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Abstract—One vital key for effective management of cloud
resources is the ability to predict their users’ consumption’s
patterns in granular level. It can provide more insightful analysis
to guide these users towards more resource-effective habits.
Such prediction requires pre-processing the users’ traces from
these cloud resources for granular prediction (micro-prediction).
However, the methodology followed by many forecasting based
cloud studies was designed to deal with these traces as over-
all trends (macro-prediction). We propose a (MICRAST) that
generates segments of granular patterns. Then, it carries out
parallel tasks of pre-processing and training that lead to separate
trained network for each of these segments. To select a model
for our approach, we compared methods from two forecasting
categories: statistical and artificial neural network (ANN)-based.
The results lead us to recurrent neural networks (RNN). We
evaluated the MICRAST through a comparison with related work
methodologies (macro-prediction approach) for both uni-variate
and multi-variate forecasting. Then, we measured its confidence
for forecasting up to 20% of the training time steps. The results
showed that our approach can forecast the preferences of each
cloud user with a confidence level of between (95% to 98%)
surpassing related works by more than 70%.

Keywords—Micro-forecasting; cloud workload; data processing;
macro-forecasting; data mining

I. INTRODUCTION

The ability to forecast users’ consumption preferences
for any service provider can profoundly influence its re-
source management. Such ability has a high impact on shap-
ing decision-making processes. Anticipating these preferences
enables proactive decisions that align with users’ requests.
Effective forecasting ensures the identification of potential
challenges and opportunities associated with resource utilisa-
tion. Furthermore, implementing forecasting into management
frameworks can foster collaboration among diverse stakehold-
ers. It’s highlighted by [1] that accurate forecasting enables
practitioners to respond efficiently to changing resource-related
conditions. Similarly, researchers in [2] emphasised the role of
users’ behaviour and preference forecasting in enhancing the
resilience of resource management solutions. They underscore
its significance in achieving long-term sustainability goals.

Many studies, such as [3], [4], and [5], presented different
types of forecasting models for similar purposes. For instance,
in [3], researchers proposed a multivariate deep learning
model to forecast workloads in data centers. Also, for better
resource management, Lu et al. [4] presented a novel back-
propagation neural network algorithm to predict future cloud
logs. However, the limitation of the approaches for the current
cloud forecasting models is that they were designed to predict
based on the overall trace. In another words, they lack in
capturing and predicting cloud traces in detailed, granular

levels. Unfortunately, analysing users’ traces as a whole is not
beneficial for predicting individual usage preferences. In their
raw form, these traces do not readily reveal the meaningful
trends in historical records necessary for predicting individual
preferences. Consequently, employing these models is not
suitable for consumption-steering purposes.

Therefore, we propose a new forecasting approach to
address the aforementioned challenge. Our approach has three
main pipelines: extraction (segmentation) via clustering, pre-
processing, and forecasting. In the first pipeline, we extract
segment of hidden, fine grained pattern from the input trace
by filtering and clustering it. Each segment represents the
historical trends for each pattern. According to our findings
in [6], clustering demonstrated the ability to perform such
extraction with high accuracy. To ensure efficient clustering,
this extraction involves using our recent technique of dimen-
sions and method selection EFection [7] and SeQual [8].
Then, in the pre-processing pipeline, the segmented patterns
are uniformed with time alignment and linear interpolation.
Finally, in the last pipeline, the pre-processed data is used for
training and forecasting for the prediction process. To select a
suitable model for our approach, we conducted a preliminary
evaluation experiment. In this experiment, we compare the
performance of various statistical and ANN-based models. We
choose a recurrent neural network (RNN) for our approach.
Accordingly, we present this approach as a Micro-forecasting
approach for cloud user consumption pattern based on RNN
(MICRAST) .

We evaluated our approach through two experiments. First,
we compared MICRAST performance with a sample forecast-
ing model. We employed these two approaches to forecast each
user’s preferences from all indicated cloud traces. Then, we
measured the prediction accuracy of the results against their
actual preferences. To ensure accurate validation for various
scenarios, we applied this evaluation to both univariate and
multivariate forecasting. In the second experiment, we assessed
the confidence of our approach over a range of prediction time
steps. This was achieved by measuring the change in accuracy
when gradually increasing the forecasting time steps up to
20% of the training data. To measure the forecasting accuracy,
we used the coefficient of determination R2 and the mean
absolute percentage error (MAPE). Our approach demonstrated
the ability to forecast user behaviour with an accuracy between
95% to 98% R2 surpassing related works methodology by 70
percentage points.

We structured the rest of this paper as follows: In Section
II, we cover the background of this study. This includes giving
a brief description of the common forecasting models and the
accuracy measures used to evaluate them. This is followed
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by a presentation of the related works. Then, in Section III,
we disclose the process for developing the MICRAST ap-
proach and the inquiry works that contributed to it. Next,
in Section IV, we demonstrate the evaluation process for
the proposed approach and the experimental findings. This
includes a comparison between our approach and a case study
that presents an example of the related work approach. Finally,
Section summarises the main points of this paper and reveals
our future plans.

II. BACKGROUND

This section covers the essentials of forecasting in cloud
computing. This includes presenting commonly used models
and describing their validation metrics. Then, it introduces the
typical cloud workload traces and their characteristics in terms
of forecasting implementation. Finally, this section discusses
the literature review for the related works.

A. Time Series Forecasting and its Models

In time series forecasting, prediction is performed based on
data comprising a sequence of observations over time [9]. Two
vital parameters of this prediction are the forecasting window
size and steps. In this context, the window size represents the
range of past events, a line of records in the trace, that are
utilised to be captured by the forecasting models. While the
number of future records to be predicted by these models is
denoted by steps.

Forecasting models are typically categorised into two main
types: statistical and ANN-based models. Statistical models, as
the name indicates, use statistical techniques and assumptions
about the data distributions to reveal trends in historical records
for predicting future variables. While ANN-based models per-
form the prediction using artificial neural networks to analyse
and learn from past records. In this section, we aim to cover
the simplest to the advanced models of these two categories.
These were selected with respect to their range of usability.

Accordingly, Table I presents these models with their cate-
gory and uses. We started with one of the very basic statistical
forecasting methods, the Simple Moving Average (SMA) [10].
It estimates the future data values by finding the mean of data
collection points falling within a certain forecasting window
[11]. SMA is best for short-term prediction of stable trend
time series data. In the context of time forecasting, stability or
stationarity means that its statistical properties (mean, variance,
and auto-correlation) do not change over time. Another model
is the Auto-Regression model (AR), in which the forecasting is
performed through a linear combination of its past values. The
AR model is flexible for different types of time series patterns
[12]. To form an Auto-regressive Moving Average (ARMA)
model, AR is combined with another type of MA, which
uses past errors to predict the future event in a regression-
like model [12]. In ARMA, the AR part predicts the current
event based on the past one, while the MA part calculates the
errors of past predictions to correct the current one. ARMA
is suitable for a stable series with no trend or seasonality.
From this mix, Auto-regressive Integrated Moving Average
(ARIMA) was introduced by Box and Jenkins by adding
integrated differentiating to ARMA for converting the targeted
data to stability [13]. This makes ARIMA usable for non-stable

time series as well as for both short-and long-term forecasting.
However, it cannot detect non-linear characteristics in the data,
such as abrupt changes or variable interactions [12].

It’s important to note that the above-described models are
applicable only for uni-attribute forecasting, as depicted in
Table I. Thus, a Vector Auto-Regression (VAR) model was
presented as the multi-attribute version of the statistical model
that is used for multiple attribute predictions. In VAR, the next
value for each attribute is predicted based on its own previous
history in addition to the history of other related attributes
[14]. In the context of cloud traces, the related attributes are
those that represent the consumption records for the users in
the same trace.

On the other hand, from the ANN-based forecasting mod-
els, this section covers the following: RNN, LSTM and GRU
consist of closed loops of network connections and feedback.
These networks are developed to learn a sequential pattern of
time series data [15]. Recurrent Neural Network (RNN) is use-
ful for stable time series data. However, according to Bengio
et al. [16], one of the limitations of RNN is the challenge of
vanishing gradients when the forecasting window increases.
These gradients used to update the network’s weights during
training. This makes the network struggles to learn from earlier
time steps, making it hard to capture long-term dependencies
in the trace.

To overcome this challenge, the literature introduced the
concept of Long Short-Term Memory (LSTM). LSTM accom-
plishes this overcoming by discarding irrelevant information
in the network using gating mechanisms, which enable them
to deal with long-term forecasting windows [17]. Cho et
al. [18] proposed an improved version of RNN with gate
optimisation called Gated Recurrent Unit (GRU). GRU has a
similar structure to that of LSTM and is also used to address
the issue of vanishing gradients in time series forecasting. It is
worth mentioning that an essential advantage of ANN-based
models is that they can be employed for both multi-attribute
and uni-attribute forecasting scenarios. Table I presents these
models and their uses.

TABLE I. THE DISCUSSED FORECASTING MODELS

Model For Category
SMA

Uni-attribute
Statistical

AR
ARMA
ARIMA

VAR Multi-attributes
LSTM

Both ANN-basedGRU
RNN

B. Data Analysis and Selection

In the forecasting area, the majority of prediction models
are based on the assumption that the data of interest is stable
[19]. Such stability indicates that the statistical properties of
this data do not change through time, which makes it simpler
to analyse the prediction process. Accordingly, our cloud traces
need to be analysed for stability to ensure efficient forecasting.
Without meeting the stability condition, the forecasting results
may turn out to be unreliable. Typically, to check the stability
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of the targeted traces, unit root tests are used. And to perform
the unit root test, several types of methods are employed.
Among others, these methods are Augmented Dickey-Fuller
(ADF), Phillips-Perron (PP), and Zivot-Andrews [20]. Accord-
ing to [21], one of the most commonly used methods is ADF.
It tests the data according to the following two hypotheses:

• Null hypothesis: The dataset has a unit root, and thus
it’s non-stable.

• Alternate hypothesis: The dataset doesn’t have a unit
root, and it’s stable.

Therefore, we checked the stability of the cloud traces
from the resources of the grid workload archive and the
parallel workload archive to ensure efficient forecasting. To
this end, we employed the ADF test for its high efficiency,
being the most commonly used test in the related literature. We
applied this test to users’ preferences of (Requested Number
of Processors) for all the traces in Table V, as it reflects
their consumption records. Then, we calculated the average
of ADF’s results for the corresponding trace.

The results showed a P-value below 0.05, which represents
the threshold of stability for all these traces with ADF statistic
values shown in Table II. These results ranged from (-3.5) to
(-20) for all the supervised traces (and only Bitbrain in the
unsupervised trace). This means that all the traces from the
selected resources are below the standard critical values that
are used in the literature; see Table II. And since the P-values
for each cloud trace were below 0.05, the null hypothesis is
rejected, and these traces seem to be stable. Nevertheless, the
strength of stability is not on the same level for all these traces.
The farther the traces statistic is from the critical value, the
stronger its stability. For instance, the CTC SP2 with (-20) can
be considered to have very strong stability. While the UNILU
Gaia, which recorded the lowest statistic value of (-3.5), has
the lowest stability from these traces and requires more careful
processing in the forecasting.

TABLE II. ADF CRITICAL VALUES

Level of Significance Critical Value
1% -3.43
5% -2.862
10% -2.567

Despite exhibiting high stability, many of these traces,
such as ANL-Intrepid, SDSC Par 1995, OSC Cluster, and
CEA Curie, showed non-linearity with abrupt changes. They
also recorded a high standard deviation (SD) of above 10K.
This is noticed when their scales are examined, such as the
example provided in Fig. 1. We concluded that cloud workload
traces may exhibit a characteristic of irregular changes without
following a seasonality, yet still maintain a sense of stability.
Such characteristics require a pre-processing to reveal mean-
ingful patterns and trends from these traces to be beneficial
for prediction model training.

Furthermore, since our analysis framework aims at pro-
viding a micro-prediction approach, it’s vital to evaluate this
approach with cloud traces that are applicable for such an
aim. To be applicable, these traces need to meet the following
criteria:

Fig. 1. The Characteristic of ANL-interpad trace.

• The trace should provide the attributes that present
users’ preferences in numerical format. Such a format
makes it possible to extract these patterns and enables
the forecasting model to capture them more efficiently.

• The trace should provide job submission times for
each user. This enables forming a history of sequences
of events for these users based on their job times.
These sequences are essential to enabling the fore-
casting models to learn past preferences.

• The size of the trace should be sufficiently large to
enable effective learning. In our experience, ANNs
have a hard time learning trace time series with less
than 25K data points, so we expect such trace size at
least from each suitable for us to work with.

• The trace should demonstrate a sense of stability, since
most forecasting models assume that the characteris-
tics of the targeted datasets are stable.

Based on the above, we selected the traces in Table V that
meet the above criteria. This table represents the trace name,
its size (in number of lines), the time period of the trace, and
the ADF test results.

It’s vital to emphasise that another prerequisite for data
to achieve efficient forecasting is that it should be uniformly
sampled. This is necessary when the information in this data
is given on different scales. But what to do when we don’t
have the dataset collected in a uniformly sampled way? Such
uniformity can be achieved with the implementation of time
alignment and linear interpolation methods. Time alignment
ensures that the action points in the data are synchronised
to the corresponding time step they represent [22]. Linear
interpolation, on the other hand, fills in the blanks where
there is no data. In essence, it is joining two known values
with a straight line and then carrying out approximations for
the intervening ones [23]. We provide two samples of time
series data from the ANL-interpad trace. Table III shows
the trace structure before applying the uniforming process,
which shows obvious unaligned time steps or users’ IDs.
While Table IV shows how the same trace changed to a more
uniform characteristic after applying time alignment and linear
interpolation methods.

1) Forecasting validation: Forecasting validation is the
process of measuring the efficiency of the employed model to
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TABLE III. TIME SERIES SAMPLE OF ANL-INTERPAD TRACE BEFORE
UNIFORMING (TIME ALIGNMENT AND LINEAR INTERPOLATION)

Submit Time Requested Number of processors User ID
2009-01-01 00:00:00 2048 1
2009-01-01 00:00:07 2048 1
2009-01-01 00:26:30 2048 1
2009-01-01 00:36:45 8192 2
2009-01-01 00:42:46 2048 1
2009-01-01 00:45:51 64 3
2009-01-01 01:31:25 16384 4
2009-01-01 01:49:13 64 3
2009-01-01 02:52:35 64 3
2009-01-01 03:55:58 64 3
2009-01-01 03:58:33 2048 1
2009-01-01 06:05:41 2048 1
2009-01-01 07:22:26 2048 1
2009-01-01 07:38:41 2048 1

TABLE IV. TIME SERIES SAMPLE OF ANL-INTERPAD TRACE AFTER
UNIFORMING (TIME ALIGNMENT AND LINEAR INTERPOLATION)

Submit Time Requested Number of processors User ID
2009-01-01 00:00:00 2048 1
2009-01-01 01:00:00 2046 1
2009-01-01 02:00:00 2044 1
2009-01-01 03:00:00 2042 1
2009-01-01 04:00:00 2040 1
2009-01-01 05:00:00 2038 1
2009-01-01 06:00:00 2036 1
2009-01-01 07:00:00 2034 1
2009-01-01 08:00:00 2032 1
2009-01-01 09:00:00 2030 1
2009-01-01 10:00:00 2028 2
2009-01-01 11:00:00 2026 2
2009-01-01 12:00:00 2024 2
2009-01-01 13:00:00 2022 2

predict future events. It is typically conducted by comparing
the outcome of a prediction with the actual ground truth. In the
context of cloud traces, not all the datasets are applicable for
training and using a portion of it as ground truth, since they
lack a sufficient amount of usable records for such a purpose.
The forecasting validation is mainly implemented to check if
the used model is accurate enough in the testing process of
forecasting.

Four of the most well-known of these validation metrics are
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), and Coefficient
of Determination (R2) [24]. MAE is a statistical metric that
evaluates the overall accuracy of a regression model by aver-
aging the absolute differences between predicted and actual
values. In contrast, MAPE calculates the average absolute
percentage error, providing a relative measure of prediction
accuracy [25]. It presents the results on percentage scales
from 0 to + ∞ (where 0 is the best). This makes the MAPE
metric easier to interpret. Thus, it was a widely used metric for
forecasting evaluation [26]. While RMSE is a measure of how
far off a model’s predictions are from the actual values. Similar
to MAE, RMSE presents the quality for the predicted value
in units as actual numbers, without expressing its relativity to
the true value.

On the other hand, R2 is a statistical measure of the linear
relationship degree between two data variables [27]. It ranks
the relationships between the predicted and actual values. The
R2 ranges its results between 0 and 1, where closer to 1 means
better.

Notably, both R2 and MAPE provide a clear scale for
measuring forecasting accuracy. These metrics can accurately
measure the degree of alignment between actual and predicted
data. They also demonstrate a clear and accurate comparison
across different forecasting models. As we discussed above,
the accuracy measures for these metrics are presented as
percentage-based values. While, other metrics, such as RMSE
use actual values that may not be comparable. Based on these
points, we employed MAPE and R2 for the evaluation process
of this paper.

C. Related Works

In the area of cloud computing, researchers have developed
various forecasting models for different purposes. Most of
these models were especially aimed at addressing the chal-
lenges of dynamic resource management and scaling.

In [28], Lu et al. proposed a model called RVLBPNN
to forecast workload trends based on their historical data.
This was combined with workloads’ level of latency sensi-
tivity. Later [29] presented an improved version of RVLBPNN
through exploiting the use of the K-means clustering method.
This new version predicts future workload trends based on the
history of response time characteristics for these workloads.

Maiyza et al. [30] also aimed to target and predict workload
values and future trends through presenting VTGAN, a non-
linear prediction model. In [31], Arbat et. al. proposed a time-
series forecasting model designed to predict changes in cloud
workloads with high accuracy and low inference overhead. The
model used in this paper is called WGAN-gp Transformer. This
model is inspired by the Transformer network and improved
Wasserstein-GANs. It aims to address the challenges of the
dynamic nature of cloud workloads.

Kumar et al. [32] developed an LSTM/RNN-based model
to enhance resource management and optimise performance
by accurately predicting future workloads, which is crucial for
efficient operation in cloud environments. It predicts workload
values based on their previous samples. The authors also
presented a similar forecasting approach in [33], embedding
a self-directed learning process to predict future demand from
cloud servers.

Likewise, in [5], a MAG-D model was developed by Zhang
et al. based on a GRU neural network. This model predicts
each cloud resource’s memory and CPU usage based on data-
centre traces. On the other hand, to forecast user behaviour
trends in large-scale cloud environments, Panneerselvam et.
al. [34] implemented the InOt-RePCoN model. The trends
that this model aimed to predict were the number of jobs
and submission times for users. Similarly, in [35], Nehra
and Kesswani presented a LSTM-based forecasting model to
predict workloads in a cloud computing environment. Its aim
is to reduce service level agreement violations.

We have concluded from above that the models in these
studies have followed a similar forecasting approach. The
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TABLE V. CLOUD WORKLOAD TRACES SELECTED FOR FORECASTING INVESTIGATION

Trace Trace size Time period ADF statistics
KTH-SP2-1996 ≈30K Sep-1996 to Aug-1997 -5.3
UNILU Gaia ≈50K May-2014 to Aug-2014 -3.5
ANL-interpas ≈70K Jan-2009 to Sep-2009 -13.7

SDSC-SP2-1998 ≈75K Apr-1998 to Apr-2000 -4.9
CTC-SP2-1996 ≈8K Jun-1996 to May-1997 -20.2
KIT-FH2-2016

≈100K

Jun-2016 to Jan-2018 -6
META CENTRUM- 2009 Dec-2008 to Jun-2009 -11.6

LLNL Thunder-2007 Jan-2007 to Jun-2007 -6.7
LANL-O2K Nov-1999 to Apr-2000 -7.5

LANL CM5 1994
≈200K

Oct-1994 to Sep-1996 -19
HPC2N Jul-2002 to Jan-2006 -12

RICC-2010 400K May-2010 to Sep-2010 -12.11
CEA Cuire-2011

≈700K
Feb-2011 to Oct-2012 -10

PIK-IPLEX Apr-2009 to Jul-2012 -5.5
SDSC-BLUE-2000 ≈240K Apr-2000 to Jan-2003 -17

LLNL-Atlas ≈50K Nov-2006 to Jun-2007 -7
Sandia ross 2011 ≈60K Nov-2011 to Jan-2005 -6

OSC Cluster ≈80K Apr-2000 to Nov-2001 -4.4
DAS2 ≈200K Jan-2003 to Jan-2004 -5.6

BitBrain ≈1M Oct-2012 to Feb-2013 -7.9

forecasting process under these approaches targets and macro-
predicts the overall values and trends of workloads. Such
methodology is designed to deal with users’ preferences in
the traces as a whole. Unfortunately, these traces as a whole
in their raw form do not reflect any meaningful patterns for
prediction. Thus, the gaps in the current models is that they
lack an efficient tool to uncover and capture the diversity and
variability of users’ consumption at a granular level.

III. METHODOLOGY

In this section, we cover the research that leads to our
new forecasting approach. This approach aimed at providing
more efficient micro-prediction of clouds granular patterns.
MICRAST overcomes the challenging characteristic of the
cloud users’ records, which suffers from sudden changes in
their requests as illustrated in Fig. 1. Such characteristics are
not readily predictable by the models in the related works.

MICRAST offers an outline that enables micro-prediction
through extracting segments of granular patterns from cloud
traces using clustering and the efficiency tools of (SeQual [8]
and EFection [7]). This was conducted upon proving that the
cloud traces demonstrate a sense of stability as depicted in
the analysis investigation in Section II-B, page 856, which
aligns with the requirements of most forecasting models. This
is followed by performing a comparison test between statistical
and ANN-based forecasting models to select the best among
them for our approach. We finalise this section by giving a
thorough description of our proposed approach.

A. Forecasting Model Comparison

It’s essential for developing an efficient forecasting ap-
proach to carefully select its model. Therefore, we carried
out a comparison evaluation between various models listed in
Table I to select the one that shows the highest performance
in predicting cloud traces.

1) Setup configuration: We set up the number of input
layers based on the formula (Number of attributes × window
size). The window size represents the segments of the targeted
traces that are selected for the forecasting model to capture
in the learning process, as illustrated previously in Subsec-
tion II-B. In the hidden layer, the desired model is selected
(either RNN, LSTM, or GRU) with 100 units. Choosing
100 units ensures a balance between the complexity of the
model and computational efficiency. This number is sufficient
to capture intricate patterns within the cloud traces attribute
without causing overfitting or incurring high computational
costs. Such configuration enables the network to capture the
necessary patterns within the time series data.

This is followed by configuring the activation functions.
These functions are essential elements in the neural network
since they indicate the activation status of the correspondent
neuron. Accordingly, we selected the (tanh) for learning and
the (Hard sigmoid) for the recurrent layer, as prior art indicated
that these functions typically result in higher performance [36].
Finally, the hidden layer is further connected with the third
layer (the out layer). In this layer, the network is structured
as one unit (output), and the ReLU activation function is
selected to handle the output recurrent process. We present
the implementation of the RNN network in the K-nime toolkit
in Fig. 2 as an example of the above configuration.

Fig. 2. RNN network configuration in K-nime.

2) Experimental implementation: As mentioned previously,
we are developing our approach for uni-attribute and mult-
attribute forecasting scenarios to ensure a wide range of ap-
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plicability. Therefore, we performed this comparison through
two experiments, one for each scenario.

We conducted experiments by comparing the performance
of the forecasting models that were listed in Table V in the
prediction of granular patterns. For this purpose, we chose
the attributes of (Used Memory and Requested Number of
Processors) as it represents the user’s requests (consumption)
from the cloud server provider. This attribute is widely avail-
able and applicable for forecasting across most traces. While
others, such as Requested Memory, are deemed inapplicable
since they exhibit a large portion of constant values in many
traces, as we observed in [8] and [7], making it limited in
giving meaningful information.

For the uni-attribute forecasting scenario, we targeted
predicting the granular patterns in the Requested Number
of Processors by training the model with its own historical
records. While, for the multi-attributes scenario, we repeated
this process by training the model on the historical records
of an additional attribute (i.e. Run Time). We chose this
attribute as we observed that it shows a high correlation with
the Requested Number of Processors and it is also provided
in applicable form in all the traces. This makes it a strong
candidate for our purposes. It will test these models’ ability to
capture the dependencies between different attributes to predict
a particular preference.

We applied both experimental scenarios to all the traces
in Table V. At this time, we have prepared the input data by
hand without presenting an automated approach. We clustered
the targeted attributes to perform the extraction that allows the
comparison to go ahead. We set the forecasting window size
to five to ensure sufficient capture of past events. We observed
that a window size of fewer than five might not sufficiently
capture users’ patterns in cloud traces.

In the ANN-based models, this setup is translated into con-
figuring up to five input neurons and one output neuron with an
activating sequence return. This results in five inputs for each
chosen trace attribute’s historical pattern. These configurations
were applied to the uni-attribute scenario. While, for the multi-
attribute scenario, the input neurons will be doubled to 10 to
represent both attributes.

To implement these experiments, we split the prepared
data into two portions: 70% for training and 30% for testing.
To assess the accuracy of the forecasting, the metrics MAPE
and R2 were calculated to measure how closely the predicted
values compare to the actual ones. Finally, we show boxplots
for the distribution range of R2 for these models to compare
their performance. These boxplots provide insight into the
precision and consistency of each model’s performance. The
results of our experiments are illustrated as follows:

a) Uni-attribute forecasting: In this experiment, we
chosen the models that are useful for uni-attribute forecasting
in Table I. Fig. 3 illustrates the boxplots of R2 distribution
ranges for the ANN-based and statistic models.

Fig. 3a showed that the basic statistical models (i.e. AR
and SMA) exhibit a lower median and a wider range of
R2 distribution compared to the more advanced models (i.e.
ARMA and ARIMA). We noticed this for the AR model with
whisker extending down to 44%. This performance was mainly

(a) Statistical-based Models

(b) ANN-based Models

Fig. 3. R2 Distribution for uni-attribute forecasting models.

caused by the traces of ANL-Intrepid and METACENTRUM-
2009. This resulted in an average MAPE of around 2.1%.
The SMA model exhibited a relatively higher median and
distribution, with a slightly better whisker at 58% recorded
for DAS2.

However, this model suffers from an outlier at 51% for
HPC2N and a higher average MAPE of about 4%. On the
other hand, both the ARMA and ARIMA models showed a
comparably higher R2 and narrower range of distribution. This
implies that the more sophisticated models are more precisely
focused and consistent than the basic models. Despite these
elevated scores, both models suffered from a lower whisker
of below 81% with outliers falling under 50% caused by
the CEA Curie trace. This causes a higher average MAPE
for these two models of around 12%. The reason for the
performance of both simple and advanced statistical models
is the nonlinear nature of users’ consumption records in
the above-indicated traces. Thus, they cannot be accurately
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predicted with linear auto-regression and statistical analysis,
even in advanced models. This underscores the uncertainty and
unreliability of these models in forecasting users’ preferences
in the cloud environment.

In contrast, Fig. 3b illustrates that the ANN-based models
show more stable performance in terms of R2, with a higher
median and a narrower range of interquartiles. All three
models of LSTM, RNN, and GRU achieved the same high
and concise range of R2, except for an outlier at 85% for
the LSTM model, which is the accuracy result of the LLNL
ATLAS trace. This outlier is resulting in an average MAPE
of around 0.7 compared to a 0.4 average MAPE for both
RNN and GRU. In conclusion, we can assert that for uni-
attribute forecasting, the ANN-based models (especially RNN
and GRU) are more compatible with our approach to predicting
cloud users’ preferences.

b) Multi-attributes forecasting: In this experiment, we
utilised the models that are applicable for multi-attribute
forecasting in Table V. The boxplot in Fig. 4 shows the
performance of both statistical and ANN-based models. As
shown in Fig. 4, the VAR model exhibited a lower median, a
wider range of R2 distribution, and more outliers compared to
the ANN-based models. Specifically, the outliers accounted for
72% in forecasting the DAS2 trace, 67% for SDSC BLUE, and
58% for CEA Curie. As mentioned previously, the attributes in
these traces have the characteristic of non-linearity. Thus, these
results demonstrate that the straightforward autoregression
process of the VAR model cannot capture the correlation
between attributes with such characteristics. It would rather
interpret the patterns in these attributes as noise, resulting in
an average MAPE of around 3.57%.

Fig. 4. An Accuracy distribution for multivariate forecasting models.

On the other hand, Fig. 4 shows that ANN-based models
were able to handle such challenges with better performance
and an average MAPE of around 1.9%. These models were
able to capture the relationship between these attributes to
predict the targeted preferences. However, both LSTM and
GRU models suffered from an outlier at 58% R2 for OSC
Cluster. Notably, this trace recorded 95% in the uni-attribute
forecasting for the same models. The reason for this drop is

that using additional attributes (RunTime in this case) with
(Requested Number of Processors) led to overfitting problems
for both models. Such overfitting happened more for the DAS2,
SDSC BLUE, and CEA Curie traces. The long-term memory
for LSTM and GRU models causes such overfitting when try-
ing to capture the relationship between two attributes with the
significant characteristic of abrupt change. In comparison, the
RNN model, with its more simple memory structure, showed
the ability to deal with this, having more stable performance
and achieving a narrower boxplot. In addition, compared to the
previous ANN and statistical models, it achieved 96% accuracy
in forecasting OSC Cluster, 96% for DAS2, 93% for SDSC
BLUE, and 90% for CEA Curie. This implies that the RNN
model effectively managed the noisy patterns and overfitting
issues while maintaining high accuracy.

c) Findings: We concluded that, among the compared
models, the RNN model achieved a high accuracy across both
uni-attribute and multi-attribute forecasting. It recorded around
97% R2. This model was able to maintain this performance
even for challenging traces. This makes it an ideal choice for
our approach. The detailed structure for MICRAST and its
RNN network is detailed in the upcoming subsections.

B. The Proposed Approach MICRAST

We propose the MICRAST approach to predict the fu-
ture consumption preferences of cloud users. Our approach
achieves this through pipelines of segmentation, pre-processing
and Forecasting as shown in Fig. 5. In this section we cover
both the training and forecasting phases of our approach
compared to the current approaches that shown in Fig. 6.

a) Training phase: this phase is carried out as follow-
ing:

• Extraction pipeline is employing the use of clustering
to uncover hidden patterns that steer users’ preferences
from the input trace. According to our findings in
[6], clustering demonstrated a high ability of such
extraction. To ensure efficient clustering, we apply two
main tasks. First, we filter the trace by disregarding
those attributes that have the same value for more
than 80% of the records. These attributes are deemed
unsuitable for clustering, as we illustrated in [8].

Second, we employ both tools of Sequential method of
clustering Quality (SeQual) and Effectiveness detection of
clustering quality (EFection), to address both scenarios of
single and multiple feature selection. The SeQual method ranks
which single attribute is best among the given for extraction
when the user decides to process uni-attribute forecasting.
While the EFection technique is used to select the combination
of attributes that are more compatible for extraction when the
user decides to process multi-attribute forecasting. Notably,
if the EFection selected one attribute, in this case the user
recommended going for uni-attribute forecasting instead. We
also exploit the use of EFection to choose the most suitable
method for clustering the selected attributes (for extraction).
In this task, the selected clustering method groups similar
historical usage records along with their submit time to form
the consumption pattern for each user; see Table V. Thus, the
output of this task are segments of granular patterns.
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• Parallel pipelines of pre-processing to prepare each
segment of granular pattern for prediction. In their
clustered form, these segments exhibit non-uniform
scales and formats. This form does not meet the re-
quirements presented in Section II-B, see page 855, for
effective data forecasting. Therefore, in these pipeline,
we carry out uniforming processes in parallel, sepa-
rately for each segment, as shown in Fig. 5. First, we
take the current time sequence for each segment and
convert them into a single form across all traces. We
also employ the time alignment process to rearrange
these segments on the same time scales. Second, we
implement linear interpolation to avoid any missing
records.

Afterword, the data of each segment are normalised into the
range between 0 and 1. This is essential for efficient forecasting
since the characteristics of cloud workload traces exhibit
different scales of data. For instance, there is a significant
difference in the standard deviation between Requested Time
and Used Memory. Such characteristics are not suitable for
forecasting, and normalising can make them more appropriate
for an ANN forecasting model. The output of these pipelines
are uniformed segments, each is ready to use as input for
forecasting training.

• Parallel pipeline of forecasting that feeds the uni-
formed segments to train the RNN model. It’s impor-
tant to emphasise that the RNN model is configured
with the setup presented in Section III-A1. This con-
figuration demonstrated high performance, according
to our comparative experiments. After training the
RNN model sufficiently, this pipeline produce trained
networks for each segment that will be ready for
implementation to forecast the new input traces from
the service provider system.

In addition, This pipeline involves also calculating the
average centroid for each segment. These are stored alongside
with each stored trained networks.

b) Prediction phase: In this phase our approach follows
the same pipeline of segmentation and forecasting presented
previously in the training phase. As shown in Fig. 6, first
the new data are clustered into segments of granular patterns
followed by calculating the average centroid for each of these
segments. Finally these segments feeds into suitable trained
networks to predict the future events. This is carried out by
comparing the centroid of each segment with the one stored
alongside the stored network from the training phase. Once
the range of the compared average centroids matched, the
correspondent network is selected and applied on the current
segment for prediction.

In comparison to the approaches used by the recent cloud
studies in Table VI, it’s noticed that they follow a singular
pipeline of prediction process. As illustrated in Fig. 6, these
approaches are designed to carry out the data preparation
(i.e. linear interpolation, time alignment, etc.) and forecasting
tasks on the input data without considering granularity. As the
prepared data feeds into the forecasting model to train a single
network. While, for the prediction phase, this network applied
directly on the new input data. Such prediction pipeline is
known as Macro-prediction.

IV. VALIDATION OF MICRAST PERFORMANCE

We conducted the evaluation in this work through two
main experiments. First, we carried out a comparison test to
measure the performance of our approach against (LSTM-
RNN) in [32]. This case study exemplifies the micro-prediction
approach that has been adopted by other related works as
well in Table VI. We selected this study for the comparison
evaluation since it is similar to our approach in aiming to
predict consumption requests using an ANN-based model.
Such evaluation is essential to demonstrate the benefit of
one proposed approach. Second, we measured the forecasting
confidence of MICRAST to show its performance across a
scale of time steps. This is vital to show the application range
for our approach. The following subsection presents these two
experiments.

A. MICRAST vs LSTM-RNN for Related Work

In this evaluation, we compared the performance of MI-
CRAST with the LSTM-RNN approach. We conducted this
for both uni-attribute and multi-attribute forecasting scenarios
to ensure accurate validation. To measure each approach’s
performance, we used R2 and MAPE metrics. As illustrated
in Section II-B1, we selected these metrics as they provide a
clear scale for measuring forecasting accuracy. They measure
the degree of alignment between actual and predicted data with
a clear and accurate percentage-based value comparable across
different forecasting models. We present the comparison results
for each scenario.

Before we proceed to the results, we discuss the exper-
imental configuration. Both forecasting scenarios adhered to
the same evaluation setup described in the experimental imple-
mentation in Section IV using all the selected traces in Table V.
Similarly, we first utilised both approaches to predict the
consumption preferences for an attribute that represents users’
usage records (i.e., Requested Number of Processors). Second,
in the multi-attribute scenario, we repeated the previous steps
with one difference: in this case, we train the forecasting
models with the historical records of an additional attribute
(i.e. RunTime). Accordingly, we are using the history of two
attributes from the cloud trace to forecast the value of one
particular attribute. We selected these attributes as they reflect
the major aspects of consumption (demand level and duration).

1) Uni-attribute forecasting scenario: Table VII compares
the average of R2 and MAPE scores for forecasting all the
selected traces by each approach. It demonstrates that our
approach achieved better R2 and MAPE by 67 and 40 per cent,
respectively. These results showed a potentially significant
improvement in accuracy when using our approach for uni-
attribute forecasting.

For more detailed results, we presented the cumulative
distribution for R2 scores of both approaches in Fig. 11.
Accordingly, the cumulative distribution for the LSTM-RNN
approach in Fig. 7a showed below 60% R2 for 16 out of 18 of
the traces. In contrast, Fig. 7b showed that MICRAST recorded
more than 90% R2 for 17 of these traces.

We also demonstrated the MAPE for each trace in Fig. 8.
The related work approach showed a significant MAPE for
some traces. Specifically, it recorded around 165% to 209%
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TABLE VI. MICRAST COMPARED TO RECENT APPROACHES

Approach Prediction Focus Granularity Methodology Prediction Level Prediction Type
CNN-LSTM
Model [37]

Multivariate cloud
workload prediction

Medium (system-
level)

Combines CNN for spatial features and
LSTM for temporal dependencies

Macro-prediction System-level workload
forecasting

esDNN [38] Cloud workload pre-
diction & resource op-
timization

Medium (system-
level)

GRU-based deep learning for time series
forecasting

Macro-prediction System-level workload
& resource management

Facebook
Prophet [39]

VM workload behavior
prediction

Medium (workload-
level)

Prophet framework with hyperparameter
tuning and data preprocessing

Macro-prediction Workload pattern fore-
casting (steady, trending,
seasonal, etc.)

MICRAST Individual user con-
sumption prediction

High (user-level) Pre-processing steps (clustering, uni-
forming, time alignment) + LSTM-RNN

Micro-prediction Granular, personalized
predictions

Fig. 5. The MICRAST approach.

Fig. 6. The Macro-prediction approaches.

for forecasting SDSC Par’s traces and around 124% for ANL-
interpad. While our approach improved all the MAPE scores

to below 6% (the majority to below 1%), notably in the traces
of SDSC Par’s and ANL-interpad (see Fig. 8).
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TABLE VII. COMPARISON OF UNI-ATTRIBUTES FORECASTING

Forecasting approach R2 MAPE
LSTM-RNN 30% 42.78%
MICRAST 97% 2.38%

(a) LSTM-RNN

(b) MICRAST

Fig. 7. Comparison of R² results for uni-attribute forecasting between
(LSTM-RNN and MICRAST).

The above results are mainly due to the characteristics
of cloud traces, as demonstrated in the analysis illustration
in Subsection II-B and Fig. 1. Some traces exhibited abrupt
and unexpected variations with a high standard deviation.
Specifically, the standard deviation of Requested Number of
Processors in SDSC Par 1996, 1995, and ANL-Intrepid was
above 10K. Without a suitable extraction process, the impact
of such a characteristic poses a great challenge for the LSTM-
RNN. This, in turn, led to notably low and unstable perfor-
mance. While the performance of our approach suggests that
the filtering and clustering processes were highly effective for
extracting useful patterns from even these traces. For example,
we observed this phenomenon with extracted patterns from
the ANL-Intrepid trace (shown in Fig. 9) against their pre-

Fig. 8. Comparison of MAPE results for uni-attribute forecasting.

extracted versions (illustrated in Fig. 1). As mentioned earlier,
in this context, these patterns represent the hidden trends in
users’ consumption records. This facilitated the learning and
prediction process for the RNN model in MICRAST.

Fig. 9. Extracted pattern from ANLinterpad trace attribute.

Finally, we calculated the relative deviation (RD) for the
R2 results of both approaches. We drew boxplots for these RD
distributions in Fig. 10. We compared them to show the level
of consistency for each approach. Accordingly, the LSTM-
RNN showed a wide range of RD spreading for 111 percentage
points. While our approach performed with a narrower distri-
bution for only 1.8 percentage points, showing more centered
R2 scores. Such narrow distribution with the high R2 of 97%
indicates that our approach can perform more accurate and
consistent forecasting in the uni-attribute scenario compared
to the related works approach.

2) Multi-attributes forecasting scenario: In the second
scenario, we observed that related work exhibited even lower
performance than previously. The cumulative distribution re-
sults in Fig. 11a show a low R2 of below 5 percent for three
of the traces. This is increased from only one trace in the uni-
attribute forecasting. In contrast, our approach maintained its
accuracy for the multi-attribute scenario, with no traces falling
below 90% R2, as depicted in Fig. 11b.
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Fig. 10. A Relative deviation comparison for uni-attribute forecasting.

(a) LSTM-RNN

(b) MICRAST

Fig. 11. Comparison of R² results for multi-attribute forecasting between
(LSTM-RNN and MICRAST).

Furthermore, the scores in Fig. 12 show an even higher

MAPE for the LSTM-RNN approach. It recorded around 166%
to 211% MAPE for SDSC-Par’s traces and around 127% for
ANL-Intrepid. This is an increase of about 2 percentage points
compared to uni-attribute forecasting. While our approach
maintained the MAPE of below 5.30% for all the traces (Table
VIII).

Fig. 12. Comparison of MAPE results for multi-attribute forecasting.

TABLE VIII. COMPARISON OF MULTI-ATTRIBUTES FORECASTING

Forecasting approach R2 MAPE
LSTM-RNN 27% 43%
MICRAST 97% 1%

These results are due to challenges caused by the use of
multiple attributes with sudden changes characteristic. Such
characteristics cause difficulties for the LSTM-RNN approach
to capture possible correlation between these attributes, as
they lack in providing meaningful patterns. While the extrac-
tion phase in MICRAST enables uncovering these attributes
detailed patterns through clustering, making it easier for the
prediction model (i.e. RNN model) to capture possible corre-
lations.

Fig. 13. A Relative deviation comparison for multi-attribute forecasting.

www.ijacsa.thesai.org 864 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

Fig. 14. Confidence range for MICRAST approach over time.

The boxplots for the relative deviation distribution of
both approaches in Fig. 13 showed that LSTM-RNN failed
to adapt to this type of forecasting. It recorded a relative
deviation spread of 212 percentage points. This is higher
than the uni-attribute forecasting by around 100 percentage
points. While our approach maintains consistency in multi-
attribute forecasting, the relative deviation spreads by only 1.6
percentage points.

B. Confidence Range for MICRAST

In this experiment, we measured the forecasting confidence
by demonstrating the change in R2 values for our approach
as we extended the range of the forecast. We varied the
range between 0.05% and 20% for each trace’s training data
(e.g. if the training data was 1 hour long, we made forecasts
of 18s to 9m into the future). We have chosen this range
because our observations showed that within this range there
are significant chances for consumption pattern changes for
each trace. Therefore, evaluating across the complete range
demonstrates our ability to cope with forecasting even these
changes.

We applied the same experimental configurations as in
the previous evaluation. Similarly, we conducted uni-attribute
forecasting of users’ consumption preferences of Requested
Number of Processors of all the selected traces in Table V.
Finally, we calculated the median of these traces’ R2 for

each step. Ultimately, the (R2-median, R2) over a particular
forecasting range gives our MICRAST confidence.

The results in Fig. 14 show that our approach forecasted
the majority of the traces with R2 distributed at a range of 5
percentage points around the median of 98% R2. This range
expanded to 19 percentage points around the median of 93%
R2 when reaching 20% of the steps in the training data.
This expansion is mainly noticed in the traces of DAS2 and
ANL-Intrepid. As mentioned previously, these traces exhibit
a significant characteristic of sudden changes in their con-
sumption patterns, as illustrated for the ANL-Intrepid trace in
Fig. 1 at page. This characteristic raises more challenges for
the RNN model when the time step increases, even after the
extraction process, affecting the prediction quality over time.
Nevertheless, Fig. 14 shows that our approach can maintain
the high R2 median around 95% to 98% for the majority of
the traces. While it drops by only 5 percentage points (to 93%)
when reaching the full 20% of the rows from the training trace.
This demonstrates that predictions up to 4% of the trace can be
relied on for all traces, while for most traces we can reliably
predict even 20% into the future of the training data.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach MICRAST for
forecasting users’ preferences in a cloud environment based
on their consumption patterns. Our approach conduct this by
extracting these patterns from the input traces through filtering
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and clustering processes. Then it uniforms them through time
alignment, linear interpolation, and normalisation. Finally, our
approach passes the uniformed patterns for forecasting with
RNN model, which we selected through a preliminary exper-
iment. When comparing our work with prior art, we demon-
strated that such extraction and pre-processing in MICRAST
enables it to provide more efficient prediction for traces that
exhibit characteristics of an abrupt change. We evaluated the
MICRAST approach through the following experiments. First,
we compared our approach against that used in the related
works (i.e. LSTM-RNN) to demonstrate its superiority. Our
approach showed the ability to conduct both univariate and
multivariate forecasting with an accuracy of 98%, surpassing
the LSTM-RNN approach by around 70 percentage points.
Second, we measured the confidence range of our approach
by observing how the accuracy changed when we increased
how far ahead the forecasting needed to go. The results show
that the MICRAST was able to forecast users’ preferences with
a confidence level between 95% and 98% when forecasting for
a duration of 20% of the training data.

The limitation of our study is the lack of investigating it’s
benefit for real world application and it’s efficiency for other
types of application beyond cloud computing. Therefore, for
future work, we aim to investigate the applicability of our
approach for energy awareness improvements among private
cloud users. After predicting users’ consumption preferences,
we could notify them for alterations they could do to their
consumption. We also consider different scenarios of users’
reactions and test the effect of these reactions on cloud
utilisation by implementing them in cloud simulators such as
CloudSim or DISSECT-CF. In addition, we intend to inves-
tigate our approach for other purposes and datasets besides
cloud computing. One potential implementation of MICRAST
is in energy management sectors, especially smart grids. By
collecting the consumption records of different users in the
grid, our approach could be used to extract and predict their
patterns. This could help in managing demands, optimising
grid operations, and planning renewable energy integration.
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