
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

960 | P a g e

www.ijacsa.thesai.org

Analyzing the Impact of Histogram-Based Image

Preprocessing on Melon Leaf Abnormality Detection

Using YOLOv7

Sahrial Ihsani Ishak, Sri Wahjuni, Karlisa Priandana*

School of Data Science, Mathematics and Informatics, IPB University, Bogor, Indonesia

Abstract—This study aims to analyze and implement image

preprocessing techniques to improve the performance of melon

leaf abnormality detection using the YOLOv7 algorithm. A total

of 521 abnormal melon leaf images were processed using

augmentation and three preprocessing methods: Averaging

Histogram Equalization (AVGHEQ), Brightness Preserving

Dynamic Histogram Equalization (BPDFHE), and Contrast

Limited Adaptive Histogram Equalization (CLAHE), then

compared with the original dataset. Modeling was conducted in

three stages: initial training with an 80:20 split and default

YOLOv7 augmentation; hyperparameter tuning via cross-

validation using a 90:10 split without augmentation; and final

training using the best parameters with augmentation reactivated.

The models were evaluated using ensemble learning. Results

showed mAP ranged from 58.6% to 66.3%, accuracy from 80.7%

to 84.9%, and detection time from 9.8 to 20 milliseconds.

Preprocessing improved mAP and detection time, though it had

little effect on accuracy. The best performance was obtained with

a kernel size of 3 and a learning rate of 0.001, while changes in

activation function, pooling, batch size, and momentum had

minimal impact. The top models, trained with maximum epochs

and standard augmentation, achieved mAP of 84.12%, accuracy

of 91.19%, and detection time of 4.55 milliseconds. Models using

early stopping (patience = 300) reached mAP of 81.57%, accuracy

of 92.23%, and detection time of 5.03 milliseconds. The best model

outperformed previous works, which reported only 48.85% with

Faster R-CNN, 33.16% with SSD, and 16.56% with YOLOv3.

Although histogram-based preprocessing methods mainly

enhanced inference speed, the overall improvements to YOLOv7

significantly boosted detection performance.

Keywords—Leaf abnormality; melon; image preprocessing;

YOLOv7

I. INTRODUCTION

The agricultural sector significantly contributes to
Indonesia’s GDP by creating jobs and increasing export values
[1], supports broader economic expansion through regional
improvements in fruit commodity productivity [2], and has
helped mitigate the negative impact of the COVID‑19 pandemic
on economic growth via strong export performance [3].
According to information from the Indonesian Central Statistical
Agency, fruit commodity production in Indonesia during 2016-
2022 increased [4]. Nevertheless, there are commodities whose
production is fluctuating. One of them is the melon commodity
[4]. Fluctuations in melon production stem from suboptimal
growing conditions, such as nutrient allocation affected by
pruning and fruit thinning practices [5] and adverse

environmental factors like temperature and humidity variations
[6].

There are two causes of malnutrition in melon crops: the lack
of nutrient intake received by the plant and the presence of pest
disorders and diseases that affect the melon plant periodically.
This can lead to crop failure if physiological disorders during
melon growth are not addressed promptly [7], emphasizing the
importance of timely pruning and fruit regulation to support
healthy development. Meanwhile, environmental factors such as
temperature, light, and water availability also play a crucial role
in plant growth [8]. Identifying such disorders often requires
sending samples to laboratories for testing, which can be time-
consuming [9] and further supports [10] the diagnostic process
for plant abnormalities. Information technology is needed to
help identify anomalies that occur in melon plants effectively
and efficiently. Artificial intelligence technology could be the
solution to this problem [11].

Artificial intelligence (AI) is a field of science that integrates
machine and human intelligence, which has been applied in
various sectors, including agriculture [11], contributes to the
development of intelligent algorithmic systems [12], and
provides the foundation for advanced deep learning methods
[13]. Deep learning, which evolved from machine learning,
builds algorithms from existing data by mimicking neural
networks [14], using statistical and computational models [15],
and emphasizing efficient learning processes for data
classification and prediction [16]. Unlike conventional machine
learning, which treats feature extraction as a separate process,
deep learning enhances this by learning feature representations
directly from raw data [17]. One of the prominent applications
of deep learning is object detection, a task that involves
identifying and localizing objects within an image. Current
object detection approaches are categorized into one-stage
methods, prioritizing faster inference speeds [18], and two-stage
methods, offering higher detection accuracy through refined
region proposals and classification [19].

The performance of object detection models can be
influenced by the image preprocessing techniques applied
beforehand, as specific preprocessing steps can improve the
generalization ability of over-parameterized neural networks
[20]. In contrast, others affect the accuracy of convolutional
neural network-based recognition systems [21]. In the context of
melon leaf analysis, differences between normal and abnormal
leaves can be identified through leaf color, shape, and texture,
which are often associated with anatomical resistance to fungal

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

961 | P a g e

www.ijacsa.thesai.org

infection [22] and market-related disease symptoms in melon
and related crops [23]. An image itself is composed of a grid of
pixels where each pixel encodes intensity or color information;
this concept underpins many image analysis processes, as
elaborated in foundational image processing literature [24],
methods for machine vision image acquisition and
preprocessing [25], and comprehensive digital image processing
frameworks [26].

The frequency distribution of pixel intensity in an image can
be analyzed using a histogram, a fundamental technique in
image processing as described in works such as Gonzalez and
Woods’ Digital Image Processing [24], Sinha’s treatment of
machine vision systems [25], and Pratt’s comprehensive guide
on digital image analysis [26]. Histogram-based processing is
widely used to enhance image contrast and emphasize key
differences between objects and their backgrounds [24],
beneficial for distinguishing between normal and abnormal
melon leaves. Several adaptive histogram equalization
techniques have been developed to improve pixel-level contrast
and image quality, especially in plant health detection. One such
method is AVGHEQ, which focuses on contrast enhancement
while maintaining brightness consistency [27]. Another
technique, CLAHE, prevents noise over-amplification in
homogeneous areas by limiting the histogram contrast [28].
Additionally, BPDFHE employs fuzzy logic to enhance image
contrast while preserving natural brightness levels [29]. These
preprocessing methods are expected to increase the
effectiveness of detection models by providing more apparent
visual differentiation between healthy and unhealthy leaves.

Various image preprocessing techniques can significantly
impact the performance of the object detection model. These
techniques play an essential role in improving the quality of the
input image, thereby increasing the accuracy and efficiency of
the detection process. On the other hand, hyperparameters also
influence the performance of the object detection model. The
detection model used in this study is YOLOv7, which surpasses
other algorithms such as YOLOR, YOLOX, Scaled-YOLOv4,
YOLOV5, DETR, DETR Deformable, DINO-5scale-R50, ViT-
Adapter-B, and many other objects detectors, especially in terms
of detection speed [30]. This study investigates how picture
preprocessing approaches and hyperparameter optimization
affect the effectiveness of models for detecting melon leaves.
Unlike many earlier studies, which frequently disregard these
elements, this study investigates their significance in enhancing
model accuracy and efficiency. By addressing these critical
features, the study hopes to provide the groundwork for
constructing a more effective and efficient plant anomaly
detection model, particularly for melon crops, which have gotten
less attention in previous studies.

The structure of this paper is as follows: Section II reviews
relevant literature, Section III outlines the research
methodology, Section IV presents the results and discussion,
and Section V provides the conclusion.

II. RELATED WORK

Research on the identification of anomalies in tomatoes, soy,
cucumbers, apples, and melons shows that it is still necessary to
use image preprocessing to improve model performance and
model application into a mini-computer platform to evaluate

models in real-time. A study by [31] demonstrated that the
Faster R-CNN and Mask R-CNN methods effectively identified
tomato crop diseases, although some misclassifications were
still observed. Similarly, [32] identified pests and diseases in
tomato plants and reported that an improved version of YOLOv3
achieved the highest accuracy of 92.39% with a detection speed
of 20.39 milliseconds. In the case of soybean plants, disease
detection using the Multi-Feature Fusion Faster R-CNN method
yielded an optimal mean Average Precision (mAP) of 83.34%
[33]. Another study [34] employed the MTC-YOLOv5n method
with enhancements to reduce image noise and improve the
detection of small objects. This approach resulted in a compact
model size of 4.7 MB, an mAP of 84.9%, and a frame rate of
143 frames per second (FPS). In addition, [35] proposed the
MGA-YOLO method for detecting apple diseases based on leaf
images, achieving an mAP of 89.3%, a minimal model size of
10.34 MB, and a peak FPS of 84.1 on a GPU. The model was
also tested on smartphones, reaching a frame rate of 12.5 FPS.

This research extends the work presented in [36], which
compared three methods for plant disease detection: Faster R-
CNN, SSD, and YOLOv3. The study found that Faster R-CNN
achieved the highest mean Average Precision (mAP) at 48.85%,
while YOLOv3 demonstrated the shortest inference time at 0.5
seconds. In terms of CPU usage, SSD performed most
efficiently, whereas YOLOv3 offered a balance between fast
inference and moderate CPU consumption. Additionally, the
study highlighted that preprocessing techniques could enhance
the performance of object detection models [36]. Building on
these findings, the present research employs YOLOv7 for its
efficient inference time and moderate CPU usage. It further
investigates the impact of a histogram-based preprocessing
technique on model performance.

III. RESEARCH METHODOLOGY

This research comprises of five main steps: (1) data
preparation; (2) modeling and evaluation of phase 1; (3)
modelling and evaluation of phase 2; (4) modelling and
evaluation of phase 3; and (5) comparison with the previous
research in [36]. Before delving into the main topic, it is crucial
first to discuss the background of YOLOv7 and the image
processing techniques used, including AVGHEQ, BPDFHE,
and CLAHE.

A. YOLOv7

You Only Look Once (YOLO) is a one-stage object
detection algorithm consisting of the backbone, neck, and head
structure. The backbone layer is responsible for feature
extraction from the input image. Then, the results are passed to
the neck layer, which generates pyramid features, allowing the
system to detect objects at different scales. The head layer is the
final layer for detecting classes and bounding boxes. YOLO has
an architecture based on convolutional networks. YOLO's
detection network comprises 24 convolutional layers and 2 fully
connected layers. Alternating 1 × 1 convolutional layers reduces
the feature space from the previous layers. The convolutional
layers have been pre-trained on the ImageNet classification task
with an image resolution of 224 × 224 [30].

YOLOv7, released in 2022 [30], is an algorithm of the
YOLO model. To be more precise, the author creates several

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

962 | P a g e

www.ijacsa.thesai.org

training techniques known as "bag-of-freebies" that consist of
modules and optimization techniques that significantly boost
detection accuracy without raising the cost of inference. The
network architecture uses the E-ELAN technique, which
manages the longest and shortest gradient pathways to help a
deep model learn and converge more efficiently. The E-ELAN
approach shuffles and merges schemes to integrate the features
of the groups to improve the learned features. It also lowers the
computation cost and parameter count. Furthermore, YOLO-v7
presents several other training bag-of-freebies, such as
1) designing the architecture of the planned re-parameterized
convolution using Connection-Aware RepConv (RepConvN),

2) implementing a new labeling technique that directs the lead
and auxiliary heads; and 3) normalizing data in conv-bn-
activation topology 4) Convolution on a feature map that
combines addition and multiplication 5) Making the final
inference using the EMA model.

YOLOv7 is a version of YOLO released in 2022. It can
outperform all existing object detectors in speed and accuracy,
with a speed of 5 to 160 FPS and the highest accuracy of 56.8%
AP on the V100 GPU [30]. YOLOv7 also beats various other
detectors, such as YOLOR, YOLOX, and YOLOv5, in terms of
speed and accuracy, as seen in Table I. The overall architecture
of YOLOv7 can be seen in Fig. 1.

TABLE I. YOLOV7 JUSTIFICATION

Model Inference Time (millisecond) AP (%)

YOLOv7 ~5–7 ~57

YOLOR ~9–11 ~56

PPYOLOE ~11–13 ~54

YOLOX ~15–17 ~53

Scaled-YOLOv4 ~23–25 ~52

YOLOv5 (r6.1) ~29–31 ~51

Fig. 1. YOLOv7 architecture.

B. AVGHEQ

AVGHEQ aims to increase image contrast while keeping the
average brightness of the image output unchanged as much as
possible. First, the input image is stretched on each color channel
to correct any distortion from the unwanted environment. Then,
it changed the color format from RGB to HSI [24]. After that the

histogram was averaged before it was used in the equalization
operation until the brightness error was reduced to a minimum
and the entropy was maximized as much as possible. Next,
normalization operations are performed, and last, the histogram
and changes are remapped, and the HSI color format to RGB as
the output image. The overall stages of AVGHEQ can be seen
in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

963 | P a g e

www.ijacsa.thesai.org

Fig. 2. AVGHEQ process [27].

C. BPDFHE

BPDFHE uses fuzzy statistics for digital image
representation and processing. BPDFHE works in an abstract
domain, allowing the process to be managed effectively at the
end of the grayscale value, improving overall performance [29].
BPDFHE consists of four stages, namely, 1) Fuzzy Histogram
computing, 2) Histogram Partitioning, 3) Dynamic Histogram
Equalization of Partitioning, and 4) Image brightness
normalization.

The process begins by calculating the fuzzy histogram,
which uses the fuzzy membership function to handle the
distribution of gray intensity values more subtly, resulting in a
smoother and more informative histogram than traditional
methods. Next, the histogram is partitioned based on the local
maximum point found by derivative analysis, dividing the
histogram into several sub-histograms. Each sub-histogram is
then individually equalized using the Dynamic Histogram
Equalization (DHE) technique to increase contrast without
changing the average brightness of the image. This process
includes adjusting the dynamic range and remapping the
intensity of each partition. The final stage is brightness
normalization to ensure the average brightness of the output
image remains consistent with the input, resulting in a sharper
image with a more balanced intensity distribution. The overall
stages of BPDFHE can be seen in Fig. 3.

Fig. 3. BPDFHE process.

This technique effectively addresses the challenge of
enhancing low-contrast images and optimizing the visual
perception of details across different image regions. By carefully
controlling the equalization process at the sub-histogram level,
BPDFHE preserves the integrity of image information,
minimizing the risk of over-enhancement or artifacts that may
occur with other conventional techniques.

D. CLAHE

CLAHE is an adaptive method of histogram equalization
followed by thresholding to aid in the dynamics of preservation
of local contrast features of an image [37]. First, the input image
is partitioned into several sub-images sized M × N. Then,
calculate the histogram for each sub-image. Next control the
contrast of the histogram with clips for each sub-image. The
number of pixels present in the sub-image is distributed at each
degree of grayness. Then calculate the clip limit from the
histogram. On the original histogram, pixels will be limited if
the number of pixels is greater than 𝑁𝐶𝐿𝐼𝑃. The number of pixels
is evenly distributed into each degree of grayness (𝑁𝑑) defined
by the total number of pixels constrained (𝑁𝑇𝐶) [37].

E. Data

This study uses secondary data from a melon leaf image
from previous studies taken in 2022 [36]. The entire dataset
consists of 522 images, which have been labeled and processed
in TXT format. Each image has a resolution of 5 megapixels,
with width and height of 2592 and 1944 pixels, respectively. The
labels are divided into two classes: Abnormal and Normal.
Fig. 4 shows a sample image for each class.

F. Data Preparation

This research contributes to the data preparation stage. Data
preparation is a heavy challenge in deep learning technology to
produce an optimal model so it can be used properly [38]. For
that, the data that has been obtained needs to be well prepared.
The data that has been acquired is then prepared further by
preprocessing and augmentation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

964 | P a g e

www.ijacsa.thesai.org

Fig. 4. Sample data for abnormal (yellow bounding box) and normal (green bounding box).

The leaf image is an image that exists in a natural
environment with a lot of background and noise. The usual use
of histogram equalization cannot address the problem, so it
requires a method that can adaptatively equalize the histogram
and can also be applied to colored images that have a high
background complexity. These methods include AVGHEQ
(Averaging Histogram Equalization), CLAHE (Contrast
Limited Adaptive Histogram equalization) [28], and BPDFHE
(Brightness Preserving Dynamic Fuzzy Histogram
Equalization) [29].

Augmentation based on geometry is rotation and shearing.
Meanwhile, non-geometric augmentation is flipping. The
training data was augmented using Python programming
language on the server development environment of the IPB
Computer Science study program.

G. Cross-Validation

Cross-validation is a technique that aims to estimate the
generalized performance of a deep learning model, avoiding
overfitting and underfitting [39]. The cross-validation technique
used is k-fold cross-validation. Cross-validations will be used on
the training data with a set of k = 5. This means that the data will
be divided into five equal parts. The model will then be trained
in four parts, called training data, and evaluated in the fifth part,
called validation data. This process is repeated five times, and
the average result is used to estimate the model's performance.

H. Modeling

This study uses the YOLOv7 nano training method. The
object detection modeling process is carried out in three distinct
phases, each producing different models based on a specific
training strategy. In the first phase, a model is trained using the
default hyperparameter configuration of YOLOv7 on the
complete dataset. In the second phase, a new model is developed
by performing hyperparameter tuning, as listed in Table II, using
the best-performing image preprocessing technique identified
for the corresponding dataset. In the third phase, the model is
trained using the best-tuned hyperparameters, but this time with
the original default hyperparameter file configuration of
YOLOv7. This last modelling phase is conducted under two
training scenarios: early stopping with a patience of 300 and full

training for all epochs. As in the second phase, the best image
preprocessing technique for each dataset is applied.

TABLE II. PARAMETERS ON MODELING STEP

Parameter Value

Default hyperparameters

Batch size 8

Epoch 5000

Image size 640 × 640 piksel

Pretrained model YOLOv7-tiny

Tuning hyperparameter

Kernel size [3,5,7]

Activation function [ReLU, LeakyReLU, SiLU]

Pooling layer [AvgPool, MaxPool]

Learning rate [0.1, 0.01, 0.001]

Batch size [16, 32, 64]

Momentum [0.9, 0.93, 0.96]

Epoch max 5000

Early stopping 300

Image size 640 × 640 piksel

Pretrained model YOLOv7-tiny

I. Model Evaluation

The three object detection models produced at each training
phase will be evaluated using a set of standard performance
metrics to determine the most effective model. These metrics
include Mean Average Precision (mAP), Intersection over
Union (IoU), accuracy, precision, recall, and F1 score. In
addition, detection time and training time are also considered in
the evaluation process.

Mean Average Precision (mAP) assesses how well a model
can predict accurate bounding boxes across all object classes in
an image or video. mAP values range from 0 to 1, where higher
values indicate better detection performance [40]. mAP is
calculated by averaging the Average Precision (AP) across all

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

965 | P a g e

www.ijacsa.thesai.org

classes, where AP is derived from the precision-recall curve for
each class [19]. High AP scores are achieved when both
precision and recall are high across various confidence
thresholds [41].

The Intersection over Union (IoU) metric measures the
overlap between the predicted bounding box and the ground
truth bounding box, divided by the area of their union. A higher
IoU indicates a better match between the predicted and actual
object locations [40].

The mathematical formulations for mAP, AP, and IoU are
provided in Eq. (1), (2), and (3), respectively. Meanwhile,
accuracy, precision, recall, and F1 score are defined using
Eq. (4) through (7) [42].

𝑚𝐴𝑃 =
1

𝐾
 ∑ 𝐴𝑃(𝑖)𝐾

𝑖=1 (1)

where, K is the number of classes, 𝐴𝑃 is the Average
Precision, and i is the index for the class.

𝐴𝑃(𝑖) = ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0
 (2)

where, r is Recall and p is Precision

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
 (3)

where, 𝐵𝑝 represents the bounding box on predicted area and

𝐵𝑔𝑡 represents the bounding box on ground truth area.

𝑎𝑐𝑐(𝑖) =
𝑇𝑃(𝑖)+𝑇𝑁(𝑖)

𝑇𝑃(𝑖)+𝐹𝑃(𝑖)+𝑇𝑁(𝑖)+𝑇𝑁(𝑖)
 (4)

𝑝(𝑖) =
𝑇𝑃(𝑖)

𝑇𝑃(𝑖)+𝐹𝑃(𝑖)
 (5)

𝑟(𝑖) =
𝑇𝑃(𝑖)

𝑇𝑃(𝑖)+𝐹𝑁(𝑖)
 (6)

𝐹1_𝑆𝑐𝑜𝑟𝑒(𝑖) = 2 ×
𝑝 × 𝑟

𝑝+𝑟
 (7)

where, i is index for class, TP is True Positive, TN is True
Negative, FP is False Positive, FN is False Negative, acc is
Accuracy, r is Recall, and p is Precision.

IV. RESULTS AND ANALYSIS

This section presents the experimental setup, followed by the
training results and evaluation of the obtained YOLOv7 models.

A. Data Preparation Results

This research utilizes secondary data obtained from the study
in [36]. Further details regarding the dataset are provided in the
Data section. Data preparation was carried out through a
combination of augmentation techniques and histogram-based
image preprocessing. The augmentation techniques applied are
listed in Table III. Table IV presents the results of the data
augmentation process. To increase the quantity of training data,
the original dataset was augmented threefold, resulting in a total
of 1,176 training images and 130 test images. The number of
objects per class in the training data also increased while
maintaining a balanced class distribution.

TABLE III. AUGMENTATION TECHNIQUES

No Technique Value

1 Flipping Horizontal and Vertical

2 Rotation -15° and +15°

3 Shearing ±15° Horizontal and ±15° Vertical

TABLE IV. AUGMENTATION RESULTS

Data Type Total Data Total Objects

Train data 1176 6,943 (abnormal), 6,450 (normal)

Test data 130 941 (abnormal), 549 (normal)

Histogram-based image processing techniques–AVGHEQ,
BPDFHE, and CLAHE–are applied to the training data. These
techniques do not alter the image classes but only modify the
histogram distribution of the images. The resulting changes are
illustrated in Fig. 5 and summarized in Table V. Based on the
results, several observations can be made. First, although
BPDFHE does not appear to significantly alter image contrast
visually, the channel-wise histogram values indicate an
enhancement. Second, AVGHEQ noticeably improves color
contrast, as supported by the quantitative data in Table V. Third,
visually, CLAHE effectively reduces image noise, resulting in
sharper images. Although the enhancement is not substantial,
this augmentation technique leads to a modest improvement in
the image histogram.

Fig. 5. (a) Comparison of the original image, (b) BPDFHE, (c) AVGHEQ, and (d) CLAHE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

966 | P a g e

www.ijacsa.thesai.org

TABLE V. DESCRIPTIVE ANALYSIS OF HISTOGRAM ON ALL DATASETS

Dataset Mean (R) Std Dev (R) Mean (G) Std Dev (G) Mean (B) Std Dev (B)

Original 96.20 51.1 120.30 54.56 77.20 59.08

BPDFHE 100.8 55.06 129.40 58.04 80.57 62.40

AVGHEQ 125.44 71.38 155.44 80.53 100.50 76.42

CLAHE 101.92 59.34 125.85 59.99 85.28 62.73

B. Cross-Validation Results

Each dataset generated through the cross-validation process
is divided into training and validation sets. Fig. 6 illustrates the
data distribution for each fold based on the original dataset. On
average, each training set contains approximately 375 images,
while each validation set contains about 94 images. In terms of
object instances, the training data includes an average of 2,362
abnormal objects and 1,882 normal objects per fold. Meanwhile,

the validation data includes an average of 590 abnormal objects
and 471 normal objects per fold.

Fig. 7 illustrates the data distribution for each fold in the
preprocessed dataset. On average, each training set contains 941
images, while each validation set includes 235 images.
Regarding object instances, the training data contains an average
of 5,554 abnormal objects and 5,160 normal objects per fold. In
the validation data, the average is 1,389 abnormal objects and
1,291 normal objects per fold.

Fig. 6. Cross-validation result on original data.

Fig. 7. Cross-validation result on preprocessed data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

967 | P a g e

www.ijacsa.thesai.org

C. Modelling Results

The object detection modeling process produced results
related to model size and training time. In the first modelling
phase (model 1), only the model size was recorded. In contrast,
the second and third modelling phases (model 2 and model 3),
both model size and training time were recorded.

1) First phase modelling: Table VI shows that the use of

augmented datasets yields the highest average mAP value of

72.80%, indicating a substantial improvement in model

performance. The original dataset also performs reasonably

well, achieving an mAP of 55.30%. In comparison, histogram-

based preprocessing techniques such as BPDFHE, AVGHEQ,

and CLAHE result in similar mAP scores, ranging from 52.89%

to 54.44%. While these techniques offer slight improvements

over the original dataset, their performance remains lower than

that achieved with data augmentation. Notably, the average

model size remains consistent across all preprocessing

methods, ranging from 11.98 MB to 11.99 MB.

TABLE VI. COMPARISON OF MODEL TRAINING PERFORMANCE RESULTS IN STAGE 1

Num Model Average model Size (MB) Average mAP (%)

1 Using original dataset 11.99 55.30

2 Using augmented dataset 11.99 72.80

3 Using BPDFHE dataset 11.98 52.89

4 Using AVGHEQ dataset 11.98 54.44

5 Using CLAHE dataset 11.98 53.70

2) Second phase modelling: Fig. 8(a) demonstrates that

each hyperparameter value influences both the model's training

time and size. Among the parameters, kernel size has the most

significant impact—larger kernel sizes lead to increased

training time and larger model sizes. Additionally, the ReLU

activation function results in the longest training time compared

to the other activation functions tested. Similarly, average

pooling leads to longer training times than max pooling.

However, activation functions and pooling types have a

relatively minor impact on overall training time and model size.

Models trained with image preprocessing techniques tend to

produce slightly smaller model sizes, though the difference is

not substantial.

Fig. 8(b) indicates that while hyperparameter values
considerably affect training time, they do not influence model
size. A learning rate of 0.01 results in the longest training time
compared to other values. Likewise, a batch size of 64 leads to
the longest training time, suggesting that larger batch sizes
increase the computational load during training. Additionally, a
momentum value of 0.96 yields the longest training time among
the tested configurations.

 (a) (b)

Fig. 8. Hyperparameter tuning training results on Stage 2.

3) Third phase modelling: Table VII presents the results of

the third-stage modeling. The average training time for the

model trained with the maximum number of epochs is

approximately 20 hours. The model size remains constant at

12.3 MB for both training scenarios. As expected, increasing

the number of epochs leads to longer training times; however,

model size is influenced primarily by the input data and

preprocessing methods rather than the number of epochs.

Notably, the model trained with early stopping using a
patience of 300 epochs requires significantly less training
time—only 1.8 hours—compared to the full 20 hours for the
maximum epoch model. Despite the shorter training duration,
the early-stopped model achieves a slightly higher average mAP
of 53.37%, compared to 52.26% for the model trained for the
maximum number of epochs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

968 | P a g e

www.ijacsa.thesai.org

TABLE VII. COMPARISON OF MODEL TRAINING PERFORMANCE RESULTS IN STAGE 3

Num Model Training Time (Hours) Model Size (MB) Average mAP (%)

1 Maximum Epoch 20 12.3 52.26

2 Patience 300 1.8 12.3 53.37

D. Evaluation

1) First phase modelling: Based on the evaluation results

presented in Table VIII, the AVGHEQ model demonstrates

consistent performance across mAP values, accuracy, and

detection time, as indicated by its relatively low standard

deviations. This consistency suggests that AVGHEQ is a stable

and reliable choice compared to the other models. Conversely,

while the BPDFHE models achieve the highest mAP, their

accuracy and detection time exhibit greater variability and tend

to be lower. The original model, on the other hand, achieves the

highest accuracy but requires a longer detection time, which

may be a critical factor for applications that prioritize rapid

detection response. Therefore, selecting the optimal model

requires balancing accuracy, stability of performance, and

detection speed, depending on the specific needs of the

application.

The model trained with the augmented dataset appears to
suffer from overfitting, as evidenced by the average mAP on
evaluation data (58.6%) being notably lower than the training
mAP (72.80%). This overfitting likely results from the model
becoming overly specialized to specific variations present in the
augmented training data. Consequently, its performance may
degrade when exposed to real-world data with broader
variations. Additionally, since YOLOv7 itself incorporates
augmentation during training, excessive augmentation in the
dataset may reduce the model’s adaptability to unseen
variations. Despite this, the overall model performance remains
acceptable, as the mAP on evaluation data is still reasonably
high, though lower than the training results.

TABLE VIII. EVALUATION RESUTLS OF FIRST STAGE MODELLING

Model
mAP (%) Accuracy (%) Detection Time (ms)

Average Rank Average Rank Average Rank

Original model 63.5 ± 1.3 2 84.9 ± 1.4 1 20.0 ± 7.3 5

Augmented model 58.6 ± 1.3 5 82.6 ± 2.1 3 9.8 ± 5.0 1

AVGHEQ model 63.2 ± 2.4 3 83.1 ± 1.9 2 18.6 ± 8.4 3

BPDFHE model 66.3 ± 1.2 1 82.6 ± 3.0 4 18.9 ± 12.2 4

CLAHE model 58.7 ± 3.1 4 80.7 ± 2.4 5 17.7 ± 11.0 2

2) Second phase modelling: After identifying the best

preprocessing model, hyperparameter tuning was conducted

using the AVGHEQ dataset. All augmentation processes in the

default YOLOv7 configuration were disabled by setting the

corresponding attributes to zero. To assess the significance of

the hyperparameters on model performance, ANOVA analysis

was initially performed [43]. Furthermore, MANOVA was

employed to examine the simultaneous effects of multiple

hyperparameters on the model performance metrics.

Table IX presents the results of the MANOVA analysis
using Wilks' lambda criterion. The kernel size and learning rate
hyperparameters yielded p-values less than 0.05, indicating
statistically significant effects on model performance. In other
words, these factors produce significantly different outcomes in
the hyperparameter tuning process, allowing us to reject the null
hypothesis (H₀). Conversely, the activation function, pooling
layer, batch size, and momentum hyperparameters yielded p-
values greater than 0.05, suggesting that their variations do not
have a statistically significant impact on model performance.
Thus, for these hyperparameters, the null hypothesis cannot be
rejected.

TABLE IX. MANOVA TEST TO EXAMINE THE EFFECT OF EACH HYPERPARAMETER

Hyperparameter Value Num DF Den DF F Value Pr > F

Kernel Size 0.0137 8 24 22.6388 0.0000

Activation Function 0.4487 8 24 1.4784 0.2168

Pooling Layer 0.8566 4 13 0.5442 0.7063

Learning Rate 0.1487 8 42 8.3633 0.0000

Batch Size 0.5913 8 42 1.5775 0.1608

Momentum 0.7804 8 44 0.7139 0.6779

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

969 | P a g e

www.ijacsa.thesai.org

3) Third phase modelling: After determining the optimal

values for each hyperparameter—kernel size of 3, SiLU

activation function, MaxPooling layer, learning rate of 0.01,

batch size of 32, and momentum of 0.93—these settings were

applied in the third modeling phase. The evaluation results from

this phase are summarized in Table X. According to the table,

the model trained with the maximum number of epochs

achieved the best mAP values and shortest detection time

compared to the model trained with patience set to 300. This

finding aligns with previous research [44], which demonstrated

that increasing the number of epochs generally enhances the

performance of deep learning models.

Conversely, the model using patience 300 showed better
accuracy compared to the maximum epoch model, although the
differences between the two models were marginal. Both models
outperform those from earlier modeling stages in terms of mAP,
accuracy, and detection time. Moreover, neither model shows
signs of overfitting, as indicated by the evaluation mAP being
higher than the training mAP [45].

TABLE X. EVALUATION RESULTS OF THIRD STAGE MODELLING

Model
mAP (%) Accuracy (%) Detection Time (ms)

Average Rank Average Rank Average Rank

Maximum epoch 84.12 ± 7.0 1 91.19 ± 1.2 2 4.55 ± 3.3 2

Patience 300 81.57 ± 4.1 2 92.23 ± 2.4 1 5.03 ± 3.9 1

E. Comparison Between Our Results and Previous Research

According to the results shown in Table X, which presents
only the model trained with the maximum number of epochs, the
proposed model outperforms previous approaches. For example,
the Faster R-CNN model achieved an mAP of 48.85%, the SSD
model reached 33.16%, and the improved YOLOv3 model only
16.56%, as illustrated in Fig. 9. While the histogram-based
image processing method does not improve accuracy—likely
because it converts images by focusing on specific blocks rather
than the entire image—it does contribute to increased inference
speed. Enhancing the original YOLOv7 architecture also plays
a critical role in boosting detection performance.

These findings indicate that models initialized with
augmented data generally perform better than those without

augmentation. Additionally, increasing the number of training
epochs improves model robustness and yields the best detection
results. Ultimately, an effective network balances having a
relatively low number of parameters while efficiently extracting
object features, thereby improving accuracy and inference speed
simultaneously.

Furthermore, these results emphasize the importance of
optimizing both the network architecture and the training
strategy to achieve superior object detection performance.
Although challenging, future improvements may involve fine-
tuning the number of training epochs and applying targeted data
augmentation techniques. Such enhancements will strengthen
real-time inference capabilities and pave the way for further
advances in model architectures and optimization strategies
within deep learning.

Fig. 9. mAP comparation between previous and our research.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

970 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

This study analyzed a model for detecting deviations in
melon leaf objects using several datasets: the original dataset,
augmented datasets, and datasets preprocessed with AVGHEQ,
BPDFHE, and CLAHE techniques. The analysis showed that the
model’s average mAP ranged from 58.6% to 66.3%, accuracy
ranged from 80.7% to 84.9%, and detection time varied between
9.8 and 20 milliseconds. Image preprocessing improved the
original model’s performance in terms of mAP (particularly
with BPDFHE) and detection time (across all preprocessing
methods), but did not enhance accuracy. The BPDFHE model
achieved the highest mAP value of 84.9%, while the fastest
detection time of 9.4 milliseconds was observed with the model
trained on augmented datasets. Overall, models trained on
AVGHEQ-preprocessed datasets showed more balanced and
stable results across all three variables—mAP (63.2%), accuracy
(83.1%), and detection time (18.6 milliseconds)—compared to
other models that performed well in only one or two metrics.

Hyperparameter tuning with the AVGHEQ dataset using the
YOLOv7 algorithm revealed that kernel size and learning rate
significantly impacted model performance. Specifically, a
kernel size of 3 outperformed sizes 5 and 7, and a learning rate
of 0.001 was superior to 0.1 and 0.01. Other hyperparameters,
including activation functions, pooling layers, batch sizes, and
momentum, showed no statistically significant effect on
performance.

The best-performing models were obtained using the
maximum number of training epochs combined with YOLOv7’s
default augmentation. Increasing the number of epochs
contributed to more robust models and improved detection
performance. However, excessive augmentation can potentially
distort or obscure the original data patterns, making it harder for
the model to generalize effectively.

Based on these findings, two recommendations are proposed
for future research: first, to improve model accuracy by
customizing network architectures, exploring more diverse
preprocessing techniques, and expanding the hyperparameter
tuning range; and second, to carefully balance augmentation to
preserve critical data features. The model trained with maximum
epochs achieved an average mAP of 84.12%, accuracy of
91.19%, and detection time of 4.55 milliseconds. In comparison,
the model trained with patience set to 300 epochs achieved an
average mAP of 81.57%, accuracy of 92.23%, and detection
time of 5.03 milliseconds. These results suggest that increasing
the number of epochs enhances model robustness and overall
performance.

ACKNOWLEDGMENT

The computation in this study were conducted using the
HPC facilities of Computer Science Study Program, School of
Data Science, Mathematics and Informatics, IPB University.
The dataset used in this research was obtained from [36],
acquired from the IoT for Smart Urban Farming Laboratory
(iSurf Lab), School of Data Science, Mathematics and
Informatics, IPB University, and Agribusiness and Technology
Park (ATP), IPB University.

REFERENCES

[1] S. I. Kusumaningrum, “Pemanfaatan Sektor Pertanian Sebagai Penunjang
Pertumbuhan Perekonomian Indonesia,” J. Transaksi, vol. 11, no. 1, pp.
80–89, 2019, [Online]. Available:
http://ejournal.atmajaya.ac.id/index.php/transaksi/article/view/477

[2] G. Afriyanti, Ana Mariya, Charita Natalia, Sirat Nispuana, M. Farhan
Wijaya, and M. Yoga Phalepi, “the Role of the Agricultural Sector on
Economic Growth in Indonesia,” Indones. J. Multidiscip. Sci., vol. 2, no.
1, pp. 167–179, 2023, doi: 10.59066/ijoms.v2i1.325.

[3] K. F. Arifah and J. Kim, “The Importance of Agricultural Export
Performance on the Economic Growth of Indonesia: The Impact of the
COVID-19 Pandemic,” Sustain., vol. 14, no. 24, 2022, doi:
10.3390/su142416534.

[4] BPS, “Indonesian Fruit Plant Production from 2016 to 2022,” 2022.
[Online]. Available: https://www.bps.go.id/indicator/55/62/1/produksi-
tanaman-buah-buahan.html

[5] S. R. Siregar, E. Hayati, and M. Hayati, “Respon Pertumbuhan dan
Produksi Melon (Cucumis melo L.) Akibat Pemangkasan dan Pengaturan
Jumlah Buah,” J. Ilm. Mhs. Pertan., vol. 4, no. 1, pp. 202–209, 2020, doi:
10.17969/jimfp.v4i1.6419.

[6] O. S. University, “Environmental factors affecting plant growth,” 2024.

[7] S. A. Avazovich, “Diseases of Melons: Reasons, Symptoms, and Methods
of Control,” Int. J. Life Sci. Agric. Res., vol. 01, no. 01, pp. 11–12, 2022.

[8] D. A. Fitria and M. I. Riyadi, “Strategi Coping Stres Pada Petani Melon
Pasca Gagal Panen di Desa Maguwan, Kecamatan Sambit, Kabupaten
Ponorogo,” Rosyada Islam. Guid. Couns., vol. 3, no. 1, p. 51, 2022.

[9] A. Khakimov, I. Salakhutdinov, A. Omolikov, and S. Utaganov,
“Traditional and current-prospective methods of agricultural plant
diseases detection: A review,” IOP Conf. Ser. Earth Environ. Sci., vol.
951, no. 1, 2022, doi: 10.1088/1755-1315/951/1/012002.

[10] L. Munk, D. B. Collinge, and A. M. Tronsmo, “Diagnosis of Plant
Diseases,” in Plant Pathology and Plant Diseases, 2020, pp. 164–181.

[11] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A
survey,” Comput. Electron. Agric., vol. 147, no. July 2017, pp. 70–90,
2018, doi: 10.1016/j.compag.2018.02.016.

[12] C. S. R. Silva and J. M. Fonseca, Artificial Intelligence and Algorithms in
Intelligent Systems, vol. 2. 2019. doi: 10.1007/978-3-319-91189-2_30.

[13] I. Goodfellow, Y. Bengio, and • Aaron Courville, “Deep Learning,”
Foreign Aff., vol. 91, no. 5, pp. 1689–1699, 2016.

[14] C. M. Bishop, Neural Network for Pattern Recognition. Birmingham:
CLARENDON PRESS, 1995. doi:
10.1109/RusAutoCon49822.2020.9208207.

[15] B. Mehlig, “Machine Learning with Neural Networks,” Mach. Learn.
with Neural Networks, 2021, doi: 10.1017/9781108860604.

[16] M. Kubat, An Introduction to Machine Learning. 2017. doi: 10.1007/978-
3-319-63913-0.

[17] F. Chollet, Deep Learning with Python. New York: Manning Publications
Co., 2018. doi: 10.23919/ICIF.2018.8455530.

[18] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A
Survey,” pp. 1–39, 2019, [Online]. Available:
http://arxiv.org/abs/1905.05055

[19] L. Liu et al., “Deep Learning for Generic Object Detection: A Survey,”
Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, 2020, doi:
10.1007/s11263-019-01247-4.

[20] Z. Song, S. Yang, and R. Zhang, “Does Preprocessing Help Training
Over-parameterized Neural Networks?,” Adv. Neural Inf. Process. Syst.,
vol. 27, pp. 22890–22904, 2021.

[21] N. A. Simanjuntak, J. Hendarto, and Wahyono, “The effect of image
preprocessing techniques on convolutional neural network-based human
action recognition,” J. Theor. Appl. Inf. Technol., vol. 98, no. 16, pp.
3364–3374, 2020.

[22] M. Maryani, R. L. Prabawani, and B. S. Daryono, “Struktur Anatomi
Epidermis Daun Lima Kultivar Melon (Cucumis melo L.) Berdasarkan
Resistensinya terhadap Jamur Tepung (Sphaerotheca fuliginea Poll),”
Biota J. Ilm. Ilmu-Ilmu Hayati, vol. 14, no. 2, pp. 105–114, 2010, doi:
10.24002/biota.v14i2.2688.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 5, 2025

971 | P a g e

www.ijacsa.thesai.org

[23] G. B. Ramsey and M. A. Smith, Market Diseases of Cabbage,
Cauliflower, Turnips, Cucumbers, Melons, and Related Crops, no. 184.
1961.

[24] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. New
York: Pearson, 2018.

[25] P. K. Sinha, Image acquisition and preprocessing for machine vision
systems. 2012. doi: 10.1117/3.858360.

[26] William K Pratt, Digital Image Processing, IV., vol. 13, no. 1. Canada:
John Wiley & Sons, Inc, 2007.

[27] S. C. F. Lin et al., “Image enhancement using the averaging histogram
equalization (AVHEQ) approach for contrast improvement and brightness
preservation,” Comput. Electr. Eng., vol. 46, pp. 356–370, 2015, doi:
10.1016/j.compeleceng.2015.06.001.

[28] W. A. Mustafa and M. M. M. A. Kader, “A Review of Histogram
Equalization Techniques in Image Enhancement Application,” J. Phys.
Conf. Ser., vol. 1019, no. 1, 2018, doi: 10.1088/1742-
6596/1019/1/012026.

[29] D. Sheet, H. Garud, A. Suveer, M. Mahadevappa, and J. Chatterjee,
“Brightness preserving dynamic fuzzy histogram equalization,” IEEE
Trans. Consum. Electron., vol. 56, no. 4, pp. 2475–2480, 2010, doi:
10.1109/TCE.2010.5681130.

[30] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real time object detectors,”
pp. 1–15, 2022, [Online]. Available: http://arxiv.org/abs/2207.02696

[31] Q. Wang, F. Qi, M. Sun, J. Qu, and J. Xue, “Identification of Tomato
Disease Types and Detection of Infected Areas Based on Deep
Convolutional Neural Networks and Object Detection Techniques,”
Comput. Intell. Neurosci., vol. 2019, 2019, doi: 10.1155/2019/9142753.

[32] J. Liu and X. Wang, “Tomato Diseases and Pests Detection Based on
Improved Yolo V3 Convolutional Neural Network,” Front. Plant Sci., vol.
11, no. June, pp. 1–12, 2020, doi: 10.3389/fpls.2020.00898.

[33] K. Zhang, Q. Wu, and Y. Chen, “Detecting soybean leaf disease from
synthetic image using multi-feature fusion faster R-CNN,” Comput.
Electron. Agric., vol. 183, no. February, p. 106064, 2021, doi:
10.1016/j.compag.2021.106064.

[34] S. Li, K. Li, Y. Qiao, and L. Zhang, “A multi-scale cucumber disease
detection method in natural scenes based on YOLOv5,” Comput.
Electron. Agric., vol. 202, no. 17, p. 107363, 2022, doi:
10.1016/j.compag.2022.107363.

[35] Y. Wang, Y. Wang, and J. Zhao, “MGA-YOLO: A lightweight one-stage
network for apple leaf disease detection,” Front. Plant Sci., vol. 13, 2022,
doi: 10.3389/fpls.2022.927424.

[36] H. Rahmat, S. Wahjuni, and H. Rahmawan, “Performance Analysis of
Deep Learning-based Object Detectors on Raspberry Pi for Detecting
Melon Leaf Abnormality,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12,
no. 2, pp. 572–579, 2022, doi: 10.18517/ijaseit.12.2.13801.

[37] S. Shome and S. Vadali, “Enhancement of diabetic retinopathy imagery
using contrast limited adaptive histogram equalization,” Int. J. Comput.
Sci. Inf. Technol., vol. 2, no. 6, pp. 2694–2699, 2011.

[38] S. R. Saufi, Z. A. Bin Ahmad, M. S. Leong, and M. H. Lim, “Challenges
and opportunities of deep learning models for machinery fault detection
and diagnosis: A review,” IEEE Access, vol. 7, pp. 122644–122662,
2019, doi: 10.1109/ACCESS.2019.2938227.

[39] D. Berrar, “Cross-validation,” Encycl. Bioinforma. Comput. Biol. ABC
Bioinforma., vol. 1–3, no. January 2018, pp. 542–545, 2018, doi:
10.1016/B978-0-12-809633-8.20349-X.

[40] E. M., V.-G. L., W. C. K. I., W. J., and Z. A., “The Pascal Visual Object
Classes (VOC) Challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–
338, 2010.

[41] A. Anwar, “What is Average Precision in Object Detection &
Localization Algorithms and how to calculate it?,” Towards Data Science,
2022. https://towardsdatascience.com/what-is-average-precision-in-
object-detection-localization-algorithms-and-how-to-calculate-it-
3f330efe697b

[42] A. Salazar-Gomez, M. Darbyshire, J. Gao, E. I. Sklar, and S. Parsons,
“Beyond mAP: Towards practical object detection for weed spraying in
precision agriculture,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2022-
Octob, pp. 9232–9238, 2022, doi: 10.1109/IROS47612.2022.9982139.

[43] J. N. Van Rijn and F. Hutter, “Hyperparameter importance across
datasets,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp.
2367–2376, 2018, doi: 10.1145/3219819.3220058.

[44] O. G. Ajayi and J. Ashi, “Effect of varying training epochs of a Faster
Region-Based Convolutional Neural Network on the Accuracy of an
Automatic Weed Classification Scheme,” Smart Agric. Technol., vol. 3,
no. August 2022, p. 100128, 2023, doi: 10.1016/j.atech.2022.100128.

[45] X. Ying, “An Overview of Overfitting and its Solutions,” J. Phys. Conf.
Ser., vol. 1168, no. 2, 2019, doi: 10.1088/1742-6596/1168/2/022022.

