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Abstract—This paper delves into an advanced control scheme
that combines the sliding mode control (SMC) strategy with a
meta-heuristic method to examine the issue of security control
for non-linear systems that are vulnerable to deception attacks
on their sensors and actuators. The proposed approach focuses
on the development of a secure SMC law for nonlinear descriptor
systems described by TS fuzzy models. A fuzzy observer is
designed to accurately estimate the states that may affected by
unpredictable sensor attacks, and an adaptive SMC controller
is synthesized based on the estimated information to drive the
observer’s state trajectories towards the sliding surface and then
maintaining the sliding motion thereafter. Afterward, sufficient
conditions are established to ensure the admissibility of the closed-
loop system. Then, the secretary bird optimization algorithm
(SBOA), is explored for tackling an optimization problem with
non-convex and nonlinear constraints as is defined to enhance
the system’s performance under threats. Ultimately, a simulation
study through a practical example is performed to showcase
the effectiveness of the proposed control scheme in maintaining
system performance, even in the presence of attacks.
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deception attacks; adaptive sliding mode; SBOA

I. INTRODUCTION

Exploring non-linear systems has always been an important
topic in both the theoretical and practical aspects of control
engineering. In this regard, fuzzy logic theory has emerged as
a promising approach to handling the synthesis of complex
nonlinear systems. In particular, the TS fuzzy models have
become increasingly popular as a viable solution for addressing
nonlinear control and filtering design problems. Furthermore,
owing to their distinctive characteristics, several academics
have dedicated substantial effort and undertaken studies in
recent decades [1], [2], [4], [5]. On the other hand, it is com-
mon knowledge that several physical plants have a particular
mathematical description that includes algebraic constraints
in their models. Referred to as the descriptor system, it is
acknowledged that while exploiting this model, regularity and
absence of impulse features must be examined [6], [7], [8],
[9], [10]. Besides, there has been a significant amount of
development in the area of cyber-physical systems (CPSs),
which are focused on the combination of computing and
physical resources. Smart grids and intelligent automobiles
are two examples of industrial processes that heavily rely
on these technology. However, adopting such a structure may

present technical challenges in terms of system synthesis and
security. In fact, malicious users may compromise CPSs’ sta-
bility, confidentiality, and integrity by launching cyber attacks
over wireless communications between sensors and controllers.
Consequently, cyber-security has risen to the top of the list
of priorities and is one of the most significant problems
in the control community for developing feedback control
systems that can withstand attacks [11]. When it comes to this
topic, there are various classes of attacks that have drawn the
attention of researchers: the denial-of-service (DoS) attacks ex-
amined in [12], [13], [21], and the deception attacks studied in
[14], [15], [16]. DoS is unique in that the attacker sends a large
number of meaningless signals to use up network bandwidth
and confuse legitimate users requests were unable to pass
through. However, deception attacks, unlike DoS, disrupt the
system’s information transmission process by injecting false
data to destroy its authenticity and availability of information.
Very recently, deception attacks have increasingly attracted
a lot of attention from researchers, yielding a multitude of
noteworthy findings (refer to [17], [18], [19], [14], [20]). To
specify a few: The adaptive SMC approach has been explored
in [13] to deal with the event-triggered control design for
nonlinear systems with deception attacks. The study in [22]
has focused on the secure event-triggered output feedback
tracking control for singularly perturbed systems under sensor
saturation and attack. In [33], the neural network is explored
to deal with event-triggered control problem for Markov jump
systems with DOS and deception attacks.

It should be emphasized that the aforementioned favorable
findings only focused on attacks targeting the actuators
or sensors. However, attacks affecting both sensor and
actuator channels, which may occur often, should be seri-
ously investigated. Besides, SMC is widely accepted as an
exceptionally effective technique that exhibits rapid response
and exceptional robustness against uncertainty and external
disturbances [13], [23], [10], [24]. Thus, the SMC can be a
valuable approach for dealing with security control issues in
cyber-systems, especially when both the actuator and sensor
are vulnerable to simultaneous attacks. Nevertheless, when
the integrity of sensor signals is compromised, the system’s
state may be rendered inaccessible for controller design.
On that account, it is necessary to construct an observer
to estimate the unmeasured state in the event of a sensor
attack [3]. Subsequently, the sliding mode controller should
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be synthesized based on the observer’s estimation of the
state. This fact serves as the primary motivation for our
investigation. It should be mentioned that, as a result of attacks,
the system’s performance might be destroyed by unsuitable
constructed SMC. To minimize the impact of the attacks, it
is interesting to address an optimized SMC law by including
an optimization problem that aims to optimize the controller
and observer gains. To come up with nonlinear and non-
convex constraints while designing the SM controller, the
proposed problem cannot be addressed using the linear matrix
inequality (LMI) approaches that are widely employed by
scholars. Recently, several evolutionary algorithms, including
the Genetic Algorithm (GA) [25], Particle Swarm Optimization
(PSO) [26], the Ant Colony Optimization (ACO) [27], and
the Dandelion Optimization (DO) [28], [29] have emerged
to tackle design challenges in control systems that involve
nonlinear or non-convex constraints. The population-based
meta-heuristic algorithm SBOA, recently introduced in [39]
will be used in conjunction with the LMI technique to address
the problem of optimizing the control architecture. This serves
as an additional incentive for this research.

This paper endeavors to design the observer-based sliding
mode controller for a class of non-linear descriptor systems
when both the actuator and sensor are vulnerable to attacks si-
multaneously. Compared with the existing works, the novelties
of this paper lie in the following aspects:

• Although considerable attention has been devoted to
standard state-space systems under attacks, the secu-
rity control problem for descriptor systems (which
naturally arise in many practical applications such as
power systems, robotics, and process control) remains
largely unexplored, especially when considering sys-
tems with nonlinear dynamics and fuzzy modeling.

• As compared to the existing findings [40], [41],
the observer-based sliding mode secure problem
for TS fuzzy descriptor systems is explored when
both the actuator and sensor are vulnerable to attacks
simultaneously.

• When sensor channels are compromised, traditional
state-feedback controllers become impractical. Exist-
ing observer-based approaches for attacked systems
[4], [28] primarily consider matched premise variables
and do not address the optimization of both observer
and controller gains to minimize attack amplification
effects.

• Current SMC design methods for cyber-physical sys-
tems rely heavily on LMI approaches, which cannot
handle the non-convex, nonlinear constraints that natu-
rally arise when optimizing sliding surface parameters
and controller gains to minimize attack impacts [40],
[42], [36]. A new SBOA-assisted controller design
method is schemed to mitigate the attack’s effects and
improve the system performance.

The remainder of this paper is organized as follows. Section
II presents the system model and problem formulation, Sec-
tion III establishes admissibility conditions through Lyapunov-
based stability analysis. Section IV develops the synthesis of
the adaptive sliding mode controller and derives the main

theoretical contributions. Section V introduces the SBOA-
based optimization problem used for optimal gain selection.
Section VI validates the proposed approach through extensive
simulation studies and comparative evaluations against exist-
ing methods. Finally, Section VII concludes the paper with
suggestions for future research directions.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section presents some preliminary concepts, and out-
lines the research problem.

A. Model Description

In this paper, the structure of control scheme is shown in
Fig. 1, where the TS fuzzy model is employed to characterize
nonlinear descriptor systems, where the following fuzzy rule
is defined for the premise variables ϕj , j ∈ {1, . . . , s}, and
fuzzy sets Ni

j , i ∈ S = {1, . . . , r}. r stands for the number of
if-then rules.

Rule i: if ϕ1 is Ni
1, ϕ2 is Ni

2, . . . , and ϕs is Ni
s, then{

Eẋ(t) = Aix(t) +B2

(
u(t) + gi(t)

)
,

y(t) = C2x(t)
(1)

In this model, x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rny

define, respectively, the state vector, the control input, and
the measured output. Matched non-linear function gi(t) can
represent various model uncertainties or external perturbations.
Constant matrices Ai, B2, C2, characterize the fuzzy model,
matrix E ∈ Rn×n, however, describes the singular property
of the model so that rank(E) = r0 < n.

Plant Sensor Fuzzy observer

Sliding surface

SM controller

TransmitterReceiver

Actuator

ỹ(t)

x̂(t)

s(t)

u(t)

ũ(t)

Cyber layer

Cyber layerPhysical layer

Fig. 1. Schematic of control structure.

B. Resulting Model

By identifying the vector ϕ = [ϕ1, . . . , ϕs], the general
fuzzy model is stated conform to:Eẋ(t) =

r∑
i=1

hi(ϕ)
{
Ai(t)x(t) +B2

(
u(t) + gi(t)

)}
,

y(t) = C2x(t),
(2)
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where hi(ϕ) =
∏s

j=1 N
i
j(ϕj)/

∑r
i=1

∏s
j=1 N

i
j(ϕj) defines the

normalized membership that should confirm hi(ϕ) ≥ 0, for
i ∈ S, and

∑r
i=1 hi(ϕ) = 1. Ni

j(ϕj) stands for the grade of
membership of ϕj to Ni

j .

C. Attack’s Descriptions

When the sensors are vulnerable to false data injection
attacks caused by computer viruses, flaws, and similar fac-
tors, the following random model of the system outputs is
investigated:

ỹ(t) = y(t) + ζ(t)(−y(t) + δs(t)), (3)

where ζ(t) is the random variable, while δs(t) refers to the
embedded signal produced by the attacker. It should be noted
that, if ζ(t) is different from zero, then the sensor attack δs(t)
impacts the integrity of y(t); however, if ζ(t) = 0, it comes
ỹ(t) = y(t) which may be applied for feedback purposes.
Again, through the injection of actuator attack signals, the
integrity of u(t) is menaced and can be represented in the
format that follows.

ũ(t) = u(t) + δa(t). (4)

With (4), system (2) is expressed as{
Eẋ(t) = Ahx(t) +B2

(
ũ(t) + gh(t)

)
,

y(t) = C2x(t),
(5)

and, the following norm bounded conditions hold for gi(t),
δs(t), and δa(t), respectively.

Assumption 1.

A.1 ∥gi(t)∥ ≤ δ∥y(t)∥,

A.2 ∥δs(t))∥ ≤ β∥y(t)∥,

A.3 ∥δa(t))∥ ≤ Θ∥x̂(t)∥,

A.4 ζ(t) is stochastic variable with a Bernoulli distribution
characterized as Pr(ζ(t) = 1) = ζ̄, P r(ζ(t) = 0) =
1− ζ̄.

where δ, β, Θ, and ζ̄ are some known positive constants.

D. Observer Design

It will underscored that sensor threats can compromise
the accuracy of the output signal y(t) and complicate the
process of designing state/output feedback controllers. Thus,
an estimator should be designed to rebuild the system out-
puts. Under this circumstance, it is important to examine a
fuzzy observer when faced with the challenge of mismatched
premise variables between the observer and the system. The
following rule states the model of the fuzzy observer, where
φ(x̂(t)) = [φ1(x̂(t)), . . . , φso(x̂(t))]

⊤ is the premise variable
vector that depends on the estimated states x̂(t), and ŷ(t)
depicts the estimated output.

Rule j: if φ1(x̂(t)) is V
j
1, . . . , and φs(x̂(t)) is Vj

so , then{
E ˙̂x(t) = Ajx̂(t) +B2ũ(t) +Lj(ỹ(t)− ŷ(t)),

ŷ(t) = C2x̂(t),

Lj is the observer gain to be determined. Accordingly, the
global observer’s dynamic is inferred as follows:E

˙̂x(t) =

r∑
j=1

µj(φ(x̂))
(
Ajx̂(t) +B2ũ(t) +Lj(ỹ(t)− ŷ(t))

)
,

ŷ(t) = C2x̂(t),
(6)

where µj(φ(x̂)) is defined as µj(φ(x̂)) =∏so
do=1 V

j
do
(φ(x̂))

/∑r
j=1

∏so
do=1 V

j
do
(φ(x̂)) ≥ 0, and satisfies∑r

j=1 µj(φ(x̂)) = 1. As well, the compact form of (6) being
written as{

E ˙̂x(t) = Aµx̂(t) +B2ũ(t) +Lµ(ỹ(t)− ŷ(t)),
ŷ(t) = C2x̂(t).

(7)

Let e(t) = x(t)− x̂(t). The error dynamic system may be depicted
as

Eė(t) =(Ah −Aµ + ζ̄LµC2)x̂(t) +
(
Ah − (1− ζ̄)LµC2

)
e(t)

+B2gh(t)− ζ̄Lµδs(t)− (ζ(t)− ζ̄)LµΓ (t),
(8)

where Γ (t) = −C2x̂(t)−C2e(t) + δs(t).

E. Sliding Surfaces Design

When developing a sliding mode controller, it is crucial to es-
tablish a suitable switching function. This function should be defined
and expressed in the following manner:

s(t) = S̄E(x̂(t)− x̂(0))−
∫ t

0

S̄
(
Aµ +B2Kµ

)
x̂(τ)dτ, (9)

Matrix S̄ ∈ Rm×n in (9) should be determined so that S̄B2

is non-singular. Moreover, as stated in the SMC theory, the ideal
sliding mode occurs when s(t) = 0 and ṡ(t) = 0. Therefore, it may
be inferred that

ṡ(t) = S̄B2(u(t) + δa(t) + gh(t)−Kµx̂(t))

+ S̄Lµ(ỹ(t)− ŷ(t)),
(10)

and the equivalent control law is formally specified as:

ue(t) =Kµx̂(t)− δa(t)− gh(t)− (S̄B2)
−1S̄Lµ(ỹ(t)− ŷ(t)).

(11)

Moreover, the fuzzy sliding mode dynamics is defined as:

E ˙̂x(t) = (Aµ +B2Kµ − ζ̄ŜLµC2)x̂(t) + (1− ζ̄)ŜLµC2e(t)

+ ζ̄ŜLµδs(t) + (ζ(t)− ζ̄)ŜLµΓ (t),
(12)

where Ŝ = I − S̃, and S̃ = B2(S̄B2)
−1S̄.

Besides, the augmented closed-loop system can be characterized as:

Ē ˙̄x(t) = Āhµx̄(t) + ζ̄L̄µδs(t) + B̄2gh(t) + (ζ(t)− ζ̄)L̄µΓ (t),
(13)

where x̄(t) = [x̂⊤(t), e⊤(t)]⊤,
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Ē =

[
E 0
0 E

]
,

Āhµ =

[
Aµ − ζ̄ŜLµC2 +B2Kµ (1− ζ̄)ŜLµC2

Ah −Aµ + ζ̄LµC2 Ah − (1− ζ̄)LµC2

]
,

L̄µ =

[
ŜLµ

−Lµ

]
, B̄2 =

[
0
B2

]
.

Remark 1. It is widely recognized that the sliding motion of the
system is ensured when the matrix S̄B2 is non-singular. As stated
in the literature, S̄ is often selected with a particular form, such
as S̄B2 = I in [36], and S̄ = B⊤P , where P is a positive
definite Lyapunov matrix, as mentioned in [23]. However, selecting an
unsuitable value for S̄ could result in the development of a SMC law
that is ineffective in mitigating the effects of menaces. To address this
concern, this study delves into a meta-heuristic approach for achieving
the optimal selection of the sliding gain matrix S̄ and obtain the
optimized SMC performance.

F. Objective Statements

The main objective of this study is to synthesize an adequate
control that can effectively stabilize the system under investigation
and successfully mitigate the negative effects of attacks δs(t) and
δa(t). Hence, it is crucial to address the following questions to re-
institute the ideal functionality of the controlled system.

Q-1 How may an adaptive sliding mode controller be designed
to drive the observer states onto a pre-defined sliding surface and
then maintaining the sliding motion thereafter?

Q-2 How may an optimization problem be formulated to minimize
the effect of attacks and how can it be solved while dealing with non-
convex constraints in the context of tackling the SMC problem?

Before responding to these questions, the following lemmas should
be recalled.

Lemma 1. [30] For any vectors a, b, and matrix X > 0 the
following inequality holds

2a⊤b ≤ ςa⊤Xa+ ς−1b⊤Xb, (14)

for any scalar ς > 0.

Lemma 2. [31] The inequality −Z + sym(QA) < 0 holds for
appropriate dimension matrices Z > 0, Q, and A if the following
condition is fulfilled for any constant λ > 0 , and matrix Y :[

−Z Q+ λA⊤Y ⊤

(Q+ λA⊤Y ⊤)⊤ −λ sym(Y )

]
< 0.

III. ADMISSIBILITY ANALYSIS

The development of sufficient conditions proving the stochastic
admissibility of system (13) is the primary concern of this section.

Theorem 1. Given positive scalars β, δ, and ζ̄. If there exists a set
of scalar values τ, α > 0, together with matrices P̄ > 0 and N̄ ,
M̄1 and M̄2 that satisfy the following conditions:

r∑
i=1

r∑
j=1

hi(x)µj(x̂)Φij < 0, (15)

then, closed-loop system (13) is stochastically admissible.

Φij =


Φ11ij Φ12ij ζ̄M̄1L̄j M̄1B̂2

∗ − sym(M̄2) ζ̄M̄2L̄j M̄1B̂2

∗ ∗ −τI 0
∗ ∗ ∗ −αI

 , (16)

Φ11ij = sym(M̄1Āij) + (τβ2 + αδ2)Ĉ⊤
2 Ĉ2, Φ12ij = Ē⊤P̄ +

N̄R̄⊤ − M̄1 + (M̄2Āij)
⊤, Ĉ2 =

[
C2 C2

]
, R̄ is any matrix

satisfying Ē⊤R̄ = 0 and rank(R̄) = 2n− 2r0.

Proof: First, we are concerned with the proof of the regularity
and impulse-free features of (13). Suppose that non-singular matrices
V̂ , and Ŵ exits so that Ê = V̂ ĒŴ = diag{I2r0 ,0}. Define

Âhµ=V̂ ĀhµŴ=

Â11hµ Â12hµ

Â21hµ Â22hµ

 , N̂=W̄⊤N̄=

[
N̂11

N̂21

]
,

P̂ = V̂ ⊤P̄ V̂ =

P̂11 P̂12

∗ P̂22

 , R̂ = V̂ ⊤R̄ = V̂ ⊤
[
R̂11

R̂21

]
.

(17)

Using the fact that Ē⊤R̄ = 0, if R̂11 = 0, it comes that Ê⊤R̂ =
0. Moreover, it can be verified from (15) that

[
sym(M̄1Āhµ) E⊤P̄ + N̄R̄⊤ − M̄1 + (M̄2Āhµ)

⊤

∗ − sym(M̄2)

]
< 0.

(18)

By performing the congruence transformation to (18) by
[
I, Ā⊤

hµ

]
,

we calculate

sym
(
Ē⊤(PĀhµ − M̄⊤

1 Āhµ − M̄⊤
2 Āhµ) + N̄R̄

⊤Āhµ

)
< 0.

(19)

Pre- and post-multiplying (19) by Ŵ⊤ and Ŵ , respectively, we
obtain sym (N̂21R̄

⊤
21Â22) < 0, according to (17). It may be inferred

that Āhµ is non-singular and, based on the definition in [5], it is
recognized that (Ē, Āhµ) is both regular and impulse-free.

Let ξ(t) = col
{
x̄(t), Ēẋ(t), δs(t)

}
. To show the stability of

closed-loop system (13), the subsequent Lyapunov function is selected
as:

V (t) = x̄⊤(t)Ē⊤P̄ Ēx̄(t). (20)

Next, along the trajectories of system (13), we compute

L
{
V̇ (t)

}
=2x̄⊤(t)Ē⊤P̄ Ē ˙̄x(t), (21)

where L is the infinitesimal operator. As well, with the condition
that R̄⊤Ē = 0, the following equations are valid for suitable matrices
N̄ and M̄ = col

{
M̄1, M̄2, 0

}
:

2x̄⊤(t)N̄R̄⊤Ē ˙̄x(t) = 0, (22)

and

0 =L
{
2ξ⊤(t)M̄

(
Āhµx̄(t)− Ē ˙̄x(t) + ζ̄L̄µδs(t) + B̄2gh(t)

+ (ζ(t)− ζ̄)L̄µΓ (t)
)}

=2ξ⊤(t)M̄
[
Āhµ −I ζ̄L̄µ

]
ξ(t) + 2ξ⊤(t)M̄B̄2gh(t).

(23)
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According to assumptions 1, it can be shown from Lemma 1

2ξ⊤(t)M̄⊤B̄2gh(t) ≤ α−1ξ⊤(t)M̄B̄2B̂
⊤
2 M̄

⊤ξ(t)

+ αδ2x̄⊤(t)Ĉ⊤
2 Ĉ2x̄(t),

(24)

Moreover, it can be also established

−τδ⊤s (t)δs(t) + β2τ x̄⊤(t)Ĉ⊤
2 Ĉ2x̄(t) ≥ 0, (25)

where τ is a positive scalar.

By adding (21)-(23) and considering conditions (24)-(25), we get

L
{
V̇ (t)

}
≤ ξ⊤(t)

(
Φ̃hµ + α−1M̄B̄2B̄

⊤
2 M̄

⊤
)
ξ(t), (26)

where

Φ̃hµ =

Φ11hµ Φ12hµ ζ̄M̄1L̄µ

∗ − sym(M̄2) ζ̄M̄2L̄µ

∗ ∗ −τI

 . (27)

Performing the Schur complement to (15), it easy to verify that

Φ̂hµ = Φ̃hµ + α−1M̄B̄2B̄
⊤
2 M̄

⊤ < 0, (28)

Accordingly, we justify from (26) that

L
{
V̇ (t)

}
≤ ξ⊤(t)

( r∑
i=1

r∑
j=1

hi(x)µj(x̂)Φ̂ij

)
ξ(t) ≤ −ς∥ξ∥2,

(29)

where

ς = λmin(−
∑r

i=1

∑r
j=1 hi(x)µj(x̂)Φ̂ij). Hence, it is evident

the closed-loop system (13) is stochastically stable.

IV. SLIDING MODE DYNAMICS SYNTHESIS

This section outlines the methodology for synthesizing the gains
Ki and Li in Theorem 1. Before moving on, it is important to recall
the following lemma.

Lemma 3. [32] For given membership functions hi(x), µj(x̂), and
the constraint µj(x̂)− ϱjhj(x̂) ≥ 0, j ∈ {1, . . . , r} is satisfied for
any positive scalar ϱi, if there exists a matrix Λi = Λ⊤

i that satisfies
Γ(Πij ,Λi, ϱi) < 0, where

Γ(Πij ,Λi, ϱi) =


Πij −Λi < 0,

ϱiΠij − ϱiΛi +Λi < 0,

ϱjΠij + ϱiΠji − ϱjΛi − ϱiΛj

+Λi +Λj < 0 j > i,

(30)

then,
∑r

i=1

∑r
j=1 hi(x)µj(x̂)Πij < 0 is fulfilled. In what

follows, Γ(Πij ,Λi, ϱi) < 0, means that the conditions in (30) are
satisfied.

Theorem 2. For given positive scalars β, δ, and ζ̄, closed-loop
system (13) is admissible, if for a set of positive scalars τ, α,
λq, q = 1, 2, 3, 4, ϱi, i = 1, 2, · · · r, and matrices P̄ > 0, S̄,
M̄11 ∈ Rn×n, M̄22 ∈ Rn×n, X̄ ∈ Rm×m, Yj ∈ Rm×n,
Fj ∈ Rn×ny , the subsequent conditions are fulfilled according to
the constraint µj(x̂)− ϱjhj(x̂) ≥ 0.

Γ(Π̂ij ,Λi, ϱi) < 0, (31)

where

Π̂ij =

Π̂1
ij Π̂2

ij Π̂3
ij

∗ −λ3 sym(X̄) 0
∗ ∗ −λ4 sym(M̄22)

, Π̂1
ij =

Π̂11
ij Π̂12

ij λ1ζ̄Fj λ1M̄B̄2

∗ Π̂22
ij λ2ζ̄Fj λ2M̄B̄2

∗ ∗ −τI 0
∗ ∗ ∗ −αI

,

Π̂2
ij =

[
λ1Γ

2⊤
1 + λ3Γ

2
2 λ2Γ

2⊤
1 0 0

]⊤,
Π̂3

ij =
[
λ1Γ

3⊤
1 + λ4Γ

3
2 λ2Γ

3⊤
1 −λ4F

⊤ 0
]⊤,

Γ 2
1 = M̄B̄2 − B̄2X̄ , Γ 2

2 =
[
Yj 0

]
Γ 3

1 =

[
M̄11S̃ − M̄22

0

]
,

Γ 3
2 =

[
ζ̄FjC2 −(1− ζ̄)FjC2

]
, Π̂11

ij = λ1 sym(Aij) + (τβ2 +

αδ2)Ĉ⊤
2 Ĉ2, Π̂12

ij = (P̄ Ē + N̄R̄)⊤ − λ1M̄ + λ2Aij , Π̂22
ij =

−λ2 sym(M̄),

Aij =

[
M̄11Aj +B2Yj + ζ̄S̃FjC2 M̄11Aj + (1− ζ̄)S̃FjC2

M̄22(Ai −Aj) + ζ̄FjC2 M̄22Ai − (1− ζ̄)FjC2

]
,

M̄ =

[
M̄11 M̄11

0 M̄22

]
Fj =

[
−Fj

−Fj

]
, B̄2 =

[
B2

0

]
.

Moreover, the parameters Kj and Lj are given by Kj = X̄−1Yj

and Lj = (M̄22)
−1Fj , respectively.

Proof: If the conditions in Theorem 2 are true, the constraints
−λ4 sym(M̄22) < 0 and −λ3 sym(X̄) < 0 are also true, and
matrices M̄22, and X̄ are non-singular.

According to Lemma 3, we obtain
r∑

i=1

r∑
j=1

hi(x)µj(x̂)Π̂ij < 0. (32)

Note that M̄Āij = Aij + Γ
2
1 X̄

−1Γ 2
2 + Γ 3

1 M̄
−1
22 Γ

3
2 , and M̄L̄j =

Fj − Γ 3
1 M̄

−1
22 Fj .

Then, based on Lemma 2, it can be demonstrated that∑r
i=1

∑r
j=1 hi(x)µj(x̂)Π̂

1
ij < 0. Referring to the Schur comple-

ment, the condition in Eq. (15) is satisfied. This implies that system
(13) is stochastically admissible.

A. Adaptive Sliding Mode Controller Design

This section is devoted to synthesize an adaptive sliding mode
controller to achieve the reachability of the sliding surface described
by Eq. (9). Simultaneously, the system’s trajectory described by Eq.
(7) may be directed onto the sliding surface and stay on it thereafter.
To begin, we will use the RBF neural network, which has the
benefit of a simple structure and fast convergence, to estimate the
term δg(t) = δa(t) + gh(t). According to the reference [36], [37],
there exists a radial basis function neural network (RBFNN) able to
approximate the unknown function δg(t) over a compact set Ω that
can be expressed as follows:

δg(t) =W
∗⊤ψ(x̂(t)) + ε(t),

where W ∗ represents the optimal weight satisfying W ∗ =
argminW (supΩ ∥δg(t) − δ̂g(t)∥), and ε(t) stands for the ap-
proximation error so that for ϵ > 0, ∥ε(t)∥ ≤ ϵ. The esti-
mated function δ̂g(t) is defined as δ̂g(t) = Ŵ⊤ψ(x̂(t)), where
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Ŵ = [Ŵ1, Ŵ2, · · · , Ŵm] defines for the matrix of the neural-
network weights so that Ŵ⊤

k = [ŵ1
k, ŵ2

k, · · · , ŵN
k ], k =

1, 2, · · · ,m, and N represents the number of hidden nodes. ψ(x̂) =
[ψ1(x̂), ψ2(x̂), , · · ·ψN (x̂)]⊤ specifies the regression functions
vector, where the Gaussian RBF ψk(x̂) is expressed as ψk(x̂) =

exp
(
− ∥x̂− ck∥2

dk
2

)
, where ck is the centre and dk > 0 is the

width of the Gaussian. On the other hand , due to the sensor attack, a
precise calculation of the term S̄Lµ(ỹ(t)− ŷ(t)) becomes difficult.
That is why it may be inferred that there exist some scalars so that
∥S̄Lµ∥∥(ỹ(t)− ŷ(t))∥ ≤ ρ1∥y(t)∥+ρ2∥ŷ(t)∥, where the unknown
scalars ρl, l = 1, 2 should be estimated.

Theorem 3. Suppose that sliding function Eq. (9) is appropriately
designed and the gains Ki and Li are solved in Theorem 2. Under
the control in Eq. (33), the trajectories of Eq. (7) can be driven to
sliding surface s(t) = 0 and maintain the sliding motion thereafter.

u(t) =

r∑
j=1

µj(φ(x̂))
(
Kjx̂(t)− (S̄B2)

−1
(
Ŵ⊤ψ(x̂(t))

+ (ρ̂1(t)∥y(t)∥+ ρ̂2(t)∥ŷ(t)∥+ ϵ̂(t) + κ)
s(t)

∥s(t)∥

))
,

(33)

where κ > 0 is a small constant, and for positive constants ql, l =
0, 1, · · · , 3, the adaptive parameters are characterized by

˙̂
Wk = q0skψ(x̂(t)), ˙̂ρ1(t) = q1∥y(t)∥∥s(t)∥, (34)
˙̂ρ2(t) = q2∥ŷ(t)∥∥s(t)∥, ˙̂ϵ(t) = q3∥s(t)∥. (35)

Proof: Construct a Lyapunov function defined as follows:

Vs(t) =
1

2
s⊤(t)s(t) +

1

2q0

m∑
k=1

W̃⊤
k W̃k +

1

2q1
ρ̃21(t)

+
1

2q2
ρ̃22(t) +

1

2q3
ϵ̃2(t),

(36)

where W̃k = Ŵk −W ∗
k , ρ̃1(t) = ρ1 − ρ̂1(t), ρ̃2(t) = ρ2 − ρ̂2(t),

and ϵ̃(t) = ϵ− ϵ̂(t).

The derivative computation of s(t) and Vs(t) leads, respectively, to

V̇s(t) =s
⊤(t)ṡ(t) +

1

q0

m∑
k=1

W̃⊤
k

˙̃Wk +
1

q1
ρ̃1(t) ˙̂ρ1(t)

+
1

q2
ρ̃2(t) ˙̂ρ2(t) +

1

q3
ϵ̃(t) ˙̂ϵ(t),

=s⊤(t)
(
S̄B2(u(t) + δg(t)−Kjx̂(t))

+ S̄Lµ(ỹ(t)− ŷ(t))
)
+

1

q0

m∑
k=1

W̃⊤
k

˙̃Wk

+
1

q1
ρ̃1(t) ˙̂ρ1(t) +

1

q2
ρ̃2(t) ˙̂ρ2(t) +

1

q3
ϵ̃(t) ˙̂ϵ(t),

≤s⊤(t)
(
W̃⊤ψ(x̂(t)) + ϵ̃(t) + (ρ̃1(t)∥y(t)∥+

ρ̃2(t)∥ŷ(t)∥+ κ)
s(t)

∥s(t)∥

)
+

1

q0

m∑
k=1

W̃⊤
k

˙̃Wk

+
1

q1
ρ̃1(t) ˙̂ρ1(t) +

1

q2
ρ̃2(t) ˙̂ρ2(t) +

1

q3
ϵ̃(t) ˙̂ϵ(t).

(37)

Considering the update laws (34) and using the fact that ˙̃Wk = − ˙̂
Wk,

˙̃ρ1(t) = − ˙̂ρ1(t), ˙̃ρ2(t) = − ˙̂ρ2(t), and ˙̃ϵ(t) = − ˙̂ϵ(t) it can be

computed

1

q0

m∑
k=1

W̃⊤
k

˙̃Wk +
1

q1
ρ̃1(t) ˙̃ρ1(t) +

1

q2
ρ̃1(t) ˙̃ρ2(t) +

1

q3
ϵ̃(t) ˙̂ϵ(t)

= −s⊤(t)W̃⊤ψ(x̂(t))

− (ρ̃1(t)∥y(t)∥+ ρ̃2(t)∥ŷ(t)∥+ ϵ̃(t))∥s(t)∥.
(38)

Substituting (38) into (37) one gets

V̇s(t) ≤ −κ∥s(t)∥. (39)

which confirms that the adaptive control law Eq. (33) is capable of
driving the system dynamics onto the sliding surface Eq. (9) despite
the presence of attacks.

V. SMC DESIGN AND OPTIMIZATION

A. Problem Statement

It is obvious from theorems 1-2 that the significant challenge in
developing the SMC law Eq. (33) lies in determining the appropriate
sliding matrix S̄ that meets the constraint condition det(S̄B2) ̸= 0,
along with the controller and observer gain matrices Kj and Lj

satisfy the conditions in Eq. (31). Moreover, it is clear that the tuning
parameters λq in Eq. (31) are not easily obtainable, making it a
difficult task. Furthermore, inappropriate gains Kj and Lj might
amplify the impact of attacks on degrading the system’s performance.

B. Optimization Problem

As previously mentioned, the sliding matrix S̄ plays a crucial
role in the SMC design, influencing the dynamic performance of the
controlled system. In addition, reducing the values of Ki and Li

leads to decreased amplification of the attack’s signals, potentially
reducing the impact of any attacks. Thus, it is logical to search an
appropriate sliding matrix S̄ able to provide the optimized gain Ki

and Li. To figure out how to achieve this goal, we formulate the
following optimization problem:

minΩ =
r∑

i=1

(
γ∥Ki∥+ (1− γ)∥Li∥

)
,

subject to (31)

(40)

where the weighting parameter γ ∈ [0, 1].

To deal with the problem as expressed in Eq. (40) many evolutionary
techniques, such as the genetic algorithm [25], the PSO algorithm
[26], and the dandelion [28], [29] can be used. These techniques
have proven to be highly effective in addressing nonlinear and non-
convex optimization problems with constraints. Hence, we explore
the combination of the optimization algorithm SBOA [39] and LMI
techniques to tackle the sliding mode control design by solving the
previously mentioned problem.

Remark 2. The secretary bird optimization algorithm (SBOA) has
been recently introduced in [39] as a new meta-heuristic algorithm.
This algorithm is specifically established by observing the hunting
and evading abilities of secretary birds while dealing with predators.
The two primary phases of this algorithm that simulate the behavior
of secretary birds in collecting snakes and escaping predators are,
respectively, the exploration and the exploitation. The reliability of the
algorithm is tested in [39] through several engineering optimization
design problems.
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To carry out the SBOA algorithm, we express in the search
space the secretary birds positions as a row vector ϖ defined as
[S̄, λ1, . . . λ4] −→ ϖ = [s11, . . . , s1n, s21 . . . , smn, λ1, . . . λ4].

Assume that, each element smn has a range of smn ∈ [smn, s̄mn],
and λl ∈ [λl, λ̄l], where λl > 0, λ̄l > 0.

Algorithm 1, and the flowchart depicted in Fig. 2, describe the
different steps of the optimal SMC design using the SBOA as detailed
in [39]. Algorithm 1 will be performed 30 times to achieve the optimal
gains Ki, Li, sliding matrix S̄, and parameters λq .

Algorithm 1 SBOA Algorithm for SMC Law Design

• Input: The population size, denoted as N , the dimen-
sion of the variables, denoted as nd, and the maximum
number of iterations, denoted as Niter.

• Output: The optimal individual, denoted as ϖbest, and
the corresponding fitness value, denoted as Ωbest.

1) Step 1: Encoding phase.
Each element of the row vector ϖ =
[s11, . . . , s1n, s21 . . . , smn, λ1, . . . λ4] can be encoded
as a bird.

2) Step 2: Population initialization.
Generate an initial population of N individuals
ϖv, (v = 1, 2, . . . , N) at random.

3) Step 3: Fitness function and assignment: Calcula-
tion of the fitness for the individual by solving the
LMIs (31).

4) Step 4 Reproduction Phase: According to the ob-
tained fitness values in previous step, the exploration
and exploitation operations should be performed as
crucial steps of the SBOA.

5) Step 5: Design Phase: Produce the SMC law (33)
by using the sliding matrix S̄ and the gain matrices
Ki, and Li obtained in step 4.

VI. SIMULATION STUDIES

This section employs a nonlinear system for disc rolling on a
surface without sliding, as a means to showcase the feasibility and
benefits of the proposed method. As mentioned in [38], the system
under study may be described by the following mathematical model:



ẋ1 = x2,

ẋ2 = −(
K1

m
x1 +

K2

m
x31)−

b

m
x2 +

1

m
x4,

0 = x2 − rx3,

0 = −(
K1

m
x1 +

K2

m
x31)−

b

m
x2 + (

r2

J
+

1

m
)x4 −

r

J
u.

(41)

Moreover, the assumption x1(t) ∈ [−1, 1] allows us to explore
the sector non-linearity approach for converting the non-linear system
into the equivalent TS fuzzy descriptor model Eq. (2) with member-
ship functions defined as h1(x1(t)) = 1 − x21(t), and h2(x1(t)) =
x21(t). The relevant model data are given as E = diag{1, 1, 0, 0},

Ai =

 0 1 0 0
a{i} −0.75 0 0.025
0 1 −0.4 0
b{i} −0.75 0 0.075

 ,B2 =

 0
0
0

−0.125

, C2 =

[
1 0 0 0
0 1 0 0

]
a ∈ {−2.5,−5}, b ∈ {−2.5,−5}, i = 1, 2.

Start

Step 1
Parameter encoding

Step 2
Generate initial Population

Step 3
Evaluation

LMIs (31)
are feasible

Compute
Fitness

Assign Fitness
Artificially

Step 4
Reproduction

Reach the maximum
iteration Niter?

Step 5
Design phase

End

No

No

Fig. 2. Flowchart of the proposed SMC with SBOA and LMIs.

A. Simulation Studies and Discussions

Once the fuzzy model of the system has been introduced, we
assess the resilience and robustness of the system by considering dif-
ferent scenarios. We begin with scenario I, which involves designing
and implementing a controller that is not optimized, to thoroughly
evaluate its resilience against different threats.

Case I Here we explore the strategy developed in Theorem 2,
tailored to shield the system from sensor and actuator deception
attacks. We leverage Yalmip, a MATLAB toolbox specifically
developed for optimization modeling, and Mosek, an efficient
and accurate solver well recognized for its ability to solve
complex optimization problems on a large scale. By carefully
selecting key design parameters, S̄ = [2 2 − 1 − 8],
so that S̄B2 = I , β = 0.35, δ = 0.2, λ1,2 = 1, and
λ3,4 = 0.35, we effectively derive the controller and observer
gain matrices K1 =

[
0.0269 −0.0098 0.0053 0.2910

]
,

K2 =
[
0.0404 −0.0091 0.0070 0.2973

]
, L1 = 1.5592 −0.5933

−1.7422 8.4758
1.0001 0.9889
−1.2624 6.9014

 ,L2 =

 1.8422 −0.6246
−2.1511 8.7691
1.3088 0.9851
−1.7590 7.1692

.

To simulate realistic cyber-physical threats, we establish precise
models for both sensor and actuator attacks. The sensor attack model,
δs(t), represents possible disturbances in sensor measurements and
is defined as

δs(t) =


b, t < 2, b ∈ [−0.5, 0.5],

0.1y(t) + 0.2y(t) sin(100t), 2 ≤ t < 10,

bt tanh(0.5y(t)), 10 ≤ t ≤ 25.
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Moreover, we assign the probability of encountering sensor as
ζ̄ = 0.3, and we assume that the actuator attack model is expressed as
δa(t) = 0.3 tanh(−3x2(t)). Setting the initial conditions of the sys-
tem and the observer as x(0) =

[
0.25 0.6 0.4 1

]T , and x̂(0) =[
0 0 0 0

]T , we perform 50 random independent simulations a
simulation to robustly test the system’s resilience against attacks in
which the membership functions of the fuzzy controller are defined

as µ1(x̂1(t)) =
(
1 − 1

1 + e−20(x̂1(t)−π
8
)

)( 1

1 + e−20(x̂1(t)+
π
8
)

)
,

µ2(x̂1(t)) = 1− µ1(x̂1(t)).

We assume that the matched external disturbance has the following
form: g(t) = 0.1 sin(x2(t)) cos(x1(t).

Fig. 3(a)-(b) display the results of these simulations, notably
highlighting the effectiveness of the closed-loop system with the im-
plemented control strategy, as described in Eq. (9)-(33). The adaptive
laws defined in Eq. (34) are used under zero initial conditions and the
parameters are specified as ql = 0.35, l = 0, · · · , 3. Furthermore, to
reduce the occurrence of chattering in the control signal, we substitute
the function s(t)/∥s(t)∥ with s(t)/(∥s(t) + 0.01∥). The results of
these simulations demonstrate that although the system is resilient to
attacks, the observer struggles to properly estimate the states x3, and
x4. Now we will concentrate on Case II and employ the optimization
problem in Eq. (40) to solve this issue.
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Fig. 3. Performance and closed-loop behavior with the implemented
non-optimized control strategy.

Case II In this case, we explore the optimization problem Eq.
(40) to improve the system’s performance by reducing the observer
and controller gains. By exploiting Algorithm 1, the outcomes of are
found as S̄ = [2 1.5254 −1 −9.8984], λ1 = 0.73993, λ2 = 1.7955,
λ3 = 1.6335, λ4 = 1.9346,
K1 =

[
0.001267 −0.000329 0.000258 0.058563

]
,

K2 =
[
−0.000381 −0.000202 −0.000347 0.058733

]
, L1 = 0.85563 0.27457

−0.36813 2.1366
0.6122 0.31301

−0.36818 1.6922

 ,L2 =

 0.86772 0.25946
−0.50868 2.239
0.62446 0.2974
−0.47119 1.7995


The evolution of the best and average fitness values are shown in

Fig. 4.
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3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

Fig. 4. Evolution of the fitness function in solving the optimization problem
using SBOA.

Fig. 5(a)-(b) display the average results of simulations, focusing
on the system and observer states with the applied control strategy un-
der similar initial conditions and system parameters while employing
the aforementioned gains. Besides, The sliding function in Eq. (9) and
the estimation of unknown variables are also provided in sub-figure
(b). These figures prove that, despite the presence of deception attacks
targeting both sensors and actuators, the closed-loop states remain
stable over time and the observer accurately estimate the unmeasured
states. The findings from Case II show that, despite the complexity
and high computational cost of Algorithm 1, it has the potential to
design an optimized control law able to enhance the accuracy of the
observer in cyber-physical systems.

Case III Here, we compare our suggested control technique
with the control scheme presented in [34], [35] to emphasis
the superiority of our method. Employing the following
gains K1 =

[
−19.4666 −5.3215 0.0416 3.8020

]
,

K2 =
[
−24.4577 −5.2564 0.0419 3.8023

]
,

L1 =

 7.2599 2.4086
−1.3326 5.2242
−0.1383 0.6004
−2.8994 −1.0296

, L2 =

 7.2697 2.3827
−1.4514 5.4131
0.0888 0.7158
−3.0922 −0.8722

.

Fig. 6(a)-(b) demonstrate that implementing the SMC law [34],
[35] under similar initial conditions and model parameters reduces
significantly the system’s effectiveness.

Fig. 7 depicts the estimation error for the previous cases by
performing 50 random independent trials. Taken together, Cases
I, II, and III, demonstrate that the proposed secure SMC control
law can significantly improve the robustness and effectiveness of
systems dealing with attacks. Moreover, we evaluate for each case
the input energy as displayed in Table I. The table confirms that
the optimized scenario uses the least amount of energy with the best
control capabilities.

www.ijacsa.thesai.org 850 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

0 10 20 30 40 50

-0.5

0

0.5

0 10 20 30 40 50

-0.5

0

0.5

0 10 20 30 40 50

-1

0

1

2

0 10 20 30 40 50

-20

-10

0

10

20

30

(a)

0 10 20 30 40 50

-4

-2

0

2

0 10 20 30 40 50

-1

-0.5

0

0.5

1

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

(b)

Fig. 5. Performance and behavior of the closed-loop system with the
performed optimized control strategy.

TABLE I. INPUT ENERGY FOR EACH CASE

Input Energy Case I Case II Case III
∥u(t)∥ 11.3016 48.8997 26.1262

VII. CONCLUSIONS AND FUTURE WORK

This work investigated an advanced control scheme that inte-
grates the SMC methodology in conjunction with a meta-heuristic
method in order to address the challenge of security control for non-
linear systems that are susceptible to deception attacks on their sen-
sors and actuators. This scheme is based on developing an observer-
based sliding mode control law for nonlinear descriptor systems
described by TS fuzzy models. The admissibility and reachability
features are established by satisfactory sufficient conditions, and the
SBOA is investigated to tackle an optimization problem with non-
convex and nonlinear constraints in order to enhance the system’s
performance under threats. An extensive analysis of a practical ex-
ample divided into multiple cases revealed that the proposed method
significantly improved system resilience and efficiency in the face
of diverse cyber-attacks. This analysis especially highlighted the
method’s superiority over previous strategies proposed in [34], [35].

Several promising research directions arise from this work. A
key priority for future investigation is the effect of network-induced
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Fig. 6. Comparison of the closed-loop trajectories using the control scheme
from [34], [35], highlighting differences in system performances.

delays and actuator/sensor saturation constraints on the performance
of cyber-secure control systems, as these real-world limitations can
be exploited by advanced attackers. Further exploration is also needed
to extend the proposed framework to distributed control architectures
for multi-agent systems, incorporate machine learning-based adaptive
security mechanisms with event-triggered protocols.
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