSE) filter
to specifically address the Rician noise model in MRI. Their
method demonstrated superior noise suppression and detail
preservation compared to classical denoising filters.

In addition to noise reduction, enhancing the contrast and
structural visibility of brain MRI is crucial for subsequent
tumor detection and segmentation. Morphological operations
have been successfully employed in this context to refine image
features and remove residual noise artifacts. Hytch et al. [2]
illustrated the use of morphological filters to improve local
contrast without altering the overall pixel intensity distribution,
thus preserving diagnostically relevant information.

Tumor segmentation is another challenging problem due to
the heterogeneous shape, size, and intensity of brain tumors.
Clustering-based algorithms, including K-means and Fuzzy C-
means, are commonly applied for their ability to partition
image pixels into distinct classes based on intensity or tex-
ture features. Classical clustering techniques, however, can be
sensitive to initial conditions and have high computational cost,
so restricting their useful value. Nawaz et al. [3] introduced
the Fast C-means clustering algorithm, which reduces compu-
tation time and enhances segmentation accuracy by efficiently
grouping data points. Their results confirm that Fast C-means
outperforms traditional clustering in medical image segmenta-
tion, making it well-suited for tumor delineation tasks.

Further refinement of segmentation boundaries using mor-
phological processing is essential to eliminate noise, fill gaps,
and define tumor edges more precisely. D. S. et al. [4] applied
morphological operations after clustering to improve tumor
segmentation outcomes, yielding clearer and more accurate
tumor borders.

Despite these advancements, current approaches face chal-
lenges in effectively balancing noise reduction, contrast en-
hancement, and segmentation accuracy within a unified frame-
work. Many current techniques either separately reduce noise
or enhance contrast, which can produce less than ideal out-
comes or change pixel intensity distribution. Furthermore,
the computational complexity of multi-stage procedures could
make their implementation difficult in clinical environments
where near real-time or real-time results are sought for.

Our work addresses these limitations by proposing a novel
fusion strategy that integrates WPT-based noise reduction,
LMMSE filtering, and morphological contrast enhancement
to generate a quality-enhanced MRI image. After that, mor-
phological refinement and Fast C-means clustering help to
segment this image. The fusion method guarantees efficient
noise suppression and contrast enhancement without distortion
of the pixel intensity distribution, so enabling more accurate
and dependable tumor segmentation. This integrated system
contributes to the ongoing development of Computer-Aided
Detection (CADe) systems, which are increasingly critical for
early diagnosis and treatment of brain tumors.

III. METHODOLOGY

A. Summary Background Theories

1) Wavelet packet decomposition: The wavelet transform is
a mathematical method that decomposes spatial (or temporal)
data into spatial (temporal)-frequency domain components,
allowing dominant frequency modes to be identified and their
variations over space. The wavelet transform has been exten-
sively utilized in a variety of disciplines, such as engineering,
computer science, science, etc. due to its efficacy [5]. The
discrete wavelet transform (DWT) stands out as a particular
example.

During the DWT decomposition process, a signal is succes-
sively divided into multiple components, each represented by a
set of coefficients that delineate the temporal progression of the
data within a certain frequency bandwidth . The DWT utilizes
two filters: a high-pass filter, based on the wavelet function, to
produce detail components (coefficients) containing high fre-
quencies, and a low-pass filter, based on the scaling function,
to produce approximation components (coefficients) containing
low frequencies. The quantity of breakdown stages, referred
to as levels, aligns with particular scales that are inversely
proportional to frequency. Since each level uses two filters, the
approximate and detailed coefficients must be dyadic down-
sampled so that the total length of these coefficients is equal
to the length of the input signal. From level two and above,
the above process is repeated with input being the approximate
coefficient at the previous level.

Wavelet packet decomposition (WPD) enhances the func-
tionality of discrete wavelet transform (DWT) by implement-
ing the filtering procedure on both approximation and detail
components at every level. This methodology enables WPD to
deliver a more comprehensive depiction of the signal within
tighter frequency bands, especially at elevated frequencies, in
contrast to conventional DWT [6].

Fig. 1. The Processes for wavelet packet decomposition steps of 1D signal at
2 levels.

Wavelet packet reconstruction refers to the recovery of
data that has undergone decomposition using wavelet packet
decomposition (WPD). This entails upsampling the coefficients
by interspersing zeros and utilizing them as inputs for re-
construction via low-pass and high-pass filters. The results
are subsequently aggregated to reconstruct the original data
structure. Fig. 1 depicts the wavelet packet decomposition and
reconstruction procedure at level 2 [5].

2) Linear minimum mean square error estimator: The
Linear Minimum Mean Square Error (LMMSE) estimator
seeks to derive the closed-form representation of a signal that
adheres to the Rician distribution [7]. Let q represent a scalar
parameter derived from a dataset x in the following manner:
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θ̂ =

N−1∑
n=0

anx[n] + aN (1)

the weight coefficients an are calculated by minimizing
Bayesian MSE such that nonzero means of x and θ:

Bmse(θ̂) = E
[
(θ − θ̂)2

]
(2)

where, the expectation is calculated according to the PDF
p(x,q).

Substitute (1) into (2) and set the differential of (2) with
respect to aN to zero to determine aN and substitute aN into
Bmse(θ̂); then, minimize this expression to obtain the LMMSE
estimator [7]:

θ̂ = E(θ) +CθxC
−1
xx (x− E(x)) (3)

where, Cxx is the N ×N covariance matrix of x, and Cθx

is the 1 × N cross-covariance vector. With a 2D signal with
Rician distribution, (3) rewrite in the form [8]:

Â2
ij = E{A2

ij}+CA2
ij
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ij
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ij
M2

ij

(M2
ij − E{M2

ij}) (4)

where, Aij is an unknown pixel intensity value at (i, j),
Mij is the brightness magnitude of the signal. By simplifying
the estimation at each location, the vectors and matrices reduce
to scalar values, and the estimator is expressed as:
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Under the assumption of local ergodicity, the expectation
can be substituted with the sample estimate < . >; following
some algebraic manipulations, the estimator is expressed as:

Â2
ij = ⟨M2

ij⟩ − 2σ2
n +Kij(M

2
ij − ⟨M2

ij⟩) (6)

where, Kij is defined as:

Kij = 1−
4σ2

n(⟨M2
ij⟩ − σ2

n)

⟨M4
ij⟩ − ⟨M2

ij⟩2
(7)

with ηi,j a square neighborhood around pixel [8].

B. Fast C-Means Clustering

Tumor segmentation is a critical phase in MRI image
processing, with numerous approaches developed, the most
prevalent being fuzzy clustering, recognized for its capacity
to maintain the details of the original image [9]. Nonetheless,
conventional fuzzy C-means is inefficient due to the necessity
of computing the distance between each pixel and the cluster
centers to minimize the objective function. Consequently,
numerous enhanced techniques have been suggested that sub-
stitute pixel values with histogram gray levels to expedite
computation. The enhanced C-means algorithm, founded on
morphological reconstruction and membership filtering (FR-
FCM), was proposed by Tao-Lei et al. [10].

The objective function is defined as:

Sα =

r∑
n=1

d∑
m=1

λnw
α
mn∥ζn − cm∥2, (8)

Consider that wmn indicates the degree of association for
intensity level n concerning the mth cluster centroid cm, while
α serves as the weighting coefficient. Then, we have:

r∑
n=1

λn = M, (9)

where, ζ represents an image reconstructed through mor-
phological processing, and ζn corresponds to a specific inten-
sity level, with 1 ≤ n ≤ r. The parameter r signifies the count
of intensity levels in ζ, which is typically much smaller than
M . The reconstructed image ζ is obtained as:

ζ = TB(g), (10)

where, TB refers to the morphological reconstruction using
a closing transformation, and g denotes the original image.
Minimize (8) to obtain:

wmn =
∥ζn − cm∥−2/(α−1)∑d
t=1 ∥ζn − ct∥−2/(α−1)

, (11)

and

cm =

∑d
n=1 γnw

α
mnζn∑d

n=1 γnw
α
mn

. (12)

If we assign W = [wmn]
d×r is membership partition

matrix; wnt) and cm are calculated using the iterative method
until W stabilizes:

max{W (τ)−W (τ + 1)} < ϵ (13)

where, ϵ is minimal error threshold. At that time, the new
membership matrix W ′ = [wmn]

d×M corresponding to the
original image g:
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wmn = w(τ)
mn, if yn = ζm (14)

To enhance the membership partition matrix and accelerate
convergence through membership filtering:

W ′′ = medW ′ (15)

where, med represents median filtering

Fast C-Means is more appropriate for medical imaging
applications due to its reduced computational cost and faster
convergence compared to conventional FCM.

C. Morphological Contrast Enhancement

Morphological operations process the shape and structure
of objects in images based on structural elements (SE), which
can be considered as filters. There are four basic operations:
dilation, erosion, opening (denoted as o), and closing (denoted
as •). Opening removes noise or small objects (relative to the
SE size), while closing fills small holes and gaps in objects.
The top-hat transform, defined as the difference between the
image and the opening operation, is used to highlight bright
objects (smaller than the SE) against a dark background. The
bottom-hat transform, defined as the difference between the
closing operation and the image, is used to highlight dark
objects against a bright background. Combining these two
transformations with the noise-reduced image produces an
image with high contrast without pixel redistribution, thus
preserving the accurate position of objects when detected [11].

The Tophat transform is defined as:

T (i, j) = P (i, j)− (P ◦ S)(i, j) (16)

The Bottomhat transform is given by:

B(i, j) = (P • S)(i, j)− P (i, j) (17)

where, T (i, j) and B(i, j) represent the top-hat and
bottom-hat transforms, respectively; P (i, j) denotes the noise-
reduced image; S is the structuring element; (P ◦S) refers to
the morphological opening operation, and (P • S) represents
the closing operation.

For image contrast enhancement, the final transformed
image is computed as:

M(i, j) = (P (i, j) + T (i, j))−B(i, j) (18)

where, M(i, j) is the enhanced image obtained by incorpo-
rating both top-hat and bottom-hat transformations to improve
contrast.

D. Performance Evaluation

The enhancement algorithm aims to augment image quality,
guaranteeing that the processed image is more appropriate
than the original for further applications or analysis. Although
visual inspection provides a subjective assessment of improve-
ment, it is fundamentally constrained and fails to deliver an
accurate or thorough analysis of the algorithm’s performance.
Therefore, the study used four primary metrics to assess
algorithm performance:

1) The Mean Squared Error (MSE): quantifies the average
squared deviations between the pixel intensities of the original
and enhanced images, functioning as a direct metric for error
assessment, If the enhanced and original images match, the
MSE should be zero:

MSE =
1

MN

M∑
i=1

N∑
j=1

[I1(i, j)− I2(i, j)]
2 (19)

where, M and N are the dimensions of the images,
I1(i, j) and I2(i, j) are the pixel intensities of the original
and processed images.

2) Peak Signal-to-Noise Ratio (PSNR): However, when
using MSE, an outlier also affects the value, and is highly
dependent on the image intensity scale. Therefore, the Peak
Signal-to-Noise Ratio (PSNR), the ratio between the maximum
power of the original image and the enhanced image in
decibels (logarithmic scale), is used to address this deficiency.
The enhanced images is better when PSNR is larger:

PSNR = 10 · log10
(

L2

MSE

)
(20)

where, L is the maximum pixel intensity value (e.g. 255
for 8-bit images), MSE is the Mean Squared Error.

3) Similarity Index Measure (SSIM): assesses the similarity
of original and enhanced image by analyzing brightness,
contrast, and structure, providing a perceptually significant
evaluation. Its value should be large for better results:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(21)

where, µx and µy are the mean intensities of images x
and y, σ2

x and σ2
y are the variances of x and y, σxy is the

covariance between x and y, C1 and C2 are small constants
to stabilize the division.

4) Structure Content (SC): is the ratio of the sum of
squares of the original image pixels to the sum of squares
of the enhanced image pixels. The best value of SC is equal
to 1 but higher value specifies poor the quality:

SC =

K∑
k=1

log

(
max (Ik) + ϵ

min (Ik) + ϵ

)
(22)

where, K is the number of image blocks, Ik is the intensity
of the k-th block, ϵ is a small constant to avoid division by
zero.
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IV. PROPOSED METHOD

The proposed method is divided into two main stages:
image quality enhancement and tumor segmentation for Brain
MRI.

1) Image quality enhancement: This stage consists of two
steps: 1) Denoising: The input MRI images are denoised using
wavelet shrinkage in the wavelet domain based on Wavelet
Packet Transform (WPT), which decomposes the image into
higher-resolution frequency components. Thresholding is ap-
plied to the detailed components (high-frequency bands that
typically contain noise) to suppress noise, followed by an
inverse transformation to return the image to the spatial
domain. 2) Fine Noise Reduction and Contrast Enhancement:
This step includes two parallel processes: a second-stage noise
suppression using the Linear Minimum Mean Square Error
(LMMSE) filter, and contrast enhancement via morphological
transforms. The outputs of these processes are then fused using
wavelet fusion to combine the strengths of each approach (see
Fig. 2).

2) Tumor segmentation: The enhanced images are seg-
mented using the Fast C-means algorithm. The number of
clusters is set to the number of main peaks in the intensity
histogram. The tumor is assumed to belong to the cluster with
the maximum centroid value. Tumor regions are identified
through thresholding and refined using morphological post-
processing operations (see Fig. 3).

The following subsections detail each step of the proposed
method.

A. Image Enhancement

Image enhancement is performed according to the diagram
in Fig. 2.

1) Coarse noise reduction: In this study, we introduce a
multi-stage approach aimed at diminishing different types of
noise – particularly Gaussian noise - in MRI images, as demon-
strated in Fig. 2. The process begins by applying the Wavelet
Packet Transform (WPT) to the noisy image, decomposing it
into multiple subbands. Noise reduction is performed using
shrinkage threshold on the leaf details components except
for the first component. Subsequently, the denoised image is
reconstructed using inverse WPT. In this paper, the symlet2
function at level 2 is used, as these are nearly symmetrical
wavelets, a modification of the Daubechie function, making
them suitable for noise reduction.

2) Fine noise reduction and contrast enhancement: Sub-
sequent two concurrent processing methods are employed:
Morphological contrast enhancement is used to increase con-
trast and highlight obscured details. In this paper, a disc-
shaped structuring element with a radius of 5 is utilized. The
LMMSE filter mitigates Rician noise through the estimation
of pixel values derived from local statistical characteristics,
effectively minimizing variance while preserving data integrity.
This article uses code: LMMSE filter for Rician MRI data
written by Santiago Aja-Fernandez (2025). [12]

The results from these two processes are subsequently
fused through Wavelet Fusion, which integrates the advantages
of noise reduction and contrast enhancement to create image
enhancement suitable for subsequent analysis steps.

Fig. 2. Noise reduction flow chart.

B. Tumor Detection

Image enhancement is used for brain tumor detection using
Fast C-Means Clustering with the number of clusters selected
from the main peaks on the smoothed histogram using the
empirical mode decomposition, and the cluster containing the
tumor is chosen to correspond to the maximum value of
the centroid. Morphological operations such as hole filling,
opening, and closing are used to smooth the detected tumor,
and regions are used to identify certain characteristics of the
tumor. Fig. 3 shows the steps in the segmentation and tumor
detection stage. This article uses Fast fuzzy C-means clustering
code by Tao-Lei [10]

Fig. 3. Tumor detection flow chart.

C. Dataset and Equipments

This study utilizes the BraTS (Brain Tumor Segmentation)
dataset [13], [14], [15], a widely used benchmark for MRI-
based brain tumor analysis. The dataset includes multimodal
MRI scans (NIFTI (.nii.gz) files), consisting of T1, T1 with
contrast enhancement (T1c), T2, and FLAIR sequences. These
images are annotated by specialists to delineate key brain
tumor subregions: enhancing tumor (ET), tumor core (TC),
and peritumoral edema (ED). These segmentations serve as
ground truth for evaluating automated segmentation methods.
The dataset has been extensively used in research on brain
tumor segmentation and classification [16], [17], [18].

The Matlab and Python environment was used for the
calculations, and a laptop with Intel Core i.9 CPU, 36GB
RAM, and Windows 11 was used for all experiments.

V. EXPERIMENTAL RESULT

This section delineates the outcomes of image enhance-
ment, encompassing denoising and contrast enhancement as
well as imge segmentation. MRI scan from the BraTS dataset
was corrupted to Rician, Gaussian and Salt and Pepper noises
at levels of 6%, 8%, 10%, 12%, and 14% to perform image en-
hancement. The image enhancement process remains uniform
across various noise levels; therefore, only results for images
at a designated noise level (12%) are visually depicted in the
figures, while quantitative assessments for all noise levels are
compiled in tables utilizing standard metrics.

A. Image Enhancement

1) Quality analysis:
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a) Image enhancement for rician noise: Fig. 4 illus-
trates the denoising outcomes for an MRI scan from the
BraTS dataset with 12% Rician noise, utilizing the suggested
approach and comparison with Denoising Convolutional Neu-
ral Network (DnCNN) and Non-Local Means (NLM). Fig.
4a depicts the original MRI image, which acts as a ref-
erence, highlighting distinct structural characteristics crucial
for assessing the efficacy of different denoising methods.
Fig. 4b illustrates the noisy image, whereby Rician noise
considerably obscures tiny details, especially in low-contrast
areas, complicating structural interpretation. The outcome of
the suggested approach is illustrated in Fig. 4c, showcasing
an optimal equilibrium between noise reduction and structural
integrity. The image exhibits a little smoother appearance
than the original while preserving essential structural elements
and texture with minimum distortion. The intensity gradients,
especially at the interfaces between brain regions, remain well
delineated without the introduction of artifacts. Fig. 4d illus-
trates the outcome of the NLM approach, which successfully
diminishes noise but encounters difficulties in restoring intri-
cate features. Although high-intensity areas are comparatively
well-preserved, the pronounced smoothing effect results in
the loss of mid-range structural details, causing significant
blurriness in essential brain regions. Fig. 4e, illustrates the
results of the DnCNN approach, which demonstrates enhanced
noise reduction relative to NLM, resulting in a more pristine
appearance. This approach, however, creates modest aberra-
tions that manifest as unnatural patterns in regions with abrupt
intensity shifts, thus undermining the clinical applicability of
the augmented image.

b) Image enhancement for Gaussian noise: In addition
to Rician noise, we also evaluate the denoising performance
under Gaussian noise with 12% corruption. Fig. 5 presents
the denoising results for MRI images affected by Gaussian
noise using different methods. Fig. 5a the original image
serves as a reference. Fig. 5b shows the noisy image that
exhibits substantial structural degradation. Fig. 5c shows the
outcome of the proposed method. which effectively balances
noise removal and structural preservation. Fig. 5d shows the
result of NLM method, which reduces noise but blurs fine
details. Fig. 5e shows the result of DnCNN, which provides
better noise suppression but introduces subtle artifacts; some
blurriness remains.

c) Image enhancement for salt and pepper noise: Fig.
6 presents the results of image quality enhancement for an
image contaminated with 12% Salt and Pepper noise. Fig. 6a
shows the original image, while Fig. 6b displays the noise-
contaminated image. Fig. 6c shows the image enhancement
using our proposed approach, which preserves the brain’s
intricacies in close proximity to the original image. Fig. 6d
shows the results of the NLM method, which effectively
smooths the image but obscures certain small details. Fig. 6e
displays the results of the DnCNN method, which retains some
graininess.

These results demonstrate that our proposed approach
maintains essential elements in the image. These visual ob-
servations align with the quantitative performance metrics
discussed in the next section.

2) Quantitative analysis: To assess the denoising effective-
ness of the proposed method and other methods across diverse

noise types with different densities from 4, 6, 8, 10, 12 and
14%; the performance quality metrics such as MSE, PSNR,
SSIM, and SC are used.

a) Rician noise: Table I presents the quantitative metric
values for image enhancement calculated from images contam-
inated with Rician noise at five different noise densities. Except
for the SC value, the proposed method demonstrates superior
values in MSE, PSNR, and SSIM compared to the other two
methods. With low noise density, σ = 6%, the MSE of the
proposed approach was 88.01, in contrast to DnCNN (279.53)
and NLM (287.72). The PSNR of the proposed approach
attained 28.69 dB, significantly above DnCNN (23.67 dB) and
NLM (23.54 dB). The small MSE value and large PSNR value
of the proposed approach exhibited remarkable noise reduction
capabilities and greater efficacy in image quality restoration.
The proposed method attained an SSIM of 0.43, significantly
surpassing DnCNN (0.28) and NLM (0.26). The high SSIM
value indicates that the perceived image enhancement of the
proposed approach is better than the results of the other two
methods. With an SC value of 1.19 for the proposed approach
and 0.92 for both DnCNN and NLM, the enhanced image
from the proposed approach is slightly inferior in information
architecture compared to the other two methods; however, the
difference is not substantial and does not affect subsequent
analyses. For the remaining threshold levels of 8, 10, 12, and
14% (from cell 2 to cell 5, Table I), the quality assessment
results are consistent with the results at the 6% threshold level.
Therefore, the quality assessment values in Table I demonstrate
that the noise reduction and contrast enhancement capabilities
of the proposed method yield better results than the DnCNN
and NLM methods when applied to images with Rician noise;
consequently, the proposed method is suitable for enhancing
the quality of MR images.

b) Gaussian noise: Table II presents the quantitative
metric values for image enhancement calculated from images
contaminated with Gaussian noise at five different noise den-
sities. Except for the SSIM value, the DnCNN method demon-
strates superior values in MSE, PSNR, and SC metrics, with
the NLM method ranking second and the proposed method
ranking third; however, the values of these indices do not
differ significantly between the methods. Notably, the SSIM
value of the proposed method is the highest and considerably
different from the other two methods. From these results, with
Gaussian noise, the noise reduction and structural integrity
capabilities of the DnCNN method are the highest but not
significantly different from the proposed method. Regarding
perceptual image quality, the results of the proposed method
are the best, as demonstrated by the highest SSIM values across
different noise levels and through the visualization shown in
Fig. 5.

c) Salt and Pepper noise: Table III presents the quan-
titative metric values for image enhancement calculated from
images contaminated with salt and pepper noise at five dif-
ferent noise densities. The MSE and PSNR values show that
the noise reduction capability of the DnCNN method is best
for the 6% noise level. In contrast, from 8-14% noise levels,
the NLM method performs best, with the proposed method
ranking second for all threshold levels examined. Regarding
the perceptual quality of image enhancement through SSIM
values, the NLM method is best at 6-9% noise levels, while
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Fig. 4. Enhancement image of 12% Rician noise. a): Original image, b): Noisy image, c): Image enhancement of the proposed approach, d): Image
enhancement with NLM method, and e): Image enhancement with DnCNN method.

Fig. 5. Enhancement image of 12% Gaussian noise. a): Original image, b): Noisy image, c): Image enhancement of the proposed approach, d): Image
enhancement with NLM method, and e): Image enhancement with DnCNN method.

Fig. 6. Enhancement image of 12% Salt & Pepper noise. a): Original image, b): Noisy image, c): Image enhancement of the proposed approach, d): Image
enhancement with NLM method, and e): Image enhancement with DnCNN method.

at 10-14% noise levels, the proposed method is superior. For
information preservation capability, as indicated by SC values,
the proposed approach is best at 6-8% noise levels, and the
NLM method is best at 10-14% noise levels.

The positive outcomes in performance indexes suggest that
the proposed approach is effective in noise reduction and
preserves crucial structural details of brain MR images, making
it suitable for the initial processing stage of a CADe system.

3) Kernel Density Estimate (KDE) analysis: KDE is prob-
ability density estimate smoothed by kernel function. In order
to further investigate the image enhancement performance, the
KDE of MR images before and after enhancement is analyzed.
Fig. 7 shows the KDE of the original image, the image
contaminated with Rician noise σ = 12%, and the enhanced
images. Fig. 7a shows the pixel intensity distribution of the
original image exhibits a first mode with a sharp peak and a
second mode, which reflects the inherent structure of the brain

MRI including background and tumor. The Rician noisy image
shown in Fig. 7b has a broadened intensity distribution, which
is characterized by a flattened peak and an extended tail that
does not reveal the mode containing the tumor. This distortion
indicates a significant loss of structural information caused
by the addition of noise, which complicates the extraction
of sensible features from the image. The KDE plot of the
proposed approach, which is displayed in Fig. 7e, is very
similar to the original intensity distribution, demonstrating that
image enhancement of the proposed approach restores the
original image almost intact, showing high performance of the
method. In the KDE from DnCNN in Fig. 7c and NLM in Fig.
7d, distinct differences in their performance are observed. Both
recover the mode representing the tumor, but they stretch the
first mode causing the background to blur, resulting in lower
contrast between the background and the tumor.

In conclusion, the KDE plots indicate that the proposed
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(a) (b) (c) (d) (e)

Fig. 7. KDE plot for one MRI image in the dataset. a): Original image, b): Noisy image, c): Image enhancement of the proposed approach, d): Image
enhancement with NLM method, and e): Image enhancement with DnCNN method.

TABLE I. QUANTITATIVE METRICS FOR DIFFERENT METHODS WITH
RICIAN NOISE AT DIFFERENT NOISE LEVELS

Quantitative metrics
σ = 6%

Methods MSE PSNR SSIM SC
Noisy 396.16 22.15 0.20 0.89
DnCNN 279.53 23.67 0.28 0.92
NLM 287.72 23.54 0.26 0.92
Proposed Method 88.01 28.69 0.43 1.19

σ = 8%

Methods MSE PSNR SSIM SC
Noisy 703.41 19.66 0.16 0.82
DnCNN 490.20 21.23 0.26 0.87
NLM 498.18 21.16 0.24 0.87
Proposed Method 125.34 27.15 0.34 1.24

σ = 10%

Methods MSE PSNR SSIM SC
Noisy 1097.01 17.73 0.13 0.74
DnCNN 757.90 19.33 0.24 0.80
NLM 767.29 19.28 0.22 0.81
Proposed Method 167.97 25.88 0.29 1.30

σ = 12%

Methods MSE PSNR SSIM SC
Noisy 1576.86 16.15 0.11 0.66
DnCNN 1085.96 17.77 0.23 0.74
NLM 1096.50 17.73 0.20 0.75
Proposed Method 214.69 24.81 0.25 1.35

σ = 14%

Methods MSE PSNR SSIM SC
Noisy 2142.38 14.82 0.09 0.59
DnCNN 1474.42 16.44 0.21 0.67
NLM 1486.76 16.41 0.19 0.69
Proposed Method 266.00 23.88 0.23 1.39

approach effectively balances noise reduction and structural
integrity preservation, as reflected in its intensity distribution
closely matching that of the original image. Therefore, im-
age enhancement is well-suited for segmentation and feature
extraction.

4) Segmentation: Segmentation results for a sample MRI
slice from the BraTS dataset are presented in Fig. 8. The figure
displays the original image alongside the ground truth tumor
mask, followed by the segmented tumors obtained from image
enhancement under 12% noise levels of Rician, Gaussian, and
Salt and Pepper noise. The results indicate that the segmented
tumors closely align with the ground truth, particularly for im-
ages enhanced under Gaussian noise, followed by Rician noise,
and lastly, Salt and Pepper noise. However, this observation is
based on visual inspection.

For quantitative evaluation, five metrics: accuracy, dice co-
efficient, precision, sensitivity, and specificity—were computed

TABLE II. QUANTITATIVE METRICS FOR DIFFERENT METHODS WITH
GAUSSIAN NOISE AT DIFFERENT NOISE LEVELS

Quantitative metrics
σ = 6%

Methods MSE PSNR SSIM SC
Noisy 151.75 26.32 0.26 0.96
DnCNN 47.75 31.34 0.37 1.00
NLM 62.83 30.15 0.36 0.99
Proposed Method 86.02 28.78 0.55 1.18

σ = 8%

Methods MSE PSNR SSIM SC
Noisy 268.89 23.84 0.20 0.93
DnCNN 76.31 29.30 0.32 0.99
NLM 94.97 28.35 0.30 0.98
Proposed Method 110.25 27.71 0.53 1.24

σ = 10%

Methods MSE PSNR SSIM SC
Noisy 417.99 21.92 0.16 0.90
DnCNN 109.96 27.72 0.29 0.99
NLM 130.02 26.99 0.26 0.98
Proposed Method 138.51 26.72 0.51 1.30

σ = 12%

Methods MSE PSNR SSIM SC
Noisy 598.99 20.36 0.13 0.86
DnCNN 149.88 26.37 0.27 0.98
NLM 169.65 25.84 0.24 0.98
Proposed Method 170.58 25.81 0.50 1.37

σ = 14%

Methods MSE PSNR SSIM SC
Noisy 809.69 19.05 0.11 0.82
DnCNN 195.81 25.21 0.25 0.97
NLM 213.33 24.84 0.22 0.98
Proposed Method 206.88 24.97 0.49 1.45

by comparing the ground truth tumor mask with the detected
tumor regions from the enhanced images. These enhanced
images were derived from noisy versions of the original MRI
slices at varying noise levels, and the results are summarized
in Table IV. Since MR images contain tumors that occupy
a much smaller area compared to the background, the true
negative (TN) value is significantly higher than other evalu-
ation measures. As a result, accuracy and specificity values
are close to 1, making them less informative for performance
assessment. Therefore, the ”precision–sensitivity” pair and the
Dice coefficient are used as primary evaluation metrics.

The values in Table IV demonstrate stable tumor seg-
mentation performance across different noise levels. The dice
coefficient exhibits a modest rise with elevated noise levels,
varying from 0.774 to 0.780 for Gaussian noise and from 0.768
to 0.777 for Rician noise. The dice coefficient diminishes for
Salt and Pepper noise from 0.775 to 0.705 with increasing
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(a) (b) (c) (d) (e)

Fig. 8. Segmentation results after denoising for a BraTS 2021 MRI slice. a) Original image, b) Ground truth tumor mask, c) Segmented tumor after denoising
12% Rician noise, d) Segmented tumor after denoising 12% Gaussian noise, e) Segmented tumor after denoising 12% salt-and-pepper noise.

TABLE III. QUANTITATIVE METRICS FOR DIFFERENT METHODS WITH
SALT AND PEPPER NOISE AT DIFFERENT NOISE LEVELS

Quantitative metrics
σ = 6%

Methods MSE PSNR SSIM SC
Noisy 1703.67 15.82 0.25 0.68
DnCNN 680.59 19.80 0.28 0.85
NLM 771.79 19.26 0.38 0.84
Proposed Method 684.41 19.78 0.23 0.96

σ = 8%

Methods MSE PSNR SSIM SC
Noisy 2273.34 14.56 0.18 0.61
DnCNN 737.38 19.45 0.24 0.84
NLM 618.40 20.22 0.31 0.89
Proposed Method 685.96 19.77 0.21 1.02

σ = 10%

Methods MSE PSNR SSIM SC
Noisy 2838.37 13.60 0.13 0.56
DnCNN 778.26 19.22 0.21 0.83
NLM 479.99 21.32 0.25 0.92
Proposed Method 573.57 20.54 0.21 1.16

σ = 12%

Methods MSE PSNR SSIM SC
Noisy 3405.04 12.81 0.10 0.51
DnCNN 811.97 19.04 0.20 0.83
NLM 403.58 22.07 0.21 0.95
Proposed Method 431.69 21.78 0.27 1.42

σ = 14%

Methods MSE PSNR SSIM SC
Noisy 3980.13 12.13 0.08 0.48
DnCNN 852.41 18.82 0.19 0.82
NLM 392.01 22.20 0.19 0.96
Proposed Method 471.26 21.40 0.31 1.64

noise levels. Notwithstanding these fluctuations, the values are
generally above 70%, signifying a robust concordance between
the identified tumors and the ground truth across all noise
categories. Optimal tumor segmentation outcomes are attained
for images influenced by Gaussian noise, succeeded by Rician
noise, and subsequently, Salt and Pepper noise, as indicated
by the elevated precision values, which consistently exceed
90%. Sensitivity values, on the other hand, are highest for salt-
and-pepper noise, followed by Gaussian noise, and lowest for
Rician noise. Nevertheless, sensitivity remains stable within
the range of 75–81%, suggesting that the differences in tumor
detectability are minimal.

In Table V, the tumor properties of Fig. 8b, c, d and e.

TABLE IV. SEGMENTATION PERFORMANCE METRICS ACROSS NOISE
TYPES AND LEVELS

Noise Type Level Accuracy Specificity Precision Sensitivity Dice

Gaussian

6 0.987 0.999 0.976 0.783 0.780
8 0.987 0.999 0.975 0.783 0.774
10 0.987 0.999 0.974 0.785 0.775
12 0.987 0.999 0.971 0.785 0.780
14 0.987 0.999 0.973 0.785 0.780

Rician

6 0.986 0.999 0.972 0.780 0.768
8 0.986 0.999 0.969 0.783 0.771
10 0.986 0.999 0.964 0.794 0.776
12 0.986 0.999 0.963 0.794 0.777
14 0.987 0.999 0.957 0.796 0.775

Salt-Pepper

6 0.986 0.999 0.963 0.804 0.775
8 0.985 0.999 0.950 0.809 0.750
10 0.984 0.999 0.938 0.794 0.750
12 0.984 0.999 0.946 0.762 0.729
14 0.984 0.999 0.950 0.750 0.705

Compared to the ground truth (X: 100.52, Y: 82.04, Radius:
24.64), the tumor’s location and morphology are accurately
maintained. Under Gaussian noise, there is minor under-
segmentation (X: 99.16, Y: 76.81, Radius: 21.94), although
the tumor remains discernible. Rician noise exhibits optimal
alignment (X: 99.36, Y: 76.77, Radius: 22.12) with negligible
variation. Conversely, Salt-Pepper noise induces uneven bor-
ders (X: 99.81, Y: 77.63, Radius: 22.97), although the tumor
structure remains intact. These results underscore the efficacy
of the segmentation method in maintaining tumor shape despite
distortions caused by noise.

TABLE V. REGION PROPERTIES ACROSS NOISE TYPES AND LEVELS

Noise Type - Level X Y Radius Perimeter Area
Ground Truth 100.52 82.04 24.64 204.37 1908.0
Gaussian 99.16 76.81 21.94 229.86 1512.0
Rician 99.36 76.77 22.12 213.10 1537.0
Salt-Pepper 99.81 77.63 22.97 243.97 1657.0

VI. DISCUSSION

This study introduces a novel enhancement pipeline for
brain MRI images that addresses both noise reduction and
contrast limitations. Selected for its ability to capture de-
tailed information across all frequency bands and provide
better resolution than conventional DWT or SWT techniques,
the wavelet packet decomposition (WPD) transform—paired
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with the Symlet (“sym2”) wavelet—helps preserve impor-
tant anatomical structures while reducing Gaussian noise via
shrinkage-based denoising.

However, this approach is not without its limitations. First,
while shrinkage at WPD level two is effective against Gaussian
noise, it is less robust against non-Gaussian artifacts, particu-
larly Rician noise, which is common in MRI. We address this
through LMMSE filtering, but the effectiveness of this parallel
processing may degrade under very high noise levels or motion
artifacts. Second, our contrast enhancement avoids histogram-
based distortion by employing morphological operations, yet
this technique may underperform in images with extremely low
dynamic range or in scans from lower-resolution equipment.

For segmentation, we apply the Tao-Lei variant of the Fast
C-means algorithm [10], enhanced by EMD-based adaptive
clustering. While this approach improves cluster selection and
localization, it depends heavily on the quality of the empirical
mode decomposition. Inconsistent IMF extraction, especially
in noisy or poorly-contrasted images, can affect the reliability
of cluster count estimation and consequently segmentation
accuracy.

Another limitation lies in the need for manual parameter
tuning for wavelet levels, LMMSE window sizes, and morpho-
logical structuring elements. This may reduce scalability across
datasets unless an adaptive or learning-based optimization
strategy is employed.

Performance validation using visual inspection, quality
measures, and KDE plots indicates enhancements compared to
baseline approaches like DnCNN and NLM. Nevertheless, our
approach currently focuses on 2D axial slices. Extending the
framework to handle 3D volumes or dynamic MRI sequences
remains a direction for future work.

Notwithstanding these limitations, the synergy of our en-
hancement and segmentation pipeline provides a promising,
integrated preprocessing solution for MRI-based diagnostics.
Subsequent research will investigate automated parameter opti-
mization, comprehensive integration with learning-based post-
processors, and applicability to various MRI modalities and
diseases.

VII. CONCLUSION

In this study, we proposed a new approach for enhancing
and segmenting brain MRI images, aiming to improve noise
reduction and tumor detection in a clinical context. By com-
bining wavelet packet transform (WPT) denoising, LMMSE
filtering, and morphological contrast enhancement—followed
by a wavelet-based fusion step—we were able to produce
clearer images that retain important anatomical details.

For segmentation, we applied a variant of the C-means
clustering algorithm. To improve automation and reliability,
the number of clusters was determined using a smoothed
histogram, and the tumor region was identified based on the
highest intensity centroid. This helped streamline the process
of tumor extraction and showed good alignment with ground
truth in both visual and quantitative evaluations.

Despite these promising results, some challenges remain.
The enhancement and segmentation processes are currently

separate, which may limit their synergy. In future work, we
plan to develop a more integrated framework by refining
the fusion of enhancement and segmentation steps within
our current model-driven approach. Additionally, we will ex-
plore automated parameter tuning to improve robustness and
scalability. Finally, we intend to validate the method across
diverse MRI datasets, including different scanner types and
pathological conditions, to ensure broader applicability and
clinical relevance.
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