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Abstract—XPath is a widely used language for navigating and
extracting data from XML documents due to its simple syntax
and powerful querying capabilities. However, non-technical users
often struggle to retrieve the needed information from XML files,
as they lack knowledge of XML structures and query languages
like XPath. To address this challenge, we propose XPathia, a
novel deep learning-based model that automatically translates
natural language questions into corresponding XPath queries.
Our approach employs supervised learning on an annotated XML
dataset to learn accurate mappings between natural language
and structured XPath expressions. We evaluate XPathia using
two standard metrics: Component Matching (CM) and Exact
Matching (EM). Experimental results demonstrate that XPathia
achieves a state-of-the-art performance with an accuracy of
25.85% on the test set.
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I. INTRODUCTION

The use of databases is the activities’ base that the majority
of companies rely on. Many types of databases exist in
the world, amongst them there are Graph databases, NoSQL
databases, Object-oriented databases, XML databases, Rela-
tional databases, etc. All this types of databases are based
on containers called database management systems that help
manipulate these databases and give accessibilities features for
users and also for other applications.

Dealing with these systems is not an easy task for people
who lack of knowledge on database management. Also the
use of these systems requires advanced skills and enough
expertise on some specific technical languages, for instance,
the ignorance of some languages like XPath or XQuery for
getting the relevant information form XML document in XML
databases is considered as a big obstacle and can create
limitations to get the searched data in a reasonable time.

An ideal solution would be to communicate with the
database management systems using only the mother-tongue
language; this can be done by using an intermediate inter-
face that handles well organized natural language sentences
and translate them to the target script which is in our case
XPath. Xpath is one of the languages that help manipulate
the XML documents included in XML databases in an easy
and straightforward way. In contrast with the other languages,
XPath has a very simplified syntax and direct structure; also
the possibilities that it affords for extracting data from xml
documents helps people get the searched information without

complexities. Xpath is the one that can be used with minimal
effort; its syntax that is based on Path concept provides 200
built-in functions with expressions and operators to extract
XML nodes and their values.

The type of this interface enters in the category of so-
lutions based on Natural Language Processing (NLP) tasks
that process NL sentences in order to make a correspond-
ing translation, doing actions, generating codes, etc. There
are many sub-tasks of the NLP that deal with natural text
transformation. For example, Text classification, Named entity
recognition, Information retrieval, Text summarization, Text
generation, Sentiment/emotion analysis are all sub tasks of
NLP. The objective of all these solutions is the ability to handle
the meaning from a raw text and transform it to another form
that answers a particular problem. In our case the problem is
similar to Text classification and Information retrieval since the
goal is to classify the user natural language sentence and get
the relevant information in order to build a target XPath query
which will be used for extracting the wanted information from
an XML document.

The focus in this work is to leverage the ability to interact
with XML databases using only the natural language. In other
words, the possibility to translate the sentences of users to a
runnable and valid Xpath query with all its paths, nodes and
expressions. In this paper, we present our solution that handles
the problem of using the Natural Language as a source medium
to interact with XML Databases. The proposed model is based
on Deep learning with a Path-Expression based approach
that treat the path, nodes and predicates in an independent
manner in order to reduce errors. The work is evaluated against
a new XML dataset that we provide publically on GitHub
https://github.com/karamsa/XMLSet using two metrics, the
CM (Component Matching) and EM (Exact Matching), and
achieves a score of 25.85% on the test set of the XML corpus
to be a new base for future models for the training and the
evaluation.

A. Contribution

In this paper, we present 2 contributions to the task of trans-
lating Natural Language to Xpath queries for XML databases
using Deep Learning and a Path-Expression based approach
to make prediction of nodes, Expression, predicates, operators
and values independently and without using the content of the
XML Nodes. Our contribution to this area is two fold:
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• We propose a new XML Dataset that contains up to
2176 pairs of natural language sentences with their
XPath queries and annotations in a well structured and
easy-to-use format. We provide this Dataset publicly
on GitHub for future models for training and evalua-
tion purposes.

• A new model (we called it Xpathia) that makes predic-
tions of Xpath queries using deep learning and Path-
Expression based approach. The model predicts each
part of the target query independently using several
sub-modules.

B. Outline

The reminder of this paper is structured as follows: The
Section 2 presents the related works regarding the previously
proposed solutions. Section 3 and 4 presents our contributions
on the translation of Natural Language sentences to XPath.
Section 5 includes the evaluations of the model. The section 6
discusses the experimental results and the final section contains
the conclusions of our work.

II. RELATED WORKS

XML is a widely used markup language, valued for its
simplicity in data extraction. Originally developed for large-
scale electronic publishing ([1]), it is now applied in di-
verse areas such as data sharing, system communication, and
database storage. Its flexible format supports both structured
and unstructured content, and its platform- and language-
independence have contributed to its broad adoption ([2]).

Recent research in XML has focused mainly on content for
tasks like information retrieval and document clustering ([3]),
often overlooking the structural aspects. This neglects a key
feature of XML—its hierarchical structure and meaningful tag
names—which are essential for accurate content interpretation
([4]; [5]). To improve retrieval and analysis, both content and
structure should be utilized together ([6]; [7]).

Databases are central to most organizations, ranging from
relational and NoSQL to XML and graph databases. These
are managed through database management systems (DBMS)
that enable access and manipulation of data. However, using
such systems can be challenging for users without technical
expertise. In particular, querying XML databases requires
knowledge of XPath or XQuery—languages that many users
find difficult to learn. This creates barriers to accessing infor-
mation efficiently.

To address this, natural language interfaces (NLIs) have
been proposed to translate user-friendly queries into structured
query languages. In [8] the authors provides a foundational
overview of NLIs, highlighting their potential to make database
interaction more accessible, especially for non-experts.

While XML’s self-descriptive design enables platform-
agnostic data storage and transport, translating natural lan-
guage (NL) directly into XML structures remains inherently
challenging. NL, which is an unstructured language, is gov-
erned by grammar and contextual rules that are dedicated for
communication purposes, whereas XML organizes data hier-
archically for machine readability and data storage. This fun-
damental mismatch necessitates intermediate query languages

like XQuery or XPath in order to create a bridge between
Natural Language and XML. This intermediate language can
play a pivotal role to remove the semantic as well as the
structural gap.

The existing research addressing this challenge falls into
two broad categories: the ones that are linguistic and rule-
based and the others emerging deep learning methods, though
the latter remains underexplored.

The linguistic rule-based approaches is the category of
methods that rely on syntax parsing, part-of-speech tagging,
and predefined rules to map NL to XML queries.

Tannier et al. ([9], [10]) utilized the INEX 2004 dataset to
develop a system combining part-of-speech tagging, context-
free grammar rules (e.g., NP for noun phrases), and discourse
representation theory (DRT). By constructing discourse repre-
sentation structures (DRS) from NL sentences and converting
them into SQL-like queries, their approach retrieves XML
nodes. However, it struggles with lengthy inputs, negations,
and requires synonym dictionaries (e.g., mapping ”employee”
to ”emp”) to align NL terms with XML schemas.

Li et al. ([11]) introduced NaLIX, a natural language inter-
face leveraging MINIPAR for syntactic parsing and iterative
user feedback to refine XQuery outputs. While functional,
NaLIX relies on manual rule engineering and interactive
prompts, limiting its scalability.

To simplify query generation for non-expert users, Li
et al. ([12]) proposed the Meaningful Query Focus (MQF)
framework. MQF decouples translations from XML schema
specifics, enabling cross-domain compatibility. However, it
mandates exact tag names, necessitating synonym substitution
layers to align user terminology with schemas.

Joseph et al. ([13]) expanded versatility by supporting
multi-sentence queries, yes-no questions, and nested struc-
tures. Their system parses dependencies, replaces tokens with
XQuery fragments, and uses WordNet ([14]) for synonym
mapping. Despite its flexibility, it falters with unseen domains
or terms absent from WordNet, underscoring reliance on
predefined lexicons.

The hybrid and schema-agnostic approaches is the category
of methods that include efforts to reduce dependency on rigid
schemas or manual rules. Nassiri et al. ([15], [16]) designed a
system to unify queries across data models (including XML)
via syntax validation, tokenization, and intermediate universal
query generation. While effective for structured inputs, it lacks
NL compatibility and relies on manual engineering.

Gupta et al. ([17]) combined dependency parsing with
Paninian grammar for semantic parsing, mapping NL chunks
to domain models. Though innovative, their hybrid approach
lacks adaptability for complex inputs without deep learning
integration.

Dorrn et al. ([18]) emphasized data-driven methods, com-
bining XML and NLP techniques for automatic information
extraction from corpora. However, limited evaluations and
reliance on mixed methodologies hinder practical scalability.

Based on semantic and for cross-Domain databases subhro
et al. ([19]) proposed declarative rules to map NL descriptions
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to formal queries (e.g., XPath), while Lopez et al. ([20])
developed PowerAqua, a tool translating NL into logical
queries across heterogeneous semantic sources. PowerAqua
aggregates answers without requiring schema knowledge but
faces challenges in web-scale diversity.

XML is a flexible, structured language widely used for data
storage and sharing, but querying it requires technical skills in
XPath or XQuery. Existing solutions use rule-based or tradi-
tional methods to translate natural language into XML queries
but often lack scalability and adaptability. Deep learning offers
a promising alternative by reducing manual rule dependency
and improving cross-domain performance.

III. XML DATASETS

As we have previously, presented the base idea is the sub-
division of the problem into multiple small problems without
following a pre-defined sketch that still in the same time
dissociates the tasks and operations done by the main model
and create an independency between the output spaces, thing
that is essential for a healthy prediction process.

The first problem encountered while working on this prob-
lem is the lack of databases dealing with this transformation
type; thus creating a database for evaluating the model is
mandatory in order to have a robust model that can generalize
for unseen inputs. Bridging the natural language to Xpath was
another obstacle for the model, since they both have different
natures and purposes and Xpath is the intermediate language
for extracting content portions from XML documents.

A. Existing Corpuses

The decision to build an XML dataset fully dedicated to
answering questions in natural language with structured labels
was based on the lack of similar corpuses that can be used for
the evaluation of our model. This task was one of the harsh
steps done prior the creation of the model and it is essential for
a preferment system that must generalize not only to unseen
inputs but also for unseen structures in the sets of the dataset.

From the literature, the use of Natural language to extract
XML portions using structured languages wasn’t deeply con-
sidered and has been treated as one of most difficult tasks in
the NLP area.

This was mainly due to two reasons; first is the incompat-
ibility of the two languages. Second is the lack of corpuses
for the evaluation of the wanted model. In this context, the
number of corpuses that were presented in this area in the
recent decade was very limited. While these few datasets were
created in the first place as a contribution to the task, in the
other hand they bear lots of technical issues and difficulties
that make their use such an impossible thing especially for the
training and the evaluation of our model.

XML retrieval, the process of querying and extracting
structured information from XML documents, relies heavily
on specialized datasets to advance research, benchmark sys-
tems, and refine methodologies. These datasets are tailored
to address diverse challenges in handling XML’s hierarchical
and semi-structured nature, offering varied use cases ranging
from algorithmic stress-testing to domain-specific analyses.
Among these datasets, the INEX Dataset ([21]) stands out as

a foundational resource. Developed through the Initiative for
the Evaluation of XML Retrieval, INEX provides standardized
test collections that simulate some limited scenarios, enabling
researchers to evaluate the precision, recall, and efficiency of
XML retrieval algorithms. Its role in academic competitions
and collaborative benchmarking has made it a popular dataset
for comparing old systems that process structured queries,
particularly in environments where granular content extrac-
tion—such as retrieving specific sections of documents—is not
critical.

For performance-oriented evaluations, the XMark Bench-
mark ([23]) was proposed for this purpose. This synthetic
dataset models an online auction platform, generating XML
data with deeply nested hierarchies and scalable file sizes. Its
design intentionally incorporates complexity to mimic real-
world data structures that is useful for making stress-testing
XML databases and query engines. Researchers use mainly use
XMark to measure how systems handle large-scale data, com-
plex XPath queries, and join operations, providing insights into
scalability and optimization strategies. However that corpus is
not intended for making natural language translation to XPath
queries as it doesn’t has this structure. Complementing this,
the SIGMOD Record XML Dataset ([22]), which is another
dataset for XML files with focuses on XML query processing
techniques. Curated by the ACM Special Interest Group on
Management of Data, this dataset supports experiments in
query optimization, indexing, and retrieval efficiency, often
serving as a testbed for novel methodologies in academic
publications. While it is adequate for research targeting query
optimization, this cannot be used for our case as there is no
samples that handle the translation pairs.

Domain-specific datasets further enrich the landscape of
XML retrieval research. The DBLP XML Dataset ([24]), for
instance, offers a comprehensive corpus of computer science
publication metadata. Covering millions of journal articles,
conference papers, and academic references, it enables studies
on bibliographic data retrieval, citation analysis, and trends in
scholarly communication. Its structured yet semantically rich
content makes it invaluable for exploring hybrid approaches
that combine XML retrieval with bibliometric analytics. From
one hand, it can be seen as a challenging dataset that put
together an important volume of XML files, however, it is
structure does not involve the natural language questions that
are required for handling the task by our model, and thus it
is unusable for this kind of training or evaluation. In the same
context, the domain specific nature of the corpus creates an
obstacle for the model to generalize for unseen domain which
is an unwanted behavior for our model.

Similarly, the IMDB XML Dataset ([25]), derived from the
Internet Movie Database, provides a heterogeneous collection
of entertainment industry data. This includes detailed records
on films, TV series, actors, directors, and production crews,
offering researchers a platform to tackle challenges in querying
diverse entity types, managing cross-linked data, and extracting
insights from semi-structured multimedia metadata. Despite
having a corpus that contains huge volume of domain specific
data structured in XML files, these latter can’t be transformed
to a structured question-answer dataset to be eligible for the
training and evaluation not only for our model but also for
future models dealing with the process of translation.
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Together, these datasets cannot be used for distinct facets
of NLP using deep learning. Benchmarks like INEX and
XMark prioritize technical rigor, enabling apples-to-apples
comparisons of system performance, while domain-specific
resources like DBLP and IMDB facilitate applied research
in real-world contexts. For a granular comparison of these
datasets—including their scope, structural complexity, and
limitations —Table I synthesizes key attributes with a detailed
comparison of their features.

TABLE I. AN OVERVIEW OF THE EXISTING DATASETS

Dataset Cross
Do-
main

Number of
Elements

Max-
depth

Avg-depth Limitations

INEX Yes 12107 - 6.9 irregular
tagging,
incomplete
schemas

SIGMOD
Record
XML

No 11526 6 5.14107 less useful for
cross-domain
XML retrieval

XMark
Bench-
mark

No Depends
on configs

Depends
on
con-
figs

Depends
on configs

Artificially
generated
hierarchies

DBLP
XML
Dataset

No 3 000 000 5-7 3.5 Not usable for
semantic search
or xml retrieval

IMDB
XML
dataset

No Variable Variable Variable Not usable for
semantic search
or xml retrieval

For the purpose of compatibility and since all the previous
datasets presented in this paper don’t offer a base for NLP
tasks as well as the lack of XPath as a target language for the
translation, we decided to build a new dataset (we called it
XMLSet) that can encompasses all the missing things in one
corpus and could be used by future models either for validation
or training purposes.

B. XMLSet

The corpus is built based on different xml sources and
underwent series of steps in order to have a usable dataset in
the context of NLP. First, the xml databases have been cleaned
and preprocessed automatically in order to remove non-sense
names and replace non significant names with the ones that
have signification. Second and since all XML databases are
collected from existing source from internet as shown in
https://github.com/karamsa/XMLSet, we have converted some
of the xml sheets to XML databases in order to leverage our
dataset with data from real word that is crucial for making a
model that can generalize to unseen data; also we have kept
the nature of some of the xml data that contain more than one
XML root. We consider this as a necessary noise that makes
the model more robust for real usage. For the aim of having
a cross-domain dataset, we made sure that our new corpus
includes a variety of domains from bookstores, purchases,
plants, food, movies, journals, and more than 28 distinct topic;
the table II shows a general comparison between the existing
datasets and the XMLSet created by us. Since the XMLSet
differs totally from the existing corpuses, we only show shared

properties’ statistics, such as the depth of xml nodes, average
dept, and number of elements in the dataset and so on.

TABLE II. XMLSET AGAINST THE EXISTING DATASETS

Dataset Cross Do-
main

Number of
Elements

Max-depth Avg-depth

INEX Yes 12107 - 6.9

SIGMOD
Record XML

No 11526 6 5.14107

XMark Bench-
mark

No Depends on
configs

Depends on
configs

Depends on
configs

DBLP XML
Dataset

No 3 000 000 5-7 3.5

IMDB XML
dataset

No Variable Variable Variable

XMLSet Yes 37,788 8 4

The construction of the XMLSet dataset was a prior step
in the process of making a model that deals with NL to XML
through XPath as an intermediate language. In contrast with
the existing datasets that are not dedicated to NLP processing
tasks, the XMLSet is the first corpus that can be used for
models that rely on deep learning. It contains more than 2176
pairs in form of a natural language sentence and an answer in
XPath language. The dataset is also leveraged with a ground
truth section for each pair that describes the answer in a
structured way making it adequate not only for deep learning
processing but also for any XML retrieval form and can be
used by models for training and evaluation purposes. The
Figure 1 shows an example of a pair from XMLSet including
the details about the labels sections (ground truth).

Fig. 1. An Example of a natural language question and its answer including
the details about the labels sections from XMLSet dataset.

Regarding the pairs statistics, the dataset is built on top of
30 separate XML database files. Some of them are bigger than
the others especially in terms of number of elements and this
is particularly helpful to ensure a diverse size across the whole
corpus that is divided onto 2 sets. The data split of XMLSet
is as shown in table III:

In terms of difficulty, we made sure that XMLSet contains
a diversified pairs with easy, moderate and difficult queries;
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TABLE III. THE DATA SPLIT OF XMLSET

Train Test

#Pairs 1472 704
#Unique NLs 1255 673
#Databases 30 30

The table IV shows a detailed analysis of the XMLSet.

TABLE IV. XMLSET’S DETAILED STATISTICS

Dataset # Relative
Paths

# Multi-paths # Predicates # Functions

XMLSet 77 743 770 324

In XPath, the difficulty of a query can be measured using
different criteria. First we find the number of the nested paths
which reflects the number of nodes to be included in the final
XPath query. Then comes the number of predicates which has
a direct link to the targeted nodes in the XML file. Another
element that adds difficulty to XPath queries is the inclusion
of functions in the predicates; thus is considered as a double
difficulty as it puts together the predicates and functions in one
place. Relative paths, that include the ‘..’ are also a factor of
complexity in XPath queries; thus adding it to some pairs in the
dataset challenge the model on those complex transformations.

In the same context, we built XMLSet to follow the
question-answer paradigm; hence not all queries return results
as we want to have a system that can work in real situations
where a query entered by a user might have no corresponding
answer in a database.

IV. THE MODEL

A. Overview

Exploiting XML files using natural language solely, re-
quires an intermediate language that can manage the translation
operation by bridging the nature of each language; thus the
use of a structured language such as XPath is mandatory for
this process. The use of XPath comes from multiple factors.
First, its simplicity; XPath is a simple language that relies
on paths. It provides the possibility to extract nodes from
XML files using a short syntax. Additionally, XPath can be
applied directly to XML documents in comparison to other
languages like XQuery which requires to be re interpreted.
Another reason for choosing XPath is the richness in terms of
functions; it provides more than 200 useful functions that can
be used along with inherent expressions to exploit XML files
effectively.

The conversion of NL sentences into XPath is a thorough
task that should take in consideration the meaning inherent in
the user sentence. To this end and since the two languages
are different in nature, we decided to simplify the problem by
adopting an straightforward mapping.

The model should predict the nodes and the predicates to
be included in the final XPath query. With nodes the subset of
the following items:

N=[T; ”null”, ”.”, ”..”, ”*”, ”1”, ”last()”
, ”position()”]

(1)

In addition to T (the tags from the XML document) we
also add to the output space the relative paths ‘.’ and ‘..’, ‘*’
for any tag in the document, ‘1‘ and ‘last()’ for the first and
last node and finally the ‘position()’ that helps select nodes
based on a given position.

In the other side, a predicate P is a structure that holds
multiple elements: A node from the previous list N, an operator
from the set of possible operators O and a value from the list
of values V mentioned in the user input.

P = [N(i), O(l), V(t)] (2)

We define O as the list of supported operators in the XPath
syntax as following:

O = [”null”, ”=”, ”<”, ”>”, ”<=”,
, ”>=”, ”!=”, ”+”, ”-”]

(3)

Using those elements and by exploiting the incorporate
structure of XPath, we reformulate the problem and we sim-
plify it further by limiting the output space in each item of the
target query.

The problem then can be summarized as the prediction of
one or multiple paths of nodes and predicates in the following
format:

Q = //N1P1/N2P2.../NnPn (4)

The paths are separated by delimiters of two types; the ‘//’
which refers to selecting elements in the XML document from
no matter where they are and that correspond to the current
selection in the path. The second type is ‘/’ which provides
the possibility to select nodes depending on the root path or
the previous one.

For example, if we take an XML file that stores the orders
done by clients, the following XPath query will find the last
saved order in the document:

//orders[last()] (5)

We notice that the query contains only one path that
includes the ‘order’ node and a predicate which contains a
node as a function ‘last()’. The operator and the value for the
predicate in this case are optional. This query can take another
form. For example selecting the last but one order saved in the
XML document:

//orders[last()− 1] (6)

In this case, the predicate contains a node as a function
‘last()’, the operator ‘-’ and the value ‘1’. The table V shows
examples of XPath queries with their descriptions.
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TABLE V. SOME XPATH QUERIES AND THEIR DESCRIPTION

Query Description

//orders[last()] Get the last order wherever it is.

//orders[last()-1] Get the last order but one from all
order in the XML database.

//categories/description Get the description node of categories
nodes.

//cd[year=1985] get the cds that have been published
in 1985.

//company/employee[salary¿5000] get companyies’ employees that have
a salary higher than 5000.

//company/employee[1]/* get all information of the first em-
ployee of each company.

The same pattern can be used to represent complex XPath
queries that involve different nodes, conditions, and multiple
paths in the same XPath request. Hence an XPath query can
be split into different parts; each one will be part of a specific
predication process independently to the others.

B. Model Details

The goal of this work is the creation of a model that can
generate XPath queries effectively using the learned patterns
in the training dataset of XMLSet.

Since the translation of the natural sentence to XPath is
a problem that can be reformulated as the prediction of one
or multiple paths separated by roots and while each path can
be represented by a node and a predicated as presented in the
previous section, we can then use this powerful structure of
XPath to make prediction of the target query in an effective
manner that can help the model generate to unseen inputs from
users.

We split the problem into several sub-problems in a way
that dissociates the inputs and the outputs of each element in
the prediction process. In this context and based on an input
from the user, the natural language sentence as well as the
nodes of the XML file are fed to the model that run a series
of prediction operations in order to construct a valid query
that can be executed against an XML engine, so the result
is returned to the user as shown in figure 2 that displays the
architecture of our model (XPathia) in details.

The natural language sentence is tokenized and the XML
file is preprocessed to get the XML nodes that make the struc-
ture’s file then the two inputs are concatenated each other and
the Meta data are added. We leverage the combined inputs with
separators to distinguish between the user input and the XML
datafile. We use [SEP] from the BERT pretrained model [26]
to separate the natural language sentence form the structure of
the XML file and also for separating each tag automatically
extracted from the XML document. The BERT (Bidirectional
Encoder Representations from Transformers) is a language
representation model that provides pertinent contextualized
word embedding in contrast to static one proposed by other
models. In addition to the contextualized word embeddings that
BERT provides using representation from left and right layers
of the transformers model [27], we also leverage our model

Fig. 2. The Architecture of our system.

with the [SEP] token as a separator as well as the special token
[CLS] that holds the whole meaning of the input in one word
embeddings. This token can concentrate the representation
from both sides as BERT is a bidirectional model. These
metadata are essential to get focused representations that will
be used in the next step. The query generation process takes
place the BERT layer is completed. Our model is composed
of several sub modules and each sub-module is dedicated
to generate specific elements of the query. We don’t use a
sketch filling approach as in our case the whole query will be
predicted and this will be done once not sequentially. Since the
redefined structure of an XPath query is more straightforward
as have been shown in the previous section, we define six
sub-modules for generating the target XPath query as shown
in figure 3.

For each sub-module, the sentence S and the nodes N will
be fed as I:

I=[[CLS];S;[SEP];n1;[SEP];n2... [SEP]nz] (7)

The first step consists of predicting the number of paths that
will construct the final XPath query. In contrast to what we
have done in other works; we are not choosing a template from
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Fig. 3. The Main model and the included sub-modules for the generation
process.

a predefined set of possible structures, but we will generate
the query structure using a dedicated sub-module. This lets
the generation of a non predefined structure possible.

Pn(n|I) = softmax(Xntanh(YnEMB[CLS]))i (8)

we use X and Y as two matrices with separate trainable
parameters that help predict the number of paths in the final
query. This sub-module is based on the use of the attention
mechanism [28] and the work done by sqlnet (2017)). The
softmax function normalizes the scores of all probabilities and
the top one is selected as the final number of paths in the target
XPath query.

As a path in XPath always starts either by ‘//’ or by ‘/’, the
root type module is triggered to predict the root types of all
the paths in the final query. Using the predefined list of root
types [‘/’, ‘//’] of each path we put:

r = VRootTypetanh(WRootTypeEMB[CLS])

PRootType(i)(RootType|I) = softmax(r)
(9)

with EMB[CLS] the contextualized embedding of the whole
input, VRootType and WRootType are two matrices with isolated
trainable parameters fully dedicated to this sub-module. The
softmax function normalizes the probabilities for the root types
over each path and the highest ones are chosen for each step.
In real work almost all XPath queries starts with ‘//’; hence a
great deal of generated root types are ‘//’ for the first path.

The node sub-module is the one in charge of predicting tags
that will be included in each path. The tags are predicted based
on the list of the fed XML nodes in the first step and using the
meaning extracted from the natural language sentence of the
user. A node in a specific path can be computed as following:

z = Snodetanh(TnodeR[CLS]/node(i))

Pnode(i)(node|I) = softmax(z)
(10)

with EMB[CLS]/node(i) the representation of a node i in the
list of provided nodes and based on the special token CLS
that involve the whole representation of the input; this way
we enforce the meaning and concentrate the representation
for each node extracted from the xml document . S node and
W node are two matrices with isolated trainable parameters fully
dedicated to this sub-module. The softmax function normalizes
the probabilities for the xml nodes over each path and the top
candidates are chosen to be predicted as outputs.

Regarding the predicates and since they are composed of
three sub-modules (Node, Operator and Value) we decided to
use the same structure of modules as before. For instance, the
node sub-module within the predicate has the same structure
as the one in the path. Both they generate a node based on
the list of xml tags from the input and based on the [CLS]
token, however the latter is shown before the predicate while
the other is inside the predicate. While the two sub-modules
use the same structure, they differ in the parameters. We use
independent matrices for each sub-module even if they have
the same structure; this can be understood as we want to
dissociate the training of each module. The node of a predicate
can be computed as following:

x = Mnodepredicate
tanh(Nnodepredicate

R[CLS]/node(i))

Pnodepredicate(i)
(nodepredicate|I) = softmax(x)

(11)

The matrices Mnodepredicate and Nnodepredicate contain independent
trainable parameters exclusively dedicated to this sub-module
and not shared with the others. The softmax function normal-
izes the probabilities of XML nodes along each path, selecting
the top candidates for prediction.

For the operator inside the predicate, we use two separate
matrices and the representation of the whole input given by
the user. For each path we select one item from the list of
possible operators [’null’, ’=’, ’¡’, ’¿’, ’¡=’,’ ¿=’, ’!=’, ’+’, ’-’]
and we compute:

q = EOptanh(FOpEMB[CLS])

POp(i)(Op|I) = softmax(q)
(12)

With EOp and FOp two matrices with trainable parameters
specific for this module and will predict an operator for a
given path in the target XPath query. The probabilities for
each Op(i) are calculated and the top operators are selected
for the predicates using the softmax function.

The ‘null’ element in the list of operators refers to when
there is no operator for the predicate; thus the ‘null’ item will
be predicted as the top candidate with the highest probability.
In the same context, we leverage all lists with a ‘null’ value
that can be predicted when there is no item to be predicted.
For instance, the query bellow doesn’t include operator nor a
value in the predicate, hence the item ‘null’ will be predicted
for both positions:

//messages[1] (13)

This gives us the flexibility to stick to the simplified
structure of XPath and also run the same number of modules
regardless the number of paths and without taking the burden
of the structure in the target query.

//messages[1,null, null] (14)
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V. EVALUATION RESULTS

Our model (XPathia) is trained using XMLSet dataset that
we have presented in previous sections. The training is made
on windows OS with a 4G in GPU for the training set of
the dataset and for several epochs. The chosen batch size is
4 and we use [29] for the training with default values for
the learning and dropout rate, respectively 1e-3 and 0.3. The
training process (Figure 4) starts stabilizing after the nineteenth
epoch and the accuracy on the training set achieves a score of
29%.

Fig. 4. The Training score on for our model XPathia.

All the sub-modules that composes our model XPathia are
trained separately on the pairs of XMLSet that are included in
the training set and evaluated against the test set only once.

As we have proposed in our previous work [30] and [31],
we use two metrics to evaluate our model. The first metric is
the component matching. This metric measures the correctness
of outputs of each sub-module and provides an accuracy score
on how many parts of the XPath queries have been predicted
correctly. Since the XMLSet provides a structured ground
truth, the matching is straightforward based on a set matching
between the sub-module output and the corresponding item
on the ground truth. The loss scores are summed in order
to optimize the parameters hence giving better prediction and
minimizing the loss score for each sub-module. The table VI
shows the performance of XPathia model on the test set of
XMLSet dataset using the component matching metric.

TABLE VI. THE PERFORMANCE OF XPATHIA MODEL ON THE TEST SET
OF XMLSET DATASET USING THE COMPONENT MATCHING METRIC

Model # NB
paths

Root
types

Node Predicate

XPathia 98.86% 66.4% 64.2% 40.1%

Node Operator Value

XPathia 98.86% 66.4% 64.2% 41.9% 91.61% 49.00%

With the ‘nb paths’, the accuracy of the module that predict
the number of steps in the final XPath query. XPathia achieves
a score of 66.4% on the prediction of the root types as well
as 64.2% of correct answers on the test set for the prediction
of the nodes that will construct each path in the query. The
accuracy score for the predicates is 40.1% of the correct
answers generate by the corresponding sub-module.

Another metric used to evaluate our model XPathia, is the
total matching or what we called in our previous works Exact
matching. This metric helps measure the correspondency of a
generated query by the components of the main model with the
ground truth query. The whole output is considered as correct
when all parts match exactly all items in the ground truth data.

The table VII shows the performance of XPathia when
measured with the Exact matching on the XMLSet dataset.

TABLE VII. THE PERFORMANCE OF XPATHIA WHEN MEASURED WITH
THE EXACT MATCHING ON THE XMLSET DATASET

Model Train set (last
epoch)

Test set

XPathia 29.0% 25.85%

XPathia-wo-
values

42.8% 36.05%

The model achieves a score of 25.85% of correct queries
on all pairs seen in the test set of XMLSet while it achieves
a total score of 29.0% on the training set when trained for
several epochs. We also explore the evaluation without taking
in consideration the generated outputs related to values in the
final query. When evaluated without taking in consideration
the values, it achieves a score of 42.8% on the training set of
XMLSet. XPathia-wo-values outperforms the base model by
10.2% on the test set and achieves an accuracy score of 36.05%
which becomes the state of the art for the task of translating
natural language to XPath for the aim of XML extraction.

VI. DISCUSSION

The evaluation of the existing XML datasets in this work
leads to several conclusions:

• The existing Cross-domain datasets are not suitable
for XML retrieval using deep learning.

• Some of the datasets are configurable in size and
complexity, useful for performance benchmarking but
not cross-domain, with randomly generated data.

• Datasets with Large bibliographic corpuses are good
for XML data management but not suitable for trans-
lation model training.

• The presented corpuses with Variable size and com-
plexity are adaptable for research but not cross-
domain.

Given these insights, and since there is no available dataset
that can fill the lack of corpuses dedicated to NLP and deep
learning, we have proposed XMLSet dataset with all advan-
tages for the training and the evaluation of deep leaning based
models. We emphasize on the quality of the corpus in terms
of the size as well as the diversification of pairs with a wide
coverage in topics like books, products, orders, universities,
and more. This dataset is pairing natural language questions
with corresponding XPath queries in JSON format and is split
into train and test sets. While the XMLSet is a good starting
point for future models, we believe that the dataset can be
enhanced more by adding more items, creating more complex
structures and might be leverage by an intermediate set for fine
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tuning the models in the training process. Unlike previous work
using XQuery, we introduce XPath to simplify translation,
treating it as progressive generation process. We apply this
approach based on [30] but with major differences in system
architecture, model composition, and problem formulation.
We choose a unified XPath structure for any query that can
be generated by our model XPathia, and this helped us to
reformulate the problem from a complex task to a relatively
straightforward one. In comparison to other works that deal
with the problem in a totally classical way, we choose to apply
deep leaning to our model. The structure of sub-modules plays
a pivotal role in the generation process as it provides a total
independence between the output spaces. Each sub-module can
learn to generate one type of inputs and this helps it enhance
the quality of the generated elements as they have separate
trainable parameters. In the same context and since all sub-
modules parameters are isolated from each other, the errors are
not propagated between the models, and thus, having an error
in one sub-module doesn’t affect the rest of the sub-modules.
In relation to the training and as each element is predicted
separately from the others, we notice a quick training process.
The leaning starts stabilizing after few epochs; this can be
understood as the model updates only the faulty parameters of
the sub-modules with errors not the whole model, hence the
back propagation is limited.

The model XPathia achieves a score of 25.85% on the
challenging dataset XMLSet and 36.05% when we omit the
values prediction, thing that makes it the new state of the art
model. While the accuracy is relatively high for such a task,
we believe the model can be more enhanced with exploration
of new techniques that can be applied to the model in order to
improve the prediction accuracy. We understand that the major
improvement can come from the use of LLM models that can
have a positive impact to our model. Also we believe that some
processing to the input before the starting of the prediction can
also have a good impact to XPathia.

VII. CONCLUSION

In this study, we introduced a new deep learning-based
approach for translating natural language into XML queries
through an intermediate XPath representation. Our key the-
oretical contributions include the creation of XMLSet, the
first annotated dataset designed for training and evaluating
deep models on this task across diverse domains, and the
development of XPathia, a novel model that leverages a unified
XPath structure for improved generalization. XPathia achieves
a 25.85% accuracy on the XMLSet test set, establishing a
new benchmark in this domain. Despite these advances, the
model still faces limitations in handling complex or nested
queries and in generalizing to unseen schema variations. Future
research will focus on enhancing the model’s ability to under-
stand deeper semantic structures and expanding the dataset
with more complex query patterns. This work contributes to
the field by introducing scalable, data-driven methods that
reduce reliance on manual rule engineering and make XML
data querying more accessible to non-technical users.
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