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Abstract—In the need for artificial intelligence application on 

the analog circuit design automation, larger and larger datasets 

containing analog and digital circuit pieces are required to 

support the analog circuit recognition systems. Since analog 

circuits with almost similar designs could produce completely 

different outputs, in case of poor netlist to graph abstraction, 

larger netlist input circuits could generate larger graph dataset 

duplications, leading to poor performance of the circuit 

recognition. In this study, a technique to detect graph dataset 

duplication on big data applications is introduced by utilizing the 

output vector representation (OVR) of the untrained Graph 

Neural Network (GNN). By calculating the multi-dimensional 

OVR output data into 2-dimentional (2D) representation, even 

the random weighted untrained GNN outputs are observed to be 

capable of distinguishing between each graph data inputs, 

generating different output for different graph input while 

providing identical output for the same duplicated graph data, 

and allowing the dataset’s duplication detection. The 2D 

representation is also capable of visualizing the overall datasets, 

giving a simple overview of the relation of the data within the 

same and different classes. From the simulation result, despite 

being affected by the floating-point calculation accuracy and 

consistency deficiency, the F1 score using floating-point identical 

comparisons are observed with an average of 96.92% and 

93.70% when using CPU and GPU calculations, respectively, 

while the floating-point rounding calculation is applied. The 

duplication detection using floating point range comparison is the 

future work, combined with the study of the 2D GNN output 

behavior under the ongoing training process. 

Keywords—Big data; graph neural network; artificial 

intelligence; analog circuit design 

I. INTRODUCTION 

In computer science, graph have been use in many complex 
structures, especially structures that focus on the objects (nodes 
or vertices) and its connections (edges), including chemical 
structure, human social connection and behavior, electronics 
circuits, internet World Wide Web, biological structure[1]-[4], 
etc. In some specific applications, especially in the analog 
circuit design, the graph can even enable the artificial 
intelligence (AI) to be applied to the analog electronic design 
automation (EDA) using graph neural network (GNN) based 
recognitions [5]-[7]. 

For global applications, large graph data is something 
unavoidable. The real-world graph can reach the order of 
trillion nodes and edges, opening new challenges for graph 

duplication detection, in case identical graphs exist in the large 
data[3][4]. In line with the current situation, for large data 
applications in the analog circuit design field, graph data 
duplication challenge has also emerged. To generate large 
datasets, an extraction technique explained in [8] is used. The 
text-based netlist is used as input, and, split netlist is generated 
as the output. By using multiple EDA-generated netlists or by 
using a manually created netlist, duplication of the same circuit 
extracted from different areas of multiple analog circuits (like a 
current mirror circuit) are observed to happen frequently [9], as 
shown in Fig. 1. 

 
Fig. 1. A dye photograph of analog circuit used as simulation input data in 

[8] shows multiple uses of the same circuit in various areas inside the red, 

green, and orange squares 

Furthermore, for AI training and circuit recognition, the 
text-based netlist is converted into graph dataset using netlist to 
graph abstraction. The recognition accuracy and training 
performance is dependent on the abstraction technique [10]-
[13]. Despite different circuit netlist are used as abstraction 
process input data, with poor abstraction technique, duplicate 
graphs occur, reducing the recognition accuracy; thereby, 
increasing the necessity of graph duplication detection. 

The technique to detect graph duplication in large data is 
already proposed [1][3][4] [14]. However, the technique to 
detect graph duplication in the literature is directly calculated 
from the graph data itself. In this study, graph duplication 
detection technique is proposed by using an integration with 
GNN recognition, determining the duplication status by 
calculating the GNN recognition output results. 
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This study is arranged as follows: The conversion of multi-
dimensional data into 2-dimensional (2D) data and the graph 
duplication detection techniques are introduced in Section II. 
The accuracy and consistency susceptibility of the floating-
point calculation and the methods used to overcome the 
weakness are described in Section III. The simulation results 
are provided in Section IV, while the concluding remarks are 
provided in Section V. 

II. GRAPH TO 2-DIMENTION INFORMATION CONVERSION 

In this study, a new technique to detect graph duplication 
on a graph dataset is proposed. The new technique is done by 
utilizing the GNN output vector representation, calculating the 
output result and then determining the identical status of the 
graph. This technique is inspired by an event of a certain 
failure in the GNN training and recognition of two identical 
graphs (with different classes) due to the same output and the 
same error generated. Before discussing the duplication 
detection technique, the graph datasets and the GNN outputs 
are first explained. 

For graph datasets, considering an owned dataset contains 
𝒱 number of graph information as 𝒢(𝒱, ℰ) with input features 
{x𝑣 , ∀𝑣∈ 𝒱}, has variate number of vertex (node 𝑣) and edge 
(𝜀) array length on every graph. To detect graph duplication, 
variate dimension and number of vertices and edges are 
directly calculated [4]. In this study, to reduce the variation of 
multiple number of 𝒱 and ℰ array length, GNN output vector 
representation (OVR) 𝑧𝑣  is used as a conversion tool, 
eliminating the variation of the vertex and edge information 
into a fixed 𝐶 dimensional output (𝐶  is the number of classes 
in the dataset). Using this 𝐶 dimensional data as a source of 
information, 2D data is then generated. 

𝑧𝑣 = ℎ𝑣
(𝐿)
   , ∀𝑣 ∈ 𝒱        (1) 

 The GNN OVR 𝑧𝑣  is obtained from every neighborhood 

vector ℎv
(𝑙)

 for all 𝑣 ∈ 𝒱 as shown in Eq.        (1). In this 
study, four GNN models are used, as follows: 

1) Graph Convolutional Network (GCN) [19], 

2) Graph Isomorphism Network (GIN) [20], 

3) Graph Attention Network V2 (GAT) [21], and  

4) GraphSAGE (GSG) [22]. 

The aggregation formula for each GNN used is shown in 
TABLE I. 

TABLE I. GRAPH NEURAL NETWORK FORMULA  

Model Aggregation Formula 

GCN 𝒉𝒗
(𝒍) =  (𝒃(𝒍−𝟏) +∑

𝟏

𝒄𝒗𝒌
𝑾(𝒍−𝟏)𝒉𝒌

(𝒍−𝟏)

𝒌𝑵𝒗

) 

GIN 
𝒉𝒗
(𝒍) = 𝑴𝑳𝑷(𝒍) ((𝟏 + 𝝐(𝒍)) ∙ 𝒉𝒗

(𝒍−𝟏) +∑ 𝒉𝒌
(𝒍−𝟏)

𝒌𝑵𝒗

) 

* MLP is a multi-layer perceptron 

GSG 

𝒉𝑵(𝒗)
(𝒍) = 𝒎𝒆𝒂𝒏({𝒉𝒌

(𝒍−𝟏),𝒌𝑵(𝒗)}) 

𝒉𝒗
(𝒍) = (𝑾 ∙ 𝒄𝒐𝒏𝒄𝒂𝒕(𝒉𝒗

(𝒍−𝟏), 𝒉𝑵𝒗
(𝒍) , 𝒃(𝒍−𝟏))) 

𝒉𝒗
(𝒍) = 𝒉𝒗

(𝒍)/‖𝒉𝒗
(𝒍)
‖𝟐 

GATv2 

𝒆𝒗𝒌
(𝒍−𝟏)

= 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝑼(𝜶𝑻 ∙ [𝑾(𝒍−𝟏)𝒉𝒗
(𝒍−𝟏)

‖𝑾(𝒍−𝟏)𝒉𝒌
(𝒍−𝟏)

]) 

𝒂𝒗𝒌
(𝒍−𝟏)

= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙𝒌(𝒆𝒗𝒌
(𝒍−𝟏)

) 

𝒉𝒗
(𝒍)
= (∑ 𝒂𝒗𝒌

(𝒍−𝟏)
𝑾(𝒍−𝟏)𝒉𝒌

(𝒍−𝟏)

𝒌𝑵𝒗

) 

B. Two Points Distance Value 

Multi-dimensional reduction using UMAP and TSNE is 
already proposed in [15]-[17]; however, since stochastic 
algorithms are used, the reproducibility is uncertain, especially 
when using multi-threaded [18]. In this study, a new consistent 
2D data generation from 𝐶  dimension data is proposed. The 
first dimension of the two data generated is the “distance”, 
simply calculating the distance between two points of data on 
the 𝐶 dimensional space into one scalar number. Consider the 
GNN OVR 𝑧𝑣 structure shown in Eq. (2): 

 𝑧𝑣 = (𝑧𝑣1, 𝑧𝑣2, 𝑧𝑣3, ⋯ 𝑧𝑣𝑐) , ∀𝑣 ∈ 𝒱 (2) 

To calculate the “distance” parameter ( 𝑝𝑟𝐷𝑖𝑠𝑡 ), 
Pythagorean theorem is used, calculated by choosing one graph 
OVR result as a reference point, and calculating the 𝑝𝑟𝐷𝑖𝑠𝑡 of 
the point under test OVR result by Eq. (3): 

 𝑝𝑟𝐷𝑖𝑠𝑡𝑝 =

{
 
 

 
 
√∑(𝑧𝑟𝑖

2 − 𝑧𝑝𝑖
2)

𝐶

𝑖=1

𝑎𝑡 𝑟 ≠ 𝑝 𝑟, 𝑝 ∈ 𝒱

0 𝑎𝑡 𝑟 = 𝑝 𝑟, 𝑝 ∈ 𝒱

 (3) 

With 𝑧𝑟  and 𝑧𝑝  is vector value of the reference point and 

point under test in the 𝐶 dimension output, respectively. 

Since the 𝑝𝑟𝐷𝑖𝑠𝑡 in Eq. (3) uses a square root operation to 
get the distance, the performance impact is expected if a big 
dataset is applied as the calculation input. Instead of using the 
square root, the distance between two points can be calculated 
using pseudo-distance as shown in Eq.           (4). The pseudo-
distance is calculated simply by using the sum of the absolute 
value of every axis’s scalar value difference between two 
points. 

𝑝𝑟𝑝𝐷𝑖𝑠𝑡𝑝 = ∑ |𝑧𝑟𝑖 − 𝑧𝑝𝑖|
𝐶
𝑖=1            (4) 

The 𝑝𝑟𝐷𝑖𝑠𝑡  will have different values from the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 
with the relationship expressed in Eq. (5). The minimum real 
distance value of 𝑝𝑟𝐷𝑖𝑠𝑡 will be equal to the value of 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 
divided by the square root of 𝐶  in case of equal distance of 
every axis of the two points take place, as shown in Eq. (6). 
The maximum distance value of 𝑝𝑟𝐷𝑖𝑠𝑡 will be equal to the 
value of 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 in case of two points axis difference, and has 
only occurred on one axis 𝑥, as shown in Eq. (7), with 1 ≤
𝑥 ≤ 𝐶. 

 
𝑝𝑟𝑝𝐷𝑖𝑠𝑡

√𝐶
 ≤ 𝑝𝑟𝐷𝑖𝑠𝑡 ≤ 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 (5) 

 |𝑧𝑟1 − 𝑧𝑝1| = |𝑧𝑟2 − 𝑧𝑝2| = ⋯ = |𝑧𝑟𝑐 − 𝑧𝑝𝑐| 
(6) 

 |𝑧𝑟𝑖 − 𝑧𝑝𝑖| =  {
𝑝𝑟𝐷𝑖𝑠𝑡𝑝 𝑤ℎ𝑒𝑛 𝑖 = 𝑥

0 𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑥
 (7) 
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The pseudo-distance will have an inaccurate value 
compared to the real distance. However, the consistency of the 
calculated value is reliable. 

C. Two Points Difference Value 

The second data generated after the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  data is the 
“difference”, calculating the relative difference between two 
points of OVR data on the 𝐶 dimensional space into one scalar 
number 𝑝𝑟𝐷𝑖𝑓𝑓 . The relative difference 𝑝𝑟𝐷𝑖𝑓𝑓  is also 
calculated by considering one point of OVR in the 𝐶 
dimensional space as a reference point 𝑧𝑟 , and considering 
another OVR 𝐶 dimensional point as a point on test 𝑧𝑝. 

The first step to calculate the 𝑝𝑟𝐷𝑖𝑓𝑓 is by element-wise 
subtraction between the reference point 𝑧𝑟 and the point on test 
𝑧𝑝. The element-wise subtraction result is then multiplied by 

the normalized array of the reference point to produce a 
relative representation array (RRA). Since the normalized 
reference point array consists of a fractional number with a 
range from 0 ≤ 𝑛𝑟 ≤ 1 and is calculated using Eq. (8), RRA 
will calculate the element-wise subtraction based on the strong 
point and weak point of the reference point. The strong points 
will give large weight to the RRA, and vice versa; weak points 
will give small weight to the RRA. Therefore, how strong the 
𝐶 dimensional point on a test compared to the reference point 
is completely described by the RRA. 

 𝑁𝑟 =
𝑍𝑟−𝑧𝑟𝑚𝑖𝑛

𝑧𝑟𝑚𝑎𝑥−𝑧𝑟𝑚𝑖𝑛
                                    (8) 

The final step to calculate the 𝑝𝑟𝐷𝑖𝑓𝑓 is by summing all 
elements on the RRA into a single scalar value. The calculation 
to generate 𝑝𝑟𝐷𝑖𝑓𝑓 value is expressed in Eq. (9). 

 𝑝𝑟𝐷𝑖𝑓𝑓𝑝 = ∑ (𝑧𝑟𝑖 − 𝑧𝑝𝑖)𝑛𝑟𝑖
𝐶
𝑖=1               (9) 

 

Fig. 2. Positive value of  𝑝𝑟𝐷𝑖𝑓𝑓, in area of the normalized reference point 
(green), the reference point (blue) have higher value relative to the point on 

test (red). 

 

Fig. 3. Negative value of  𝑝𝑟𝐷𝑖𝑓𝑓, in area of the normalized reference point 

(green), the reference point (blue) have weaker value relative to the point on 

test (red) 

Since the relative representation array obtained from 𝑧𝑟 
subtracted by 𝑧𝑝, the positive value of 𝑝𝑟𝐷𝑖𝑓𝑓 represents that 

the total strong point of the reference point is stronger than 
point on test as shown in Fig. 2, and the negative value of 

𝑝𝑟𝐷𝑖𝑓𝑓  representing the total strong point of the reference 
point is weaker than the point on test as shown in Fig. 3. 

D. Duplication Detection 

In this study, the duplication detection is done by using 
identical comparison of the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓  of every 
graph OVR on the dataset. To begin with, to calculate 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 
and 𝑝𝑟𝐷𝑖𝑓𝑓, a reference graph OVR is required, therefore, for 
convenience, the first graph OVR is selected as reference, 
specify the index value 𝑟 = 0. With the reference graph OVR 
has been set, the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 could be calculated for 
every other graph OVR in the datasets and the duplication 
detection can be calculated. 

The identical 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓  value of two graph 
under the test have meaning that the “distance” and the 
“difference” of the two OVR point relative to the reference 
OVR point is just the same; therefore, the two graphs under the 
test could be concluded as an identical graph pair. Otherwise, 
different 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 value of two OVR points means 
that the two graphs under the test are not identical. The 
calculation to obtain the graph duplication is shown in 
Algorithm 1. 

Algorithm 1: Duplication Detection 

PROGRAM Compare()  

INPUT 𝑧𝑣 

OUTPUT CompOut, CompResult 

Compute 

for 𝑣 in 𝒱 do 

prpDist ← cal_dist(𝑧0, 𝑧𝑣) 

prpDiff ← cal_diff(𝑧0, 𝑛0, 𝑧𝑣) 

end for 

for i, Dist in prpDist do 

CompOut[t][i] ← (prpDist – Dist) == 0 

end for 

for i, Diff in prpDiff do 

CompOut[f][i] ← (prpDiff – Diff) == 0 

end for 

CompResult ← logical_and(CompOut[t], CompOut[f]) 

return CompOut, CompResult 

E. Duplication Detection Scalability 

For scalability, in case of a new graph is registered on the 
dataset, the recalculation of previous 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 are 
unnecessary. Only new registered graphs are required for 
𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓 calculation, calculated using the same 
GNN (for obtaining the new registered OVR graph) and by 
using the same reference OVR graph, same as the other 
previous already existed graph. The duplication detection for 
the new graph is then calculated by comparing the new 
acquired 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓  with the previous already 
calculated 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 one. 

III. ACCURACY AND CONSISTENCY 

In today’s modern computers, floating point numbers 
represented by the IEEE 754 standard (standard floating-point 
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or SFP) is used. The floating point calculation in IEEE 754 
have limited accuracy and consistency, accurate only about 7 
decimal digits for single precision and about 16 decimal digits 
for double precision, while the bitwise identical output results 
are not guaranteed even using the identical input and identical 
mathematical equations [23]-[25]. 

In this study, SFP is used in all calculations. Starting from 
the GNN recognition, OVR result calculation, until the 
identical comparison for the duplication detection. Therefore, 
some errors due to inaccuracy and inconsistency are to be 
expected. 

A. False Negative Result 

As shown in Algorithm 1, the operation to obtain the 
duplication is by element wise identical comparison. Since the 
SFP operation is suspected to be affected by the calculation 
inaccuracy and inconsistency, a test using single graph 
calculated twice is observed to give a different result, 
generating a non identical graph detection or false negative 
result. 

In some cases, the result inconsistencies are observed to 
apply starting from as low as 4 decimal digits of the calculated 
output (PyTorch tensor calculation using GPU). Therefore, to 
overcome this inconsistency, rounding algorithms are used 
with the suspected inaccurate decimal digits that are neglected 
and replaced with zeros. 

In this study, the rounding algorithm is applied at the GNN 
output vector representation result and at the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 
𝑝𝑟𝐷𝑖𝑓𝑓  calculation output. The number of decimal digits 
maintained is set to 4 decimal digits, for both CPU and GPU 
calculation. As an example, the value of 𝑥 =
1.23456789012 ∗ 10−5 will be rounded to the value of 𝑥 =
1.23450000000 ∗ 10−5. 

B. False Positive Result 

The rounding algorithm is expected to reduce the false 
negative result. However, a new false positive result condition 
is introduced by applying the rounding algorithm. A pair of the 
two almost similar graphs, with the GNN OVR differences 
smaller than the value of the neglected decimals, is observed to 
be detected as the same identical graph. For the number of 
decimal digits on the rounding algorithm, as more decimal 
digits are maintained, the false positive result is expected to 
appear less, and the false negative result reduction is expected 
to be weaker. 

C. Special False Positive Case 

In the duplication detection algorithm, a special false 
positive case has been observed once. Since the GNN neural 
network (NN) weight used as the input of the duplication 
detection is randomly generated and untrained, one occurrence 
of completely mirrored GNN output is observed as illustrated 
in Fig. 4. 

When the GNN OVR of the reference point (Fig. 4 blue 
line) has a mirror result characteristic, as expressed in Eq.                    
(10), and when the GNN OVR of graph 1 on test (Fig. 4 green 
line) and graph 2 on test (Fig. 4 red line) have the same 
identical OVR results and lie in each mirroring area for the 
reference point GNN OVR, a special false positive condition is 

observed. Every element-wise subtraction between the 
reference and graph 1 on the test completely finds its pair in the 
subtraction between the reference and graph 2 on a test, as 
expressed in Eq.                    (11). Therefore, the total 
calculated 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 on both graphs will be equal, 
and the duplication detection will consider graph 1 and graph 2 
as identical graph. 

 𝑧𝑟𝑖 = 𝑧𝑟𝑗      , 𝑖 + 𝑗 = 𝐶 − 1                    (10) 

 |𝑧𝑟𝑖 − 𝑧𝑝1𝑖| = |𝑧𝑟𝑗 − 𝑧𝑝2𝑗|                    (11) 

 
Fig. 4. False positive condition, the reference (blue), test graph 1 (green) and 

test graph 2 (red). The x-axis is the GNN dimension output from 1 to 𝐶, and 
the y-axis is the scalar value of the GNN output. 

D. Second Level Comparison (SLC) 

To detect false positive detection cases, a second level 
comparison (SLC) is proposed. As stated in Section II(D), for 
the duplication detection, the first graph in the dataset is 
selected as the reference graph. However, in the SLC, one of 
two graphs detected as identical graph will be selected as the 
reference. Therefore, the calculation will only produce one  
𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and one 𝑝𝑟𝐷𝑖𝑓𝑓 , representing the “distance” value 
and the “difference” value between the two presumed to be 
identical graphs under the duplication detection result. If the 
𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 proved to be equal to 0, the two graphs 
are indeed identical. The SLC calculation is shown in 
Algorithm 2. 

Algorithm 2: Second Comparison 

PROGRAM ReComp()  

INPUT CompResult, CompResultY, tensorh 

OUTPUT CompResult 

Compute 

for Ident in CompResultY do 

DatRef ← tensorh[Ident[0]] 

DatNorm ← normtensor(tensorh[Ident[0]]) 

DatTest ← tensorh[Ident[1]] 

rprpDist ← callpdist(DatRef, DatTest) 

rprDiff ← callDiff(DatRef, DtaNorm, DatTest) 

if rprpDist ≠ 0 or rprDiff ≠ 0 do 

CompResult[Ident[0]][Ident[1]] ← False 

end if 

end for 

return CompResult 

Despite being capable of detecting a false positive case, the 
SLC is observed to introduce a new false negative case by 
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detecting the true positive identical pair as a non-identical pair 
and change into false negative as shown in Fig. 5. 

 
Fig. 5. Second Level Comparison on confirmed true positive identical pair, 

resulting in a false negative detection due to floating point inaccuracy. 

The SFP accuracy is accurate until 7 decimal digits for 
FP32, as for the value after decimal digit 8 will be considered 
inaccurate. Since the value of 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓 of the 
graph pair under observation in Fig. 5 is in the order of 5𝑥103, 
and the delta value between two points in pair ∆𝑝𝑟 is in the 

order of 10−5 , the ∆𝑝𝑟  value if these confirmed identical 
graphs is indeed the result of floating point inaccuracy. In the 
graph duplication calculation in Algorithm 1, the global 
reference graph (datasets [0]) is used. Since the ∆𝑝𝑟 is far from 
the most significant digit of the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓  (10−8 
order difference, as a result of the inaccuracy area of SFP 
calculation), ∆𝑝𝑟 is observed as 0, and the true positive graph 
pair is indeed detected as an identical pair. However, in the 
second level comparison (one of the two graphs becomes the 
new reference point), the graph duplication detection 
calculation is based on the ∆𝑝𝑟  (with value in the order of 

10−5) instead of the old 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓 , which is the 
subject of inaccuracy. Therefore, the graph pair shown in Fig. 5 
(right) is detected as a non-identical pair (false negative) after 
SLC. 

IV. SIMULATION 

For dataset duplication detection simulation, the GCN, GIN, 
GSG, and GAT models are used for generating the GNN OVR 
before the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓  calculation is done. 
Furthermore, for the input datasets, the two netlist to graph 
abstraction technique from [13] is used, with the circuits 
included in the netlist datasets are obtained using the split 
technique in [8] as shown in TABLE II. 

TABLE II. DATASET FEATURE 

Datasets Feature Quantity 

Number of data 2,115 

Number of classes 121 

Min data per class 1 

Max data per class 795 

NETLIST length 5,214,505 

NETLIST number of line 95,615 

Number of MOSFET(s) 74,626 

Number of Power Supply(s) 4,234 

Number of Resistors(s) 7,804 

Number of LC(s) 11 

The first two netlists for graph abstraction in [13] are in 1-
node with multi-edge and connection node additions (1NMC). 
Afterwards, the second abstraction is in a 4-node with 
connection node addition (4NC). In this study, the 1-node with 
the addition of multi-edge, node connection, and edge direction 
optimization (1NMC+D) is introduced as the new, more 
optimized netlist to the graph abstraction technique after the 
1NMC duplication detection result is studied. The dataset’s 
confirmed parameters are shown in TABLE III. 

TABLE III. DATASETS CONFIRMED PARAMETER 

Parameter 1NMC [13] 1NMC + D 4NC [13] 

Different Class Dispute 797 1 0 

Max Theoretical Accuracy 62.32% 99.95% 100% 

Same Class Group 

Duplication 
0 0 0 

For all simulations of the duplication detection, including 
the CPU and GPU calculations, the first graph in the dataset is 
set as the reference point. The number of decimal digits 
maintained at the rounding algorithm is also set to 4 decimal 
digits. A personal computer with 10850K CPU, 64GB of RAM, 
RTX 4070 Ti GPU, Windows 10 system, and python 
environment with PyTorch for neural network computing is 
used for simulation in this research. 

A. The 2D Dataset’s Visualization 

As the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡  and 𝑝𝑟𝐷𝑖𝑓𝑓  of all graphs are already 
calculated and obtained, a 2D visualization of these two 
datasets can be achieved. Using the 1NMC and 1NMC+D 
datasets as an example, the 2D visualization of an untrained 
random weighted GNN is shown in Fig. 6 and Fig. 7, 
respectively. The x axis of Fig. 6 and Fig. 7 represents the 
𝑝𝑟𝑝𝐷𝑖𝑠𝑡  value, while the y axis represents the 𝑝𝑟𝐷𝑖𝑓𝑓 . The 
most left dark blue dot observed in Fig. 6 (upper) and Fig. 7 
(upper) of all GNN outputs is a representation of the reference 
graph point, representing the 𝑥 = 0 and 𝑦 = 0 of each figure. 

As shown in Fig. 6 (upper) and Fig. 7 (upper), the total 
visualization of all graphs is observed to have different 
characteristic between each GNN types. It shows that each 
GNN model indeed has different calculations and output 
behavior. A particular pattern of the graphs which fall into the 
same class is also observed. 

Fig. 6 (down) and Fig. 7 (down) is the zoomed version of 
certain areas in Fig. 6 (upper) and Fig. 7 (upper) respectively. 
Aiming to focus on the visualization of the identical and non-
identical graph pairs, Fig. 6 (down), shows the example of 
“zoomed” multiple two points overlapping each other, 
indicating multiple two points detected as identical pairs. With 
the poor netlist to graph abstraction in 1NMC, multiple grey 
dots are observed to be exactly on top of the red dot (the easiest 
example to be seen) in all GNN output. On the contrary, as 
shown in Fig. 7 (down), with optimized direction added to the 
netlist to graph abstraction technique, the multiple two points 
overlapping each other are no longer visible. Even in some 
cases the grey dots are still close to the red dots, as observed in 
Fig. 7 [down (b)], they are observed to be completely separated. 
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 (a)   (b)    (c)    (d) 

Fig. 6. The 2D output of untrained GCN (a), GIN (b), GSG (c), and GAT (d) of the input dataset using 1NMC netlist to graph abstraction in [13] 

 
 (a)   (b)    (c)    (d) 

Fig. 7. The 2D output of untrained GCN (a), GIN (b), GSG (c), and GAT (d) of the input dataset using 1NMC + D netlist to graph abstraction 

B. Duplication Detection Result 

The graph dataset duplication detection simulation result 
for the SFP calculation with combination of SCL and rounded 

floating point (RFP) calculation with combination of SLC is 
shown in TABLE I and TABLE V respectively. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

883 | P a g e  

www.ijacsa.thesai.org 

TABLE IV. SIMULATION RESULT FOR STANDARD FP CALCULATION COMBINED WITH SCL 

Parameter 
CPU GPU 

1NMC [13] 1NMC + D 4NC [13] 1NMC [13] 1NMC + D 4NC [13] 

S
ta

n
d
ar

d
 F

P
 C

al
cu

la
ti

o
n

 

Identical Pair 

Detected 

GCN 419 7 1 29 0 0 

GIN 425 7 1 28 0 0 

GSG 383 13 1 5 2 0 

GAT 192 7 1 12 0 0 

Identical Pair 

False Positive*) 

GCN 0 6 1 1 0 0 

GIN 0 6 1 0 2 0 

GSG 1 12 1 0 0 0 

GAT 6 6 1 0 0 0 

Identical Pair 

False Negative*) 

GCN 378 0 0 769 1 0 

GIN 372 0 0 769 1 0 

GSG 415 0 0 792 1 0 

GAT 611 0 0 785 1 0 

Same Class Pair 

GCN 0 6 1 1 0 0 

GIN 0 6 1 0 0 0 

GSG 0 11 1 0 1 0 

GAT 6 6 1 0 0 0 

Same Class Pair 

False Positive*) 

GCN 0 6 1 1 0 0 

GIN 0 6 1 0 0 0 

GSG 0 11 1 0 1 0 

GAT 6 6 1 0 0 0 

Detected Dispute 

Items 

GCN 419 1 0 28 0 0 

GIN 425 1 0 28 0 0 

GSG 383 2 0 5 1 0 

GAT 186 1 0 12 0 0 

Calculated 

training accuracy 

GCN 80.19% 99.95% 100% 98.68% 100% 100% 

GIN 79.91% 99.95% 100% 98.68% 100% 100% 

GSG 81.89% 99.91% 100% 99.76% 99.95% 100% 

GAT 91.21% 99.95% 100% 99.43% 100% 100% 

Dispute Items 

True Positive*) 

GCN 419 1 0 28 0 0 

GIN 425 1 0 28 0 0 

GSG 382 1 0 5 0 0 

GAT 186 1 0 12 0 0 

F
P

 C
al

cu
la

ti
o
n

 +
 S

ec
o
n
d

 l
ev

el
 C

o
m

p
ar

is
o
n

 

Identical Pair 

Detected 

GCN 184 7 0 0 0 0 

GIN 220 7 1 0 0 0 

GSG 326 9 1 0 0 0 

GAT 61 7 1 0 0 0 

Identical Pair 

False Positive*) 

GCN 0 6 0 0 0 0 

GIN 0 6 1 0 0 0 

GSG 1 8 1 0 0 0 

GAT 6 6 1 0 0 0 

Identical Pair 

False Negative*) 

GCN 613 0 0 797 1 0 

GIN 577 0 0 797 1 0 

GSG 472 0 0 797 1 0 
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GAT 742 0 0 797 1 0 

Same Class Pair 

GCN 0 6 0 0 0 0 

GIN 0 6 1 0 0 0 

GSG 0 8 1 0 0 0 

GAT 6 6 1 0 0 0 

Same Class Pair 
False Positive*) 

GCN 0 6 0 0 0 0 

GIN 0 6 1 0 0 0 

GSG 0 8 1 0 0 0 

GAT 6 6 1 0 0 0 

Detected Dispute 
Items 

GCN 184 1 0 0 0 0 

GIN 220 1 0 0 0 0 

GSG 383 1 0 0 0 0 

GAT 55 1 0 0 0 0 

Calculated 
training accuracy 

GCN 91.30% 99.95% 100% 100% 100% 100% 

GIN 89.60% 99.95% 100% 100% 100% 100% 

GSG 84.59% 99.95% 100% 100% 100% 100% 

GAT 97.40% 99.95% 100% 100% 100% 100% 

Dispute Items 
True Positive*) 

GCN 184 1 0 0 0 0 

GIN 220 1 0 0 0 0 

GSG 382 1 0 0 0 0 

GAT 55 1 0 0 0 0 

*) Requires all graph information of the confirmed true positive identical pair, complete with its identical graph counterparts. 

TABLE V. SIMULATION RESULT FOR RFP CALCULATION COMBINED WITH SCL 

Parameter 
CPU GPU 

1NMC [13] 1NMC + D 4NC [13] 1NMC [13] 1NMC + D 4NC [13] 

F
P

 C
al

cu
la

ti
o
n

 +
 R

o
u

n
d
in

g
 

Identical Pair 
Detected 

GCN 836 54 234 816 54 236 

GIN 839 39 46 800 40 43 

GSG 832 114 39 710 112 37 

GAT 849 25 25 820 24 30 

Identical Pair 

False Positive*) 

GCN 42 53 234 40 53 236 

GIN 45 38 46 45 39 43 

GSG 38 113 39 39 111 37 

GAT 60 24 25 52 24 30 

Identical Pair 

False Negative*) 

GCN 3 0 0 21 0 0 

GIN 3 0 0 42 0 0 

GSG 3 0 0 126 0 0 

GAT 8 0 0 29 1 0 

Same Class Pair 

GCN 16 48 81 15 48 81 

GIN 8 22 5 8 22 4 

GSG 15 34 18 15 33 17 

GAT 18 20 5 11 22 8 

Same Class Pair 

False Positive*) 

GCN 16 48 81 15 48 81 

GIN 8 22 5 8 22 4 

GSG 15 34 18 15 33 17 

GAT 18 20 5 11 22 8 
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Detected Dispute 

Items 

GCN 805 6 145 787 6 147 

GIN 818 17 40 779 18 39 

GSG 807 78 21 685 78 20 

GAT 881 5 20 796 2 22 

Calculated 
training accuracy 

GCN 61.94% 99.72% 93.14% 62.79% 99.72% 93.05% 

GIN 61.32% 99.20% 98.11% 63.17% 99.15% 98.14% 

GSG 61.84% 96.93% 99.01% 67.61% 96.31% 99.05% 

GAT 61.65% 99.76% 99.05% 62.36% 99.91% 98.96% 

Dispute Items 

True Positive*) 

GCN 794 1 0 776 1 0 

GIN 794 1 0 755 1 0 

GSG 794 1 0 671 1 0 

GAT 789 1 0 768 0 0 

F
P

 C
al

cu
la

ti
o
n

 +
 R

o
u

n
d
in

g
 +

 S
ec

o
n
d

 l
ev

el
 C

o
m

p
ar

is
o
n

 

Identical Pair 

Detected 

GCN 803 14 1 658 8 1 

GIN 782 14 1 404 11 0 

GSG 819 83 1 512 79 0 

GAT 713 14 1 522 10 1 

Identical Pair 
False Positive*) 

GCN 12 13 1 11 7 1 

GIN 9 13 1 2 10 0 

GSG 33 82 1 33 78 0 

GAT 16 13 1 13 10 1 

Identical Pair 

False Negative*) 

GCN 6 0 0 150 0 0 

GIN 24 0 0 395 0 0 

GSG 11 0 0 318 0 0 

GAT 82 0 0 288 1 0 

Same Class Pair 

GCN 4 12 1 4 6 1 

GIN 2 12 1 0 9 0 

GSG 12 18 1 12 16 0 

GAT 12 12 1 2 9 1 

Same Class Pair 
False Positive*) 

GCN 4 12 1 4 6 1 

GIN 2 12 1 0 9 0 

GSG 12 18 1 12 16 0 

GAT 12 12 1 2 9 1 

Detected Dispute 

Items 

GCN 797 2 0 653 2 0 

GIN 779 2 0 404 2 0 

GSG 797 65 0 409 63 0 

GAT 719 2 0 519 1 0 

Calculated 

training accuracy 

GCN 62.32% 99.91% 100% 69.13% 99.91% 100% 

GIN 63.17% 99.91% 100% 80.90% 99.91% 100% 

GSG 62.32% 96.93% 100% 76.83% 97.02% 100% 

GAT 66.00% 99.91% 100% 75.46% 99.91% 100% 

Dispute Items 
True Positive*) 

GCN 791 1 0 647 1 0 

GIN 773 1 0 402 1 0 

GSG 786 1 0 479 1 0 

GAT 715 1 0 509 0 0 

*) Requires all graph information of the confirmed true positive identical pair, complete with its identical graph counterparts. 
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The dispute items in TABLE I and TABLE V show the 
theoretical total number of uncertain graphs in the datasets if 
the GNN training and recognition are performed. As an 
example, an identical pair of two graphs has been detected, 
having indexes 31 and 278 (or expressed as [31, 278]) and 
having different classes assigned. When the recognition is 
performed, only one graph will be recognized correctly, and 
the other graph will be recognized as the other graph class. 
Therefore, in one identical pair, one graph will be counted as a 
dispute item. 

In case of three identical graphs detected: [24, 334], [24, 
1267], and [334, 1267], all with different classes, can also be 
expressed as [24, 334, 1267], which will have two dispute 
items. Since only one graph will be recognized correctly, the 
other two graphs will be detected falsely. 

All the results shown in TABLE I and TABLE V are 
subject to floating-point inconsistency. Therefore, when the 
simulation is done repeatedly with the same simulation settings 
and formula, slightly different results are observed. 

C. CPU IEEE 754 Calculation + SLC Simulation Result 

From using the SFP calculation only, the CPU calculation 
result for 1NMC datasets is observed to be capable of detecting 
the graph duplication, with the number of identical graphs 
detected starting from 192 graphs to 419 graphs detected. 
However, the number of undetected identical pairs (false 
negative case) starts from 378 graphs to 611 graphs. According 
to the false negative result and datasets confirmed parameters 
in TABLE III, the F1 score started from as low as 37.61% 
(observed in GAT output result) and as high as 69.56% 
(observed in GIN), with an average of 60.21% observed. 

For calculation after SLC, the number of identical graphs 
detected decreased, starting from 61 graphs to 184 graphs only, 
confirming the introduction of false negatives by second level 
comparison calculation. Therefore, the number of false 
negative detections observed increased, with the result starting 
from 472 graphs to 742 graphs. The F1 score is observed to 
decrease, starting from as low as 12.82% (in GAT) and as high 
as 57.88% (in GSG), with an average of only 37.87%. There is 
no change observed in false positive results after SLC 
calculation. 

For calculated theoretical training accuracy from the 
detected dispute items, the 1NMC dataset shows a large 
deviation compared to the dataset’s parameter shown in 
TABLE III. The deviation started from 17.78% to 28.89% with 
an average of 20.98%, and 22.27% to 35.08% with an average 
of 28.41% are observed in SFP and after SLC calculation result, 
respectively. Therefore, with the confirmed datasets, a 
theoretical training accuracy of 62.32%, the deviation of 
35.08% (observed in GAT after SLC) is indeed a huge 
detection error. 

For the 1NMC+D datasets simulation result, the SFP 
calculation could detect “the only one” confirmed identical 
pairs for all GNN outputs (zero false negatives). However, all 
GNN outputs are also detecting another non-identical graphs, 
with an average of 7.5 number of graphs and are reported as 
identical graphs (false positive case). The false positive cases 
are observed to belong to the same class, identical pair; 

therefore, it would not increase the dispute items at all (except 
1 false positive dispute item detected in GSG). For calculation 
after SLC, there is no change observed, except for the GSG 
false positive reduction from 11 graphs to 8 graphs detected. 
The GSG dispute items are also reduced from 2 items to only 1 
item. For calculated theoretical training accuracy, all GNN 
shows 0.00% deviation for all SFP calculations and after SLC 
calculation, except for GSG (SFP result) with 0.04% deviation. 

 For the 4NC datasets, since it is confirmed zero identical 
pairs, the false negative detection will always show 0. 
Therefore, the only parameter that could be considered is false 
positive detection. From the SFP calculation and after SLC, 1 
graph detected as a false positive (same class) is observed in all 
GNN results except for GNC after SLC (0 false positives). For 
calculated theoretical training accuracy, all GNN shows 0.00% 
deviation for all SFP calculations and after SLC. 

From the 1NMC, 1NMC+D and 4NC datasets on CPU 
calculation using SFP and SLC, the duplication detection 
shows high detection error (up to 93.10% duplication detection 
incapability error) on the datasets that have many confirmed 
identical pairs. However, the duplication detection shows high 
accuracy on datasets with a small, confirmed number of 
identical pairs. It is concluded that the floating-point 
inaccuracy and inconsistency are highly impacting the 
calculation result, resulting two identical graphs calculated 
with same calculation to give a different result, showing the 
identical pair as a non-identical pair. 

From SFP and SLC calculations, the GAT result is 
observed showing the worst performance compared to other 
GNN. There is a possibility observed as the reason GAT output 
is so inaccurate when using SFP and with SLC calculation. The 
GAT NN size is so large (stored NN size is 4,455 KB in size) 
compared to the other GNN NN sizes (215 KB for GCN, 924 
KB for GIN, and 351 KB for GSG), indicating more floating-
point calculations are performed to obtain the GNN vector 
representation output. Therefore, the possibility of inaccuracy 
and inconsistency taking effect is also larger. 

D. GPU IEEE 754 Calculation + SLC Simulation Result 

The GPU calculation results, by using 1NMC datasets on 
SFP calculation, were observed to have worse performance 
compared to the CPU calculation. Due to the number of 
detected identical pairs being observed only from 5 graphs to 
29 graph pairs, the false negative detection number is 
astonishing, starting from 769 graphs to 792 graphs (confirmed 
identical pair is 797). Therefore, the F1 score is observed only 
1.25% (GSG) to 6.79% (GIN) with an average of 4.45%. For 
calculation after SLC, the detection capability is even worse. 
The duplication detection result shows that the calculation is 
failing to detect any duplication in the datasets (recall score is 
0.00%), resulting in the theoretical training accuracy of 100%, 
although the confirmed theoretical value is 62.32%. 

For the datasets 1NMC+D on GPU with SFP and with SLC 
calculation results, the duplication detection is failing to detect 
“the only one” confirmed identical pairs for all GNN outputs. 
The GIN output is even observed on detecting two other graph 
pairs, with one pair in the same class, raising 1 graph dispute 
item using the false positive detection. For the detection 
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capability, the GPU calculation is observed failing to detect the 
graph duplication (duplication detection capability is 0.00%) 
on both SFP and SLC calculations. 

For GPU calculation on 4NC datasets, the SFP and SLC 
calculation result shows a consistent outcome in all GNN 
outputs. The number of identical pairs, false positives, false 
negatives, and disputed items is zero. The theoretical training 
accuracy is also observed to be 100% in all cases. 

From the 1NMC, 1NMC+D and 4NC datasets on GPU 
calculation using SFP and SLC, the GPU calculation is 
concluded to be more severely affected by the floating-point 
inaccuracy and inconsistency compared to the CPU. The 
observed output calculation is so affected by this inaccuracy 
and inconsistency, almost rendering the duplication detection 
using the proposed method unable to produce the appropriate 
results at all. 

E. CPU Rounding Floating-point + SLC Simulation Result 

The CPU calculation results by using 1NMC datasets on 
RFP calculation, observed to have good performance compared 
to the SFP result. The number of detected identical pairs 
observed starts from 832 to 849, with an average of 839 graph 
pairs. The false negative detection number is observed starting 
from only 3 graphs until 8 graphs, with an average of 4.25 
graph pairs. The F1 score is observed to start from 95.87% 
(GAT) to 97.48% (GSG), with an average of 96.92%. The 
number of false positives started from 38 graphs to 60 graphs, 
with an average of 46.25 graph pairs. For calculation after SLC, 
the detected false positive and false negative result is observed 
to have an average of 17.5 and 30.75 graph pairs, respectively. 
The F1 score is observed to start from 93.43% to 98.88%, with 
an average of 96.87%. For calculated theoretical training 
accuracy, the GNN result shows 0.38% to 1.00% and 0.00% to 
3.68% deviation for RFP calculation and after SLC calculation, 
respectively. 

For the datasets 1NMC+D on CPU with RFP calculation 
result, the number of detected identical pairs started from 25 to 
114, with an average of 58 graph pairs, with all zeros in all 
GNN false negative results. The false positive result started 
from 24 to 113, with an average of 57 graph pairs being 
observed. For calculation after SLC, the number of detected 
identical pairs started from 14 to 83, with an average of 31.25 
graph pairs, with all zeros in all GNN false negative results. 
The false positive result is observed to have started from 13 to 
82, with an average of 30.25 graph pairs. For calculated 
theoretical training accuracy, the GNN result shows 0.19% to 
3.02% and 0.04% to 3.02% deviation for RFP calculation and 
after SLC calculation, respectively. 

For CPU calculation on 4NC datasets, the RFP calculation 
result shows a surprising outcome. The number of detected 
identical pairs increased compared to 1NMC+D, starting from 
25 to 234, with an average of 86 graph pairs, with all the 
detected pairs observed as false positives. For calculation after 
SLC, the number of detected identical pairs and false positive 
outcomes is only 1 graph pair in all GNN results. For 
calculated theoretical training accuracy, the GNN result shows 
0.95% to 6.86%, and 0.00% deviation for RFP calculation and 
after SLC calculation, respectively. 

From the 1NMC, 1NMC+D and 4NC datasets on CPU 
calculation using RFP and SLC, the CPU calculation is capable 
to produce good results by having very high duplication 
detection capability. However, despite a high duplication 
detection capability is observed, the number of false positive 
detections is rather high, confirming the false negative 
reduction and new false positive introduction with the rounding 
calculation application. For SLC calculation, since the false 
positive results tend to be reduced and the new false negative 
results tend to be introduced, the detection capability is 
somewhat observed to be balanced, equalizing between false 
positive and false negative. This balance result (is it good or 
bad?) is not discussed in this study. 

The RFP output calculation is observed to be less affected 
by floating-point inaccuracy and inconsistency, rendering the 
duplication detection using the proposed method able to detect 
more than 96.14% of the confirmed identical graph pairs. 

F. GPU Rounding Floating-point + SLC Simulation Result 

The GPU calculation results by using 1NMC datasets on 
RFP calculation show that the number of detected identical 
pairs observed started from 710 to 820, with an average of 
786.5 graph pairs. The false negative detection number is 
observed to start from 21 to 126, with an average of 86 graph 
pairs. The F1 score is observed starting from 89.05% to 
96.22% with an average of 93.70%. The number of false 
positives started from 39 to 52, with an average of 44 graph 
pairs. For calculation after SLC, the detected false positive and 
false negative result is observed to have an average of 14.75 
and 287.75 graph pairs, respectively. The number of false 
negative detections observed increased, starting from 150 to 
395 graph pairs. The duplication detection capability is 
observed to decrease, starting from 66.94% to 88.93%, with an 
average of 76.56%. For calculated theoretical training accuracy, 
the GNN result shows 0.04% to 5.29% and 6.81% to 18.58% 
deviation for RFP calculation and after SLC calculation, 
respectively. 

For the datasets 1NMC+D on GPU with RFP calculation 
result, the number of detected identical pairs started from 24 to 
112, with an average of 57.5 graph pair, with all zeros in all 
GNN (except for GAT, 1 graph pair) false negative results. The 
false positive result started from 24 to 111, with an average of 
56.75 graph pairs being observed. For calculation after SLC, 
the number of detected identical pairs started from 8 to 79, with 
an average of 27 graph pairs, with all zeros in all GNN (except 
for GAT, 1 graph pair) false negative results. The false positive 
result is observed to start from 7 to 78 with an average of 26.25 
graph pairs. For calculated theoretical training accuracy, the 
GNN result shows 0.04% to 3.64% and 0.04% to 2.93% 
deviation for RFP calculation and after SLC calculation, 
respectively. 

For GPU calculation on 4NC datasets, the RFP calculation 
result also shows a surprising outcome. The number of 
detected identical pairs also increased compared to 1NMC+D, 
starting from 30 to 236, with an average of 86.5 graph pairs, 
with all the detected pairs observed as false positives. For 
calculation after SLC, the number of detected identical pairs 
and false positive outcomes is only 1 (GCN and GAT) and 0 
(GCN and GSG) graph pairs. For calculated theoretical training 
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accuracy, the GNN result shows 0.95% to 6.95% and 0.00% 
deviation for RFP calculation and after SLC calculation, 
respectively. 

From the 1NMC, 1NMC+D and 4NC datasets on GPU 
calculation using RFP and SLC, compared from GPU 
performance using SFP, the GPU RFP and SLC calculation 
were observed to be capable of producing good results by 
having relatively high duplication detection capability. The 
RFP output calculation is also observed in GPU to be less 
affected by floating-point inaccuracy and inconsistency, 
rendering the duplication detection using the proposed method 
able to detect more than 93.16% and more than 63.90% of the 
confirmed identical graph pairs in RFP and SLC calculation, 
respectively. 

V. CONCLUSION 

In this study, graph duplication detection using the vector 
representation output of GNN is proposed. The duplication 
detection starts by recognizing the graph datasets using random 
weighted untrained GNN and converting the fixed multi-
dimensional GNN recognition output into 2D data. The 2D 
data is later compared to one another to determine if the graph 
pair under the test is identical or not. 

The simulation is also done in this study, using 4 different 
untrained GNNs, simulated using both CPU and GPU to 
demonstrate the duplication detection capability despite being 
affected by floating-point inaccuracy and inconsistency. The 
best F1 score is obtained by implementing 4-digit decimal 
rounding floating-point calculation, achieving an average of 
96.92% and 93.70% duplication detection from 797 confirmed 
identical graph pairs using CPU and GPU calculation, 
respectively, without SLC. 

Since the datasets used in this study are generated by using 
lists of analog circuit modules, the future work in this research 
is to increase the dataset size with more complex and varied 
circuits. Other already published graph datasets are also 
subjected to being tried as input datasets to get a wider 
application comparison. The optimization of the detection 
capability by using floating-point range comparison instead of 
floating-point identical comparison, especially on the second 
level comparison, along with the behavior of 2D GNN vector 
output under the training process, is also future work. 
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