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Abstract—Accurate and efficient detection of agricultural pests 

is crucial for crop protection and pest control. This study 

addresses the limitations of traditional pest detection methods, 

such as weak detection capabilities and high computational 

demands, by proposing an improved image recognition system 

based on the YOLO-v3 algorithm. The research focuses on 

enhancing pest detection accuracy through deep learning 

techniques, specifically by modifying the YOLO-v3 model with the 

ISODATA clustering algorithm, DenseBlock enhancements, and 

the ELU activation function. A dataset of 13,000 images 

representing six common crop pests was created and expanded 

using various image augmentation techniques. The modified 

YOLO-v3 model was trained and evaluated on this dataset, 

achieving a higher mean Average Precision (mAP) of 89.7% and 

faster recognition speed compared to Faster-RCNN, SSD-300, and 

the original YOLO-v3 model. Finally, the improved model 

demonstrated a recognition speed of 27 frames per second (fps), 

significantly outperforming other detection models in both 

accuracy and speed. The proposed method offers a superior 

solution for real-time pest detection in agricultural settings, 

combining high accuracy with computational efficiency. Future 

work will explore the application of optimization algorithms to 

further enhance the robustness and generalizability of the system 

across diverse pest detection scenarios. 

Keywords—Feature detection algorithm; YOLO-v3 network; 

image recognition technology; crop pest detection applications 

I. INTRODUCTION 

Identifying and detecting crop pests is a challenging task [1-
3]. To address this, there are two main approaches: traditional 
machine learning-based methods and deep learning-based 
methods [4]. These methods rely on digital image processing 
and pattern recognition technology [5]. Two major steps in 
traditional machine learning-based pest identification and 
detection systems are feature extraction and pattern recognition 
[6]. Li et al. [7] proposed an algorithm for orchard pest gesture 
characteristic representation learning to identify automatic 
trapping target pests, and its recognition rate reached 86.7%. 
Han and He [8] studied a set of stationary fast identification and 
diagnosis methods on the identification of field pests, and 
achieved the effect of real-time identification and diagnosis. 
Liang et al. [9] for the specificity of rice pests, fused the global 
features of the image and local gradient direction histogram 
features, proposed a pest classification and identification 
method based on support vector machine, and obtained an 
accuracy rate of 91.4%. Sanghavi et al. [10] used six invariant 
moments to extract the shape features of pests, and ARTMAP 

neural network to classify the pests. Han et al. [11] designed a 
hierarchical automatic pest identification system, and the pest 
identification rate reached 93% under a variety of categories. 
Deep learning based crop pest identification method is an end-
to-end extraction of high quality feature representation of pests 
utilizing picture detection and recognition algorithms based on 
deep learning techniques. Chen et al. [12] proposed an improved 
residual network pest image recognition method, using the 
improved convolutional neural network in depth of  residual 
block, adding high-resolution convolutional layer and the 
corresponding channel, so that the recognition rate of 91.4%. 
Cheng et al. [13] for the specific pest detection problem, 
proposed a deep convolutional network based on grain storage 
pest image recognition method. Renault et al. [14] designed a 
kind of coarse and fine convolutional neural network and 
applied it to the field aphid detection and identification problem, 
which improved the detection and identification accuracy. Lü et 
al. [15] used deep learning algorithms to detect and identify 15 
kinds of beetles in food, and its accuracy rate reached 83.3%. 
Crop pest detection is a sub-task of target detection, and despite 
the use of image recognition technology to solve the task of pest 
identification and detection in different scenarios, the accuracy 
rate is still limited, mainly in the following aspects [16]: 1) the 
existing detection and identification methods only focus on the 
whole picture classification, and less detection for tasks such as 
pest occurrence location and pest number; 2) the current method 
test validation only uses its own constructed dataset, and its 
expandability and generalizability need to be improved; 3) less 
research on pest images in complex backgrounds, and the 
practicality of existing methods is poor. 

This work provides a detailed analysis of the technical and 
application challenges associated with crop pest identification, 
taking into account enhanced feature detection and deep 
learning algorithms. The proposed approach for field crop pest 
detection is based on these challenges. The primary 
contributions of this study are as follows: 

 Gathering image data of crop pests in the field and 
creating the necessary dataset; 

 Integrating deep learning algorithms to create a target 
detection model based on the improved YOLO-v3 
algorithm [17] and using it to solve the pest detection 
problem; 

 Utilizing the dataset CPXJ to confirm the efficacy of the 
suggested algorithm in this study. The findings indicate 

*Corresponding Author. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

891 | P a g e  

www.ijacsa.thesai.org 

that the improved YOLO-v3 algorithm has higher 
detection accuracy when compared to other recognition 
models. 

 To address the limitations of existing crop pest detection 
methods, this study proposes an enhanced YOLO-v3-
based image recognition approach.  

 The structure of this study is as follows: Section II details 
the acquisition and augmentation of the crop pest image 
dataset. It describes the construction and labeling of the 
dataset. Section III introduces the standard YOLO-v3 model 
and the specific improvements made, including the 
integration of ISODATA clustering, DenseBlock, and the 
ELU activation function. Section IV presents the 
experimental setup, parameter configurations, and 
comparative evaluation results with other detection models. 
Finally, Section V discusses the conclusion, summarizing 
the advantages of the proposed approach and outlining 
potential future research directions to enhance model 
generalizability and robustness in real-world applications. 

II. CROP PEST DATASET ACQUISITION SELECTION 

Since the pest detection problem studied in this study is a 
target detection problem, the first step is to analyze the 
collection of crop pest datasets. 

A. Data Acquisition 

The study data for this work were gathered over a five-month 
period, from May 2019 to October 2019, at the Institute of 
Agricultural Sciences' experimental base. In order to improve 
the robustness and generality of the validation process, the 
current time period is separated into three time nodes every 
morning, noon and afternoon. Through the collection and 
analysis, there are six prevalent crop pests in the test base [18], 
as indicated in Table I. 

This research employs web crawler technology to acquire 
image data of six types of crop pests, respectively, because there 
aren't many crop pests in the experimental base. To maintain the 
diversity of the data set, this is done, and the specific schematic 
diagram of the original photographs is presented in Fig. 1. 

TABLE I.  DESCRIPTION OF EXPERIMENTAL CROP PEST DATA 

No. Name Harm 

1 Cabbage greenfly Bok choy, oleander, cauliflower, etc. 

2 Moth Peppers, cabbages, apple trees, pear trees, etc. 

3 Morus albopictus (type of grasshopper) Apple trees, pear trees, date palms, etc. 

4 Three-spotted blind stink bug Tomatoes, corn, cotton, soybeans, etc. 

5 Green stink bug Apple trees, pear trees, cotton, cucumbers, etc. 

6 Leafhopper Cabbage, sugar beet, apple trees, etc. 

 
Fig. 1. Crop pest image data. 
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B. Image Data Expansion 

Since the collection and web crawler image dataset is 
insufficient for deep learning training, this study expands the 
dataset using techniques like panning, mirroring, adding noise, 
and making light and dark changes. This increases the model's 
robustness and generalization ability. The specific operation is 
as follows. 

1) Panning method: pan the image 50 pixels to the upper 

right, lower right, upper left, lower left, the place after the 

panning is supplemented with black, after the panning, it can 

generate 5 different images, which contains the original image 

that has not been panned. The specific operation is shown in 

Fig. 2, and the panning equation is as follows [Eq. (1)]: 

 
Fig. 2. Schematic diagram of translation 
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where, 1x  and 1y  denote the pixel position after translation,

x  and y  denote the pixel translation amount, and 0x  and

0y  denote the original pixel position. 

2) Mirroring method: each image is mirrored to the left, 

right, up and down respectively, and 5 different images 

(including the original image) are generated after mirroring, 

and the mirroring schematic diagram is shown in Fig. 3. The 

equation for image level mirroring method is as follows [Eq. 

(2)]: 
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Fig. 3. Mirroring 
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where, w  is the image width. 

The equation for calculating the image vertical mirroring 
method is as follows [Eq. (3)]: 
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where, h  denotes the image height. 

3) Add noise method: add pretzel noise or Gaussian noise 

to each image data, the number of noise points of the added 

pretzel noise is a random number between 3000 and 5000. 

4) Brightness and darkness transformation method: each 

image will be adjusted to different degrees of brightness and 

darkness, using four levels of brightness and darkness division, 

using OpenCV and Numpy [19] for each image matrix 

operation to get the image data with different degrees of 

brightness and darkness. 

Through the above four sample expansion methods, the 
number of samples in the crop pest image dataset was expanded 
to 13,000, and specific examples of the expansion are shown in 
Table II. 

TABLE II.  EXAMPLE OF IMAGE DATA EXPANSION 

Expansion Methods Original figure Transformed image 

Panning 

 

   

Mirroring 
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Add noise 

   

Brightness and darkness changes 

   
 

C. Data Labelling 

Firstly, the dataset was size-unified, compressed to 416×416 
and saved in JPG format. Secondly, the dataset was separated 
into a training set and a testing set with a 4:1 ratio. Finally, the 

Labeling annotation tool [20] was used to annotate the dataset, 
as illustrated in Fig. 4. In this study, based on the Overall 
labeling method, a Non-overall labeling method is developed, 
and the labeling situation is specifically shown in Fig. 5. 

 

Fig. 4. Labeling annotation process 

 

Fig. 5. Labeling 

D. Construction of Data Sets 

The acquired crop pest photos are increased by data, six crop 
pests have the same amount of data, and the six pest image data 
totals 13,000 images, which are then randomly assigned into a 

training dataset of 10,000 and a test set of 3,000 according to an 
estimated 4:1 ratio. The data image set and labels are produced 
as crop pest image datasets (CPXJ-Datasets). 
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III. IMAGE RECOGNITION BASED ON IMPROVED YOLO-V3 

A. YOLO-v3 Algorithm 

1) YOLO-v3 algorithm structure: YOLO-v3 (You Only 

Look Once version 3) [21] is a popular target detection 

algorithm known for its fast detection speed and relatively high 

accuracy. The key features of YOLO-v3 include the use of 

multi-scale prediction to improve detection of targets of 

different sizes and the use of Darknet-53 [22] as its feature 

extractor, which is a deeper convolutional neural network than 

previous versions.YOLO-v3 is capable of predicting both 

bounding box and category probabilities, and provides better 

detection performance while maintaining real-time 

performance. The structure of the YOLO-v3 algorithm is 

shown in Fig. 6. 

 

Fig. 6. YOLO-v3 algorithm structure 

As seen from Fig. 6, the red dashed portion represents the 
YOLO-v3 algorithm feature extractor Darknet-53 [22], which is 
the main component of the method. The Resblock-body section 
of the algorithm is made up of various residual structures (Res-
unit), DBL structures, and zero-padding structures. 

2) K-means clustering algorithm: In order to avoid the 

detection model to detect the wrong target box in the training 

and learning time, and to speed up the model convergence, by 

using a K-means clustering algorithm [23] in the labelled 

ground true shape, an existence of a certain regularity can be 

found, specifically as shown in Fig. 7. 

 

Fig. 7. Target box shape 

3) Darknet53 feature extractor: The YOLOv3 target 

detection algorithm uses a deep convolutional neural network 

architecture called Darknet53 [22]. It’s 53 convolutional layers, 

including multiple residual blocks, help to mitigate the issue of 

gradient vanishing in deep networks and facilitate network 

training. The structure of Darknet53 is depicted in Fig. 8. 

Darknet53 does not use pooling and fully connected layers, but 

downsamples the feature map by altering the step size of the 

convolutional kernel. 

 
Fig. 8. Darknet53 structure. 

4) RPN network: The RPN network is used by YOLO-v3 

in order to avoid doing a lot of convolutional calculations [24]. 

Its primary goals are to extract the feature map that the network 

has acquired, extract multi-dimensional feature vectors from 
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Conv1, pass it through a number of target regions, including 

Conv3-FC1 and Conv4-FC2, and after each matrix target 

region has a regional target score. The integrated score is then 

passed on to the following RoI-Pooling operation. Fig. 9 depicts 

the RPN network. 

 
Fig. 9. RPN network structure 

Combined with the crop pest detection data in this study, the 
image is input, and the target area is obtained through a 
computational process (Fig. 10). 
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Fig. 10. RPN calculation flow. 

5) Boundary box regression: In order to effectively detect 

ringed agricultural pest targets, the notion of Intersection over 

Union (IoU) is introduced, which is represented schematically 

in Fig. 11. In Fig. 11, it can be seen that the green box is the real 

box of the target using Labeling annotation tool and retrograde 

labeling, and the red box is the box predicted by the trained 

target detection model. IoU is the area intersection over union 

operation, and the specific form of calculation is shown in Fig. 

12. From Fig. 12, it can be observed that the more accurate the 

projected box of the target detection prediction model is, the 

greater the IoU value. When the IoU value is more than 0.5, the 

projected box is deemed as accurate; otherwise, the red 

predicted box is fine-tuned to bring it close to the true green 

box. 

 
Fig. 11. Intersection over Union (IoU). 

 

Fig. 12. IoU Calculation. 

6) Loss function: The YOLO-v3 loss function consists of 

four components [25], i.e.,  ,x y  loss,  ,w h  loss, confidence 

loss, and category loss, and the total loss is expressed as follows 

[Eq. (4)]: 

xy wh conf classL L L L L   


where, L  is the total YOLO-v3 loss, xyL  is the  ,x y  loss,

whL  is the  ,w h  loss, confL  is the confidence loss, and classL  

is the category loss. 

The bounding box position loss xyL  is calculated as follows 

[Eq. (5)]: 
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where,
obj

ij  is the jth bounding box predicted by the ith grid 

to detect the target to be detected, takes the value of 1, otherwise 

a smaller weight value of 0.1 or 0;
2S  is the total number of 

grids after the input avatar is rasterized; B  is the number of 
bounding boxes predicted by individual grids, takes the value of 

3;  ,i ix y  denotes the predicted bounding box centroid 

position coordinates;  ˆ ˆ,i ix y  denotes the actual bounding box 

centroid position coordinates. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

896 | P a g e  

www.ijacsa.thesai.org 

The bounding box size loss
whL  is calculated as follows [Eq. 

(6)]: 
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where,  ,i iw h  indicates the coordinates of the predicted 

width and height of the bounding box and  ˆˆ ,i iw h  indicates the 

coordinates of the actual width and height of the bounding box. 

The loss of confidence confL  is calculated as follows [Eq. 

(7)]: 

   
2 2

2 2
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where, noobjI  indicates that there is no loss in the control cell 

to prevent model instability due to gradient explosion. iC

denotes the actual detection target confidence, iC
 denotes the 

detection target confidence, and  Pr truth

i predC obj IoU    . 

Category losses classL  are calculated as follows [Eq. (8)]: 
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where, c  denotes the category to which the detected target 

belongs,  ip c
 denotes the actual probability that a target 

belongs to the category c  when it is detected by the ith network, 

and  ip c  denotes the predicted probability that a target 

belongs to the category c  when it is detected by the ith network. 

B. Improvement of the YOLO-v3 Algorithm 

In order to increase the detection accuracy of YOLO-v3 
network, the advanced clustering algorithm ISODATA 
clustering algorithm, is employed for anchor boxes collection, 
the ELU activation function is used in YOLO-v3, and the 
Darknet53 structure is improved to adapt to the dataset 
CPXJDatasets. 

1) ISODATA clustering algorithm: In order to overcome 

the shortcomings of K-means clustering algorithm, this study 

adopts ISODATA clustering algorithm [26] to cluster the 

anchor boxes.The flowchart of ISODATA clustering algorithm 

is shown in Fig. 13. 

The ISODATA clustering algorithm clusters the anchor 
boxes to obtain 9 prior frames, the specific results are shown in 
Table III. 

2) Improvement of Darknet53 structure: In order to reduce 

the amount of computation, in this study, DenseBlock [27] is 

added to Darknet53 to improve the performance of YOLO-v3. 

The structure of DenseBlock is shown in Fig. 14, which 

deepens the feature extraction network's ability of extracting 

features in Darknet53 with fewer parameters, which makes it 

easier to train. Before and after Darknet53 improvement is 

given in Fig. 15. 

To test the effectiveness of the improved Darknet53 module, 
the original images are input and analyzed, and the results shown 
in Fig. 16 are obtained. From Fig. 16, it can be seen that the 
improved Darknet53 module not only adds more semantic 
information to the output feature map at each layer, but also 
enhances the expression ability of the feature map. 

 
Fig. 13. Flowchart of ISODATA clustering algorithm. 

TABLE III.  PRIOR FRAME ASSIGNMENT AFTER CLUSTERING PROCESS 

Characteristic graph 13*13 26*26 52*52 

Experience the wild oldest middle few 

A priori framework 

(240*100) 

(330*152) 

(412*386) 

(166*112) 

(174*162) 

(192*243) 

(46*49) 

(56*102) 

(107*146) 

 

Fig. 14. DenseBlock structure. 
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Fig. 15. Darknet53 before and after improvements. 

   
               (a) Input images             (b) Darknet53 output           (c) Improvement of Darknet53 output 

Fig. 16. Analysis of Darknet53 module result output. 

3) Spatial pyramid pooling: In order to enrich the features 

and increase the feature expression ability, YOLO-v3 

introduces the SPP network, i.e., the spatial pyramid pooling 

structure (Fig. 17). The upgraded YOLO-v3 network is 

depicted in Fig. 17. The SPP network structure is added before 

the first fully connected input in the YOLO-v3 network 

structure, and the results of three times Max pooling are fused 

to obtain a fixed output for the input of the first fully connected 

layer, which is a method of fusing three kinds of features with 

different scales, which results in a wider range of the field of 

view of the convolution kernel. The fusion of the three 

characteristics is utilized to remove the effect of inconsistent 

effective feature information due to the individual variability of 

agricultural pests. 

4) ELU activation function: The original YOLO-v3 

network uses a nonlinear activation function Leaky ReLU, and 

the function image is displayed in Fig. 18(a). The Leaky ReLU 

activation function was used to avoid the effects that the 

traditional activation function brings to the model, although it 

solves the problem that neurons do not learn when they enter 

the negative region, the rate of neuron learning after Leaky 

ReLU activation is very slow, which leads to a longer training 

time. Therefore, the ELU activation function [Fig. 18(b)] is 

employed instead of Leaky ReLU to speed up the convergence 

of the network.The particular equation for the ELU activation 

function is as follows [Eq. (9)]: 

 
  

0

exp 1 0

x x
f x

x x
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Fig. 17. Improved YOLO-v3 network structure. 

  
(a) Leaky ReLU     (b) ELU 

Fig. 18. Analysis of the activation function of Leaky ReLU and ELU 

IV. EXPERIMENTAL ANALYSIS OF DATA 

A. Experimental Setup 

1) Experimental environment parameter setting: The 

experiments in this study use deep learning techniques to solve 

the crop pest detection task, and the specific experimental 

environment is shown in Table IV. 

2) Network parameter setting: The validated YOLO-v3 

network parameters are designed as shown in Table V. The 

detection models compared are Faster-RCNN, SSD-300, and 

YOLO-v3. 

TABLE IV.  EXPERIMENTAL ENVIRONMENT PARAMETER SETTINGS 

No. Experimental Environment Project Specific settings 

1 Programming Development Environment Python 3.7 

2 operating system Linux Ubuntu 16.72LTS 

3 software platform PyCharm 2019.3.3 Professional, Labelimg 1.8.3, OpenCV 4.2.0.34 

4 Hardware Development Environment Intel(R) Core(TM) i7-9750H CPU @2.60GHz 2.59GHz Processor 

5 memory GTX1080 6GB 

6 Deep Learning Development Framework Keras 2.3.1 
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TABLE V.  ALGORITHM PARAMETER SETTINGS 

No. Parameter Specific settings 

1 Optimization methods Batch stochastic gradient descent 

2 Total number of iterations 30000 

3 learning rate 0.01 

4 weight decay value 0.0005 

5 batch size 64 

6 momentum factor 0.99 

3) Experimental data set: The agricultural pest detection 

dataset, CPXJDatasets, contains 13,000 photos of six crop 

pests, namely, green blind stink bug, three-spotted blind stink 

bug, cabbage greenfly, leafhopper, moth and mulberry aspen 

(10,000 training datasets and 3,000 testing datasets). The 

training set is split into an integral labeling method and a non-

integral labeling technique training set, as illustrated in Fig. 19. 

 
(a) Integral labeling method data set 

 
(b) Non-integral labeling method training set 

Fig. 19. Integral and Non-integral labeling method training set 

B. Analysis of Results 

Improved YOLO-v3 model is trained and tested using crop 
pest detection dataset, CPXJDatasets. The training phase of the 
network algorithm presented in this study is shown in Fig. 20. 
From Fig. 20, it can be seen that the accuracy converges to about 
0.99 with the rise in the number of iterations, and the loss value 
drops to near 0 with the increase in the number of iterations. 

 
(a) Accuracy curves 

 
(b) Loss curve 

Fig. 20. Accuracy and loss changes during the training process 

To assess the efficacy of the enhanced YOLO-v3 network, 
this paper employs Faster-RCNN, SSD-300, and YOLO-v3 as 
comparison algorithms. The training and learning tests are 
employed to compare the results, as illustrated in Table VI. From 
Table VI, it can be shown that the pest detection accuracy of 
improved YOLO-v3 is better than other models and the 
recognition speed is faster than other network models. 

TABLE VI.  CONTRASTING NETWORK MODEL RESULTS 

Test 
Recognition rate 

Faster-

RCNN 
SSD-300 YOLO-v3 

Improvement of 

YOLO-v3 

mAP 89.3 % 81.7 % 85.0 % 89.7% 

recognition 
speed 

12 f/s 36 f/s 20 f/s 27 f/s 

Fig. 21 presents a schematic visualisation of the output of the 
convolutional layer findings of the output pest in order to 
facilitate a more thorough analysis of the experimental results. 
From Fig. 21, it can be seen that as the number of layers of 
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convolutional network increases, the convolutional output 
results are overloaded from shallow features to deep semantic 
features to achieve the ultimate feature results. 

The test detection results are provided in Fig. 22. In the 
CPXJDatasets dataset, 3000 pest photos were used as the test 
set, and the improved YOLO-v3 algorithm detected the presence 
of pests in the images, and the detection results met the detection 
requirements. 

 

Fig. 21. Visualisation of the output results of the convolutional layer 

 

Fig. 22. Partial presentation of test results. 

V. CONCLUSION 

This study proposes an agricultural pest detection method 
that is based on an enhanced YOLO-v3 algorithm to address the 
issue of crop pest detection. The problem of crop pest detection 
is analyzed in this study, which also gathers data images from 
experimental fields, expands the dataset through the use of 
panning, mirroring, adding noise, and adjusting light and dark, 
combines deep learning algorithms, enhances the YOLO-v3 
network from four angles, suggests a detection model based on 
the enhanced YOLO-v3 network, and compares and validates it 
using the created dataset, CPXJDatasets. The results reveal that, 
compared to the models of Faster-RCNN, SSD-300, and YOLO-
v3, the pest detection accuracy and recognition speed of the new 
approach described in this study are better and faster than other 
models. In the next phase, to further increase the detection 
accuracy of the proposed method, the intelligent optimization 
algorithm is utilized to optimise the upgraded network and used 

on multiple crop pest datasets to improve the robustness and 
generalization of the system. 

In future research, efforts will focus on integrating attention 
mechanisms and lightweight neural network architectures to 
further improve detection accuracy and computational 
efficiency, particularly on mobile or edge devices. Additionally, 
expanding the dataset to include more pest species and diverse 
environmental backgrounds will help enhance the model's 
robustness and applicability in real-world agricultural scenarios. 
Cross-domain transfer learning and semi-supervised learning 
techniques will also be explored to reduce reliance on large-
scale labeled datasets and improve performance in low-resource 
settings. 
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