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Abstract—Money laundering is a major worldwide issue facing 

financial organizations, with its increasingly complicated and 

changing methods. Conventional rule-based anti-money 

laundering (AML) systems can fail to identify advanced 

fraudulent activity. This study shows a new hybrid model to detect 

suspicious transaction patterns precisely by efficiently combining 

GraphSAGE, a graph-based Machine Learning (ML) technique, 

with Long Short-Term Memory (LSTM) networks. The suggested 

approach uses GraphSAGE's relational capabilities for graph-

structured anomaly detection and the temporal strengths of 

LSTM for sequence modeling. With excessive traditional ML and 

stand-alone Deep Learning (DL) techniques, the Hybrid LSTM-

GraphSAGE model achieves an accuracy of 95.4% using a 

simulated dataset reflecting real-world financial transactions. The 

findings show how well our combined strategy lowers false 

positives and improves the identification of advanced AML 

operations. This work opens the path for creating real-time, 

intelligent, flexible money laundering detection systems 

appropriate for current financial situations. 
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I. INTRODUCTION 

In the previous few years, money laundering and terrorism 
have been among the main challenges to the integrity of the 
global financial system [1]. Money laundering issues the 
reliability of illegal activity by hiding its source; each year, the 
laundering of around 2 to 5% of the world's GDP (1.7-4 trillion) 
leads to issues [2]. Underlying crimes include drug distribution, 
human trafficking, fraud, tax avoidance, and corruption. 
Consequently, money laundering is a serious worldwide issue 
influencing individuals, businesses, governments, and societal 
welfare and impacting [3]. 

For financial institutions (FIs), undetectable money 
laundering programs may cause significant reputation harm and 
considerable penalties. FIs use compliance professionals 
looking at questionable activity to stay out of a vehicle for 
money laundering [4]. According to most rule-based algorithms 
and human monitoring, traditional AML systems struggle to 
keep up with ever-advanced laundering procedures [5]. These 
techniques often skip subtle, nonlinear developments in 

transactional data or expose latent connections within multi-
layered financial networks—a gap leaves organizations open to 
systematic risk, reputational harm, and regulatory fines [6]. 

Although nowadays, most methods concentrate on isolated 
transaction analysis using shallow models like logistic 
regression or decision trees, recent developments in ML have 
shown promise in spotting aberrant financial activity [7]. These 
approaches ignore the essentially relational character of money 
laundering, in which illegal activity is entwined in complex 
systems of companies and transactions. The graph-based 
analysis provides a strong prism to find these latent structures. It 
maps links between accounts, beneficiaries, and intermediaries 
[8]. However, few researchers have successfully coupled graph 
theory with DL to address financial crime's dynamic, high-
dimensional character [9]. 

This study concludes this gap by indicating a novel approach 
combining graph analysis with DL to identify and terminate 
money laundering in real-time. Our method models 
transactional networks using GNNs' hierarchical representation 
learning ability, thereby capturing local node attributes and 
global topological patterns. We also provide a dynamic anomaly 
detection system that continually updates network embeddings 
and improves risk ratings to fit changing laundering strategies. 

Our key contributions include: 

 This study provides a novel money laundering 

detection method that combines graph-based 

analytical structural insights with a DL model 

temporal pattern recognition. This interaction helps 

the system detect relational and sequential flaws in 

financial transactions. 

 Real-time transaction monitoring system design is a 

key advancement. This system may identify 

suspicious activity before it expands by continually 

recording and analyzing transactions using past 

behavioral patterns and changing network 

architecture. 

 Recognizing a shortage of labeled AML data, we 

develop a careful and logical financial transaction 

set. This allows practical training and evaluation of 
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the recommended models and reflects actual 

laundering behavior. 

 This study thoroughly evaluates the hybrid model 

against traditional ML and stand-alone DL. Results 

show that the hybrid model outperforms others in 

detection accuracy, precision, recall, and false 

positive reduction. 

II. LITERATURE REVIEW 

This study examines graph-based and hybrid DL models for 
AML, focusing on GCNs, CNNs, and new architectures like 
GAGNN and Temporal-GCN. Data availability, computational 
cost, and cross-domain transferability remain issues even with 
high accuracy and minimal false positives. 

Bakhshinejad et al. [10] presented a graph-based DL model 
for suspected money laundering transaction detection and a 
thorough analysis of current AML systems from a data-oriented 
standpoint. Applied node2vec for feature extraction, created a 
detection system converting transactional data into a graph, and 
then classified transactions as usual or suspicious using a GCN. 
Graph embedding with GCN for classification, Node2Vec. They 
also tuned classifier thresholds and managed unbalanced data 
using SMOTE. Comparatively, to industry norms of 90% or 
more, their model attained very low false negative rates, 
sometimes even nil, and significantly lowered the false alarm 
rate to around 50%. 

Also, Irshad et al. [11] proposed a novel framework for 
identifying money laundering activities by combining Graph 
Convolutional Networks (GCN), Convolutional Neural 
Networks (CNN), and Feed-Forward Neural Networks (FFNN) 
in an Integrated Approach for Money Laundering Detection. 
Using spatial patterns, sequential data, and transaction network 
topology, the authors created a hybrid model to raise 
classification performance. Their approach calls for CNN to 
extract local characteristics from transaction histories, GCN to 
capture graph-based relations among entities, and FFNN for 
ultimate classification. With an astounding 98.34%, the model 
exceeded conventional ML techniques. Likewise, Kute et al. [1] 
provided an extensive CNN sentiment analysis application 
overview. 

They evaluate current research publications using CNN 
architectures for sentiment classification challenges in many 
fields and datasets. They gathered and analyzed more than 60 
research studies, evaluating many CNN-based techniques, 
including hybrid models, multichannel CNNs, and 
improvements in attention processes. They also examined 
preprocessing methods and dataset kinds used in this research. 

Their stated accuracy falls between 75% and 90%, 
depending on the architecture and dataset. CNN-based models 
were better than conventional ML techniques in extracting 
spatial characteristics from text. Cheng et al. [12] suggested a 
fresh approach using group-aware deep graph learning methods 
for AML. The authors model the financial transaction network 
as a heterogeneous graph, and they present a Group Aware 
Graph Neural Network (GAGNN) to detect suspicious group 
behaviors often disregarded in conventional AML systems. 
Their approach consists of building a heterogeneous transaction 

graph, grouping based on shared characteristics (such as IP 
addresses), and using a tailored GNN architecture with group-
level elements for enhanced detection. Reaching an AUC of 
0.9814 and an F1 score of 0.8607, the suggested method shows 
performance improvement over baseline models. Dumitrescu et 
al. [13] represented users or accounts and edges indicating 
transactions, therefore investigating banking transaction data as 
a graph of fraudulent activities. They devised a method to 
identify structural and behavioral irregularities in the transaction 
network using GNNs. 

Using GNN models, especially Autoencoders and GCNs, 
they train representations of the graph and spot suspicious 
trends. Focusing on unsupervised methods, as tagged fraudulent 
data is not readily available, they assessed their models using 
real-world financial transaction data. Depending on the model 
and data setup, their method's stated accuracy in AUC (Area 
Under the Curve) scores varied from 0.76 to 0.89. Eddin et al. 
[3] created dynamically via sliding time windows to help 
propose an ML triage model to lower false positives in AML 
systems. Combining entity-centric characteristics with graph-
based features. 

Using LightGBM on actual banking data, their approach 
reduced false positives by 80% and identified over 90% of 
genuine positives. Furthermore, Jensen et al. [14] investigated 
using ML and statistical techniques to fight money laundering, 
emphasizing using synthetic data to train prediction models. 
They used synthetic data reflecting banking activities and 
consumer characteristics to develop and evaluate their method. 
To separate dubious from non-suspicious consumers, they used 
a supervised learning approach using a gradient-boosted 
decision tree algorithm (LightGBM). 

With a fantastic accuracy of 99.6%, their model 
demonstrated the possible efficiency of ML in spotting financial 
laundering activity. Alarab et al. [15] employed a unique graph-
based model called Temporal-GCN, which combines GCN with 
LSTM, to identify illegal transactions in Bitcoin. They also 
included active learning using Monte-Carlo Dropout and 
Monte-Carlo Adversarial Attack (MC-AA) for uncertainty 
estimates and created a framework that catches both temporal 
sequences and graph topologies of transaction data. 

Preprocessing Bitcoin transaction graphs, extracting local 
characteristics, using LSTM to model temporal trends, and then 
feeding the result to a TAGCN layer from the approach. The 
outperformance of the model above previous GCN-based 
models on the same dataset resulted in a classification accuracy 
of 97.77% and an F1-score of 80.6%. Muminovic et al. [16] 
investigated the difficulties of money laundering in the digital 
age, along with studies of contemporary technologies meant to 
improve preventive systems. 

It especially looks at how graph databases may monitor 
intricate, nonlinear financial transactions often used to hide 
illegal activity—which are typically used to hide illegal activity. 
The writers review current methods that mainly depend on 
relational databases and rule-based detection, pointing to limits 
in scalability and adaptability. 

Graph-based models help see entities and their transactional 
interactions more easily, enhancing the capacity to spot unusual 
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trends. Mohan et al. [17] proposed a hybrid model combining 
Evolving Graph Convolutional Networks (EvolveGCN) with 
Deep Neural Decision Forests (DNDF) to handle AML in the 
Bitcoin network. 

With the Elliptic dataset comprising over 200,000 labeled 
and unlabeled Bitcoin transactions, they simulate the issue as a 
node classification job. They want to improve the categorization 
of illegal transactions by combining dynamic graph learning 
with ensemble techniques. Following Knowledge Distillation 
(KD) to compress and maximize the model, the model attained 
a high F1 score of 0.9251, which then improved to 0.9525. 

Moreover, there is limited comparative analysis using 
traditional methods in detecting and Preventing Money 
Laundering. 

1) Many models need synthetic datasets or large volumes of 

classified transaction data, which are rare in financial 

environments. While transaction categorization is time-

consuming and error-prone, synthetic data lacks the complexity 

of real-world laundering techniques. 

2) Graph-based algorithms like GCN, GAGNN, and 

Temporal-GCN are resource-intensive in describing large, 

dynamic financial transaction networks. Training, feature 

extraction, and graph creation are computationally intensive. 

3) These models’ efficacy slightly depends on group or 

graph structure specifications and transaction data correctness 

and completeness. Models include unsupervised GNNs and 

GAGNNs that lose much in noisy, mislabeled, or poorly linked 

data. 

4) Although many models perform well on specific 

datasets, e.g., Bitcoin and private financial data, their 

transferability across institutions, countries, and transaction 

types is poor. Applied to foreign fields, model performance is 

usually harmed. 

III. METHODOLOGY 

A hybrid DL-based and graph-based analysis framework 
was proposed to detect and prevent money laundering activities 
effectively. As shown in Fig. 1, raw transaction data is fed into 
the pipeline throughout the methodology, producing final 
classification outcomes. The design of this multi-stage 
framework is to extract temporal transactional and relational 
patterns, typically indicative of money laundering behavior. 

 

Fig. 1. Methodology framework for detecting and preventing money laundering using the proposed hybrid LSTM-GraphSAGE model. 

A. Dataset Description 

For this study, experiments are run using the Anti Money 
Laundering Transaction Data (SAML-D) on Kaggle by Berk 
Öztaş [18]. The dataset was specially developed to simulate real 
banking transactions and behavioral patterns of money 
laundering operations. The dataset contains 1,048,575 records of 
transactions with 28 typologies (split between 11 normal and 17 
suspicious) and 12 different features: Time, Date, 
Sender_account, Receiver_account, Amount, 
Payment_currency, Received_currency, Sender_bank_location, 
Receiver_bank. The dataset consists of each transaction record 
between a sender and a receiver on each row. 
Payment_currency, Received_currency, and Amount depict all 
types of currency used at the sender's and receiver's end, as well 
as the total monetary value of the transfer. 

Regarding transaction medium, the Payment_type would tell 
you that it is an online transfer, credit card, or wire. After 
supervised learning, the label Is_laundering is a critical binary 
feature (1 for money laundering and 0 for legitimate). 
Laundering_type gives a multi-class annotation regarding 
laundering techniques. The rich set of features allows for 

temporal and relational modeling of temporal patterns of 
financial fraud. 

B. Dataset Preprocessing 

A series of robust preprocessing steps was implemented to 
prepare the dataset for DL and graph analysis models. 

1) Timestamp handling. The Date and Time features were 

merged and transformed into a standard UNIX timestamp 

format to assist temporal modeling. It does this feature 

engineering for time-based behaviors like peak transaction hours 

or clusters of frequency. By 𝐷i and 𝑇i let us denote the date and 

time when 𝑖 𝑡ℎ transaction occurs. As follows, the timestamp 

feature 𝑇𝑆i was derived: 

𝑇𝑆𝑖 = 𝑡𝑜_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝐷𝑖 + 𝑇𝑖) 

2) Account ID encoding. The Sender_account and 

Receiver_account are anonymized strings. They were labeled, 

encoded, or embedded to preserve identity without revealing 

personal information. This later allows for building transaction 

graphs where each unique account becomes a node: 

𝑆𝑒𝑛𝑑𝑒𝑟𝑖 = 𝑓(𝑆𝑒𝑛𝑑𝑒𝑟_𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑖) 
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𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑖 = 𝑓(𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟_𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑖) 

3) Categorical feature encoding. For some payment 

information (Payment_currency, Received_currency, 

Payment_type, Sender_bank_location, 

Receiver_bank_location), those were one-hot encoded or 

embedded, based on the model. In this case, the transformation 

to capture the discrete attribute information does not introduce 

the ordinal bias. For a categorical feature 𝑋 with 𝑘 unique 

values: 

𝑋 ∈ {𝑥1, 𝑥2…𝑥𝑘} ⇒ 𝑂𝑛𝑒 − ℎ𝑜𝑡(𝑋) = [0,1,2, … ] 

4) Graph construction for network analysis. 

Sender_account and Receiver_account were used as nodes and 

transactions as edges in a directed transaction graph 𝐺 = (𝑉,). 

Also, each edge has attributes such as amount, time, payment 

type, and binary labels for laundering. Optional aggregation was 

based on the frequency or total amount of the edge weights:  

𝑤𝑖𝑗 = ∑ 𝐴𝑚𝑜𝑢𝑛𝑡𝑡
𝑡∈𝑇𝑖𝑗

 

5) Label binarization and data splitting. The binary target 

for classification is given by the Is_laundering column. Also, 

Laundering_type was encoded for multi-class classification or 

more profound insight into techniques. This ensures label 

stratification and thus handles the class imbalance in the data. 

Finally, the dataset was split into training and testing subsets 
through an 80/20 ratio. This guaranteed that all the classes 
undergo the model evaluation phase, including classes that do 
not undergo laundering. 

C. Models 

In order to detect and prevent money laundering in financial 
transaction systems, we proposed a hybrid DL framework that 
ties the temporal behavior modeling and relational graph 
analysis together, which captures the evolution of suspicious 
activity with complex pattern development. Specifically, our 
approach is composed of three key parts: 1) an LSTM for 
learning sequential behavioral characteristics, 2) a graph neural 
network (GNN) based on GraphSAGE for modeling structural 
relationships, and 3) a fusion model to synthesize the temporal 
and structural beneficial insights. 

1) Temporal behavior modeling using LSTM. Structured 

and repetitive behavior of money laundering schemes 

commonly entails rapid distribution of funds through an account 

network (smurfing) or calculating the best technique for the 

layering (i.e., how to add coins to comply with the internal 

allowance of the broker). Because these are nuanced temporal 

dependencies, we leverage an LSTM network capable of 

modeling sequential data with long-range dependencies. The 

LSTM branch in Fig. 2 extracts transaction sequences from an 

accounts perspective to capture behavioral anomalies. 

 

Fig. 2. LSTM-based temporal feature extraction architecture. 

Let 𝑋a = {𝑥a,1, 𝑥a,2,, …, 𝑥a, 𝑇a} be the transaction sequence 
for account 𝑎, and each transaction 𝑥a,t ∈ 𝑅d is a vector of 
features. The features include normalized transaction amount, 
payment type, time-based metadata (e.g., hour of day, day of 
week), typology, currency mismatch, and geographical 
information (e.g., bank location). 

The LSTM network operates on this sequence through a 
series of gates and updates on internal memory according to the 
following equations: 

(i) Forget Gate: 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

(ii) Input Gate: 𝑖𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

(iii) Output Gate: 𝑓𝑡 = 𝜎(𝑊0𝑥𝑡 + 𝑈0ℎ𝑡−1 + 𝑏0) 

(iv) Candidate Memory: �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

(v) Cell State Update:𝑐𝑡 = 𝑓𝑐𝛩𝑐𝑡−1 + 𝑖𝑡𝛩�̃�𝑡  

(vi) Hidden State: ℎ𝑡 = 𝑜𝑡𝛩𝑡𝑎𝑛ℎ(𝑐𝑡) 

We denoted 𝜎 to be the sigmoid activation function, tanh to 
be the hyperbolic tangent function, and ⊙ to denote 
elementwise multiplication. The contextual behavior of account 
𝑎 at time 𝑡is encapsulated in ℎ𝑡 as both current transaction 
features and past behavioral history. The final hidden state ℎ𝑇 is 
passed through a fully connected dense layer with a sigmoid 
activation to classify the suspiciousness of the account through 
behavioral analysis:  

�̂�𝑎 = 𝜎(𝑤0ℎ𝑇 + 𝑏0) 

The binary cross-entropy loss function is used to optimize 
the LSTM model: 

𝐿𝐿𝑆𝑇𝑀 = −𝑦𝑙𝑜𝑔(�̂�) − (1 − 𝑦)log(1 − �̂�) 

This formulation can learn from genuine and fraudulent 
behavioral sequences and effectively identifies time-sensitive 
laundering patterns. 
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2) Graph-based relational modeling using GraphSAGE. 

Behavioral patterns give us some clues as to when things 

happened, but many money laundering schemes are networks 

consisting of many, possibly thousands, of accounts, and the 

connections among them are equally complex. Indirect transfers, 

circular money flows, and multi-hop layering are typical ways 

that launderers try to forfeit the trail of illegal money. The 

problem could be captured as a directed graph where the nodes 

represent the accounts, and the edges between the nodes indicate 

transactions between accounts. 

Suppose this transaction graph to be represented by 𝐺 = (𝑉, 
𝐸), where: 

 The set contains N resources equal to 𝑉, where each 

node (account) in 𝑉 is unique. 

 The set of directed edges, 𝐸, will represent 

transactions. 

 Edge features consist of transaction amount, 

transaction type, time interval between transactions, 

and currency mismatch for each edge 𝑒𝑢𝑣∈ 𝐸 

between node 𝑢 and node 𝑣. 

For each node 𝑣 ∈ 𝑉, we initialize ℎ𝑣, the feature vector for 
node 𝑣, as a feature vector of the form, comprising: 

 Mean, max, and count of transaction amounts 

(aggregated statistics). 

 Frequency metrics. 

 Some categorical features can be embedded (e.g., 

typology, payment type). 

 And optionally, the output of the LSTM model. 

For learning meaningful node embeddings over its 
neighborhood structure, we adopted GraphSAGE, an inductive 
GNN framework that can generalize to node discovery. Layer-
wise, the node embedding is updated using: 

ℎ𝑁(𝑣)
(𝑘)

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(𝑘) ({ℎ𝑢
(𝑘−1)

|𝑢𝜖𝑁(𝑣)}) 

ℎ𝑣
(𝑘)

= 𝜎(𝑊(𝑘). 𝐶𝑂𝑁𝐶𝐴𝑇(ℎ𝑣
(𝑘−1), ℎ𝑁(𝑣)

(𝑘) )) 

The neighbors of node 𝑣 are shown here by the notation (𝑣), 
and AGGREGATE is a differentiable function like mean, max-
pooling, or LSTM-based spreading. After 𝐾 layers, the final 
node embedding ℎ𝑣 𝐾 is computed and gives the structural 
context of account 𝑣. Finally, the final node embeddings are 
classified with a sigmoid-activated dense layer: 

�̂�𝑣 = 𝜎(𝑊𝑐ℎ𝑣
𝑘 + 𝑏𝑐) 

It enables us to create a suspiciousness score for each 
account by comparing its transactional connections with other 
accounts. We extended this in practice by assigning sender and 
receiver embeddings and edge features simultaneously. 

3) Fusion model. Combining Temporal and Relational 

Knowledge, we recognized that the temporal and structural 

features give complementary information and thus designed a 

hybrid fusion model that combines the outputs from the LSTM 

and GNN branches. Such a combination helps the model detect 

sophisticated money laundering tactics that may transpire 

through behavioral anomalies and relational inconsistencies. 

Fig. 3 depicts the overall architecture of such a system as a single 

hybrid fusion model that combines the sequential and relational 

learning components to perform comprehensive AML detection. 

 
Fig. 3. Architecture of the proposed hybrid fusion model for money 

laundering detection. 

We compute a fused feature representation for each account 
𝑣 by concatenating its final LSTM hidden state ℎ(𝑣) with the 
graph embedding of that account ℎ𝑣𝐾: 

𝑧𝑣 = 𝐶𝑂𝑁𝐶𝐴𝑇(ℎ𝑇
(𝑣), ℎ𝑣

𝐾) 

The MLP with nonlinear activation functions (e.g., ReLU) 
and dropout regularization is applied on this fused vector 𝑧𝑣. 
Finally, the following is given as the final classification: 

�̂�𝑣 = 𝜎(𝑊𝑓𝑧𝑣 + 𝑏𝑓) 

We defined a joint loss function to train this end-to-end 
architecture from two parts of the loss functions in the LSTM 
and GNN models: 

𝐿𝑡𝑜𝑡𝑎𝑙 = λ1𝐿𝐿𝑆𝑇𝑀 + λ2𝐿𝐺𝑁𝑁 + λ3𝐿𝐹𝑢𝑠𝑖𝑜𝑛 

Here, 𝜆1, 𝜆2, 𝜆3 are hyperparameters that control the 
contribution of each loss term. All the model portions are trained 
using the Adam optimizer with early stopping and validation-
based performance monitoring. 

IV. RESULT AND DISCUSSION 

A. Performance Evaluation 

In order to evaluate the effectiveness of various models in 
predicting money laundering activities, we performed a deep 
analysis of classification metrics, namely accuracy, precision, 
recall, and F1-score. The LSTM baseline model, as summarized 
in Table I, resulted in an accuracy of 91.5%, precision of 89.4%, 
recall of 90.2%, and F1-score of 89.8%. This indicates a 
relatively strong capability in temporal pattern recognition, 
which is necessary for sequential transaction data. Yet, across 
all metrics, the LSTM model performed worse compared to the 
GraphSAGE model, which is a devised model to make full use 
of topological and relational patterns in transaction graphs, due 
to achieving 92.8%, 91.1%, 91.8%, and an F1-score of 91.4%. 
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Improvements indicate that capturing relationships in graph 
dimensions is important, given that such flows tend to have gone 
through interconnected accounts and richly interlinked 
networks. 

TABLE I DIFFERENT PERFORMANCE METRICS FOR VARIOUS MODELS IN 

MONEY LAUNDERING DETECTION 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1- 

score 

(%) 

LSTM 91.5 89.4 90.2 89.8 

GraphSAGE 92.8 91.1 91.8 91.4 

Proposed 

Hybrid LSTM 

GraphSAGE 

95.4 93.2 93.8 93.5 

Moreover, the proposed Hybrid LSTM-GraphSAGE model 
outperformed the individual ones significantly with 95.4 % 
accuracy, 93.2 % precision, 93.8 % recall, and a robust F1-score 
of 93.5 %. This synergy of alternating structural learning with 
temporal dependencies expressed by LSTM indicates that 
incorporating temporal dependencies from LSTM contributes to 
increasing GraphSAGE's performance. 

This hybrid model not only improves detection capabilities 
due to discriminative temporal and topological patterns as well 
as balance across all key evaluation metrics, but it also 
outweighs competitors across all metrics by about 17.8% across 
group operation and 46.3% in total execution time. Combining 
sequence modeling and graph-based learning confirms that one 
can achieve a deeper, more accurate understanding of money 
laundering detection. 

B. Training and Validation Performance Analysis 

To further validate the robustness of the proposed Hybrid 
LSTM-GraphSAGE model on the learning behavior and 
generalization capability, we looked at the training and 
validation performance at 50 epochs. Fig. 4 shows the 
development of the training and validation accuracy. Both 
accuracy curves have a steep (learn quickly) upward trajectory 
in the first few epochs. 

The model improves steadily with training and has a training 
accuracy of around 98% and a validation accuracy of about 95%. 
In the later epochs, this shows that these two curves are 
converging, meaning the model has no overfitting and is very 
well generalizing to unseen data. 

 

Fig. 4. Training and validation accuracy of the proposed hybrid fusion model. 

 

Fig. 5. Training and validation loss of the proposed hybrid fusion model. 

Fig. 5 shows training and validation loss curves. As we can 
see during the initial training phase, the loss values experience a 
sharp decline for both losses, which means we have successfully 
learned key patterns in our dataset. The training loss decreases 
steadily to below 0.1, while the validation loss converges to 
around 0.2, with no apparent signs of divergence. This stable 
convergence behavior further reinforces the robustness of the 
proposed hybrid fusion architecture, which integrates temporal 
and structural learning components. 

Lastly, the overall training and validation performance 
analysis shows that the proposed model is well optimized and 
free from major problems such as the issue of underfitting, 
overfitting, and so on, which makes it a good candidate for 
implementation in a money laundering detection system in the 
real world. 

C. Error Analysis 

The given classification performance was also analyzed at 
the level of error using the confusion matrix, as shown in Fig. 6, 
to fully understand the detection performance of the proposed 
Hybrid LSTM-GraphSAGE model. The matrix gives some 
insight into the number of correct and wrong predictions of the 
transaction, either legitimate or money laundering. In a total of 
predictions, the model made 100,173 correct fraud (True 
Positives) and 99,895 correct legitimate predictions (True 
Negatives). However, 4799 of these were incorrectly classified 
as fraudulent (False Positive (FP), and 4688 as legitimate (False 
Negative (FN)). 

 

Fig. 6. Confusion matrix for the proposed hybrid fusion model in detecting 

money laundering. 
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Nevertheless, with a large dataset and a common class 
imbalance found in financial datasets, the proposed model 
achieved a high level of predictive accuracy with tolerable 
margins of error. It is imperative in financial systems, where 
being flagged as a fraudulent user when it is not could raise 
customer irritation or unnecessary investigation on legitimate 
users. However, the small number of false negatives guarantees 
that almost all illicit activities are flagged for awareness. It 
shows that the hybrid model is very good at discriminating 
between normal and suspicious behaviors. 

D. ROC Curve and AUC Analysis 

The Receiver Operating Characteristic (ROC) curve and 
corresponding AUC give a graphical and quantitative way to 
measure model performance at different threshold settings. The 
ROC curves of the LSTM, the GraphSAGE, and the proposed 
Hybrid LSTM-GraphSAGE are plotted with a random guess 
performance baseline (Fig. 7). 

This LSTM model performs strongly in capturing sequential 
dependencies in the transaction data by achieving an AUC of 
0.94. LSTM slightly underperformed GraphSAGE with an AUC 
of 0.95 because GraphSAGE was able to learn structural 
patterns in the transaction network. Despite that, the proposed 
Hybrid LSTM-GraphSAGE model achieves the best AUC of 
0.97 compared with individual models. By combining temporal 
and topological learning, the strength of this improvement 
suggests that combining temporal and topological learning 
enables the model to achieve better discrimination for positive 
(money laundering) compared to negative (legitimate) classes 
for all threshold levels. 

 

Fig. 7. ROC curves for different models in detecting money laundering. 

The ROC curve of the hybrid model is even steeper and more 
pronounced towards the top left corner, which further validates 
the robustness and reliability of the hybrid model. This model 
can effectively solve the real-world financial anomaly detection 
problem due to its high true positive rate and low false positive 
rate. 

E. Comparative Analysis 

The performance of the proposed Hybrid 
LSTMGraphSAGE model was also compared to existing 
approaches from prior literature in terms of effectiveness, for 

which AUC was used as a measurement. According to the 
information provided in Table II, Labanca et al. followed a 
Random Forest approach, yielding an AUC of 0.90, and Alotibi 
et al. used a Naïve Bayes classifier, which achieved again an 
AUC of 0.90. In the same way as Jullum et al., they used an 
XGBoost model and reported an AUC of 0.90. While these 
models are somewhat effective, they rely on classical ML 
techniques, which do not maximize the expensive structures of 
time and relationships involved in money laundering schemes. 

TABLE II COMPARATIVE ANALYSIS OF THE PROPOSED HYBRID FUSION 

MODEL WITH PREVIOUS RESEARCH BASED ON AUC VALUES 

Reference Model AUC 

[19] Random Forest 0.9 

[20] Naïve Bayes 0.9 

[21] XGBoost 0.9 

Proposed LSTM-GraphSAGE 0.97 

Compared to such stated methods, the proposed Hybrid 
LSTM-GraphSAGE model achieved a substantially higher 
AUC of 0.97, which is better than 0.07 for each of the 
aforementioned methods. In other words, we achieve a 7% 
relative increase in AUC performance. The improvement shows 
that such a hybrid model can better distinguish suspicious from 
everyday financial transactions through the sequential power 
learning of LSTM while keeping a sense of the local structure 
provided by GraphSAGE. Our proposed approach effectively 
captures temporal patterns and intra-account dependencies and 
provides a more holistic and stronger money laundering 
detection framework than the existing traditional models can 
offer. 

V. CONCLUSION 

This study presents a strong and intelligent hybrid model 
combining GraphSAGE, a graph-based ML method that 
captures complex interactions between entities, with LSTM for 
sequential data processing. With a high accuracy of 95.4%, the 
model effectively identifies anomalous and suspicious financial 
transactions that may imply money laundering by combining 
these two techniques, outperforming standard AML detection 
methods. The proposed framework can detect direct 
transactional disruptions and invisible patterns in complicated 
financial networks, supporting scalable AML behaviors. 
Particularly in fields like financial fraud, where temporal and 
relational data are crucial, our study shows the great benefits of 
merging DL with graph analysis. Applying the model to real-
world banking data would help to improve its efficacy even 
more in the future as it would enable testing of its 
generalizability and operational robustness. Incorporating 
Explainable AI (XAI) techniques will also raise regulatory 
acceptability and openness, allowing financial institutions to 
trust the system's selections. Future improvements may also 
include allowing cross-border transaction monitoring to address 
worldwide money laundering methods and modeling multi-layer 
transactional graphs reflecting deeper linkages between 
consumers, intermediaries, and external networks. Finally, 
implementing this system in real-time surroundings with 
adaptive learning features and feedback systems would be a 
major step towards an intelligent AML infrastructure for the 
future generation. 
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