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Abstract—Electronic Medical Record (EMR) is a commonly
used tool in medical diagnosis, which has static recording,
difficulty in combining and analyzing different forms of data,
and insufficient diagnostic efficiency and accuracy. This article
proposes a CNN (Convolutional Neural Network)-LSTM (Long
Short-Term Memory) algorithm for efficient processing and
intelligent diagnosis of Internet of Things (IoT) medical data.
The Word2Vec model is applied to clinical text data and its
ability is utilized to capture semantic relationships between
words. Medical image data is feature extracted using CNN,
while physiological signal data is dynamically processed using
LSTM to identify trends and anomalies in the data. An attention
mechanism is applied to dynamically adjust the model’s attention
weights for different types of data. By analyzing the samples
of health, cardiovascular disease, diabetes, chronic obstructive
pulmonary disease, hypertension, and chronic kidney disease,
the CNN-LSTM in this article can accurately classify a variety of
diseases, and the accuracy rate of healthy individuals has reached
97.8%. By combining CNN-LSTM with multimodal data, the
accuracy and efficiency of medical diagnosis have been effectively
improved.

Keywords—Intelligent diagnosis; Internet of Things medical;
electronic medical records; long short-term memory; convolutional
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I. INTRODUCTION

With the rapid development of information technology and
the healthcare industry, electronic medical record (EMR) has
become one of the core tools for medical data management.
EMR [1-2] stores various data such as patients’ medical
history, examination reports, imaging data, and medication use,
providing important basis for clinical diagnosis and treatment.
The use of traditional electronic medical records faces many
challenges. Most EMR records patients’ conditions in a static
manner, lacking real-time monitoring of their health status
and unable to reflect dynamic changes in their condition in
a timely manner. EMR data comes in various forms, including
text, images, structured data, and unstructured data, which
makes data integration and analysis complex. The lack of
unified data standards between different hospitals or medical
institutions increases the difficulty of information sharing and
data integration, which in turn affects the efficiency and
accuracy of diagnosis. With the rapid increase in the volume
of medical data, traditional manual analysis and processing
methods have become difficult to cope with. How to efficiently
and accurately analyze and process these massive amounts of
data has become an important issue in medical data research.
The development of Internet of Things (IoT) technology has
brought new opportunities to the medical field, especially

in the areas of medical data collection, transmission, and
processing. Through intelligent sensors, wearable devices, and
implantable devices, the Internet of Things can collect real-
time physiological data of patients, including heart rate, blood
pressure, blood sugar, etc., providing dynamic data sources for
electronic medical records and filling the gap of traditional
EMR static recording. The massive data generated by the
Internet of Things has also brought new challenges, and how
to efficiently process and analyze these multimodal and hetero-
geneous medical data has become a focus of current research.
Deep learning techniques [3-4] have emerged, among which
convolutional neural networks and long short-term memory
networks have shown outstanding performance in processing
complex data and automatically extracting features. Combining
IoT technology, deep learning algorithms can automatically
analyze medical data from different data sources, extract high-
value information, and make accurate diagnoses and predic-
tions, thereby improving the processing efficiency of medical
data and the intelligence level of diagnosis. This fusion tech-
nology provides doctors with diagnosis and treatment advice,
promoting the development of personalized medicine.

This study proposes a multimodal diagnostic model based
on CNN (Convolutional Neural Network)-LSTM (Long Short-
Term Memory), providing a new solution for early diagnosis
and monitoring of chronic diseases. This model integrates
medical imaging data, temporal physiological data, and clinical
text data, significantly improving the accuracy and efficiency
of disease classification. The model performs excellently in
the classification tasks of healthy individuals and various
chronic diseases, surpassing traditional diagnostic methods.
This contribution not only provides more accurate decision
support for clinical practice, but also provides empirical basis
for research in related fields, promoting the development of
intelligent healthcare.

The innovation of this study is reflected in multiple aspects.
The combination of deep learning algorithms CNN and LSTM
fully utilizes the advantages of convolutional neural networks
in image feature extraction and the powerful capabilities of
long short-term memory networks in temporal data processing,
thereby achieving comprehensive analysis of multimodal data.
By applying attention mechanism, it can automatically identify
and focus on key features in the input data, further improving
the diagnostic accuracy. The use of Word2Vec technology to
extract key disease descriptions, symptoms, and diagnostic
information from clinical text data provides richer contextual
information for the model and promotes effective fusion of
multimodal data. These innovations have laid the theoretical
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and practical foundation for future intelligent diagnostic sys-
tems.

This article has a clear organizational structure and clear
hierarchy. The introduction section clarifies the research back-
ground and significance, points out the limitations and ur-
gent needs of traditional diagnostic methods, and then in-
troduces the main objectives and research methods of this
study. The methods section provides a detailed explanation
of data collection, preprocessing, model construction, and
training processes, offering readers comprehensive technical
details. In the results section, the performance of the model
is visually demonstrated through charts and data analysis,
including evaluation indicators such as accuracy and Kappa
coefficient, ensuring the transparency and reliability of the re-
search results. The conclusion section summarizes the research
findings, analyzes their practical significance and limitations,
and provides prospects for future research directions. This clear
structure not only facilitates readers’ understanding, but also
enhances the academic value of the article.

II. RELATED WORKS

Medical diagnosis is an important component of the med-
ical field. With the advancement of technology, the methods
of medical diagnosis are constantly evolving, gradually shift-
ing from traditional doctor experience judgment to scientific
diagnostic methods based on data analysis. Early medical
diagnosis [5] mostly relies on the clinical experience and lim-
ited laboratory data of doctors, and the accuracy of diagnosis
largely depends on the professional knowledge and experience
accumulation of doctors. With the development of imaging
technology [6] and molecular diagnostic technology, medical
diagnosis has entered a data-driven stage. The widespread
application of imaging technology has made medical diagnosis
more dependent on digital imaging data, providing technical
support for early detection and accurate diagnosis of diseases.
Molecular diagnostic technology [7], through in-depth analysis
of the genome, proteome, and metabolomics, can identify the
molecular characteristics of diseases at the microscopic level,
especially playing an important role in cancer diagnosis and
personalized treatment. The amount of medical data is huge
and complex, and how to effectively extract useful information
from it remains a huge challenge. Many studies have begun
to explore how to improve the accuracy and efficiency of
medical diagnosis through intelligent algorithms and big data
analysis technologies. Tian Miao’s research [8] showed that
by combining advanced artificial intelligence and machine
learning algorithms, medical diagnosis can be automated and
intelligent, especially in image analysis, pathological analysis,
and disease prediction, where significant progress has been
made. This data-driven diagnostic approach not only improves
the accuracy of diagnosis, but also reduces the workload of
doctors and promotes the intelligent transformation of the
medical field.

Electronic medical records, as the main carrier of medical
data, have been widely used in the global healthcare system. It
records the entire process data of patients from initial visit to
subsequent treatment, including medical history, examination
reports, diagnostic conclusions, and medication use, becoming
an important basis for clinical diagnosis. With the development
of big data and cloud computing technology, researchers have
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begun to explore how to utilize these rich electronic medical
record data to provide support for medical diagnosis. Early
EMR diagnosis [9] mainly relies on the structuring and normal-
ization of data for statistical analysis and decision support by
doctors and researchers. Due to the heterogeneity and diversity
of EMR data, unstructured data such as text, images, and
audio are widely present, and traditional diagnostic methods
have low efficiency in processing these data. The application
of IoT technology [10-11] has brought new opportunities for
the diagnosis of electronic medical records. Through wearable
devices and implanted sensors, the Internet of Things can
monitor patients’ physiological data in real-time, including
heart rate, blood pressure, blood sugar, etc., and seamlessly
integrate these data into electronic medical record systems to
achieve dynamic tracking and real-time diagnosis of patients’
conditions. The EMR system combined with the Internet of
Things can achieve remote monitoring and diagnosis through
remote medical devices, providing an effective means for the
continuous treatment of chronic disease patients. Diabetes
patients can monitor the blood glucose level in real-time
through the Internet of Things device, and upload the data to
the EMR system. Doctors can adjust the treatment plan through
the intelligent analysis results provided by the system. This
electronic medical record diagnosis system, which combines
IoT technology, is gradually improving the traditional medical
diagnosis mode, enhancing diagnostic efficiency and accuracy.
The Deep Multi-Scale Fusion Neural Network (DMFNN),
as presented by Dinesh Kumar Reddy Basani et al. (2024),
was designed for fault detection in IoT systems using data
integration. Leveraging their fusion strategy, our framework
processes diverse medical IoT datasets by extracting layered
information and handling noise which improve diagnostic
precision and operational reliability [12]. Naresh Kumar Reddy
Panga (2022) utilized Discrete Wavelet Transform (DWT) for
analyzing ECG signals in IoT-based health monitoring plat-
forms. Drawing from their methodolody, their DWT approach
is employed in our research to isolate features and diminish
interference. This enables improved signal quality and reduc-
ing computational load, supports to achieve greater accuracy
and timely analysis [13]. A structural model combining IoT,
fog, and cloud computing was developed by Thirusubramanian
Ganesan, (2021) enables continuous ECG surveillance using
machine learning. This layered architecture is incorporated in
our proposed scheme to manage medical IoT data streams and
processing stages, which enhance scalability, and diagnostic
accuracy [14]. Rajababu Budda (2021) developed a framework
blending Artificial Intelligence and Big Data analytics tailored
for 10T healthcare, concentrating on optimized performance
and patient-focused services. Building on this foundation, our
research narrows the focus of their conceptual framework with
an emphasis on deep learning in our work to enable proficient
medical data handling and insightful diagnosis, facilitating
the creation of scalable, accurate, and real-time monitoring
solutions while advancing diagnostic reliability and sustainable
care delivery [15]. Sri Harsha Grandhi (2021) proposed an
adaptive wavelet transform method combined with wearable
IoT devices for effective pediatric health monitoring. Our
system embeds this adaptive wavelet transform method to
refine raw medical data before deep learning analysis. This
ensures cleaner signals and accurate feature extraction through
wavelet denoising, promotes stability and efficient real-time
observation [16]. In recent years, significant progress has been
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made in the application of deep learning technology in med-
ical diagnosis, especially in the field of intelligent diagnostic
algorithms. Deep learning is a branch of machine learning
that automatically extracts features from massive amounts of
data through multi-layer neural networks, and then performs
classification, prediction, and decision-making. In the medical
field, deep learning [17] is widely used in disease diagno-
sis, image analysis, genomics, and other fields, significantly
improving the accuracy and automation of diagnosis. Early
research mainly focuses on the use of convolutional neural
networks in image diagnosis. Through automated analysis of
medical images such as X-rays, deep learning algorithms can
effectively identify pathological features such as tumors and
lesions. The performance of the lung cancer image recognition
system based on CNN [18] in tumor detection has approached
or even exceeded the diagnostic level of human radiologists.
Over time, the application of deep learning in processing
unstructured data has also been widely studied. Recurrent
neural networks and long short-term memory networks [19]
are widely used to analyze electronic medical record text data,
automatically extract key information from medical records,
and dynamically predict the patient’s condition. Attention
mechanisms [20] and new deep learning architectures such
as autoencoders have also been applied to the fusion and
processing of medical data, enhancing the ability to analyze
complex and multimodal data. Combining IoT technology,
deep learning algorithms can process real-time medical data
from different data sources, achieving personalized and accu-
rate intelligent diagnosis. This intelligent diagnostic system not
only improves the efficiency of medical resource utilization,
but also provides strong support for personalized and remote
healthcare.

In recent years, significant progress has been made in the
application of deep learning technology in medical diagnosis,
especially in the field of intelligent diagnostic algorithms.
Deep learning is a branch of machine learning that automati-
cally extracts features from massive amounts of data through
multi-layer neural networks, and then performs classification,
prediction, and decision-making. In the medical field, deep
learning [17] is widely used in disease diagnosis, image
analysis, genomics, and other fields, significantly improving
the accuracy and automation of diagnosis. Early research
mainly focuses on the use of convolutional neural networks
in image diagnosis. Through automated analysis of medical
images such as X-rays, deep learning algorithms can effec-
tively identify pathological features such as tumors and lesions.
The performance of the lung cancer image recognition system
based on CNN [18] in tumor detection has approached or even
exceeded the diagnostic level of human radiologists. Over time,
the application of deep learning in processing unstructured
data has also been widely studied. Recurrent neural networks
and long short-term memory networks [19] are widely used
to analyze electronic medical record text data, automatically
extract key information from medical records, and dynamically
predict the patient’s condition. Attention mechanisms [20] and
new deep learning architectures such as autoencoders have
also been applied to the fusion and processing of medical
data, enhancing the ability to analyze complex and multimodal
data. Combining IoT technology, deep learning algorithms can
process real-time medical data from different data sources,
achieving personalized and accurate intelligent diagnosis. This
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intelligent diagnostic system not only improves the efficiency
of medical resource utilization, but also provides strong sup-
port for personalized and remote healthcare.

III. METHODS
A. IoT Medical Data Collection and Preprocessing

1) Device deployment: In the integration of IoT technology
and the medical field, selecting sensors and wearable devices
that are suitable for the target disease and patient health
status is the key to achieving personalized medicine. Real-
time monitoring of various physiological parameters through
sensor devices helps medical staff obtain comprehensive and
dynamic health data. Heart rate sensors are used to monitor
heart health, especially for patients with heart disease. Through
implantable devices such as pacemakers, sensors can precisely
measure the electrical activity of the heart, avoiding delays
and errors in traditional methods. This type of device, when
combined with external devices, can transmit heart rate data in
real-time, providing strong support for remote diagnosis and
emergency treatment. Changes in heart rate can reveal early
heart problems, and timely intervention can greatly reduce the
risk of sudden heart disease.

Blood pressure sensors are also important monitoring tools,
especially for patients with hypertension, which can help
doctors track blood pressure fluctuations in real-time. Tradi-
tional blood pressure monitoring methods require patients to
manually measure blood pressure at regular intervals, and most
of them are discrete data. Through wearable blood pressure
monitoring devices, dynamic changes in blood pressure data
can be continuously obtained. By installing on the arms, wrists,
and other parts, based on IoT transmission, real-time data can
be sent to the cloud for doctors to analyze.

Body temperature sensors are used for patients with fever,
infections, and other diseases that require temperature mon-
itoring. Body temperature is automatically monitored and
continuous data streams are generated through non-contact
or contact sensors placed on the forehead, ears, or wrist.
Combined with the Internet of Things transmission network,
data is uploaded in real-time to the hospital system, allowing
doctors to remotely analyze the trend of temperature changes
and predict the deterioration of the condition in advance. For
patients with a long-term medical history or weak immune
system, temperature fluctuations may be an early signal of
infection or other potential problems. With the help of IoT
devices, rapid detection and measures can be taken to reduce
the probability of disease deterioration.

Blood glucose monitoring is a vital health management
link for patients with diabetes. The blood glucose level is
continuously detected through subcutaneous sensors, and the
data is transmitted to intelligent devices in real-time to facili-
tate patient self-management. Doctors can automatically adjust
medication doses or dietary plans based on historical data. This
non-invasive and continuous monitoring method can improve
patients’ quality of life and greatly reduce the risk of acute
complications.

The blood oxygen saturation sensor continuously monitors
the oxygen content in the blood through optical sensors in-
stalled on fingers, earlobes, and other parts. The fluctuation of
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blood oxygen levels is a key indicator for judging respiratory
distress or abnormal lung function. Through real-time uploaded
blood oxygen data from IoT devices, doctors can promptly
determine whether patients need oxygen therapy or hospitaliza-
tion. By combining multiple data sources such as heart rate and
blood pressure, the IoT platform can conduct comprehensive
analysis and generate personalized treatment plans through
algorithms, helping patients achieve self-monitoring in a home
environment and reducing hospitalization needs. The IoT data
collection network is shown in Fig. 1.
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Fig. 1. IoT data collection network.

2) Data collection and transmission: Various physiological
and non physiological data are collected through different
types of sensors, including physiological signal data, medical
imaging data, and clinical text data. Real-time physiological
data collected by sensors is transmitted to a medical data
management platform through wireless networks, and the data
can be uploaded to the cloud in real-time, ensuring that all
monitoring data can be continuously stored, updated, and
analyzed without interruption. IoT devices can also interface
with the hospital’s electronic medical record system, ensuring
that these real-time data can be seamlessly integrated with the
patient’s historical medical records.

This article is conducted in a tertiary comprehensive hos-
pital, recruiting a total of 300 participants, all of whom are
outpatient or inpatient patients. Among the subjects, 100 are
healthy individuals for the control group, and another 200 are
patients with different types of diseases, including five types of
diseases: cardiovascular disease patients (60), diabetes patients
(50), chronic obstructive pulmonary disease patients (40),
hypertension patients (30), and chronic kidney disease patients
(20). All participants sign informed consent forms before
participation, and data is collected in real-time through IoT
devices, covering physiological parameters such as heart rate,
blood pressure, blood glucose, and blood oxygen saturation,
aiming to evaluate the application effect and accuracy of the
intelligent diagnostic system in different disease scenarios.

The data collection period is from June 2022 to December
2022, and the collected physiological data is shown in Table
L.

In Table I, part of physiological data of a healthy individual
is presented, with systolic and diastolic blood pressure data
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TABLE I. DISPLAY OF PART OF PHYSIOLOGICAL DATA

Blood Body Blood Blood
Date pressure | temperature | glucose oxygen'

(mmHg) | (C) (mefdL) saturation

(%)

2022-6-1 120/80 36.6 90 98
2022-6-2 118/79 36.7 88 99
2022-6-3 121/80 36.5 91 98
2022-6-4 119778 36.6 89 99
2022-6-5 122/81 36.6 92 98
2022-6-6 120/79 36.7 90 99
2022-6-7 119/77 36.5 89 98
2022-6-8 121/80 36.6 91 99
2022-6-9 120/78 36.6 90 98
2022-6-10 | 119/79 36.5 88 99

included in the blood pressure. Through IoT sensors, phys-
iological data information of subjects can be accurately and
continuously collected. The collected image data [21-22] are
shown in Fig. 2.

Fig. 2. Collected image data.

3) Data preprocessing: The data collected by IoT devices
is noisy due to environmental interference, sensor accuracy,
or other factors. To remove noise, Gaussian filters are used to
smooth the data and reduce the interference of random noise.
The kernel function formula for Gaussian filtering is:

1 _a?4y?

M

Glz,y) = 5_—e

o is the standard deviation, which controls the smoothness
of the filter. In order to avoid the impact of missing data on the

analysis results, data filling must be carried out. The formula
for mean interpolation method is:

o(t) = z(t—1) ;x(t +1) @)

x(t) is the missing data at time point t , and z(¢t — 1) and
x(t + 1) represent adjacent observations before and after.

Physiological signals such as heart rate, blood oxygen
saturation, and blood pressure have different numerical ranges.
Through standardization, is is ensured that data from each di-
mension falls within the same range. The standardized formula
for Z -score is:

= 3
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Due to the fact that IoT data may come from multiple
devices, there may be inconsistencies in the data collected
by each device at the same time or in the same scenario.
Therefore, consistency checks and corrections are necessary
before data fusion. By using time alignment and device cali-
bration techniques, it is ensured that data from different sources
accurately reflect the patient’s status at the same time.

B. Multimodal Medical Data Fusion

In IoT healthcare systems, combining multiple data sources
to form multimodal datasets provides more comprehensive
diagnostic evidence. The collected physiological signal data,
medical imaging data, and clinical text data are combined
to form a multimodal dataset. After data integration is com-
pleted, feature extraction is performed for different types of
data. The Word2Vec is used to automatically extract key
disease descriptions, symptoms, and diagnostic information
from clinical text data. For medical image data, CNN is used
for automated feature extraction. LSTM is used to process
dynamic changes in physiological data and extract key trend
information. Word2Vec [23-24] is a deep learning model that
automatically extracts disease descriptions, symptoms, and
diagnostic information by capturing semantic relationships
between words. Through training, Word2Vec is able to gener-
ate vector representations for each word, making words with
similar meanings closer together in the vector space. The
formula for calculating word vectors is:

T
1
v(w) = TZlogP(wt | Wiy vy Wign) 4)
t=1

CNN can effectively extract high-level features of input
data by stacking multiple convolutional and pooling layers.
Each convolutional layer performs feature mapping on the
input data by applying convolutional kernels, as follows:

2

1
Xi+m,j+n . Km,n +b (5)
0

M—1
Zij = E
m=0

n

Z;; is the output feature map, and K represents the
convolution kernel. Maximum pooling is used to reduce the
dimensionality and computational complexity of feature maps,
and the formula is:

Zij = max Xim jin (6)
m,n

By combining multi-layer convolution and pooling, CNN
can automatically extract useful features from complex input
data, enhancing the model’s classification performance. LSTM
can effectively capture long-term dependencies and solve the
gradient vanishing problem by applying gating mechanisms.
When processing physiological data, LSTM can analyze physi-
ological parameters at different time steps in real-time, identify
their dynamic trends, and provide support for intelligent diag-
nosis. This ability makes LSTM a powerful tool for processing
complex time series data.
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C. Design and Training of Deep Learning Models

1) Model architecture design: The model designed in this
article integrates convolutional neural networks and long short-
term memory networks [25-26], aiming to improve the intel-
ligent diagnostic capabilities of medical image analysis and
temporal physiological data processing. CNN is responsible
for processing medical imaging data and effectively extracting
lesion features from images through multi-layer convolution
and pooling operations. Convolutional layers can capture local
features and identify potential lesion areas in images, while
pooling layers help reduce feature dimensions and enhance the
model’s focus on important features. This process enables the
model to accurately identify pathological features in complex
imaging data, improving diagnostic accuracy.

The model structure designed in this article is shown in
Fig. 3.

= I_ Iy [y \\ _
[ l _F |
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Fig. 3. Model structure.

2) Data annotation and model training: The annotation
process involves associating the doctor’s diagnostic results
with input data, including medical imaging, time-series physio-
logical data, and textual data. Doctors determine the diagnostic
label and specific disease category for each sample based on
imaging analysis and clinical evaluation results. Professional
medical personnel are assisted to ensure the accuracy and
reliability of the labels. Using multiple doctors for indepen-
dent annotation and resolving annotation differences through
collective discussion can further improve the consistency and
objectivity of annotation results.

After annotation is completed, the dataset is divided into
a training set and a test set, with 80% as the training set
and 20% as the test set. Cross-validation method is used to
further prevent overfitting of the model. By further dividing
the training set into multiple subsets, the model undergoes
multiple rounds of training and validation on different sub-
sets, effectively reducing its dependence on specific data and
ensuring the robustness and reliability of the model.

The model is trained using annotated multimodal data and
the model parameters are optimized using the Adam optimizer.
The Adam optimizer combines the advantages of momentum
and adaptive learning rate, making the training process more
efficient and stable. The cross entropy loss function is used to
measure the performance of the model in classification tasks.
The cross entropy loss function can be expressed as:
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N ¢
N 1 N
L(y,9) = TN 2 Zyl] log (9i5) (7) )
1=1 j=1
D. Diagnostic Accuracy Performance

Using CNN-LSTM for intelligent diagnosis, the confusion
matrix results for different disease diagnoses are shown in Fig.
4.
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Fig. 4. Confusion matrix.

In Fig. 4, health, cardiovascular disease, diabetes, chronic
obstructive pulmonary disease, hypertension, and chronic kid-
ney disease are represented by Z1, Z2, Z3, Z4, 75, and
76 respectively. The CNN-LSTM model shows good clas-
sification ability in the classification tasks of six types of
health conditions and diseases. All 100 healthy individual
samples are correctly classified as Z1, indicating that the
model has very high robustness in identifying disease-free
individuals. For cardiovascular diseases, the model also shows
excellent classification performance. Although the model cor-
rectly classifies 59 samples, one sample is misclassified as
a healthy individual, indicating that the model may have a
small margin of error in distinguishing healthy individuals
from patients with mild cardiovascular symptoms. There is
still high reliability in identifying patients with cardiovascular
disease. In the classification of diabetes, the model correctly
classifies 48 samples, and 2 samples are wrongly classified as
healthy individuals. Some characteristics of diabetes patients
may be similar to those of healthy individuals, leading to slight
confusion of models. The classification performance of chronic
obstructive pulmonary disease and chronic kidney disease is
relatively excellent, with the model correctly classifying 40
and 20 samples, respectively, without any misclassification,
demonstrating its reliable classification performance in these
two types of diseases. Two samples of hypertension are
misclassified as chronic kidney disease, which may be due
to certain similarities in physiological signals or symptoms
between the two types of diseases, resulting in confusion in
the model. The CNN-LSTM model has high classification
accuracy for different categories of diseases, but there are a
few misclassifications between healthy individuals and certain
chronic diseases.
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The comparison results of accuracy for different disease
categories are shown in Fig. 5.
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Fig. 5. Accuracy of different disease categories.

In the accuracy results of the model for different dis-
ease categories in this article, the CNN-LSTM model shows
relatively stable and efficient accuracy in classifying various
diseases. The accuracy rate of healthy individuals is 97.8%,
indicating that the model can accurately identify disease-
free individuals, which reflects the model’s good ability to
distinguish healthy samples. The accuracy of chronic kidney
disease also reaches 97.7%, second only to healthy individuals,
indicating that the model has high sensitivity and reliability in
distinguishing kidney diseases. The accuracy rates of diabetes,
chronic obstructive pulmonary disease and cardiovascular dis-
ease are 97.2%, 97.4% and 96.6% respectively, which means
that the model can still maintain a high classification accuracy
when dealing with these common chronic diseases. Although
the accuracy of cardiovascular disease is slightly lower, it still
maintains a high level of over 96%, proving that the model also
has a certain degree of robustness in identifying cardiovascular
disease. The classification accuracy of hypertension diseases is
96.8%, slightly lower than other categories, but the difference
is not significant, indicating that the model also has a good
recognition effect on blood pressure fluctuation diseases. Over-
all, the classification accuracy of the model is higher than 96%
in all disease categories, indicating its excellent performance in
multimodal data processing and feature extraction, with strong
generalization ability and application potential.

E. Comparison with Baseline Model

In order to comprehensively analyze the intelligent diag-
nostic performance of the model in this article, it is compared
with other models, and their performance are analyzed through
AUC values. The AUC (Area Under the Curve) data is shown
in Table II.

By evaluating the performance of different models on
multimodal medical datasets using AUC metrics, the CNN-
LSTM model significantly outperforms other models, exhibit-
ing the highest AUC values (between 0.95 and 0.98). The
advantage of CNN-LSTM lies in its effective integration of
the characteristics of convolutional neural networks and long
short-term memory networks: CNN excels at extracting spatial
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TABLE II. AUC DATA TABLE

GRU RE SVM
Lo CNN- LS (Gated (Support Trans
Disease LSTM CNN ™ Recurrent gf)i:i;’m Vector former
Unit) Machine)
71 0.98 0.95 092 | 093 0.85 0.83 0.94
72 0.97 0.94 0.91 0.92 0.84 0.82 0.93
73 0.96 0.93 0.9 091 0.83 0.8 0.92
74 0.97 0.94 092 | 093 0.86 0.84 0.94
z5 0.95 0.92 0.89 | 09 0.81 0.79 0.91
Z6 0.98 0.96 093 | 0.94 0.88 0.85 0.95

features from medical images, while LSTM can capture time-
dependent changes in physiological signals provided by IoT
devices, such as fluctuating trends in heart rate and blood
pressure. Through this combination, the CNN-LSTM model
can not only capture subtle lesion features in images, but
also identify long-term change patterns in physiological data,
greatly improving the diagnostic accuracy of diseases.

The separate CNN and LSTM models perform well in
processing single modal data, but the AUC value is slightly
lower due to the lack of processing capacity for another
modal data. CNN performs well in image processing, with
AUC values ranging from 0.92 to 0.96, while LSTM performs
well in processing time series data, but with AUC values
only between 0.89 and 0.93 in the absence of image data.
Traditional machine learning models, random forests, and
support vector machines perform the worst, with AUC values
ranging from 0.79 to 0.88, mainly because they rely on manual
feature extraction and cannot fully exploit complex features in
multimodal data.

The analysis results of Kappa coefficient and Matthews
correlation coefficient are shown in Fig. 6.

1.00
_ O Kappa coefficient
0.95- I Matthews correlation coefficient
2
§ 0.904
0.851 I |'| l
0.80-+ T - r
Z1 Z2 3 Z4 Z5 6
Disease

Fig. 6. Analysis results of Kappa coefficient and matthews correlation
coefficient.

The CNN-LSTM model performs well in the diagnosis of
multiple types of diseases, especially in healthy individuals and
cardiovascular diseases. The Kappa coefficient and Matthews
correlation coefficient are both close to 1.0, indicating that the
model has very high classification accuracy and consistency
for these two categories. A Kappa coefficient close to 1
means that the consistency between the model’s predictions
and the true labels is very good, avoiding the influence of
random classification; MCC is a more comprehensive evalua-
tion indicator that takes into account the balance between true
positives, false positives, true negatives, and false negatives.
With the increase of disease complexity, Kappa and MCC
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slightly decrease in chronic obstructive pulmonary disease,
hypertension, and chronic kidney disease, but still remain
above 0.85, demonstrating the robustness of the model in the
diagnosis of complex diseases. CNN-LSTM can effectively
capture features in imaging and physiological data, but the
overall performance of the model may be affected by the im-
balance of some datasets or the ambiguity of certain features.
The CNN-LSTM model exhibits strong generalization ability
and consistency when processing multimodal data, and has
high diagnostic accuracy.

F. Ablation Experiment

The macro-average precision can measure the performance
of multi-class classification, and the ablation experiment results
are shown in Table III.

TABLE III. RESULTS OF ABLATION EXPERIMENTS

Fold CNN- CNN LSTM
number | LSTM (%) | (%) (%)
1 96 93 92
2 95 92 91
3 97 94 92
4 96 93 91
3 %5 5 o1
6 96 93 92
7 97 o )
g % 55) o1
9 96 93 92
10 97 94 92

The macro-average precision of the CNN-LSTM model
performs the best in 10 folds, maintaining between 95.0% and
97.0%, demonstrating its robustness and superior performance
in multimodal medical data classification tasks. The macro-
average precision of the CNN model ranges from 92.0% to
94.0%, slightly lower than that of the CNN-LSTM, indicating
that the CNN model performs well in simple image processing
but cannot fully utilize the information of temporal data. The
macro-average precision of the LSTM model ranges from
91.0% to 92.0%, mainly due to its emphasis on temporal
feature extraction but lack of CNN’s ability to process image
features. The CNN-LSTM model significantly improves the
performance of multimodal data classification by combining
the image feature extraction capability of CNN and the tempo-
ral feature processing advantage of LSTM, making it suitable
for application in complex medical diagnosis scenarios.

G. Diagnosis Time

The diagnostic method in this article is compared with the
traditional electronic medical record diagnostic method, and
the comparison of diagnostic time is shown in Fig. 7.

For healthy individuals, this method only takes 15 seconds,
while traditional diagnostic methods require 200 seconds, with
a significant difference. In the diagnosis of cardiovascular
diseases, this method takes 18 seconds, while the traditional
method takes 211 seconds, showing a significant improvement
in efficiency. Diabetes and chronic obstructive pulmonary
disease take 16 seconds and 14 seconds respectively, which
show faster response time compared with the traditional 156
seconds and 145 seconds. For hypertension and chronic kidney
disease, the diagnostic method in this article is also more
efficient, completing diagnosis in 19 seconds and 17 seconds
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Fig. 7. Diagnosis time.

respectively, while traditional methods require 178 seconds and
176 seconds. This indicates that models based on CNN-LSTM
can quickly and efficiently process multimodal data, especially
in the context of the Internet of Things, greatly reducing
diagnostic time and helping to monitor patients’ health status
in real-time and provide timely personalized treatment plans.

IV. CONCLUSIONS

This article proposes a multimodal diagnostic model based
on CNN-LSTM, which significantly improves the accuracy and
efficiency of chronic disease diagnosis by combining medical
imaging data, temporal physiological data, and clinical text
data. This model has achieved high accuracy in the classifica-
tion tasks of healthy individuals and cardiovascular diseases,
diabetes, chronic obstructive pulmonary disease, hypertension
and chronic kidney disease, and is superior to traditional
diagnostic methods. This achievement not only provides more
precise diagnostic tools for clinical medicine, but also provides
patients with faster health monitoring methods, which has
important practical significance. This article combines mul-
timodal data fusion with deep learning algorithms to promote
the development of intelligent healthcare. Despite achieving
a series of positive results, the research still has limitations,
such as a relatively small sample size, which may affect the
model’s generalization ability. In addition, the performance of
models in handling specific diseases may also be limited by the
quality and diversity of input data. Future research can focus
on expanding the sample size, enhancing the adaptability and
robustness of the model, and exploring the combination of
other deep learning architectures with traditional methods to
further enhance the application potential of the model in com-
plex clinical scenarios. Through continuous optimization and
improvement, this study has laid the foundation for achieving
more intelligent and personalized medical services.
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