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Abstract—This study aims to analyze and implement image 

preprocessing techniques to improve the performance of melon 

leaf abnormality detection using the YOLOv7 algorithm. A total 

of 521 abnormal melon leaf images were processed using 

augmentation and three preprocessing methods: Averaging 

Histogram Equalization (AVGHEQ), Brightness Preserving 

Dynamic Histogram Equalization (BPDFHE), and Contrast 

Limited Adaptive Histogram Equalization (CLAHE), then 

compared with the original dataset. Modeling was conducted in 

three stages: initial training with an 80:20 split and default 

YOLOv7 augmentation; hyperparameter tuning via cross-

validation using a 90:10 split without augmentation; and final 

training using the best parameters with augmentation reactivated. 

The models were evaluated using ensemble learning. Results 

showed mAP ranged from 58.6% to 66.3%, accuracy from 80.7% 

to 84.9%, and detection time from 9.8 to 20 milliseconds. 

Preprocessing improved mAP and detection time, though it had 

little effect on accuracy. The best performance was obtained with 

a kernel size of 3 and a learning rate of 0.001, while changes in 

activation function, pooling, batch size, and momentum had 

minimal impact. The top models, trained with maximum epochs 

and standard augmentation, achieved mAP of 84.12%, accuracy 

of 91.19%, and detection time of 4.55 milliseconds. Models using 

early stopping (patience = 300) reached mAP of 81.57%, accuracy 

of 92.23%, and detection time of 5.03 milliseconds. The best model 

outperformed previous works, which reported only 48.85% with 

Faster R-CNN, 33.16% with SSD, and 16.56% with YOLOv3. 

Although histogram-based preprocessing methods mainly 

enhanced inference speed, the overall improvements to YOLOv7 

significantly boosted detection performance. 

Keywords—Leaf abnormality; melon; image preprocessing; 

YOLOv7 

I. INTRODUCTION 

The agricultural sector significantly contributes to 
Indonesia’s GDP by creating jobs and increasing export values 
[1], supports broader economic expansion through regional 
improvements in fruit commodity productivity [2], and has 
helped mitigate the negative impact of the COVID‑19 pandemic 
on economic growth via strong export performance [3]. 
According to information from the Indonesian Central Statistical 
Agency, fruit commodity production in Indonesia during 2016-
2022 increased [4]. Nevertheless, there are commodities whose 
production is fluctuating. One of them is the melon commodity 
[4]. Fluctuations in melon production stem from suboptimal 
growing conditions, such as nutrient allocation affected by 
pruning and fruit thinning practices [5] and adverse 

environmental factors like temperature and humidity variations 
[6]. 

There are two causes of malnutrition in melon crops: the lack 
of nutrient intake received by the plant and the presence of pest 
disorders and diseases that affect the melon plant periodically. 
This can lead to crop failure if physiological disorders during 
melon growth are not addressed promptly [7], emphasizing the 
importance of timely pruning and fruit regulation to support 
healthy development. Meanwhile, environmental factors such as 
temperature, light, and water availability also play a crucial role 
in plant growth [8]. Identifying such disorders often requires 
sending samples to laboratories for testing, which can be time-
consuming [9] and further supports [10] the diagnostic process 
for plant abnormalities. Information technology is needed to 
help identify anomalies that occur in melon plants effectively 
and efficiently. Artificial intelligence technology could be the 
solution to this problem [11]. 

Artificial intelligence (AI) is a field of science that integrates 
machine and human intelligence, which has been applied in 
various sectors, including agriculture [11], contributes to the 
development of intelligent algorithmic systems [12], and 
provides the foundation for advanced deep learning methods 
[13]. Deep learning, which evolved from machine learning, 
builds algorithms from existing data by mimicking neural 
networks [14], using statistical and computational models [15], 
and emphasizing efficient learning processes for data 
classification and prediction [16]. Unlike conventional machine 
learning, which treats feature extraction as a separate process, 
deep learning enhances this by learning feature representations 
directly from raw data [17]. One of the prominent applications 
of deep learning is object detection, a task that involves 
identifying and localizing objects within an image. Current 
object detection approaches are categorized into one-stage 
methods, prioritizing faster inference speeds [18], and two-stage 
methods, offering higher detection accuracy through refined 
region proposals and classification [19]. 

The performance of object detection models can be 
influenced by the image preprocessing techniques applied 
beforehand, as specific preprocessing steps can improve the 
generalization ability of over-parameterized neural networks 
[20]. In contrast, others affect the accuracy of convolutional 
neural network-based recognition systems [21]. In the context of 
melon leaf analysis, differences between normal and abnormal 
leaves can be identified through leaf color, shape, and texture, 
which are often associated with anatomical resistance to fungal 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

961 | P a g e  

www.ijacsa.thesai.org 

infection [22] and market-related disease symptoms in melon 
and related crops [23]. An image itself is composed of a grid of 
pixels where each pixel encodes intensity or color information; 
this concept underpins many image analysis processes, as 
elaborated in foundational image processing literature [24], 
methods for machine vision image acquisition and 
preprocessing [25], and comprehensive digital image processing 
frameworks [26]. 

The frequency distribution of pixel intensity in an image can 
be analyzed using a histogram, a fundamental technique in 
image processing as described in works such as Gonzalez and 
Woods’ Digital Image Processing [24], Sinha’s treatment of 
machine vision systems [25], and Pratt’s comprehensive guide 
on digital image analysis [26]. Histogram-based processing is 
widely used to enhance image contrast and emphasize key 
differences between objects and their backgrounds [24], 
beneficial for distinguishing between normal and abnormal 
melon leaves. Several adaptive histogram equalization 
techniques have been developed to improve pixel-level contrast 
and image quality, especially in plant health detection. One such 
method is AVGHEQ, which focuses on contrast enhancement 
while maintaining brightness consistency [27]. Another 
technique, CLAHE, prevents noise over-amplification in 
homogeneous areas by limiting the histogram contrast [28]. 
Additionally, BPDFHE employs fuzzy logic to enhance image 
contrast while preserving natural brightness levels [29]. These 
preprocessing methods are expected to increase the 
effectiveness of detection models by providing more apparent 
visual differentiation between healthy and unhealthy leaves. 

Various image preprocessing techniques can significantly 
impact the performance of the object detection model. These 
techniques play an essential role in improving the quality of the 
input image, thereby increasing the accuracy and efficiency of 
the detection process. On the other hand, hyperparameters also 
influence the performance of the object detection model. The 
detection model used in this study is YOLOv7, which surpasses 
other algorithms such as YOLOR, YOLOX, Scaled-YOLOv4, 
YOLOV5, DETR, DETR Deformable, DINO-5scale-R50, ViT-
Adapter-B, and many other objects detectors, especially in terms 
of detection speed [30]. This study investigates how picture 
preprocessing approaches and hyperparameter optimization 
affect the effectiveness of models for detecting melon leaves. 
Unlike many earlier studies, which frequently disregard these 
elements, this study investigates their significance in enhancing 
model accuracy and efficiency.  By addressing these critical 
features, the study hopes to provide the groundwork for 
constructing a more effective and efficient plant anomaly 
detection model, particularly for melon crops, which have gotten 
less attention in previous studies. 

The structure of this paper is as follows: Section II reviews 
relevant literature, Section III outlines the research 
methodology, Section IV presents the results and discussion, 
and Section V provides the conclusion. 

II. RELATED WORK 

Research on the identification of anomalies in tomatoes, soy, 
cucumbers, apples, and melons shows that it is still necessary to 
use image preprocessing to improve model performance and 
model application into a mini-computer platform to evaluate 

models in real-time. A study by [31] demonstrated that the 
Faster R-CNN and Mask R-CNN methods effectively identified 
tomato crop diseases, although some misclassifications were 
still observed. Similarly, [32] identified pests and diseases in 
tomato plants and reported that an improved version of YOLOv3 
achieved the highest accuracy of 92.39% with a detection speed 
of 20.39 milliseconds. In the case of soybean plants, disease 
detection using the Multi-Feature Fusion Faster R-CNN method 
yielded an optimal mean Average Precision (mAP) of 83.34% 
[33]. Another study [34] employed the MTC-YOLOv5n method 
with enhancements to reduce image noise and improve the 
detection of small objects. This approach resulted in a compact 
model size of 4.7 MB, an mAP of 84.9%, and a frame rate of 
143 frames per second (FPS). In addition, [35] proposed the 
MGA-YOLO method for detecting apple diseases based on leaf 
images, achieving an mAP of 89.3%, a minimal model size of 
10.34 MB, and a peak FPS of 84.1 on a GPU. The model was 
also tested on smartphones, reaching a frame rate of 12.5 FPS. 

This research extends the work presented in [36], which 
compared three methods for plant disease detection: Faster R-
CNN, SSD, and YOLOv3. The study found that Faster R-CNN 
achieved the highest mean Average Precision (mAP) at 48.85%, 
while YOLOv3 demonstrated the shortest inference time at 0.5 
seconds. In terms of CPU usage, SSD performed most 
efficiently, whereas YOLOv3 offered a balance between fast 
inference and moderate CPU consumption. Additionally, the 
study highlighted that preprocessing techniques could enhance 
the performance of object detection models [36]. Building on 
these findings, the present research employs YOLOv7 for its 
efficient inference time and moderate CPU usage. It further 
investigates the impact of a histogram-based preprocessing 
technique on model performance. 

III. RESEARCH METHODOLOGY 

This research comprises of five main steps: (1) data 
preparation; (2) modeling and evaluation of phase 1; (3) 
modelling and evaluation of phase 2; (4) modelling and 
evaluation of phase 3; and (5) comparison with the previous 
research in [36].  Before delving into the main topic, it is crucial 
first to discuss the background of YOLOv7 and the image 
processing techniques used, including AVGHEQ, BPDFHE, 
and CLAHE. 

A. YOLOv7 

You Only Look Once (YOLO) is a one-stage object 
detection algorithm consisting of the backbone, neck, and head 
structure. The backbone layer is responsible for feature 
extraction from the input image. Then, the results are passed to 
the neck layer, which generates pyramid features, allowing the 
system to detect objects at different scales. The head layer is the 
final layer for detecting classes and bounding boxes. YOLO has 
an architecture based on convolutional networks. YOLO's 
detection network comprises 24 convolutional layers and 2 fully 
connected layers. Alternating 1 × 1 convolutional layers reduces 
the feature space from the previous layers. The convolutional 
layers have been pre-trained on the ImageNet classification task 
with an image resolution of 224 × 224 [30]. 

YOLOv7, released in 2022 [30], is an algorithm of the 
YOLO model. To be more precise, the author creates several 
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training techniques known as "bag-of-freebies" that consist of 
modules and optimization techniques that significantly boost 
detection accuracy without raising the cost of inference. The 
network architecture uses the E-ELAN technique, which 
manages the longest and shortest gradient pathways to help a 
deep model learn and converge more efficiently. The E-ELAN 
approach shuffles and merges schemes to integrate the features 
of the groups to improve the learned features. It also lowers the 
computation cost and parameter count. Furthermore, YOLO-v7 
presents several other training bag-of-freebies, such as 
1) designing the architecture of the planned re-parameterized 
convolution using Connection-Aware RepConv (RepConvN), 

2) implementing a new labeling technique that directs the lead 
and auxiliary heads; and 3) normalizing data in conv-bn-
activation topology 4) Convolution on a feature map that 
combines addition and multiplication 5) Making the final 
inference using the EMA model. 

YOLOv7 is a version of YOLO released in 2022. It can 
outperform all existing object detectors in speed and accuracy, 
with a speed of 5 to 160 FPS and the highest accuracy of 56.8% 
AP on the V100 GPU [30]. YOLOv7 also beats various other 
detectors, such as YOLOR, YOLOX, and YOLOv5, in terms of 
speed and accuracy, as seen in Table I. The overall architecture 
of YOLOv7 can be seen in Fig. 1. 

TABLE I.  YOLOV7 JUSTIFICATION 

Model Inference Time (millisecond) AP (%) 

YOLOv7 ~5–7 ~57 

YOLOR ~9–11 ~56 

PPYOLOE ~11–13 ~54 

YOLOX ~15–17 ~53 

Scaled-YOLOv4 ~23–25 ~52 

YOLOv5 (r6.1) ~29–31 ~51 

 
Fig. 1. YOLOv7 architecture. 

B. AVGHEQ 

AVGHEQ aims to increase image contrast while keeping the 
average brightness of the image output unchanged as much as 
possible. First, the input image is stretched on each color channel 
to correct any distortion from the unwanted environment. Then, 
it changed the color format from RGB to HSI [24]. After that the 

histogram was averaged before it was used in the equalization 
operation until the brightness error was reduced to a minimum 
and the entropy was maximized as much as possible. Next, 
normalization operations are performed, and last, the histogram 
and changes are remapped, and the HSI color format to RGB as 
the output image. The overall stages of AVGHEQ can be seen 
in Fig. 2. 
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Fig. 2. AVGHEQ process [27]. 

C. BPDFHE 

BPDFHE uses fuzzy statistics for digital image 
representation and processing. BPDFHE works in an abstract 
domain, allowing the process to be managed effectively at the 
end of the grayscale value, improving overall performance [29]. 
BPDFHE consists of four stages, namely, 1) Fuzzy Histogram 
computing, 2) Histogram Partitioning, 3) Dynamic Histogram 
Equalization of Partitioning, and 4) Image brightness 
normalization. 

The process begins by calculating the fuzzy histogram, 
which uses the fuzzy membership function to handle the 
distribution of gray intensity values more subtly, resulting in a 
smoother and more informative histogram than traditional 
methods. Next, the histogram is partitioned based on the local 
maximum point found by derivative analysis, dividing the 
histogram into several sub-histograms. Each sub-histogram is 
then individually equalized using the Dynamic Histogram 
Equalization (DHE) technique to increase contrast without 
changing the average brightness of the image. This process 
includes adjusting the dynamic range and remapping the 
intensity of each partition. The final stage is brightness 
normalization to ensure the average brightness of the output 
image remains consistent with the input, resulting in a sharper 
image with a more balanced intensity distribution. The overall 
stages of BPDFHE can be seen in Fig. 3. 

 
Fig. 3. BPDFHE process. 

This technique effectively addresses the challenge of 
enhancing low-contrast images and optimizing the visual 
perception of details across different image regions. By carefully 
controlling the equalization process at the sub-histogram level, 
BPDFHE preserves the integrity of image information, 
minimizing the risk of over-enhancement or artifacts that may 
occur with other conventional techniques. 

D. CLAHE 

CLAHE is an adaptive method of histogram equalization 
followed by thresholding to aid in the dynamics of preservation 
of local contrast features of an image [37]. First, the input image 
is partitioned into several sub-images sized M ×  N. Then, 
calculate the histogram for each sub-image. Next control the 
contrast of the histogram with clips for each sub-image. The 
number of pixels present in the sub-image is distributed at each 
degree of grayness. Then calculate the clip limit from the 
histogram. On the original histogram, pixels will be limited if 
the number of pixels is greater than 𝑁𝐶𝐿𝐼𝑃. The number of pixels 
is evenly distributed into each degree of grayness (𝑁𝑑) defined 
by the total number of pixels constrained (𝑁𝑇𝐶) [37]. 

E. Data 

This study uses secondary data from a melon leaf image 
from previous studies taken in 2022 [36]. The entire dataset 
consists of 522 images, which have been labeled and processed 
in TXT format. Each image has a resolution of 5 megapixels, 
with width and height of 2592 and 1944 pixels, respectively. The 
labels are divided into two classes: Abnormal and Normal. 
Fig. 4 shows a sample image for each class. 

F. Data Preparation 

This research contributes to the data preparation stage. Data 
preparation is a heavy challenge in deep learning technology to 
produce an optimal model so it can be used properly [38]. For 
that, the data that has been obtained needs to be well prepared. 
The data that has been acquired is then prepared further by 
preprocessing and augmentation. 
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Fig. 4. Sample data for abnormal (yellow bounding box) and normal (green bounding box).

The leaf image is an image that exists in a natural 
environment with a lot of background and noise. The usual use 
of histogram equalization cannot address the problem, so it 
requires a method that can adaptatively equalize the histogram 
and can also be applied to colored images that have a high 
background complexity. These methods include AVGHEQ 
(Averaging Histogram Equalization), CLAHE (Contrast 
Limited Adaptive Histogram equalization) [28], and BPDFHE 
(Brightness Preserving Dynamic Fuzzy Histogram 
Equalization) [29]. 

Augmentation based on geometry is rotation and shearing. 
Meanwhile, non-geometric augmentation is flipping. The 
training data was augmented using Python programming 
language on the server development environment of the IPB 
Computer Science study program. 

G. Cross-Validation 

Cross-validation is a technique that aims to estimate the 
generalized performance of a deep learning model, avoiding 
overfitting and underfitting [39]. The cross-validation technique 
used is k-fold cross-validation. Cross-validations will be used on 
the training data with a set of k = 5. This means that the data will 
be divided into five equal parts. The model will then be trained 
in four parts, called training data, and evaluated in the fifth part, 
called validation data. This process is repeated five times, and 
the average result is used to estimate the model's performance. 

H. Modeling 

This study uses the YOLOv7 nano training method. The 
object detection modeling process is carried out in three distinct 
phases, each producing different models based on a specific 
training strategy. In the first phase, a model is trained using the 
default hyperparameter configuration of YOLOv7 on the 
complete dataset. In the second phase, a new model is developed 
by performing hyperparameter tuning, as listed in Table II, using 
the best-performing image preprocessing technique identified 
for the corresponding dataset. In the third phase, the model is 
trained using the best-tuned hyperparameters, but this time with 
the original default hyperparameter file configuration of 
YOLOv7. This last modelling phase is conducted under two 
training scenarios: early stopping with a patience of 300 and full 

training for all epochs. As in the second phase, the best image 
preprocessing technique for each dataset is applied. 

TABLE II.  PARAMETERS ON MODELING STEP 

Parameter  Value 

Default hyperparameters 

Batch size  8 

Epoch  5000 

Image size  640 × 640 piksel 

Pretrained model  YOLOv7-tiny 

Tuning hyperparameter 

Kernel size  [3,5,7] 

Activation function  [ReLU, LeakyReLU, SiLU] 

Pooling layer  [AvgPool, MaxPool] 

Learning rate  [0.1, 0.01, 0.001] 

Batch size  [16, 32, 64] 

Momentum  [0.9, 0.93, 0.96] 

Epoch max  5000 

Early stopping  300 

Image size  640 × 640 piksel 

Pretrained model  YOLOv7-tiny 

I. Model Evaluation 

The three object detection models produced at each training 
phase will be evaluated using a set of standard performance 
metrics to determine the most effective model. These metrics 
include Mean Average Precision (mAP), Intersection over 
Union (IoU), accuracy, precision, recall, and F1 score. In 
addition, detection time and training time are also considered in 
the evaluation process. 

Mean Average Precision (mAP) assesses how well a model 
can predict accurate bounding boxes across all object classes in 
an image or video. mAP values range from 0 to 1, where higher 
values indicate better detection performance [40]. mAP is 
calculated by averaging the Average Precision (AP) across all 
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classes, where AP is derived from the precision-recall curve for 
each class [19]. High AP scores are achieved when both 
precision and recall are high across various confidence 
thresholds [41]. 

The Intersection over Union (IoU) metric measures the 
overlap between the predicted bounding box and the ground 
truth bounding box, divided by the area of their union. A higher 
IoU indicates a better match between the predicted and actual 
object locations [40]. 

The mathematical formulations for mAP, AP, and IoU are 
provided in Eq. (1), (2), and (3), respectively. Meanwhile, 
accuracy, precision, recall, and F1 score are defined using 
Eq. (4) through (7) [42]. 

𝑚𝐴𝑃 =
1

𝐾
 ∑ 𝐴𝑃(𝑖)𝐾

𝑖=1                             (1) 

where, K is the number of classes, 𝐴𝑃  is the Average 
Precision, and i is the index for the class. 

𝐴𝑃(𝑖) =  ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0
                           (2) 

where, r is Recall and p is Precision  

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩  𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪  𝐵𝑔𝑡)
                               (3) 

where, 𝐵𝑝 represents the bounding box on predicted area and 

𝐵𝑔𝑡  represents the bounding box on ground truth area. 

𝑎𝑐𝑐(𝑖) =
𝑇𝑃(𝑖)+𝑇𝑁(𝑖)

𝑇𝑃(𝑖)+𝐹𝑃(𝑖)+𝑇𝑁(𝑖)+𝑇𝑁(𝑖)
                    (4) 

𝑝(𝑖) =
𝑇𝑃(𝑖)

𝑇𝑃(𝑖)+𝐹𝑃(𝑖)
                                (5) 

𝑟(𝑖) =
𝑇𝑃(𝑖)

𝑇𝑃(𝑖)+𝐹𝑁(𝑖)
                                (6) 

𝐹1_𝑆𝑐𝑜𝑟𝑒(𝑖) = 2 ×
𝑝 × 𝑟

𝑝+𝑟
                            (7) 

where, i is index for class, TP is True Positive, TN is True 
Negative, FP is False Positive, FN is False Negative, acc is 
Accuracy, r is Recall, and p is Precision. 

IV. RESULTS AND ANALYSIS 

This section presents the experimental setup, followed by the 
training results and evaluation of the obtained YOLOv7 models. 

A. Data Preparation Results 

This research utilizes secondary data obtained from the study 
in [36]. Further details regarding the dataset are provided in the 
Data section. Data preparation was carried out through a 
combination of augmentation techniques and histogram-based 
image preprocessing. The augmentation techniques applied are 
listed in Table III. Table IV presents the results of the data 
augmentation process. To increase the quantity of training data, 
the original dataset was augmented threefold, resulting in a total 
of 1,176 training images and 130 test images. The number of 
objects per class in the training data also increased while 
maintaining a balanced class distribution. 

TABLE III.  AUGMENTATION TECHNIQUES 

No Technique Value 

1 Flipping Horizontal and Vertical 

2 Rotation -15° and +15° 

3 Shearing ±15° Horizontal and ±15° Vertical 

TABLE IV.  AUGMENTATION RESULTS 

Data Type Total Data Total Objects 

Train data 1176 6,943 (abnormal), 6,450 (normal) 

Test data 130 941 (abnormal), 549 (normal) 

Histogram-based image processing techniques–AVGHEQ, 
BPDFHE, and CLAHE–are applied to the training data. These 
techniques do not alter the image classes but only modify the 
histogram distribution of the images. The resulting changes are 
illustrated in Fig. 5 and summarized in Table V. Based on the 
results, several observations can be made. First, although 
BPDFHE does not appear to significantly alter image contrast 
visually, the channel-wise histogram values indicate an 
enhancement. Second, AVGHEQ noticeably improves color 
contrast, as supported by the quantitative data in Table V. Third, 
visually, CLAHE effectively reduces image noise, resulting in 
sharper images. Although the enhancement is not substantial, 
this augmentation technique leads to a modest improvement in 
the image histogram. 

 

Fig. 5. (a) Comparison of the original image,  (b) BPDFHE,  (c) AVGHEQ, and  (d) CLAHE. 
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TABLE V.  DESCRIPTIVE ANALYSIS OF HISTOGRAM ON ALL DATASETS 

Dataset Mean (R) Std Dev (R) Mean (G) Std Dev (G) Mean (B) Std Dev (B) 

Original 96.20 51.1 120.30 54.56 77.20 59.08 

BPDFHE 100.8 55.06 129.40 58.04 80.57 62.40 

AVGHEQ 125.44 71.38 155.44 80.53 100.50 76.42 

CLAHE 101.92 59.34 125.85 59.99 85.28 62.73 
 

B. Cross-Validation Results 

Each dataset generated through the cross-validation process 
is divided into training and validation sets. Fig. 6 illustrates the 
data distribution for each fold based on the original dataset. On 
average, each training set contains approximately 375 images, 
while each validation set contains about 94 images. In terms of 
object instances, the training data includes an average of 2,362 
abnormal objects and 1,882 normal objects per fold. Meanwhile, 

the validation data includes an average of 590 abnormal objects 
and 471 normal objects per fold. 

Fig. 7 illustrates the data distribution for each fold in the 
preprocessed dataset. On average, each training set contains 941 
images, while each validation set includes 235 images. 
Regarding object instances, the training data contains an average 
of 5,554 abnormal objects and 5,160 normal objects per fold. In 
the validation data, the average is 1,389 abnormal objects and 
1,291 normal objects per fold. 

 
Fig. 6. Cross-validation result on original data. 

 
Fig. 7. Cross-validation result on preprocessed data. 
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C. Modelling Results 

The object detection modeling process produced results 
related to model size and training time. In the first modelling 
phase (model 1), only the model size was recorded. In contrast, 
the second and third modelling phases (model 2 and model 3), 
both model size and training time were recorded. 

1) First phase modelling: Table VI shows that the use of 

augmented datasets yields the highest average mAP value of 

72.80%, indicating a substantial improvement in model 

performance. The original dataset also performs reasonably 

well, achieving an mAP of 55.30%. In comparison, histogram-

based preprocessing techniques such as BPDFHE, AVGHEQ, 

and CLAHE result in similar mAP scores, ranging from 52.89% 

to 54.44%. While these techniques offer slight improvements 

over the original dataset, their performance remains lower than 

that achieved with data augmentation. Notably, the average 

model size remains consistent across all preprocessing 

methods, ranging from 11.98 MB to 11.99 MB. 

TABLE VI.  COMPARISON OF MODEL TRAINING PERFORMANCE RESULTS IN STAGE 1 

Num Model Average model Size (MB) Average mAP (%) 

1 Using original dataset 11.99 55.30 

2 Using augmented dataset 11.99 72.80 

3 Using BPDFHE dataset 11.98 52.89 

4 Using AVGHEQ dataset 11.98 54.44 

5 Using CLAHE dataset 11.98 53.70 
 

2) Second phase modelling: Fig. 8(a) demonstrates that 

each hyperparameter value influences both the model's training 

time and size. Among the parameters, kernel size has the most 

significant impact—larger kernel sizes lead to increased 

training time and larger model sizes. Additionally, the ReLU 

activation function results in the longest training time compared 

to the other activation functions tested. Similarly, average 

pooling leads to longer training times than max pooling. 

However, activation functions and pooling types have a 

relatively minor impact on overall training time and model size. 

Models trained with image preprocessing techniques tend to 

produce slightly smaller model sizes, though the difference is 

not substantial. 

Fig. 8(b) indicates that while hyperparameter values 
considerably affect training time, they do not influence model 
size. A learning rate of 0.01 results in the longest training time 
compared to other values. Likewise, a batch size of 64 leads to 
the longest training time, suggesting that larger batch sizes 
increase the computational load during training. Additionally, a 
momentum value of 0.96 yields the longest training time among 
the tested configurations. 

 
    (a)                                                                                            (b) 

Fig. 8. Hyperparameter tuning training results on Stage 2. 

3) Third phase modelling: Table VII presents the results of 

the third-stage modeling. The average training time for the 

model trained with the maximum number of epochs is 

approximately 20 hours. The model size remains constant at 

12.3 MB for both training scenarios. As expected, increasing 

the number of epochs leads to longer training times; however, 

model size is influenced primarily by the input data and 

preprocessing methods rather than the number of epochs. 

Notably, the model trained with early stopping using a 
patience of 300 epochs requires significantly less training 
time—only 1.8 hours—compared to the full 20 hours for the 
maximum epoch model. Despite the shorter training duration, 
the early-stopped model achieves a slightly higher average mAP 
of 53.37%, compared to 52.26% for the model trained for the 
maximum number of epochs. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 5, 2025 

968 | P a g e  

www.ijacsa.thesai.org 

TABLE VII.  COMPARISON OF MODEL TRAINING PERFORMANCE RESULTS IN STAGE 3 

Num Model Training Time (Hours) Model Size (MB) Average mAP (%) 

1 Maximum Epoch 20 12.3 52.26 

2 Patience 300 1.8 12.3 53.37 
 

D. Evaluation 

1) First phase modelling: Based on the evaluation results 

presented in Table VIII, the AVGHEQ model demonstrates 

consistent performance across mAP values, accuracy, and 

detection time, as indicated by its relatively low standard 

deviations. This consistency suggests that AVGHEQ is a stable 

and reliable choice compared to the other models. Conversely, 

while the BPDFHE models achieve the highest mAP, their 

accuracy and detection time exhibit greater variability and tend 

to be lower. The original model, on the other hand, achieves the 

highest accuracy but requires a longer detection time, which 

may be a critical factor for applications that prioritize rapid 

detection response. Therefore, selecting the optimal model 

requires balancing accuracy, stability of performance, and 

detection speed, depending on the specific needs of the 

application. 

The model trained with the augmented dataset appears to 
suffer from overfitting, as evidenced by the average mAP on 
evaluation data (58.6%) being notably lower than the training 
mAP (72.80%). This overfitting likely results from the model 
becoming overly specialized to specific variations present in the 
augmented training data. Consequently, its performance may 
degrade when exposed to real-world data with broader 
variations. Additionally, since YOLOv7 itself incorporates 
augmentation during training, excessive augmentation in the 
dataset may reduce the model’s adaptability to unseen 
variations. Despite this, the overall model performance remains 
acceptable, as the mAP on evaluation data is still reasonably 
high, though lower than the training results. 

TABLE VIII.  EVALUATION RESUTLS OF FIRST STAGE MODELLING 

Model 
mAP (%) Accuracy (%) Detection Time (ms) 

Average Rank Average Rank Average Rank 

Original model 63.5 ± 1.3 2 84.9 ± 1.4 1 20.0 ± 7.3 5 

Augmented model 58.6 ± 1.3 5 82.6 ± 2.1 3 9.8 ± 5.0 1 

AVGHEQ model 63.2 ± 2.4 3 83.1 ± 1.9 2 18.6 ± 8.4 3 

BPDFHE model 66.3 ± 1.2 1 82.6 ± 3.0 4 18.9 ± 12.2 4 

CLAHE model 58.7 ± 3.1 4 80.7 ± 2.4 5 17.7 ± 11.0 2 
 

2) Second phase modelling: After identifying the best 

preprocessing model, hyperparameter tuning was conducted 

using the AVGHEQ dataset. All augmentation processes in the 

default YOLOv7 configuration were disabled by setting the 

corresponding attributes to zero. To assess the significance of 

the hyperparameters on model performance, ANOVA analysis 

was initially performed [43]. Furthermore, MANOVA was 

employed to examine the simultaneous effects of multiple 

hyperparameters on the model performance metrics. 

Table IX presents the results of the MANOVA analysis 
using Wilks' lambda criterion. The kernel size and learning rate 
hyperparameters yielded p-values less than 0.05, indicating 
statistically significant effects on model performance. In other 
words, these factors produce significantly different outcomes in 
the hyperparameter tuning process, allowing us to reject the null 
hypothesis (H₀). Conversely, the activation function, pooling 
layer, batch size, and momentum hyperparameters yielded p-
values greater than 0.05, suggesting that their variations do not 
have a statistically significant impact on model performance. 
Thus, for these hyperparameters, the null hypothesis cannot be 
rejected. 

TABLE IX.  MANOVA TEST TO EXAMINE THE EFFECT OF EACH HYPERPARAMETER 

Hyperparameter Value Num DF Den DF F Value Pr > F 

Kernel Size 0.0137 8 24 22.6388 0.0000 

Activation Function 0.4487 8 24 1.4784 0.2168 

Pooling Layer 0.8566 4 13 0.5442 0.7063 

Learning Rate 0.1487 8 42 8.3633 0.0000 

Batch Size 0.5913 8 42 1.5775 0.1608 

Momentum 0.7804 8 44 0.7139 0.6779 
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3) Third phase modelling: After determining the optimal 

values for each hyperparameter—kernel size of 3, SiLU 

activation function, MaxPooling layer, learning rate of 0.01, 

batch size of 32, and momentum of 0.93—these settings were 

applied in the third modeling phase. The evaluation results from 

this phase are summarized in Table X. According to the table, 

the model trained with the maximum number of epochs 

achieved the best mAP values and shortest detection time 

compared to the model trained with patience set to 300. This 

finding aligns with previous research [44], which demonstrated 

that increasing the number of epochs generally enhances the 

performance of deep learning models. 

Conversely, the model using patience 300 showed better 
accuracy compared to the maximum epoch model, although the 
differences between the two models were marginal. Both models 
outperform those from earlier modeling stages in terms of mAP, 
accuracy, and detection time. Moreover, neither model shows 
signs of overfitting, as indicated by the evaluation mAP being 
higher than the training mAP [45]. 

TABLE X.  EVALUATION RESULTS OF THIRD STAGE MODELLING 

Model 
mAP (%) Accuracy (%) Detection Time (ms) 

Average Rank Average Rank Average Rank 

Maximum epoch 84.12 ± 7.0 1 91.19 ± 1.2 2 4.55 ± 3.3 2 

Patience 300 81.57 ± 4.1 2 92.23 ± 2.4 1 5.03 ± 3.9 1 
 

E. Comparison Between Our Results and Previous Research 

According to the results shown in Table X, which presents 
only the model trained with the maximum number of epochs, the 
proposed model outperforms previous approaches. For example, 
the Faster R-CNN model achieved an mAP of 48.85%, the SSD 
model reached 33.16%, and the improved YOLOv3 model only 
16.56%, as illustrated in Fig. 9. While the histogram-based 
image processing method does not improve accuracy—likely 
because it converts images by focusing on specific blocks rather 
than the entire image—it does contribute to increased inference 
speed. Enhancing the original YOLOv7 architecture also plays 
a critical role in boosting detection performance. 

These findings indicate that models initialized with 
augmented data generally perform better than those without 

augmentation. Additionally, increasing the number of training 
epochs improves model robustness and yields the best detection 
results. Ultimately, an effective network balances having a 
relatively low number of parameters while efficiently extracting 
object features, thereby improving accuracy and inference speed 
simultaneously. 

Furthermore, these results emphasize the importance of 
optimizing both the network architecture and the training 
strategy to achieve superior object detection performance. 
Although challenging, future improvements may involve fine-
tuning the number of training epochs and applying targeted data 
augmentation techniques. Such enhancements will strengthen 
real-time inference capabilities and pave the way for further 
advances in model architectures and optimization strategies 
within deep learning. 

 

Fig. 9. mAP comparation between previous and our research. 
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V. CONCLUSION 

This study analyzed a model for detecting deviations in 
melon leaf objects using several datasets: the original dataset, 
augmented datasets, and datasets preprocessed with AVGHEQ, 
BPDFHE, and CLAHE techniques. The analysis showed that the 
model’s average mAP ranged from 58.6% to 66.3%, accuracy 
ranged from 80.7% to 84.9%, and detection time varied between 
9.8 and 20 milliseconds. Image preprocessing improved the 
original model’s performance in terms of mAP (particularly 
with BPDFHE) and detection time (across all preprocessing 
methods), but did not enhance accuracy. The BPDFHE model 
achieved the highest mAP value of 84.9%, while the fastest 
detection time of 9.4 milliseconds was observed with the model 
trained on augmented datasets. Overall, models trained on 
AVGHEQ-preprocessed datasets showed more balanced and 
stable results across all three variables—mAP (63.2%), accuracy 
(83.1%), and detection time (18.6 milliseconds)—compared to 
other models that performed well in only one or two metrics. 

Hyperparameter tuning with the AVGHEQ dataset using the 
YOLOv7 algorithm revealed that kernel size and learning rate 
significantly impacted model performance. Specifically, a 
kernel size of 3 outperformed sizes 5 and 7, and a learning rate 
of 0.001 was superior to 0.1 and 0.01. Other hyperparameters, 
including activation functions, pooling layers, batch sizes, and 
momentum, showed no statistically significant effect on 
performance. 

The best-performing models were obtained using the 
maximum number of training epochs combined with YOLOv7’s 
default augmentation. Increasing the number of epochs 
contributed to more robust models and improved detection 
performance. However, excessive augmentation can potentially 
distort or obscure the original data patterns, making it harder for 
the model to generalize effectively. 

Based on these findings, two recommendations are proposed 
for future research: first, to improve model accuracy by 
customizing network architectures, exploring more diverse 
preprocessing techniques, and expanding the hyperparameter 
tuning range; and second, to carefully balance augmentation to 
preserve critical data features. The model trained with maximum 
epochs achieved an average mAP of 84.12%, accuracy of 
91.19%, and detection time of 4.55 milliseconds. In comparison, 
the model trained with patience set to 300 epochs achieved an 
average mAP of 81.57%, accuracy of 92.23%, and detection 
time of 5.03 milliseconds. These results suggest that increasing 
the number of epochs enhances model robustness and overall 
performance. 
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