
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

877 | P a g e

www.ijacsa.thesai.org

Graph Neural Network Output for Dataset

Duplication Detection on Analog Integrated Circuit

Recognition System

Arif Abdul Mannan1, Koichi Tanno2

Faculty of Engineering, University of Miyazaki, Miyazaki, Japan1, 2

Department of Electrical Engineering, Brawijaya University, Malang, Indonesia1

Abstract—In the need for artificial intelligence application on

the analog circuit design automation, larger and larger datasets

containing analog and digital circuit pieces are required to

support the analog circuit recognition systems. Since analog

circuits with almost similar designs could produce completely

different outputs, in case of poor netlist to graph abstraction,

larger netlist input circuits could generate larger graph dataset

duplications, leading to poor performance of the circuit

recognition. In this study, a technique to detect graph dataset

duplication on big data applications is introduced by utilizing the

output vector representation (OVR) of the untrained Graph

Neural Network (GNN). By calculating the multi-dimensional

OVR output data into 2-dimentional (2D) representation, even

the random weighted untrained GNN outputs are observed to be

capable of distinguishing between each graph data inputs,

generating different output for different graph input while

providing identical output for the same duplicated graph data,

and allowing the dataset’s duplication detection. The 2D

representation is also capable of visualizing the overall datasets,

giving a simple overview of the relation of the data within the

same and different classes. From the simulation result, despite

being affected by the floating-point calculation accuracy and

consistency deficiency, the F1 score using floating-point identical

comparisons are observed with an average of 96.92% and

93.70% when using CPU and GPU calculations, respectively,

while the floating-point rounding calculation is applied. The

duplication detection using floating point range comparison is the

future work, combined with the study of the 2D GNN output

behavior under the ongoing training process.

Keywords—Big data; graph neural network; artificial

intelligence; analog circuit design

I. INTRODUCTION

In computer science, graph have been use in many complex
structures, especially structures that focus on the objects (nodes
or vertices) and its connections (edges), including chemical
structure, human social connection and behavior, electronics
circuits, internet World Wide Web, biological structure[1]-[4],
etc. In some specific applications, especially in the analog
circuit design, the graph can even enable the artificial
intelligence (AI) to be applied to the analog electronic design
automation (EDA) using graph neural network (GNN) based
recognitions [5]-[7].

For global applications, large graph data is something
unavoidable. The real-world graph can reach the order of
trillion nodes and edges, opening new challenges for graph

duplication detection, in case identical graphs exist in the large
data[3][4]. In line with the current situation, for large data
applications in the analog circuit design field, graph data
duplication challenge has also emerged. To generate large
datasets, an extraction technique explained in [8] is used. The
text-based netlist is used as input, and, split netlist is generated
as the output. By using multiple EDA-generated netlists or by
using a manually created netlist, duplication of the same circuit
extracted from different areas of multiple analog circuits (like a
current mirror circuit) are observed to happen frequently [9], as
shown in Fig. 1.

Fig. 1. A dye photograph of analog circuit used as simulation input data in

[8] shows multiple uses of the same circuit in various areas inside the red,

green, and orange squares

Furthermore, for AI training and circuit recognition, the
text-based netlist is converted into graph dataset using netlist to
graph abstraction. The recognition accuracy and training
performance is dependent on the abstraction technique [10]-
[13]. Despite different circuit netlist are used as abstraction
process input data, with poor abstraction technique, duplicate
graphs occur, reducing the recognition accuracy; thereby,
increasing the necessity of graph duplication detection.

The technique to detect graph duplication in large data is
already proposed [1][3][4] [14]. However, the technique to
detect graph duplication in the literature is directly calculated
from the graph data itself. In this study, graph duplication
detection technique is proposed by using an integration with
GNN recognition, determining the duplication status by
calculating the GNN recognition output results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

878 | P a g e

www.ijacsa.thesai.org

This study is arranged as follows: The conversion of multi-
dimensional data into 2-dimensional (2D) data and the graph
duplication detection techniques are introduced in Section II.
The accuracy and consistency susceptibility of the floating-
point calculation and the methods used to overcome the
weakness are described in Section III. The simulation results
are provided in Section IV, while the concluding remarks are
provided in Section V.

II. GRAPH TO 2-DIMENTION INFORMATION CONVERSION

In this study, a new technique to detect graph duplication
on a graph dataset is proposed. The new technique is done by
utilizing the GNN output vector representation, calculating the
output result and then determining the identical status of the
graph. This technique is inspired by an event of a certain
failure in the GNN training and recognition of two identical
graphs (with different classes) due to the same output and the
same error generated. Before discussing the duplication
detection technique, the graph datasets and the GNN outputs
are first explained.

For graph datasets, considering an owned dataset contains
𝒱 number of graph information as 𝒢(𝒱, ℰ) with input features
{x𝑣 , ∀𝑣∈ 𝒱}, has variate number of vertex (node 𝑣) and edge
(𝜀) array length on every graph. To detect graph duplication,
variate dimension and number of vertices and edges are
directly calculated [4]. In this study, to reduce the variation of
multiple number of 𝒱 and ℰ array length, GNN output vector
representation (OVR) 𝑧𝑣 is used as a conversion tool,
eliminating the variation of the vertex and edge information
into a fixed 𝐶 dimensional output (𝐶 is the number of classes
in the dataset). Using this 𝐶 dimensional data as a source of
information, 2D data is then generated.

𝑧𝑣 = ℎ𝑣
(𝐿)
 , ∀𝑣 ∈ 𝒱 (1)

 The GNN OVR 𝑧𝑣 is obtained from every neighborhood

vector ℎv
(𝑙)

 for all 𝑣 ∈ 𝒱 as shown in Eq. (1). In this
study, four GNN models are used, as follows:

1) Graph Convolutional Network (GCN) [19],

2) Graph Isomorphism Network (GIN) [20],

3) Graph Attention Network V2 (GAT) [21], and

4) GraphSAGE (GSG) [22].

The aggregation formula for each GNN used is shown in
TABLE I.

TABLE I. GRAPH NEURAL NETWORK FORMULA

Model Aggregation Formula

GCN 𝒉𝒗
(𝒍) = (𝒃(𝒍−𝟏) +∑

𝟏

𝒄𝒗𝒌
𝑾(𝒍−𝟏)𝒉𝒌

(𝒍−𝟏)

𝒌𝑵𝒗

)

GIN
𝒉𝒗
(𝒍) = 𝑴𝑳𝑷(𝒍) ((𝟏 + 𝝐(𝒍)) ∙ 𝒉𝒗

(𝒍−𝟏) +∑ 𝒉𝒌
(𝒍−𝟏)

𝒌𝑵𝒗

)

* MLP is a multi-layer perceptron

GSG

𝒉𝑵(𝒗)
(𝒍) = 𝒎𝒆𝒂𝒏({𝒉𝒌

(𝒍−𝟏),𝒌𝑵(𝒗)})

𝒉𝒗
(𝒍) = (𝑾 ∙ 𝒄𝒐𝒏𝒄𝒂𝒕(𝒉𝒗

(𝒍−𝟏), 𝒉𝑵𝒗
(𝒍) , 𝒃(𝒍−𝟏)))

𝒉𝒗
(𝒍) = 𝒉𝒗

(𝒍)/‖𝒉𝒗
(𝒍)
‖𝟐

GATv2

𝒆𝒗𝒌
(𝒍−𝟏)

= 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝑼(𝜶𝑻 ∙ [𝑾(𝒍−𝟏)𝒉𝒗
(𝒍−𝟏)

‖𝑾(𝒍−𝟏)𝒉𝒌
(𝒍−𝟏)

])

𝒂𝒗𝒌
(𝒍−𝟏)

= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙𝒌(𝒆𝒗𝒌
(𝒍−𝟏)

)

𝒉𝒗
(𝒍)
= (∑ 𝒂𝒗𝒌

(𝒍−𝟏)
𝑾(𝒍−𝟏)𝒉𝒌

(𝒍−𝟏)

𝒌𝑵𝒗

)

B. Two Points Distance Value

Multi-dimensional reduction using UMAP and TSNE is
already proposed in [15]-[17]; however, since stochastic
algorithms are used, the reproducibility is uncertain, especially
when using multi-threaded [18]. In this study, a new consistent
2D data generation from 𝐶 dimension data is proposed. The
first dimension of the two data generated is the “distance”,
simply calculating the distance between two points of data on
the 𝐶 dimensional space into one scalar number. Consider the
GNN OVR 𝑧𝑣 structure shown in Eq. (2):

 𝑧𝑣 = (𝑧𝑣1, 𝑧𝑣2, 𝑧𝑣3, ⋯ 𝑧𝑣𝑐) , ∀𝑣 ∈ 𝒱 (2)

To calculate the “distance” parameter (𝑝𝑟𝐷𝑖𝑠𝑡),
Pythagorean theorem is used, calculated by choosing one graph
OVR result as a reference point, and calculating the 𝑝𝑟𝐷𝑖𝑠𝑡 of
the point under test OVR result by Eq. (3):

 𝑝𝑟𝐷𝑖𝑠𝑡𝑝 =

{

√∑(𝑧𝑟𝑖

2 − 𝑧𝑝𝑖
2)

𝐶

𝑖=1

𝑎𝑡 𝑟 ≠ 𝑝 𝑟, 𝑝 ∈ 𝒱

0 𝑎𝑡 𝑟 = 𝑝 𝑟, 𝑝 ∈ 𝒱

 (3)

With 𝑧𝑟 and 𝑧𝑝 is vector value of the reference point and

point under test in the 𝐶 dimension output, respectively.

Since the 𝑝𝑟𝐷𝑖𝑠𝑡 in Eq. (3) uses a square root operation to
get the distance, the performance impact is expected if a big
dataset is applied as the calculation input. Instead of using the
square root, the distance between two points can be calculated
using pseudo-distance as shown in Eq. (4). The pseudo-
distance is calculated simply by using the sum of the absolute
value of every axis’s scalar value difference between two
points.

𝑝𝑟𝑝𝐷𝑖𝑠𝑡𝑝 = ∑ |𝑧𝑟𝑖 − 𝑧𝑝𝑖|
𝐶
𝑖=1 (4)

The 𝑝𝑟𝐷𝑖𝑠𝑡 will have different values from the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡
with the relationship expressed in Eq. (5). The minimum real
distance value of 𝑝𝑟𝐷𝑖𝑠𝑡 will be equal to the value of 𝑝𝑟𝑝𝐷𝑖𝑠𝑡
divided by the square root of 𝐶 in case of equal distance of
every axis of the two points take place, as shown in Eq. (6).
The maximum distance value of 𝑝𝑟𝐷𝑖𝑠𝑡 will be equal to the
value of 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 in case of two points axis difference, and has
only occurred on one axis 𝑥, as shown in Eq. (7), with 1 ≤
𝑥 ≤ 𝐶.

𝑝𝑟𝑝𝐷𝑖𝑠𝑡

√𝐶
 ≤ 𝑝𝑟𝐷𝑖𝑠𝑡 ≤ 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 (5)

 |𝑧𝑟1 − 𝑧𝑝1| = |𝑧𝑟2 − 𝑧𝑝2| = ⋯ = |𝑧𝑟𝑐 − 𝑧𝑝𝑐|
(6)

 |𝑧𝑟𝑖 − 𝑧𝑝𝑖| = {
𝑝𝑟𝐷𝑖𝑠𝑡𝑝 𝑤ℎ𝑒𝑛 𝑖 = 𝑥

0 𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑥
 (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

879 | P a g e

www.ijacsa.thesai.org

The pseudo-distance will have an inaccurate value
compared to the real distance. However, the consistency of the
calculated value is reliable.

C. Two Points Difference Value

The second data generated after the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 data is the
“difference”, calculating the relative difference between two
points of OVR data on the 𝐶 dimensional space into one scalar
number 𝑝𝑟𝐷𝑖𝑓𝑓 . The relative difference 𝑝𝑟𝐷𝑖𝑓𝑓 is also
calculated by considering one point of OVR in the 𝐶
dimensional space as a reference point 𝑧𝑟 , and considering
another OVR 𝐶 dimensional point as a point on test 𝑧𝑝.

The first step to calculate the 𝑝𝑟𝐷𝑖𝑓𝑓 is by element-wise
subtraction between the reference point 𝑧𝑟 and the point on test
𝑧𝑝. The element-wise subtraction result is then multiplied by

the normalized array of the reference point to produce a
relative representation array (RRA). Since the normalized
reference point array consists of a fractional number with a
range from 0 ≤ 𝑛𝑟 ≤ 1 and is calculated using Eq. (8), RRA
will calculate the element-wise subtraction based on the strong
point and weak point of the reference point. The strong points
will give large weight to the RRA, and vice versa; weak points
will give small weight to the RRA. Therefore, how strong the
𝐶 dimensional point on a test compared to the reference point
is completely described by the RRA.

 𝑁𝑟 =
𝑍𝑟−𝑧𝑟𝑚𝑖𝑛

𝑧𝑟𝑚𝑎𝑥−𝑧𝑟𝑚𝑖𝑛
 (8)

The final step to calculate the 𝑝𝑟𝐷𝑖𝑓𝑓 is by summing all
elements on the RRA into a single scalar value. The calculation
to generate 𝑝𝑟𝐷𝑖𝑓𝑓 value is expressed in Eq. (9).

 𝑝𝑟𝐷𝑖𝑓𝑓𝑝 = ∑ (𝑧𝑟𝑖 − 𝑧𝑝𝑖)𝑛𝑟𝑖
𝐶
𝑖=1 (9)

Fig. 2. Positive value of 𝑝𝑟𝐷𝑖𝑓𝑓, in area of the normalized reference point
(green), the reference point (blue) have higher value relative to the point on

test (red).

Fig. 3. Negative value of 𝑝𝑟𝐷𝑖𝑓𝑓, in area of the normalized reference point

(green), the reference point (blue) have weaker value relative to the point on

test (red)

Since the relative representation array obtained from 𝑧𝑟
subtracted by 𝑧𝑝, the positive value of 𝑝𝑟𝐷𝑖𝑓𝑓 represents that

the total strong point of the reference point is stronger than
point on test as shown in Fig. 2, and the negative value of

𝑝𝑟𝐷𝑖𝑓𝑓 representing the total strong point of the reference
point is weaker than the point on test as shown in Fig. 3.

D. Duplication Detection

In this study, the duplication detection is done by using
identical comparison of the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 of every
graph OVR on the dataset. To begin with, to calculate 𝑝𝑟𝑝𝐷𝑖𝑠𝑡
and 𝑝𝑟𝐷𝑖𝑓𝑓, a reference graph OVR is required, therefore, for
convenience, the first graph OVR is selected as reference,
specify the index value 𝑟 = 0. With the reference graph OVR
has been set, the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 could be calculated for
every other graph OVR in the datasets and the duplication
detection can be calculated.

The identical 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 value of two graph
under the test have meaning that the “distance” and the
“difference” of the two OVR point relative to the reference
OVR point is just the same; therefore, the two graphs under the
test could be concluded as an identical graph pair. Otherwise,
different 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 value of two OVR points means
that the two graphs under the test are not identical. The
calculation to obtain the graph duplication is shown in
Algorithm 1.

Algorithm 1: Duplication Detection

PROGRAM Compare()

INPUT 𝑧𝑣

OUTPUT CompOut, CompResult

Compute

for 𝑣 in 𝒱 do

prpDist ← cal_dist(𝑧0, 𝑧𝑣)

prpDiff ← cal_diff(𝑧0, 𝑛0, 𝑧𝑣)

end for

for i, Dist in prpDist do

CompOut[t][i] ← (prpDist – Dist) == 0

end for

for i, Diff in prpDiff do

CompOut[f][i] ← (prpDiff – Diff) == 0

end for

CompResult ← logical_and(CompOut[t], CompOut[f])

return CompOut, CompResult

E. Duplication Detection Scalability

For scalability, in case of a new graph is registered on the
dataset, the recalculation of previous 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 are
unnecessary. Only new registered graphs are required for
𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 calculation, calculated using the same
GNN (for obtaining the new registered OVR graph) and by
using the same reference OVR graph, same as the other
previous already existed graph. The duplication detection for
the new graph is then calculated by comparing the new
acquired 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 with the previous already
calculated 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 one.

III. ACCURACY AND CONSISTENCY

In today’s modern computers, floating point numbers
represented by the IEEE 754 standard (standard floating-point

0

1

-30

-15

0

15

30

45

0

1

-30

-15

0

15

30

45

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

880 | P a g e

www.ijacsa.thesai.org

or SFP) is used. The floating point calculation in IEEE 754
have limited accuracy and consistency, accurate only about 7
decimal digits for single precision and about 16 decimal digits
for double precision, while the bitwise identical output results
are not guaranteed even using the identical input and identical
mathematical equations [23]-[25].

In this study, SFP is used in all calculations. Starting from
the GNN recognition, OVR result calculation, until the
identical comparison for the duplication detection. Therefore,
some errors due to inaccuracy and inconsistency are to be
expected.

A. False Negative Result

As shown in Algorithm 1, the operation to obtain the
duplication is by element wise identical comparison. Since the
SFP operation is suspected to be affected by the calculation
inaccuracy and inconsistency, a test using single graph
calculated twice is observed to give a different result,
generating a non identical graph detection or false negative
result.

In some cases, the result inconsistencies are observed to
apply starting from as low as 4 decimal digits of the calculated
output (PyTorch tensor calculation using GPU). Therefore, to
overcome this inconsistency, rounding algorithms are used
with the suspected inaccurate decimal digits that are neglected
and replaced with zeros.

In this study, the rounding algorithm is applied at the GNN
output vector representation result and at the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and
𝑝𝑟𝐷𝑖𝑓𝑓 calculation output. The number of decimal digits
maintained is set to 4 decimal digits, for both CPU and GPU
calculation. As an example, the value of 𝑥 =
1.23456789012 ∗ 10−5 will be rounded to the value of 𝑥 =
1.23450000000 ∗ 10−5.

B. False Positive Result

The rounding algorithm is expected to reduce the false
negative result. However, a new false positive result condition
is introduced by applying the rounding algorithm. A pair of the
two almost similar graphs, with the GNN OVR differences
smaller than the value of the neglected decimals, is observed to
be detected as the same identical graph. For the number of
decimal digits on the rounding algorithm, as more decimal
digits are maintained, the false positive result is expected to
appear less, and the false negative result reduction is expected
to be weaker.

C. Special False Positive Case

In the duplication detection algorithm, a special false
positive case has been observed once. Since the GNN neural
network (NN) weight used as the input of the duplication
detection is randomly generated and untrained, one occurrence
of completely mirrored GNN output is observed as illustrated
in Fig. 4.

When the GNN OVR of the reference point (Fig. 4 blue
line) has a mirror result characteristic, as expressed in Eq.
(10), and when the GNN OVR of graph 1 on test (Fig. 4 green
line) and graph 2 on test (Fig. 4 red line) have the same
identical OVR results and lie in each mirroring area for the
reference point GNN OVR, a special false positive condition is

observed. Every element-wise subtraction between the
reference and graph 1 on the test completely finds its pair in the
subtraction between the reference and graph 2 on a test, as
expressed in Eq. (11). Therefore, the total
calculated 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 on both graphs will be equal,
and the duplication detection will consider graph 1 and graph 2
as identical graph.

 𝑧𝑟𝑖 = 𝑧𝑟𝑗 , 𝑖 + 𝑗 = 𝐶 − 1 (10)

 |𝑧𝑟𝑖 − 𝑧𝑝1𝑖| = |𝑧𝑟𝑗 − 𝑧𝑝2𝑗| (11)

Fig. 4. False positive condition, the reference (blue), test graph 1 (green) and

test graph 2 (red). The x-axis is the GNN dimension output from 1 to 𝐶, and
the y-axis is the scalar value of the GNN output.

D. Second Level Comparison (SLC)

To detect false positive detection cases, a second level
comparison (SLC) is proposed. As stated in Section II(D), for
the duplication detection, the first graph in the dataset is
selected as the reference graph. However, in the SLC, one of
two graphs detected as identical graph will be selected as the
reference. Therefore, the calculation will only produce one
𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and one 𝑝𝑟𝐷𝑖𝑓𝑓 , representing the “distance” value
and the “difference” value between the two presumed to be
identical graphs under the duplication detection result. If the
𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 proved to be equal to 0, the two graphs
are indeed identical. The SLC calculation is shown in
Algorithm 2.

Algorithm 2: Second Comparison

PROGRAM ReComp()

INPUT CompResult, CompResultY, tensorh

OUTPUT CompResult

Compute

for Ident in CompResultY do

DatRef ← tensorh[Ident[0]]

DatNorm ← normtensor(tensorh[Ident[0]])

DatTest ← tensorh[Ident[1]]

rprpDist ← callpdist(DatRef, DatTest)

rprDiff ← callDiff(DatRef, DtaNorm, DatTest)

if rprpDist ≠ 0 or rprDiff ≠ 0 do

CompResult[Ident[0]][Ident[1]] ← False

end if

end for

return CompResult

Despite being capable of detecting a false positive case, the
SLC is observed to introduce a new false negative case by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

881 | P a g e

www.ijacsa.thesai.org

detecting the true positive identical pair as a non-identical pair
and change into false negative as shown in Fig. 5.

Fig. 5. Second Level Comparison on confirmed true positive identical pair,

resulting in a false negative detection due to floating point inaccuracy.

The SFP accuracy is accurate until 7 decimal digits for
FP32, as for the value after decimal digit 8 will be considered
inaccurate. Since the value of 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 of the
graph pair under observation in Fig. 5 is in the order of 5𝑥103,
and the delta value between two points in pair ∆𝑝𝑟 is in the

order of 10−5 , the ∆𝑝𝑟 value if these confirmed identical
graphs is indeed the result of floating point inaccuracy. In the
graph duplication calculation in Algorithm 1, the global
reference graph (datasets [0]) is used. Since the ∆𝑝𝑟 is far from
the most significant digit of the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 (10−8
order difference, as a result of the inaccuracy area of SFP
calculation), ∆𝑝𝑟 is observed as 0, and the true positive graph
pair is indeed detected as an identical pair. However, in the
second level comparison (one of the two graphs becomes the
new reference point), the graph duplication detection
calculation is based on the ∆𝑝𝑟 (with value in the order of

10−5) instead of the old 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 , which is the
subject of inaccuracy. Therefore, the graph pair shown in Fig. 5
(right) is detected as a non-identical pair (false negative) after
SLC.

IV. SIMULATION

For dataset duplication detection simulation, the GCN, GIN,
GSG, and GAT models are used for generating the GNN OVR
before the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 calculation is done.
Furthermore, for the input datasets, the two netlist to graph
abstraction technique from [13] is used, with the circuits
included in the netlist datasets are obtained using the split
technique in [8] as shown in TABLE II.

TABLE II. DATASET FEATURE

Datasets Feature Quantity

Number of data 2,115

Number of classes 121

Min data per class 1

Max data per class 795

NETLIST length 5,214,505

NETLIST number of line 95,615

Number of MOSFET(s) 74,626

Number of Power Supply(s) 4,234

Number of Resistors(s) 7,804

Number of LC(s) 11

The first two netlists for graph abstraction in [13] are in 1-
node with multi-edge and connection node additions (1NMC).
Afterwards, the second abstraction is in a 4-node with
connection node addition (4NC). In this study, the 1-node with
the addition of multi-edge, node connection, and edge direction
optimization (1NMC+D) is introduced as the new, more
optimized netlist to the graph abstraction technique after the
1NMC duplication detection result is studied. The dataset’s
confirmed parameters are shown in TABLE III.

TABLE III. DATASETS CONFIRMED PARAMETER

Parameter 1NMC [13] 1NMC + D 4NC [13]

Different Class Dispute 797 1 0

Max Theoretical Accuracy 62.32% 99.95% 100%

Same Class Group

Duplication
0 0 0

For all simulations of the duplication detection, including
the CPU and GPU calculations, the first graph in the dataset is
set as the reference point. The number of decimal digits
maintained at the rounding algorithm is also set to 4 decimal
digits. A personal computer with 10850K CPU, 64GB of RAM,
RTX 4070 Ti GPU, Windows 10 system, and python
environment with PyTorch for neural network computing is
used for simulation in this research.

A. The 2D Dataset’s Visualization

As the 𝑝𝑟𝑝𝐷𝑖𝑠𝑡 and 𝑝𝑟𝐷𝑖𝑓𝑓 of all graphs are already
calculated and obtained, a 2D visualization of these two
datasets can be achieved. Using the 1NMC and 1NMC+D
datasets as an example, the 2D visualization of an untrained
random weighted GNN is shown in Fig. 6 and Fig. 7,
respectively. The x axis of Fig. 6 and Fig. 7 represents the
𝑝𝑟𝑝𝐷𝑖𝑠𝑡 value, while the y axis represents the 𝑝𝑟𝐷𝑖𝑓𝑓 . The
most left dark blue dot observed in Fig. 6 (upper) and Fig. 7
(upper) of all GNN outputs is a representation of the reference
graph point, representing the 𝑥 = 0 and 𝑦 = 0 of each figure.

As shown in Fig. 6 (upper) and Fig. 7 (upper), the total
visualization of all graphs is observed to have different
characteristic between each GNN types. It shows that each
GNN model indeed has different calculations and output
behavior. A particular pattern of the graphs which fall into the
same class is also observed.

Fig. 6 (down) and Fig. 7 (down) is the zoomed version of
certain areas in Fig. 6 (upper) and Fig. 7 (upper) respectively.
Aiming to focus on the visualization of the identical and non-
identical graph pairs, Fig. 6 (down), shows the example of
“zoomed” multiple two points overlapping each other,
indicating multiple two points detected as identical pairs. With
the poor netlist to graph abstraction in 1NMC, multiple grey
dots are observed to be exactly on top of the red dot (the easiest
example to be seen) in all GNN output. On the contrary, as
shown in Fig. 7 (down), with optimized direction added to the
netlist to graph abstraction technique, the multiple two points
overlapping each other are no longer visible. Even in some
cases the grey dots are still close to the red dots, as observed in
Fig. 7 [down (b)], they are observed to be completely separated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

882 | P a g e

www.ijacsa.thesai.org

 (a) (b) (c) (d)

Fig. 6. The 2D output of untrained GCN (a), GIN (b), GSG (c), and GAT (d) of the input dataset using 1NMC netlist to graph abstraction in [13]

 (a) (b) (c) (d)

Fig. 7. The 2D output of untrained GCN (a), GIN (b), GSG (c), and GAT (d) of the input dataset using 1NMC + D netlist to graph abstraction

B. Duplication Detection Result

The graph dataset duplication detection simulation result
for the SFP calculation with combination of SCL and rounded

floating point (RFP) calculation with combination of SLC is
shown in TABLE I and TABLE V respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

883 | P a g e

www.ijacsa.thesai.org

TABLE IV. SIMULATION RESULT FOR STANDARD FP CALCULATION COMBINED WITH SCL

Parameter
CPU GPU

1NMC [13] 1NMC + D 4NC [13] 1NMC [13] 1NMC + D 4NC [13]

S
ta

n
d
ar

d
 F

P
 C

al
cu

la
ti

o
n

Identical Pair

Detected

GCN 419 7 1 29 0 0

GIN 425 7 1 28 0 0

GSG 383 13 1 5 2 0

GAT 192 7 1 12 0 0

Identical Pair

False Positive*)

GCN 0 6 1 1 0 0

GIN 0 6 1 0 2 0

GSG 1 12 1 0 0 0

GAT 6 6 1 0 0 0

Identical Pair

False Negative*)

GCN 378 0 0 769 1 0

GIN 372 0 0 769 1 0

GSG 415 0 0 792 1 0

GAT 611 0 0 785 1 0

Same Class Pair

GCN 0 6 1 1 0 0

GIN 0 6 1 0 0 0

GSG 0 11 1 0 1 0

GAT 6 6 1 0 0 0

Same Class Pair

False Positive*)

GCN 0 6 1 1 0 0

GIN 0 6 1 0 0 0

GSG 0 11 1 0 1 0

GAT 6 6 1 0 0 0

Detected Dispute

Items

GCN 419 1 0 28 0 0

GIN 425 1 0 28 0 0

GSG 383 2 0 5 1 0

GAT 186 1 0 12 0 0

Calculated

training accuracy

GCN 80.19% 99.95% 100% 98.68% 100% 100%

GIN 79.91% 99.95% 100% 98.68% 100% 100%

GSG 81.89% 99.91% 100% 99.76% 99.95% 100%

GAT 91.21% 99.95% 100% 99.43% 100% 100%

Dispute Items

True Positive*)

GCN 419 1 0 28 0 0

GIN 425 1 0 28 0 0

GSG 382 1 0 5 0 0

GAT 186 1 0 12 0 0

F
P

 C
al

cu
la

ti
o
n

 +
 S

ec
o
n
d

 l
ev

el
 C

o
m

p
ar

is
o
n

Identical Pair

Detected

GCN 184 7 0 0 0 0

GIN 220 7 1 0 0 0

GSG 326 9 1 0 0 0

GAT 61 7 1 0 0 0

Identical Pair

False Positive*)

GCN 0 6 0 0 0 0

GIN 0 6 1 0 0 0

GSG 1 8 1 0 0 0

GAT 6 6 1 0 0 0

Identical Pair

False Negative*)

GCN 613 0 0 797 1 0

GIN 577 0 0 797 1 0

GSG 472 0 0 797 1 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

884 | P a g e

www.ijacsa.thesai.org

GAT 742 0 0 797 1 0

Same Class Pair

GCN 0 6 0 0 0 0

GIN 0 6 1 0 0 0

GSG 0 8 1 0 0 0

GAT 6 6 1 0 0 0

Same Class Pair
False Positive*)

GCN 0 6 0 0 0 0

GIN 0 6 1 0 0 0

GSG 0 8 1 0 0 0

GAT 6 6 1 0 0 0

Detected Dispute
Items

GCN 184 1 0 0 0 0

GIN 220 1 0 0 0 0

GSG 383 1 0 0 0 0

GAT 55 1 0 0 0 0

Calculated
training accuracy

GCN 91.30% 99.95% 100% 100% 100% 100%

GIN 89.60% 99.95% 100% 100% 100% 100%

GSG 84.59% 99.95% 100% 100% 100% 100%

GAT 97.40% 99.95% 100% 100% 100% 100%

Dispute Items
True Positive*)

GCN 184 1 0 0 0 0

GIN 220 1 0 0 0 0

GSG 382 1 0 0 0 0

GAT 55 1 0 0 0 0

*) Requires all graph information of the confirmed true positive identical pair, complete with its identical graph counterparts.

TABLE V. SIMULATION RESULT FOR RFP CALCULATION COMBINED WITH SCL

Parameter
CPU GPU

1NMC [13] 1NMC + D 4NC [13] 1NMC [13] 1NMC + D 4NC [13]

F
P

 C
al

cu
la

ti
o
n

 +
 R

o
u

n
d
in

g

Identical Pair
Detected

GCN 836 54 234 816 54 236

GIN 839 39 46 800 40 43

GSG 832 114 39 710 112 37

GAT 849 25 25 820 24 30

Identical Pair

False Positive*)

GCN 42 53 234 40 53 236

GIN 45 38 46 45 39 43

GSG 38 113 39 39 111 37

GAT 60 24 25 52 24 30

Identical Pair

False Negative*)

GCN 3 0 0 21 0 0

GIN 3 0 0 42 0 0

GSG 3 0 0 126 0 0

GAT 8 0 0 29 1 0

Same Class Pair

GCN 16 48 81 15 48 81

GIN 8 22 5 8 22 4

GSG 15 34 18 15 33 17

GAT 18 20 5 11 22 8

Same Class Pair

False Positive*)

GCN 16 48 81 15 48 81

GIN 8 22 5 8 22 4

GSG 15 34 18 15 33 17

GAT 18 20 5 11 22 8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

885 | P a g e

www.ijacsa.thesai.org

Detected Dispute

Items

GCN 805 6 145 787 6 147

GIN 818 17 40 779 18 39

GSG 807 78 21 685 78 20

GAT 881 5 20 796 2 22

Calculated
training accuracy

GCN 61.94% 99.72% 93.14% 62.79% 99.72% 93.05%

GIN 61.32% 99.20% 98.11% 63.17% 99.15% 98.14%

GSG 61.84% 96.93% 99.01% 67.61% 96.31% 99.05%

GAT 61.65% 99.76% 99.05% 62.36% 99.91% 98.96%

Dispute Items

True Positive*)

GCN 794 1 0 776 1 0

GIN 794 1 0 755 1 0

GSG 794 1 0 671 1 0

GAT 789 1 0 768 0 0

F
P

 C
al

cu
la

ti
o
n

 +
 R

o
u

n
d
in

g
 +

 S
ec

o
n
d

 l
ev

el
 C

o
m

p
ar

is
o
n

Identical Pair

Detected

GCN 803 14 1 658 8 1

GIN 782 14 1 404 11 0

GSG 819 83 1 512 79 0

GAT 713 14 1 522 10 1

Identical Pair
False Positive*)

GCN 12 13 1 11 7 1

GIN 9 13 1 2 10 0

GSG 33 82 1 33 78 0

GAT 16 13 1 13 10 1

Identical Pair

False Negative*)

GCN 6 0 0 150 0 0

GIN 24 0 0 395 0 0

GSG 11 0 0 318 0 0

GAT 82 0 0 288 1 0

Same Class Pair

GCN 4 12 1 4 6 1

GIN 2 12 1 0 9 0

GSG 12 18 1 12 16 0

GAT 12 12 1 2 9 1

Same Class Pair
False Positive*)

GCN 4 12 1 4 6 1

GIN 2 12 1 0 9 0

GSG 12 18 1 12 16 0

GAT 12 12 1 2 9 1

Detected Dispute

Items

GCN 797 2 0 653 2 0

GIN 779 2 0 404 2 0

GSG 797 65 0 409 63 0

GAT 719 2 0 519 1 0

Calculated

training accuracy

GCN 62.32% 99.91% 100% 69.13% 99.91% 100%

GIN 63.17% 99.91% 100% 80.90% 99.91% 100%

GSG 62.32% 96.93% 100% 76.83% 97.02% 100%

GAT 66.00% 99.91% 100% 75.46% 99.91% 100%

Dispute Items
True Positive*)

GCN 791 1 0 647 1 0

GIN 773 1 0 402 1 0

GSG 786 1 0 479 1 0

GAT 715 1 0 509 0 0

*) Requires all graph information of the confirmed true positive identical pair, complete with its identical graph counterparts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

886 | P a g e

www.ijacsa.thesai.org

The dispute items in TABLE I and TABLE V show the
theoretical total number of uncertain graphs in the datasets if
the GNN training and recognition are performed. As an
example, an identical pair of two graphs has been detected,
having indexes 31 and 278 (or expressed as [31, 278]) and
having different classes assigned. When the recognition is
performed, only one graph will be recognized correctly, and
the other graph will be recognized as the other graph class.
Therefore, in one identical pair, one graph will be counted as a
dispute item.

In case of three identical graphs detected: [24, 334], [24,
1267], and [334, 1267], all with different classes, can also be
expressed as [24, 334, 1267], which will have two dispute
items. Since only one graph will be recognized correctly, the
other two graphs will be detected falsely.

All the results shown in TABLE I and TABLE V are
subject to floating-point inconsistency. Therefore, when the
simulation is done repeatedly with the same simulation settings
and formula, slightly different results are observed.

C. CPU IEEE 754 Calculation + SLC Simulation Result

From using the SFP calculation only, the CPU calculation
result for 1NMC datasets is observed to be capable of detecting
the graph duplication, with the number of identical graphs
detected starting from 192 graphs to 419 graphs detected.
However, the number of undetected identical pairs (false
negative case) starts from 378 graphs to 611 graphs. According
to the false negative result and datasets confirmed parameters
in TABLE III, the F1 score started from as low as 37.61%
(observed in GAT output result) and as high as 69.56%
(observed in GIN), with an average of 60.21% observed.

For calculation after SLC, the number of identical graphs
detected decreased, starting from 61 graphs to 184 graphs only,
confirming the introduction of false negatives by second level
comparison calculation. Therefore, the number of false
negative detections observed increased, with the result starting
from 472 graphs to 742 graphs. The F1 score is observed to
decrease, starting from as low as 12.82% (in GAT) and as high
as 57.88% (in GSG), with an average of only 37.87%. There is
no change observed in false positive results after SLC
calculation.

For calculated theoretical training accuracy from the
detected dispute items, the 1NMC dataset shows a large
deviation compared to the dataset’s parameter shown in
TABLE III. The deviation started from 17.78% to 28.89% with
an average of 20.98%, and 22.27% to 35.08% with an average
of 28.41% are observed in SFP and after SLC calculation result,
respectively. Therefore, with the confirmed datasets, a
theoretical training accuracy of 62.32%, the deviation of
35.08% (observed in GAT after SLC) is indeed a huge
detection error.

For the 1NMC+D datasets simulation result, the SFP
calculation could detect “the only one” confirmed identical
pairs for all GNN outputs (zero false negatives). However, all
GNN outputs are also detecting another non-identical graphs,
with an average of 7.5 number of graphs and are reported as
identical graphs (false positive case). The false positive cases
are observed to belong to the same class, identical pair;

therefore, it would not increase the dispute items at all (except
1 false positive dispute item detected in GSG). For calculation
after SLC, there is no change observed, except for the GSG
false positive reduction from 11 graphs to 8 graphs detected.
The GSG dispute items are also reduced from 2 items to only 1
item. For calculated theoretical training accuracy, all GNN
shows 0.00% deviation for all SFP calculations and after SLC
calculation, except for GSG (SFP result) with 0.04% deviation.

 For the 4NC datasets, since it is confirmed zero identical
pairs, the false negative detection will always show 0.
Therefore, the only parameter that could be considered is false
positive detection. From the SFP calculation and after SLC, 1
graph detected as a false positive (same class) is observed in all
GNN results except for GNC after SLC (0 false positives). For
calculated theoretical training accuracy, all GNN shows 0.00%
deviation for all SFP calculations and after SLC.

From the 1NMC, 1NMC+D and 4NC datasets on CPU
calculation using SFP and SLC, the duplication detection
shows high detection error (up to 93.10% duplication detection
incapability error) on the datasets that have many confirmed
identical pairs. However, the duplication detection shows high
accuracy on datasets with a small, confirmed number of
identical pairs. It is concluded that the floating-point
inaccuracy and inconsistency are highly impacting the
calculation result, resulting two identical graphs calculated
with same calculation to give a different result, showing the
identical pair as a non-identical pair.

From SFP and SLC calculations, the GAT result is
observed showing the worst performance compared to other
GNN. There is a possibility observed as the reason GAT output
is so inaccurate when using SFP and with SLC calculation. The
GAT NN size is so large (stored NN size is 4,455 KB in size)
compared to the other GNN NN sizes (215 KB for GCN, 924
KB for GIN, and 351 KB for GSG), indicating more floating-
point calculations are performed to obtain the GNN vector
representation output. Therefore, the possibility of inaccuracy
and inconsistency taking effect is also larger.

D. GPU IEEE 754 Calculation + SLC Simulation Result

The GPU calculation results, by using 1NMC datasets on
SFP calculation, were observed to have worse performance
compared to the CPU calculation. Due to the number of
detected identical pairs being observed only from 5 graphs to
29 graph pairs, the false negative detection number is
astonishing, starting from 769 graphs to 792 graphs (confirmed
identical pair is 797). Therefore, the F1 score is observed only
1.25% (GSG) to 6.79% (GIN) with an average of 4.45%. For
calculation after SLC, the detection capability is even worse.
The duplication detection result shows that the calculation is
failing to detect any duplication in the datasets (recall score is
0.00%), resulting in the theoretical training accuracy of 100%,
although the confirmed theoretical value is 62.32%.

For the datasets 1NMC+D on GPU with SFP and with SLC
calculation results, the duplication detection is failing to detect
“the only one” confirmed identical pairs for all GNN outputs.
The GIN output is even observed on detecting two other graph
pairs, with one pair in the same class, raising 1 graph dispute
item using the false positive detection. For the detection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

887 | P a g e

www.ijacsa.thesai.org

capability, the GPU calculation is observed failing to detect the
graph duplication (duplication detection capability is 0.00%)
on both SFP and SLC calculations.

For GPU calculation on 4NC datasets, the SFP and SLC
calculation result shows a consistent outcome in all GNN
outputs. The number of identical pairs, false positives, false
negatives, and disputed items is zero. The theoretical training
accuracy is also observed to be 100% in all cases.

From the 1NMC, 1NMC+D and 4NC datasets on GPU
calculation using SFP and SLC, the GPU calculation is
concluded to be more severely affected by the floating-point
inaccuracy and inconsistency compared to the CPU. The
observed output calculation is so affected by this inaccuracy
and inconsistency, almost rendering the duplication detection
using the proposed method unable to produce the appropriate
results at all.

E. CPU Rounding Floating-point + SLC Simulation Result

The CPU calculation results by using 1NMC datasets on
RFP calculation, observed to have good performance compared
to the SFP result. The number of detected identical pairs
observed starts from 832 to 849, with an average of 839 graph
pairs. The false negative detection number is observed starting
from only 3 graphs until 8 graphs, with an average of 4.25
graph pairs. The F1 score is observed to start from 95.87%
(GAT) to 97.48% (GSG), with an average of 96.92%. The
number of false positives started from 38 graphs to 60 graphs,
with an average of 46.25 graph pairs. For calculation after SLC,
the detected false positive and false negative result is observed
to have an average of 17.5 and 30.75 graph pairs, respectively.
The F1 score is observed to start from 93.43% to 98.88%, with
an average of 96.87%. For calculated theoretical training
accuracy, the GNN result shows 0.38% to 1.00% and 0.00% to
3.68% deviation for RFP calculation and after SLC calculation,
respectively.

For the datasets 1NMC+D on CPU with RFP calculation
result, the number of detected identical pairs started from 25 to
114, with an average of 58 graph pairs, with all zeros in all
GNN false negative results. The false positive result started
from 24 to 113, with an average of 57 graph pairs being
observed. For calculation after SLC, the number of detected
identical pairs started from 14 to 83, with an average of 31.25
graph pairs, with all zeros in all GNN false negative results.
The false positive result is observed to have started from 13 to
82, with an average of 30.25 graph pairs. For calculated
theoretical training accuracy, the GNN result shows 0.19% to
3.02% and 0.04% to 3.02% deviation for RFP calculation and
after SLC calculation, respectively.

For CPU calculation on 4NC datasets, the RFP calculation
result shows a surprising outcome. The number of detected
identical pairs increased compared to 1NMC+D, starting from
25 to 234, with an average of 86 graph pairs, with all the
detected pairs observed as false positives. For calculation after
SLC, the number of detected identical pairs and false positive
outcomes is only 1 graph pair in all GNN results. For
calculated theoretical training accuracy, the GNN result shows
0.95% to 6.86%, and 0.00% deviation for RFP calculation and
after SLC calculation, respectively.

From the 1NMC, 1NMC+D and 4NC datasets on CPU
calculation using RFP and SLC, the CPU calculation is capable
to produce good results by having very high duplication
detection capability. However, despite a high duplication
detection capability is observed, the number of false positive
detections is rather high, confirming the false negative
reduction and new false positive introduction with the rounding
calculation application. For SLC calculation, since the false
positive results tend to be reduced and the new false negative
results tend to be introduced, the detection capability is
somewhat observed to be balanced, equalizing between false
positive and false negative. This balance result (is it good or
bad?) is not discussed in this study.

The RFP output calculation is observed to be less affected
by floating-point inaccuracy and inconsistency, rendering the
duplication detection using the proposed method able to detect
more than 96.14% of the confirmed identical graph pairs.

F. GPU Rounding Floating-point + SLC Simulation Result

The GPU calculation results by using 1NMC datasets on
RFP calculation show that the number of detected identical
pairs observed started from 710 to 820, with an average of
786.5 graph pairs. The false negative detection number is
observed to start from 21 to 126, with an average of 86 graph
pairs. The F1 score is observed starting from 89.05% to
96.22% with an average of 93.70%. The number of false
positives started from 39 to 52, with an average of 44 graph
pairs. For calculation after SLC, the detected false positive and
false negative result is observed to have an average of 14.75
and 287.75 graph pairs, respectively. The number of false
negative detections observed increased, starting from 150 to
395 graph pairs. The duplication detection capability is
observed to decrease, starting from 66.94% to 88.93%, with an
average of 76.56%. For calculated theoretical training accuracy,
the GNN result shows 0.04% to 5.29% and 6.81% to 18.58%
deviation for RFP calculation and after SLC calculation,
respectively.

For the datasets 1NMC+D on GPU with RFP calculation
result, the number of detected identical pairs started from 24 to
112, with an average of 57.5 graph pair, with all zeros in all
GNN (except for GAT, 1 graph pair) false negative results. The
false positive result started from 24 to 111, with an average of
56.75 graph pairs being observed. For calculation after SLC,
the number of detected identical pairs started from 8 to 79, with
an average of 27 graph pairs, with all zeros in all GNN (except
for GAT, 1 graph pair) false negative results. The false positive
result is observed to start from 7 to 78 with an average of 26.25
graph pairs. For calculated theoretical training accuracy, the
GNN result shows 0.04% to 3.64% and 0.04% to 2.93%
deviation for RFP calculation and after SLC calculation,
respectively.

For GPU calculation on 4NC datasets, the RFP calculation
result also shows a surprising outcome. The number of
detected identical pairs also increased compared to 1NMC+D,
starting from 30 to 236, with an average of 86.5 graph pairs,
with all the detected pairs observed as false positives. For
calculation after SLC, the number of detected identical pairs
and false positive outcomes is only 1 (GCN and GAT) and 0
(GCN and GSG) graph pairs. For calculated theoretical training

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

888 | P a g e

www.ijacsa.thesai.org

accuracy, the GNN result shows 0.95% to 6.95% and 0.00%
deviation for RFP calculation and after SLC calculation,
respectively.

From the 1NMC, 1NMC+D and 4NC datasets on GPU
calculation using RFP and SLC, compared from GPU
performance using SFP, the GPU RFP and SLC calculation
were observed to be capable of producing good results by
having relatively high duplication detection capability. The
RFP output calculation is also observed in GPU to be less
affected by floating-point inaccuracy and inconsistency,
rendering the duplication detection using the proposed method
able to detect more than 93.16% and more than 63.90% of the
confirmed identical graph pairs in RFP and SLC calculation,
respectively.

V. CONCLUSION

In this study, graph duplication detection using the vector
representation output of GNN is proposed. The duplication
detection starts by recognizing the graph datasets using random
weighted untrained GNN and converting the fixed multi-
dimensional GNN recognition output into 2D data. The 2D
data is later compared to one another to determine if the graph
pair under the test is identical or not.

The simulation is also done in this study, using 4 different
untrained GNNs, simulated using both CPU and GPU to
demonstrate the duplication detection capability despite being
affected by floating-point inaccuracy and inconsistency. The
best F1 score is obtained by implementing 4-digit decimal
rounding floating-point calculation, achieving an average of
96.92% and 93.70% duplication detection from 797 confirmed
identical graph pairs using CPU and GPU calculation,
respectively, without SLC.

Since the datasets used in this study are generated by using
lists of analog circuit modules, the future work in this research
is to increase the dataset size with more complex and varied
circuits. Other already published graph datasets are also
subjected to being tried as input datasets to get a wider
application comparison. The optimization of the detection
capability by using floating-point range comparison instead of
floating-point identical comparison, especially on the second
level comparison, along with the behavior of 2D GNN vector
output under the training process, is also future work.

ACKNOWLEDGMENT

We would like to express our gratitude to Mrs. Toyama for

all the support she provided, including the research

environment.

REFERENCES

[1] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth
comparison of subgraph isomorphism algorithms in graph databases,” in
Proceedings of the 39th international conference on Very Large Data
Bases. VLDB Endowment, 2012, pp. 133–144.

[2] M. Kraetzl P. Showbridge and D. Ray. Detection of abnormal change in
dynamic networks. In Information, Decision and Control, 1999.

[3] M. Saltz et all, “Dualiso: An algorithm for subgraph pattern matching on
very large labeled graphs,” In IEEE International Congress on Big Data
(BigData Congress), 2014.

[4] A. Mahmood, H. Farooq, J. Ferzund, “Large Scale Graph Matching
(LSGM): Techniques, Tools, Applications and Challenges,”
International Journal of Advanced Computer Science and Applications
(IJACSA) Vol. 8, No. 4, 2017.

[5] Y Wei, S. Wang, Y. Li, “Graph Theory Based Machine Learning for
Analog Circuit Design,” International Conference on Automation and
Computing (ICAC), 2023.

[6] Z. Wu, I. Savidis, “Transfer of Performance Model Across Analog
Circuit Topologi with Graph Neural Network,” Workshop on Machine
Learning for CAD (MLCAD), 2022.

[7] S. Sridar, K. Subramanian, “Circuit Recognition Using Netlist,” IEEE
Second International Conference on Image Information Processing
(ICIIP), 2013.

[8] A. A. Mannan, K. Tanno, “Netlist Feature Extraction for CMOS Analog
Circuit Design Warning System,” ICMLC, 2024.

[9] Y. Wang, L. Wang, B. Lan, J. Wan, “A Novel Automatic Placement
Generation Tool for Current Mirror in Analog Circuits,” 2nd
International Symposium of Electronics Design Automation (ISEDA),
2024.

[10] Z. Zheng, X Zhang, Y. Wang, S. He, C. Huang, L. Li, D. Guo,
“Classification of Analog Circuit Based on Graph Convolution
Network,” International Conference on Anti-counterfeiting, Security,
and Identification (ASID), 2022.

[11] Z. Wu, I. Savidis, “Transfer of Performance Model Across Analog
Circuit Topologi with Graph Neural Network,” Workshop on Machine
Learning for CAD (MLCAD), 2022.

[12] S. Sridar, K. Subramanian, “Circuit Recognition Using Netlist,” IEEE
Second International Conference on Image Information Processing
(ICIIP), 2013.

[13] K. Hakhamaneshi, M. Nassar, M. Phielipp, P. Abbeel, V. Stojanovic,
“Pertaining Graph Neural Network for Few-Shot Analog Circuit
Modeling and Design,” IEEE Transactions On Computer-Aided Design
of Integrated Circuits and Systems, Vol. 42, NO. 7, JULY 2023.

[14] J. R. Ullmann, “An algorithm for subgraph isomorphism, “ J. ACM,
23:31–42, January 1976.

[15] M. Mittal, et all, “Dimensionality Reduction Using UMAP and TSNE
Technique,” Second International Conference on Advances in
Information Technology (ICAIT), 2024.

[16] Y. Deng, et all, “UMAP for Dimensionality Reduction in Sleep Stage
Classification Using EEG Data,” 46th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC),
2024.

[17] E. Myasnikov, “Using UMAP for Dimensionality Reduction of
Hyperspectral Data,” International Multi-Conference on Industrial
Engineering and Modern Technologies (FarEastCon), 2020.

[18] “UMAP Reproducibility”, umap-learn.readthedocs.io. https://umap-
learn.readthedocs.io/en/latest/reproducibility.html (accessed April. 24,
2025).

[19] T. N. Kipf, M. Welling, “Semi-supervised classification with graph
convolutional networks,” 5th International Conference on Learning
Representations (ICLR), 2017.

[20] K. Xu, W. hu, J. Leskovec, S. Jegelka, ”How Powerful are Graph Neural
Networks?,” International Conference on Learning Representations
(ICLR) 2019.

[21] S. Brody, U. Alon, E Yahav, “How Attentive are Graph Attention
Networks?,” The Tenth International Conference on Learning
Representations (ICLR), 2022.

[22] W. L. Hamilton, R. Ying, J. Leskovec, “Inductive representation
learning on large graphs,” NeurIPS, 2017, pp. 1025–1035.

[23] “Numerical accuracy,” pytorch.org. https://pytorch.org/docs/stable/
notes/numerical_accuracy.html (accessed April. 14, 2025).

[24] A. Jorgensen, A. Masters, R. Guha, “Assurance of Accuracy in Floating-
Point Calculations - A Software Model Study,” International
Conference on Computational Science and Computational Intelligence
(CSCI), 2019.

[25] W. Kramer, “A priori worst case error bounds for floating-point
computations,” IEEE Transactions on Computers, 1998.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

889 | P a g e

www.ijacsa.thesai.org

AUTHORS’ PROFILE

Arif Abdul Mannan was born
in Malang, Indonesia, on January 23, 1988.
Currently, he is a PhD student in University of
Miyazaki, Japan. He received S.T degrees from
the Faculty of Engineering, Brawijaya University
in 2010. He also received master’s degrees from
Double-Degree Program of Faculty of
Engineering in Brawijaya University and
Miyazaki University for his M.T and M.E degree

in 2013. His research interests are circuit analysis on digital circuits
(microprocessor design and application, digital CMOS integrated circuit
design, FPGA & VHDL), and analog circuit (analog CMOS integrated circuit
design including multi-valued logic). He can be contacted at email:
arifabdulmannan@ub.ac.id.

Koichi Tanno was born in
Miyazaki, Japan, on April 22, 1967. He
received B.E. and M.E. degrees from the
Faculty of Engineering, University of
Miyazaki, Miyazaki, Japan, in 1990 and 1992,
respectively, and Ph. D degree from the
Graduate School of Science and Technology,
Kumamoto University, Kumamoto, Japan, in
1999. From 1992 to 1993, he joined the
Microelectronics Products Development
Laboratory, Hitachi, Ltd., Yokohama, Japan.

He contributed to the research on low-voltage and low-power equalizers for
reading channel LSI of hard disk drives. In 1994, he joined the University of
Miyazaki, where he is currently a Professor in the Faculty of Engineering, and
a Vice-president (Collaborative Research and Community Cooperation). His
main research interests are in analog integrated circuit design, nano-mist
sprayers, and its application. Dr. Tanno is a senior member of IEEE. He can
be contacted at email: tanno@cc.miyazaki-u.ac.jp.

https://orcid.org/0009-0001-2358-3400
https://scholar.google.com/citations?user=ku1F82wAAAAJ
https://orcid.org/0000-0003-3548-5178
https://scholar.google.com/citations?hl=en&user=WVT9DpAAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=7103288835

